Sample records for calculation methods measurement

  1. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura


    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  2. Methods for calculating phase angle from measured whole body bioimpedance modulus (United States)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre


    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  3. Fast three-step method for shear moduli calculation from quartz crystal resonator measurements. (United States)

    Behling, C; Lucklum, R; Hauptmann, P


    Quartz crystal resonator measurements can be used for polymer material characterization. The non-gravimetric regime of these resonators is exploited: the electrical response of polymer-coated quartz resonators depends on the polymer shear modulus. Previously reported methods employ an electrical admittance analysis together with difficult and time-consuming data fitting procedures to calculate the film shear modulus. This contribution presents a fast and accurate three-step method for the calculation of complex shear moduli of polymer films from quartz crystal resonator measurements. In the first step, the acoustic load impedance is calculated from the electrical admittance of the quartz crystal. The key point of this method is the application of a family of approximations for the calculation of the shear modulus from the acoustic load impedance in the second step. In the third step, the best approximation is improved further in an iterative procedure.

  4. Evaluation of measurement uncertainty and its numerical calculation by a Monte Carlo method (United States)

    Wübbeler, Gerd; Krystek, Michael; Elster, Clemens


    The Guide to the Expression of Uncertainty in Measurement (GUM) is the de facto standard for the evaluation of measurement uncertainty in metrology. Recently, evaluation of measurement uncertainty has been proposed on the basis of probability density functions (PDFs) using a Monte Carlo method. The relation between this PDF approach and the standard method described in the GUM is outlined. The Monte Carlo method required for the numerical calculation of the PDF approach is described and illustrated by its application to two examples. The results obtained by the Monte Carlo method for the two examples are compared to the corresponding results when applying the GUM.

  5. The Activation Detector Activity Calculations Using the Effective Source Method and Measurement (United States)

    Smutný, Vladimir; Konečná, Alena; Sprinzl, Daniel; Klupák, Vít; Vinš, Miroslav


    In the paper the application of effective source to the solution of activation detector activities in the reactor pressure vessel cavity of the VVER-1000 reactor is presented. The effective source method applies the Boltzmann transport operator to time integrated source data to obtain detector activities. Weighting the source data by time dependent depletion of the detector activity, the result of the calculation is the detector activity. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the `effective source'. The effective source method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. Detailed description of the effective source method is presented in previous works. First, there were performed neutron-physical calculations of few real VVER-1000 cycles using MOBY-DICK macrocode. Second, there follows 3-D transport calculation using the deterministic code TORT and the cross section library BUGLE-B7 and obtained results are presented. These calculation results of activation detector activities in the reactor cavity are compared with relevant activation detectors results of the ex-vessel measurement. The comparison between calculation and measurement of activation detectors activity in the reactor cavity is necessary to the calculation quality verifying for further fast neutron fluence onto the reactor pressure vessel credible calculation. The activation detectors positions are evident from Figs 1, 2, 3.

  6. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn


    Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...... to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses...

  7. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.


    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  8. A novel method for calculating and measuring the second-order buoyancy experienced by a magnet immersed in magnetic fluid (United States)

    Yu, Jun; Hao, Du; Li, Decai


    The phenomenon whereby an object whose density is greater than magnetic fluid can be suspended stably in magnetic fluid under the magnetic field is one of the peculiar properties of magnetic fluids. Examples of applications based on the peculiar properties of magnetic fluid are sensors and actuators, dampers, positioning systems and so on. Therefore, the calculation and measurement of magnetic levitation force of magnetic fluid is of vital importance. This paper concerns the peculiar second-order buoyancy experienced by a magnet immersed in magnetic fluid. The expression for calculating the second-order buoyancy was derived, and a novel method for calculating and measuring the second-order buoyancy was proposed based on the expression. The second-order buoyancy was calculated by ANSYS and measured experimentally using the novel method. To verify the novel method, the second-order buoyancy was measured experimentally with a nonmagnetic rod stuck on the top surface of the magnet. The results of calculations and experiments show that the novel method for calculating the second-order buoyancy is correct with high accuracy. In addition, the main causes of error were studied in this paper, including magnetic shielding of magnetic fluid and the movement of magnetic fluid in a nonuniform magnetic field.

  9. A statistical method to calculate blood contamination in the measurement of salivary hormones in healthy women. (United States)

    Behr, Guilherme A; Patel, Jay P; Coote, Marg; Moreira, Jose C F; Gelain, Daniel P; Steiner, Meir; Frey, Benicio N


    Previous studies have reported that salivary concentrations of certain hormones correlate with their respective serum levels. However, most of these studies did not control for potential blood contamination in saliva. In the present study we developed a statistical method to test the amount of blood contamination that needs to be avoided in saliva samples for the following hormones: cortisol, estradiol, progesterone, testosterone and oxytocin. Saliva and serum samples were collected from 38 healthy, medication-free women (mean age=33.8±7.3yr.; range=19-45). Serum and salivary hormonal levels and the amount of transferrin in saliva samples were determined using enzyme immunoassays. Salivary transferrin levels did not correlate with salivary cortisol or estradiol (up to 3mg/dl), but they were positively correlated with salivary testosterone, progesterone and oxytocin (phormones in order to determine the level of blood contamination that might affect specific hormonal salivary concentrations. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Methods for Melting Temperature Calculation (United States)

    Hong, Qi-Jun

    the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the

  11. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva


    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  12. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy. (United States)

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru


    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S


    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  14. [Determining the most unfavourable variance to calculate the Measurement Scale Imprecision Factor, and extension to other types of sampling methods]. (United States)

    Martínez García, José Antonio; Martínez Caro, Laura


    The precision of estimates must be adequately reported in survey research, where ordinal and interval measurement scales are commonly used. Regarding mean estimate, absolute and relative errors exist as a function of the measurement scales. This manuscript discusses some assumptions underlying the development of the Measurement Scale Imprecision Factor--MSIF--, a tool to assess the degree of imprecision of estimates, regardless of the scale rank considered. Specifically, we propose a new method for determining the most unfavourable variance, which is consistent with the normal distribution assumption, unlike the original assumption based on the bimodal distribution. This method reduces the value of the most unfavourable variance, which is easily computed using the cumulative normal standard distribution function. In addition, we show the relationship between MSIF and other types of probabilistic sampling methods, such as stratified and cluster sampling.

  15. Improved dose-calculation accuracy in proton treatment planning using a simplified Monte Carlo method verified with three-dimensional measurements in an anthropomorphic phantom (United States)

    Hotta, Kenji; Kohno, Ryosuke; Takada, Yoshihisa; Hara, Yousuke; Tansho, Ryohei; Himukai, Takeshi; Kameoka, Satoru; Matsuura, Taeko; Nishio, Teiji; Ogino, Takashi


    Treatment planning for proton tumor therapy requires a fast and accurate dose-calculation method. We have implemented a simplified Monte Carlo (SMC) method in the treatment planning system of the National Cancer Center Hospital East for the double-scattering beam delivery scheme. The SMC method takes into account the scattering effect in materials more accurately than the pencil beam algorithm by tracking individual proton paths. We confirmed that the SMC method reproduced measured dose distributions in a heterogeneous slab phantom better than the pencil beam method. When applied to a complex anthropomorphic phantom, the SMC method reproduced the measured dose distribution well, satisfying an accuracy tolerance of 3 mm and 3% in the gamma index analysis. The SMC method required approximately 30 min to complete the calculation over a target volume of 500 cc, much less than the time required for the full Monte Carlo calculation. The SMC method is a candidate for a practical calculation technique with sufficient accuracy for clinical application.

  16. Learning to Measure Biodiversity: Two Agent-Based Models that Simulate Sampling Methods & Provide Data for Calculating Diversity Indices (United States)

    Jones, Thomas; Laughlin, Thomas


    Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…

  17. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił


    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  18. Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...

  19. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)


    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... occupant. The improvement in calculation of the characteristics of the thermal plume achieved with the developed method, in comparison with methods used and reported in the literature, is demonstrated....

  20. Méthode de calcul de la teneur en eau des pétroles à partir de mesures diélectriques Calculation Method of Crude Water Content by Dielectric Measurements

    Directory of Open Access Journals (Sweden)

    Mauret P.


    Full Text Available On propose une méthode de calcul de la teneur en eau des pétroles basée sur la mesure simultanée de la permittivité et de la température. On note que l'étalonnage à partir d'un brut totalement déshydraté n'est pas nécessaire : seule est requise la détermination d'humidité en laboratoire sur un échantillon quelconque du brut concerné dont la permittivité a été préalablement mesurée. Cette méthode tient compte du fait que la permittivité de l'eau ne varie pas linéairement avec la température et utilise l'extrapolation mathématique d'Halverstat et Kumler pour le calcul des permittivités. La méthode a été vérifiée avec des bruts pétroliers légers pour des teneurs allant de 0 à 12 % en volume et des températures de 25 et 60°C. La précision relative est de l'ordre de 0,1 à 0,2 %. A method of calculation is proposed to determine accurately the water content in crude oil based upon simultaneous measurement of permittivity and temperature. Permittivity measurements on a sample entirely dryed, used as reference, is not necessary. Only one laboratory experiment is necessary to determine preliminary the moisture content on one sample of the crude oil concerned. This metod take into account that the water permittivity is not a linear variation with temperature and use the Halverstat and Kumler mathematic extrapolation for permittivity calculation. The method has been verified on light crudes between 0 - 12% for water content and at 25 - 60°C temperature. Accuracy is approximately 0,1% - 0,2%.

  1. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A


    The present work is dedicated to a comparative analysis of calculation methods about clothing insulation with a thermal manikin operating under the thermal comfort regulation mode. The serial, global, and parallel calculation methods are considered and the thermal insulation results for garments (30) and ensembles (9) are discussed. The serial and parallel methods presents the higher and lower values, respectively, and the differences were sometimes significant. Considering the results for the effective thermal insulation, the mean values of the relative differences between the serial and global methods were 25.7% for the daily wear garments, 45.2% for the cold protective garments and 38.5% for the ensembles. The corresponding mean values for the global and parallel methods were 8.7, 15.8, and 10.5%, respectively. Since any uneven clothing insulation is to be expected as a source of error, particular care must be required when the calculation methods deal with cold protective clothing.

  2. Glass dissolution rate measurement and calculation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Maxime, E-mail: [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Ull, Aurélien; Nicoleau, Elodie [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Inagaki, Yaohiro [Department of Applied Quantum Physics & Nuclear Engineering, Kyushu University, Fukuoka, 819-0395 (Japan); Odorico, Michaël [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule, BP17171, F-30207, Bagnols sur Cèze (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France)


    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (S{sub geo}) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (S{sub BET}) may be due to small physical features at the atomic scale—contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a S{sub BET}/S{sub geo} ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to S{sub geo} should be divided by 1.3 and rates normalized to S{sub BET} should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%. - Highlights: • Initial dissolution

  3. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements

    CERN Document Server

    Estrada, J


    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of sup 2 sup 1 sup 0 Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measureme...

  4. Simple Calculation Programs for Biology Immunological Methods

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Immunological Methods. Computation of Ab/Ag Concentration from EISA data. Graphical Method; Raghava et al., 1992, J. Immuno. Methods 153: 263. Determination of affinity of Monoclonal Antibody. Using non-competitive ...

  5. Thermal Bridges in Building Construction - Measurements and Calculations

    DEFF Research Database (Denmark)

    Rose, Jørgen

    The thesis investigates detailed calculation methods for evaluating heat loss through building envelope constructions, or more specific, thermal bridges. First a detailed description of the calculation methods, i.e. both calculation programs and guidelines, for calculating typical thermal bridges...... in building envelope constructions is given. After this a validation of both programs and guidelines is presented. The validation is performed by comparing calculated U-values with Guarded Hot Box measurements. The last part of the thesis discusses the possibilities of utilising the results of detailed...

  6. Uncertainty Calculation for Spectral-Responsivity Measurements

    National Research Council Canada - National Science Library

    Lehman, John H; Wang, C M; Dowell, Marla L; Hadler, Joshua A


    .... Relative expanded uncertainties based on the methods from the Guide to the Expression of Uncertainty in Measurement and from Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement...

  7. Simple Calculation Programs for Biology Other Methods

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Other Methods. Hemolytic potency of drugs. Raghava et al., (1994) Biotechniques 17: 1148. FPMAP: methods for classification and identification of microorganisms 16SrRNA. graphical display of restriction and fragment map of ...

  8. Biases for current FFTF calculational methods

    Energy Technology Data Exchange (ETDEWEB)

    Ombrellaro, P.A.; Bennett, R.A.; Daughtry, J.W.; Dobbin, K.D.; Harris, R.A.; Nelson, J.V.; Peterson, R.E.; Rothrock, R.B.


    Uncertainties in nuclear data and approximate calculational methods used in safety design, and operational support of a reactor yield biased as well as uncertain results. Experimentally based biases for use in Fast Flux Test Facility (FFTF) core calculations have been evaluated and are presented together with a description of calculational methods. Experimental data for these evaluations were obtained from an Engineering Mockup Critical (EMC) of the FFTF core built at the Argonne National Laboratory (ANL). The experiments were conceived and planned by the Hanford Engineering Development Laboratory (HEDL) in cooperation with the Westinghouse Advanced Reactors Division (WARD) and ANL personnel, and carried out by the ANL staff. All experiments were designed specifically to provide data for evaluation of current FFTF core calculational methods. These comprehensive experiments were designed to allow simultaneous evaluations of biases and uncertainties in calculated reactivities, fuel sub-assembly and material reactivity worths, small sample worths, absorber rod worths, spatial fission rate distributions, power tilting effects and spatial neutron spectra. Modified source multiplication and reactivity anomaly methods have also been evaluated. Uncertainties in the biases have been established and are sufficiently small to attain a high degree of confidence in the design, safety and operational aspects of the FFTF core.

  9. Statistical Methods for Base Inflation Calculation

    Directory of Open Access Journals (Sweden)

    Ion Partachi


    Full Text Available The purposes of the given research are the analysis of four alternative methods of measurement of base inflation and a choice of the parameter most precisely reflecting an actual inflationary trend in the Republic of Moldova. The estimation of the fact sheet on inflation in the Republic of Moldova is made with application of the approach based on methods of the statistical analysis, in particular: exclusion method, trimmed means method, standard deviation trimmed means method, percentile method.

  10. Comparative Study of Daylighting Calculation Methods

    Directory of Open Access Journals (Sweden)

    Mandala Ariani


    Full Text Available The aim of this study is to assess five daylighting calculation method commonly used in architectural study. The methods used include hand calculation methods (SNI/DPMB method and BRE Daylighting Protractors, scale models studied in an artificial sky simulator and computer programs using Dialux and Velux lighting software. The test room is conditioned by the uniform sky conditions, simple room geometry with variations of the room reflectance (black, grey, and white color. The analyses compared the result (including daylight factor, illumination, and coefficient of uniformity value and examines the similarity and contrast the result different. The color variations trial is used to analyses the internally reflection factor contribution to the result.

  11. A New Iterative Method to Calculate [pi (United States)

    Dion, Peter; Ho, Anthony


    For at least 2000 years people have been trying to calculate the value of [pi], the ratio of the circumference to the diameter of a circle. People know that [pi] is an irrational number; its decimal representation goes on forever. Early methods were geometric, involving the use of inscribed and circumscribed polygons of a circle. However, real…

  12. Calculation methods of the nuclear characteristics


    Dubovichenko, S. B.


    In the book the mathematical methods of nuclear cross sections and phases of elastic scattering, energy and characteristics of bound states in two- and three-particle nuclear systems, when the potentials of interaction contain not only central, but also tensor component, are presented. Are given the descriptions of the mathematical numerical calculation methods and computer programs in the algorithmic language "BASIC" for "Turbo Basic" of firm "Borland" for the computers of the type IBM PC AT...


    Directory of Open Access Journals (Sweden)

    V. F. Ivankov


    Full Text Available Based on the example of the reactor without steel, type ROM-510/26 with electromagnetic shields, verification of analytical and numeral finite-element methods is carried out by the calculation results comparison. For the purpose of corrected analytical calculation, horizontal and vertical shields of the reactor are represented by the system of shortcircuited elements to consider their final dimensions. Calculation is performed as to their inductances, distribution of currents and losses in the shields, magnetic-field and losses in winding, calculation of winding heating by means of the «overheating» empirical method. It is illustrated that analytical calculations correspond to the researches using numeral methods of the electromagnetic and thermal CFD-analysis with sufficient accuracy. For the purpose of practical application in industrial designing of the equipment, the methods with approved and checked measurement results are recommended

  14. Methods for Calculating Empires in Quasicrystals

    Directory of Open Access Journals (Sweden)

    Fang Fang


    Full Text Available This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this method finds the forced tiles with the restrictions in the high dimensional lattice (the mother lattice that can be cut-and-projected into the lower dimensional quasicrystal. We compare our method to the two existing methods, namely one method that uses the algorithm of the Fibonacci chain to force the Ammann bars in order to find the forced tiles of an empire and the method that follows the work of N.G. de Bruijn on constructing a Penrose tiling as the dual to a pentagrid. This new method is not only conceptually simple and clear, but it also allows us to calculate the empires of the vertex configurations in a defected quasicrystal by reversing the configuration of the quasicrystal to its higher dimensional lattice, where we then apply the restrictions. These advantages may provide a key guiding principle for phason dynamics and an important tool for self error-correction in quasicrystal growth.

  15. Group Contribution Methods for Phase Equilibrium Calculations. (United States)

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian


    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  16. Noise-Measuring Method

    DEFF Research Database (Denmark)

    Diamond, J. M.


    A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test.......A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test....

  17. Calculations of flexibility module in measurements instruments (United States)

    Wróbel, A.; Płaczek, M.; Baier, A.


    Piezoelectricity has found a lot of applications since it were discovered in 1880 by Pierre and Jacques Curie. There are many applications of the direct piezoelectric effect - the production of an electric potential when stress is applied to the piezoelectric material, as well as the reverse piezoelectric effect - the production of strain when an electric field is applied. This work presents a mathematical model of a new model of vibration sensor. The principle of operation of currently used sensors is based on the idea: changes in thickness of the piezoelectric plates cause the vibration of the mechanical element, so-called “fork”. If the “forks” are not buried by the material deformation of the full tiles broadcasting is transmitted to receiver piezoelectric plate. As a result of vibration of receiver plates the cladding is formed on the potential difference proportional to the force. The value of this voltage is processed by an electronic circuit. In the case of backfilling “forks” the electric signal is lower. At the same time is not generated the potential for cladding tiles. Such construction have a lot of drawbacks, for example: need to use several piezoelectric plates, with the increase in number of components is increased failure of sensors, sensors have now produced two forks resonance, using these sensors in moist materials is often the case that the material remains between the forks and at the same time causes a measurement error. Mentioned disadvantages do not appear in the new proposed sensor design. The Galerkin method of the analysis of considered systems will be presented started from development of the mathematical model, to determine the graphs of flexibility and confirm two methods: exact and approximate. Analyzed beam is a part of the vibration level sensor and the results will be used to identify the electrical parameters of the generator. Designing of technical systems containing piezoelectric transducers is a complex process

  18. Deconstructing Calculation Methods, Part 3: Multiplication (United States)

    Thompson, Ian


    In this third of a series of four articles, the author deconstructs the primary national strategy's approach to written multiplication. The approach to multiplication, as set out on pages 12 to 15 of the primary national strategy's "Guidance paper" "Calculation" (DfES, 2007), is divided into six stages: (1) mental…

  19. Computational methods for probability of instability calculations (United States)

    Wu, Y.-T.; Burnside, O. H.


    This paper summarizes the development of the methods and a computer program to compute the probability of instability of a dynamic system than can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the roots of the characteristics equation or Routh-Hurwitz test functions are investigated. Computational methods based on system reliability analysis methods and importance sampling concepts are proposed to perform efficient probabilistic analysis. Numerical examples are provided to demonstrate the methods.

  20. Soil structure interaction calculations: a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.; Zaslawsky, M.


    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  1. Advanced Computational Methods for Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.


    Directory of Open Access Journals (Sweden)

    Sebastian UNGUREANU


    Full Text Available Cost information system plays an important role in every organization in the decision making process. An important task of management is ensuring control of the operations, processes, sectors, and not ultimately on costs. Although in achieving the objectives of an organization compete more control systems (production control, quality control, etc., the cost information system is important because monitors results of the other. Detailed analysis of costs, production cost calculation, quantification of losses, estimate the work efficiency provides a solid basis for financial control. Knowledge of the costs is a decisive factor in taking decisions and planning future activities. Managers are concerned about the costs that will appear in the future, their level underpinning the supply and production decisions as well as price policy. An important factor is the efficiency of cost information system in such a way that the information provided by it may be useful for decisions and planning of the work.

  3. Deconstructing Calculation Methods, Part 4: Division (United States)

    Thompson, Ian


    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  4. Estimation of the resonance curve from contributions of of three-conductor transmission lines. Calculation method replaces large-scale angle measurements; Bestimmung der Resonanzkurve aus den Betraegen der drei Leiter-Erde-Spannungen. Rechenmethode ersetzt aufwaendige Winkelmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Poll, J. [RWE Energy AG, Dortmund (Germany)


    The author describes how the neutral point displacement voltage can be estimated from the contributions of the three-conductor transmission lines. A calculation method is explained, which leads to exact results even in cases where the conventional measurement of the Gaussian curve is not enough. [German] Der Verfasser beschreibt, wie aus den Betraegen der drei Leiter-Erde-Spannungen die Sternpunktspannung nach Betrag und Winkel errechnet werden kann. Mit dem vorgestellten Rechenverfahren ist es moeglich, in geloescht betriebenen Netzen den Ortskreis der Sternpunktspannung ohne aufwaendige Winkelmessung aufzunehmen. Das Verfahren liefert auch in den Faellen exakte Ergebnisse, in denen die konventionelle Messung der Glockenkurve nicht ausreichend ist. (orig.)

  5. Enhanced Method for Cavity Impedance Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang


    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  6. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J.P. [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico)]. e-mail:; Valle, E. del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)


    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  7. Simplified method for calculating SNCR system efficiency

    Directory of Open Access Journals (Sweden)

    Pronobis Marek


    Full Text Available SNCR (Selective Non-Catalytic Reduction technology is aimed at reducing NOx emissions. SNCR efficiency is appropriately high only for the reaction temperature range called ‘the SNCR temperature window’. It is a narrow temperature range defined in various ways in the literature, which makes it difficult to evaluate the DeNOx system’s efficiency. Therefore, this study attempts to approximate the relationship between SNCR system efficiency and the flue gas temperature. The approximation was performed on the basis of literature data and verified using data from an experiment. Measurements were performed in a Polish boiler with a maximum continuous rating of 230 t/h. The verified, evaluated function could be used to forecast efficiency of SNCR systems in existing units that use urea or ammonia as a reagent. The approximation results are polynomial functions that depend on flue gas temperature, which fit the literature data with the coefficient of determination R2 = 0.83-0.86. Therefore, these equations could be used by the designer or operator of the boiler for preliminary determination of current SNCR system efficiency.

  8. A new method for calculation of an air quality index

    Energy Technology Data Exchange (ETDEWEB)

    Ilvessalo, P. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.


    Air quality measurement programs in Finnish towns have expanded during the last few years. As a result of this it is more and more difficult to make use of all the measured concentration data. Citizens of Finnish towns are nowadays taking more of an interest in the air quality of their surroundings. The need to describe air quality in a simplified form has increased. Air quality indices permit the presentation of air quality data in such a way that prevailing conditions are more easily understandable than when using concentration data as such. Using an air quality index always means that some of the information about concentrations of contaminants in the air will be lost. How much information is possible to extract from a single index number depends on the calculation method. A new method for the calculation of an air quality index has been developed. This index always indicates the overstepping of an air quality guideline level. The calculation of this air quality index is performed using the concentrations of all the contaminants measured. The index gives information both about the prevailing air quality and also the short-term trend. It can also warn about the expected exceeding of guidelines due to one or several contaminants. The new index is especially suitable for the real-time monitoring and notification of air quality values. The behaviour of the index was studied using material from a measurement period in the spring of 1994 in Kaepylae, Helsinki. Material from a pre-operational period in the town of Oulu was also available. (author)

  9. Quantum Monte Carlo diagonalization method as a variational calculation

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio


    A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)

  10. Effectiveness of quality control methods for glomerular filtration rate calculation. (United States)

    McMeekin, Helena; Wickham, Fred; Barnfield, Mark; Burniston, Maria


    In this work, we aimed to identify the types of errors encountered in glomerular filtration rate (GFR) measurement and test the effectiveness of all published quality control (QC) methods for detection of clinically significant errors. A total of 412 GFR tests were carried out on adults and children. The three-point slope-intercept glomerular filtration rate (SI-GFR) was compared with the nine-point 'area under curve' calculation as a gold standard to determine the error in SI-GFR. The Durbin-Watson test was used to characterize the nature of the errors. The sensitivity, specificity and positive predictive value (PPV) of QC methods for detecting clinically significant errors were calculated and receiver operating characteristic curves were constructed. The QC methods were also applied to a dataset of 100 four-point GFR tests from different institutions. Model failure is the dominant cause of clinically significant error in this dataset, with individual point measurement errors only giving rise to clinically significant errors in a small number of cases. No QC test had an acceptable combination of sensitivity, PPV and specificity. The correlation coefficient QC test had the largest area under the receiver operating characteristic curve (0.73). No other QC test had an area greater than 0.57. All the QC methods have poor sensitivity and PPV for detecting clinically significant errors and so cannot be relied on to ensure a robust measurement of GFR, underlining the need for careful working practices and a thorough system of measurement checks. We found no evidence for the value of multiple sampling with respect to QC; until such evidence is published, their clinical utility is unproven.

  11. Simulation of FEL pulse length calculation with THz streaking method

    Energy Technology Data Exchange (ETDEWEB)

    Gorgisyan, I., E-mail: [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Ischebeck, R.; Prat, E.; Reiche, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rivkin, L. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Juranić, P., E-mail: [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)


    Simulation of THz streaking of photoelectrons created by X-ray pulses from a free-electron laser and reconstruction of the free-electron laser pulse lengths. Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump–probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision.

  12. Multi-loop calculations: numerical methods and applications (United States)

    Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.


    We briefly review numerical methods for calculations beyond one loop and then describe new developments within the method of sector decomposition in more detail. We also discuss applications to two-loop integrals involving several mass scales.

  13. Calculation of transonic flows using an extended integral equation method (United States)

    Nixon, D.


    An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.

  14. Approximate design calculation methods for radiation streaming in shield irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro [Ship Research Inst., Mitaka, Tokyo (Japan); Yoritsune, Tsutomu


    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)

  15. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail:; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)


    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  16. R-matrix calculations in support of impurity influx measurements (United States)

    Ballance, C. P.


    The RMPS (R-Matrix with Pseudo-States) method has been used with great success in the calculation of the collisional data for light fusion-related elements such as helium, beryllium or neon, both in terms of electron-impact excitation and also ground, metastable, and excited state ionisation. However, more complex atomic species such as Molybdenum and Tungsten have been choosen as plasma-facing elements in several tokamak experiments such as NSTX-U. During plasma operation there is an inevitable degree of wall erosion and therefore the determination of this impurity-influx rate from vessel walls needs to be characterized. In terms of atomic physics, this erosion rate can be determined from an SXB ratio and spectroscopic measurements of emitted line radiation. The SXB ratio is generated using a combination of electron-impact ionisation, excitation and the underlying atomic structure transition probabilities. The groundstate of Mo I and Mo II being half-open d shell systems quickly give rise to 100s of levels, and therefore the resulting spectral lines from the neutral and singly ionised species provides a convoluted picture. Therefore, subject to the constraints of spectrometer used, theoretically we are able to survey our structure and collisional calculations and pro-actively suggest particular diagnostic lines. There have been previous R-matrix calculations in LS coupling used for modelling of Mo, with mixed results, however it is hoped that this project shall resolve those differences. A method shall be presented that we use to determine which lines are most beneficial for analysis. I will present current electron-impact excitation and ionisation results for both neutral and singly ionised molybdenum.

  17. Comparison of calculated and measured helicopter rotor lateral flapping angles (United States)

    Johnson, W.


    Calculated and measured values of helicopter rotor flapping angles in forward flight are compared for a model rotor in a wind tunnel and an autogiro in gliding flight. The lateral flapping angles can be accurately predicted when a calculation of the nonuniform wake-induced velocity is used. At low advance ratios, it is also necessary to use a free wake geometry calculation. For the cases considered, the tip vortices in the rotor wake remain very close to the tip-path plane, so the calculated values of the flapping motion are sensitive to the fine details of the wake structure, specifically the viscous core radius of the tip vortices.

  18. Relationship Between Measured and Calculated Yield of Cassava ...

    African Journals Online (AJOL)

    Measured cassava yield fro 6.3 to 11.5t/ha. While calculated yield range from 2.69 to 11.5t/ha. Measured yam yield range from 1.2 to 5.Ot/ha while calculated yield range from 2.85 to 6.4 t/ha. Peasant farmers have been able to cultivate these soils by tilling with hoes machetes and making heaps for yams and cassava.

  19. Development and Analysis of Train Brake Curve Calculation Methods with Complex Simulation

    Directory of Open Access Journals (Sweden)

    Geza Tarnai


    Full Text Available This paper describes an efficient method using simulation for developing and analyzing train brake curve calculation methods for the on-board computer of the ETCS system. An application example with actual measurements is also presented.

  20. Stellarator expansion methods for MHD equilibrium and stability calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, V.E.; Charlton, L.A.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Garcia, L.


    Two methods for performing stellarator expansion, or average method, MHD calculations are described. The first method includes the calculation of vacuum, equilibrium, and stability, using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 2-D problem by averaging over the geometric toroidal angle in real space coordinates. In the second method, the average is performed in a system of vacuum magnetic coordinates. Both methods are implemented to utilize realistic vacuum field information, making them applicable to configuration studies and machine design, as well as to basic research. Illustrative examples are presented to detail the sensitivities of the calculations to physical parameters and to show numerical convergence and the comparison of these methods with each other and with other methods.


    Directory of Open Access Journals (Sweden)

    Florin-Constantin DIMA


    Full Text Available The cost of production has as its starting point the purchase cost of raw materials and consumables, as well as their processing cost and the calculation of the production cost involves complex aspects. This article is based on the two major concepts of costs calculation, namely the concept of full costs and the concept of partial costs, and it analyses the direct-costing calculation method. Necessity of the Development of calculation methods to ensure rapid determination of the cost of production, and the establishment of indicators broad spectrum of information necessary for making decisions to streamline a business activity conducted by direct-costing method. Direct-costing method appeared in the U.S. for the first time in 1934 (applied by Jonathan Harris and G. Charter Harrison. Subsequently, this method was applied to European countries (England, France, Germany etc.. We stopped on this method because it is considered a modern method of costing. Therefore, we analyzed both advantages and limitations of the method in question

  2. Efficient calculation of the robustness measure R for complex networks (United States)

    Hong, Chen; He, Ning; Lordan, Oriol; Liang, Bo-Yuan; Yin, Nai-Yu


    In a recent work, Schneider et al. (2011) proposed a new measure R for network robustness, where the value of R is calculated within the entire process of malicious node attacks. In this paper, we present an approach to improve the calculation efficiency of R, in which a computationally efficient robustness measure R‧ is introduced when the fraction of failed nodes reaches to a critical threshold qc. Simulation results on three different types of network models and three real networks show that these networks all exhibit a computationally efficient robustness measure R‧. The relationships between R‧ and the network size N and the network average degree are also explored. It is found that the value of R‧ decreases with N while increases with . Our results would be useful for improving the calculation efficiency of network robustness measure R for complex networks.

  3. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    Abstract. In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal ...

  4. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements.

  5. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej


    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law is prese......When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law...

  6. Comparison of MCNPX and Albedo method in criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Victor L. Lassance; Rebello, Wilson F.; Cabral, Ronaldo G.; Melo, Fernando da S., E-mail:, E-mail:, E-mail: cabral@ime.eb.b, E-mail: [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X. da, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Programa de Engenharia Nuclear


    This study aims to conduct a computer simulation that will calculate the reactivity of a homogeneous reactor and compare the results with the calculations made by the albedo method. The simulation will be developed using the MCNPX. The study compared the results calculated for a hypothetical reactor by the albedo method for four groups of energy with those obtained by the MCNPX simulation. The design of the reactor is spherical and homogeneous with a reflector of finite thickness. The value obtained for the neutron effective multiplication factor - k{sub eff} will be compared. Different situations were simulated in order to obtain results closer to the compared method and reality. The was Good consistency could be noticed between the calculated results. (author)

  7. Classical Methods and Calculation Algorithms for Determining Lime Requirements

    Directory of Open Access Journals (Sweden)

    André Guarçoni

    Full Text Available ABSTRACT The methods developed for determination of lime requirements (LR are based on widely accepted principles. However, the formulas used for calculation have evolved little over recent decades, and in some cases there are indications of their inadequacy. The aim of this study was to compare the lime requirements calculated by three classic formulas and three algorithms, defining those most appropriate for supplying Ca and Mg to coffee plants and the smaller possibility of causing overliming. The database used contained 600 soil samples, which were collected in coffee plantings. The LR was estimated by the methods of base saturation, neutralization of Al3+, and elevation of Ca2+ and Mg2+ contents (two formulas and by the three calculation algorithms. Averages of the lime requirements were compared, determining the frequency distribution of the 600 lime requirements (LR estimated through each calculation method. In soils with low cation exchange capacity at pH 7, the base saturation method may fail to adequately supply the plants with Ca and Mg in many situations, while the method of Al3+ neutralization and elevation of Ca2+ and Mg2+ contents can result in the calculation of application rates that will increase the pH above the suitable range. Among the methods studied for calculating lime requirements, the algorithm that predicts reaching a defined base saturation, with adequate Ca and Mg supply and the maximum application rate limited to the H+Al value, proved to be the most efficient calculation method, and it can be recommended for use in numerous crops conditions.

  8. Pressure algorithm for elliptic flow calculations with the PDF method (United States)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.


    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  9. Approximating Sievert Integrals to Monte Carlo Methods to calculate ...

    African Journals Online (AJOL)

    Radiation dose rates along the transverse axis of a miniature P192PIr source were calculated using Sievert Integral (considered simple and inaccurate), and by the sophisticated and accurate Monte Carlo method. Using data obt-ained by the Monte Carlo method as benchmark and applying least squares regression curve ...

  10. Viscous-Inviscid Interaction Method for Wing Calculations

    NARCIS (Netherlands)

    Coenen, Edith G.M.; Veldman, Arthur E.P.; Patrianakos, George


    A quasi-simultaneous viscous-inviscid coupling method is developed for the calculation of three-dimensional steady incompressible flow over transport wing configurations. The external inviscid flow is computed with a constant-potential (Dirichlet) panel method, constructed from a constant source and

  11. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    In this study, an attempt was made to propose an optimization method for the quantitative determination of clay minerals in soil based on bulk chemical composition data. The fundamental principles and processes of the calculation are elucidated. Some samples were used for reliability verification of the method and the ...

  12. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus


    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  13. Evaluation of algorithms for calculating bioimpedance phase angle values from measured whole-body impedance modulus. (United States)

    Nordbotten, Bernt J; Tronstad, Christian; Martinsen, Ørjan G; Grimnes, Sverre


    This paper addresses the problem of calculating the bioimpedance phase angle from measurements of impedance modulus. A complete impedance measurement was performed on altogether 20 healthy persons using a Solatron 1260/1294 system. The obtained impedance modulus (absolute impedance value) values were used to calculate the Cole parameters and from them the phase angles. In addition, the phase angles were also calculated using a Kramers-Kronig approach. A correlation analysis for all subjects at each frequency (5, 50, 100 and 200 kHz) for both methods gave R(2) values ranging from 0.7 to 0.96 for the Cole approach and from 0.83 to 0.96 for the Kramers-Kronig approach; thus, both methods gave good results compared with the complete measurement results. From further statistical significance testing of the absolute value of the difference between measured and calculated phase angles, it was found that the Cole equation method gave significantly better agreement for the 50 and 100 kHz frequencies. In addition, the Cole equation method gives the four Cole parameters (R(0), R(∞), τ(z) and α) using measurements at frequencies up to 200 kHz while the Kramers-Kronig method used frequencies up to 500 kHz to reduce the effect of truncation on the calculated results. Both methods gave results that can be used for further bioimpedance calculations, thus improving the application potential of bioimpedance measurement results obtained using relatively inexpensive and portable measurement equipment.

  14. Method of calculation of exhaust gases emissions of biogas engine


    Абрамчук, Ф. И.; Кабанов, А. Н.; Петров, Н. В.


    In article has been presented method allows to calculate content of harmful chemical species in exhaust gases of biogas engine. To determine the equilibrium composition of internal combustion engine with spark ignition is proposed to use a system of 10 equations with 10 unknowns based on six chemical reactions, 3 equations of material balance and Dalton’s law equation. The technique of algebraic solutions of system of nonlinear equations has been proposed. Comparison of results of calculation...

  15. Green function method for calculating properties of static magnetic fields. (United States)

    Engström, S


    Given complete information about the normal component of a magnetic field in a plane, it is possible to directly calculate all aspects of the field at any point in a source-free, homogeneous volume above that plane. The magnetic scalar potential, the magnetic field, and its gradient have direct representations as integrals of the boundary data. This paper provides a Green function method for this problem, as well as examples of such calculations. Copyright 2001 Wiley-Liss, Inc.

  16. Kinetic measurements and quantum chemical calculations on low ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 7. Kinetic measurements and quantum chemical calculations on low spin Ni(II)/(III) macrocyclic complexes in aqueous and sulphato medium. Anuradha Sankaran E J Padma Malar Venkatapuram Ramanujam Vijayaraghavan. Regular Articles Volume 127 ...

  17. 49 CFR 531.6 - Measurement and calculation procedures. (United States)


    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.6 Measurement and calculation procedures. (a) The average fuel economy of all passenger... which to include value added in Mexico as domestic value, under subparagraphs (B)(i) and (B)(iii) of 49...

  18. Simplified hourly method to calculate summer temperatures in dwellings

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Aggerholm, Søren


    :2008 but with further simplifications. The method is used for calculating room temperatures for all hours of a reference year. It is essential that the simplified method is able to predict the temperature in the room with the highest heat load. The heat load is influenced by the solar load, internal load, ventilation...... with an ordinary distribution of windows and a “worst” case where the window area facing south and west was increased by more than 60%. The simplified method used Danish weather data and only needs information on transmission losses, thermal mass, surface contact, internal load, ventilation scheme and solar load......The objective of this study was to develop a method for hourly calculation of the operating temperature in order to evaluate summer comfort in dwellings to help improve building design. A simplified method was developed on the basis of the simple hourly method of the standard ISO 13790...


    Directory of Open Access Journals (Sweden)

    A. I. Akaev


    Full Text Available This paper presents a simplified method of calculating the optimal regimes of the fountain and the pumping exploitation of geothermal wells, reducing scaling and corrosion during operation. Comparative characteristics to quantify the heat of formation for these methods of operation under the same pressure at the wellhead. The problem is solved graphic-analytical method based on a balance of pressure in the well with the heat pump. 

  20. Shape integral method for magnetospheric shapes. [boundary layer calculations (United States)

    Michel, F. C.


    A method is developed for calculating the shape of any magnetopause to arbitrarily high precision. The method uses an integral equation which is evaluated for a trial shape. The resulting values of the integral equation as a function of auxiliary variables indicate how close one is to the desired solution. A variational method can then be used to improve the trial shape. Some potential applications are briefly mentioned.

  1. Modifying and Accelerating the Method of Moments Calculation


    René Harťanský; Viktor Smieško; Michal Rafaj


    This manuscript deals with optimizing the numerical method called the method of moments (MoM). This method is widely utilized for field computation of 3D structures. MoM is exploited in hydraulics as well as in the electromagnetic field theory. Emphasis is put on minimizing calculations necessary for constructing a system of linear equations exploiting symmetry or similarity of elements of geometric structure. The manuscript also contains a comparison of computing times using standard MoM and...

  2. Load calculation methods for offshore wind turbine foundations

    DEFF Research Database (Denmark)

    Passon, Patrik; Branner, Kim


    is given to jacket-type foundations, the methods are considered applicable for other bottom-mounted foundation types as well. All load calculation methods are applied and evaluated for an exemplarily fatigue design scenario from the perspective of an FD in order to establish more confidence......Calculation of design loads for offshore wind turbine (OWT) foundations is typically performed in a joint effort between wind turbine manufactures and foundation designers (FDs). Ideally, both parties would apply the same fully integrated design tool and model for that purpose. However...... turbine manufacturer provides the FD with dynamic responses obtained from aeroelastic simulations at a predefined interface. These responses are subsequently expanded to the corresponding dynamic responses in all structural parts of the foundation. In this article, a novel load calculation method...

  3. IDA: An implicit, parallelizable method for calculating drainage area (United States)

    Richardson, Alan; Hill, Christopher N.; Perron, J. Taylor


    Models of landscape evolution or hydrological processes typically depend on the accurate determination of upslope drainage area from digital elevation data, but such calculations can be very computationally demanding when applied to high-resolution topographic data. To overcome this limitation, we propose calculating drainage area in an implicit, iterative manner using linear solvers. The basis of this method is a recasting of the flow routing problem as a sparse system of linear equations, which can be solved using established computational techniques. This approach is highly parallelizable, enabling data to be spread over multiple computer processors. Good scalability is exhibited, rendering it suitable for contemporary high-performance computing architectures with many processors, such as graphics processing units (GPUs). In addition, the iterative nature of the computational algorithms we use to solve the linear system creates the possibility of accelerating the solution by providing an initial guess, making the method well suited to iterative calculations such as numerical landscape evolution models. We compare this method with a previously proposed parallel drainage area algorithm and present several examples illustrating its advantages, including a continent-scale flow routing calculation at 3 arc sec resolution, improvements to models of fluvial sediment yield, and acceleration of drainage area calculations in a landscape evolution model. We additionally describe a modification that allows the method to be used for parallel basin delineation.

  4. Comparison of Methods of Calculating Dynamic Strength Index. (United States)

    Comfort, Paul; Thomas, Christopher; Dos'Santos, Thomas; Jones, Paul A; Suchomel, Timothy J; McMahon, John J


    To determine the reliability and variability of dynamic strength index (DSI) calculated from squat jump (SJ) (DSI-SJ) versus countermovement jump (CMJ) (DSI-CMJ) peak force (PF) and to compare DSI values between methods. Male youth soccer and rugby league players (n = 27; age = 17.2 ± 0.7 years; height = 173.9 ± 5.7 cm; body mass = 71.1 ± 7.2 kg) performed 3 trials of the SJ, CMJ and isometric mid-thigh pull (IMTP), on two separate days. DSI was calculated by dividing the PF during each jump by the IMTP PF. DSI-SJ exhibited moderate (intraclass correlation coefficient (ICC) = 0.419) within-session reliability and high variability (percentage coefficient of variation (%CV) = 15.91) during session one; however, this improved noticeably during session two (ICC = 0.948; %CV = 4.03). Contrastingly, DSI-CMJ showed nearly perfect within-session reliability (ICC = 0.920-0.952) and low variability (%CV = 3.80-4.57) for both sessions. Moreover, DSI-SJ values demonstrated a small yet significant increase between sessions (P = 0.01, d = 0.37), whereas only a trivial and non-significant increase was observed for DSI-CMJ between sessions (P = 0.796 d = 0.07). Between-session reliability was very high for the DSI-SJ (ICC = 0.741) and nearly perfect for the DSI-CMJ (ICC = 0.924). There was no significant or meaningful difference (P = 0.261; d = 0.12) between DSI-SJ (0.82 ± 0.18) and DSI-CMJ (0.84 ± 0.15). Practitioners should use DSI-CMJ as it is a more reliable measure than DSI-SJ, although it produces similar ratios.

  5. Study on numerical calculation method for hydrodynamic parameters of WEC

    Directory of Open Access Journals (Sweden)

    Lijiao Shen


    Full Text Available For the effect of hydrodynamic parameters on the dynamic performance of wave energy devices is very significant, these parameters must be considered carefully when adjusting dynamic characteristics of devices. On the other hand calculating hydrodynamic parameter of devices accurately can guarantee rational dynamic property parameter adjustment. By using CFD technique and considering the definition of hydrodynamic parameters, the phase relationship between added mass and damp as well as the equation of forces, one new calculation method of hydrodynamic parameter was presented. Finally one example demonstrated the effectiveness of the new analysis method presented in this paper.

  6. Fast calculation method for computer-generated cylindrical holograms. (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi


    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  7. Application to radiation damage simulation calculation of Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Aruga, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Recent progress in Monte Carlo calculation for radiation damage simulation of structural materials to be used in fast breeder reactors or thermonuclear fusion reactors under energetic neutron or charged particle bombardment is reviewed. Specifically usefulness of employing Monte Carlo methods in molecular dynamics calculations to understand mechanical properties change such as dimensional change, strength, creep, fatigue, corrosion, and crack growth of materials under irradiation on the basis of atomic collision processes is stressed. Structure and spatial distribution of point defects in iron, gold, or cooper as demonstrative examples at several hundreds of ps after the movement of primary knock-on atom (PKA) takes place are calculated as a function of PKA energy. The results are compared with those obtained by the method developed by Norgett, Robinson and Torrens and the usefulness is discussed. (S. Ohno)

  8. A deterministic method to calculate the radiation spectra of nuclides. (United States)

    Stepanek, J


    Recently, the computer program IMRDEC has been developed to determine the radiation spectra due to a single atomic-subshell ionisation of a stable atom by a particle, or due to the atomic deexcitation or decay of nuclides. The data needed to describe the deexcitation or decay scheme are obtained from the Evaluated Nuclear Structure Data File (ENSDF) maintained at Brookhaven National Laboratory; this results in the simplest possible input specification. The atomic data as well as the atomic relaxation probabilities are taken from the Evaluated Atomic Data Library (EADL) from Lawrence Livermore National Laboratory. The program IMRDEC calculates the radiation spectra (inclusively the atomic relaxation cascades) deterministically rather than by the Monte Carlo method; this results in much shorter calculational time per nuclide. Since many assumptions still have to be made in determining the atomic relaxation probabilities and in calculating the atomic relaxation, the deterministic method seems to be a small source of inaccuracy.

  9. The convolution method for calculations of local densities of states

    Energy Technology Data Exchange (ETDEWEB)

    Losev, A [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry, 11 G Bonchev street, Sofia (Bulgaria)


    The convolution method for the calculation of local densities of states is presented more thoroughly along with its expression in terms of Green functions. This constructive approach allows us to produce results for a higher dimensionality from lower-dimensional parts. Its applications and different aspects are discussed for some simple cases.

  10. LEGO-Method--New Strategy for Chemistry Calculation (United States)

    Molnar, Jozsef; Molnar-Hamvas, Livia


    The presented strategy of chemistry calculation is based on mole-concept, but it uses only one fundamental relationship of the amounts of substance as a basic panel. The name of LEGO-method comes from the famous toy of LEGO[R] because solving equations by grouping formulas is similar to that. The relations of mole and the molar amounts, as small…

  11. Visual Method for Spectral Energy Distribution Calculation of ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Visual Method for Spectral Energy Distribution Calculation of Blazars. Y. Huang1,3 & J. H. Fan2,3,∗. 1School of Computer Science and Education Software, Guangzhou University,. Guangzhou 510006, China. 2Centre for Astrophysics, Guangzhou University, Guangzhou 510006, China.

  12. A method for calculating active feedback system to provide vertical ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 4. A method for calculating active feedback system to provide vertical position control of plasma in a tokamak. Nizami Gasilov. Research ... Nizami Gasilov1. Faculty of Engineering, Baskent University, Eskisehir Yolu 20. km, Baglica, 06530 Ankara, Turkey ...

  13. Calculating Resonance Positions and Widths Using the Siegert Approximation Method (United States)

    Rapedius, Kevin


    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…

  14. Simplified method for calculating shear deflections of beams. (United States)

    I. Orosz


    When one designs with wood, shear deflections can become substantial compared to deflections due to moments, because the modulus of elasticity in bending differs from that in shear by a large amount. This report presents a simplified energy method to calculate shear deflections in bending members. This simplified approach should help designers decide whether or not...

  15. Perturbation method for calculating impurity binding energy in an ...

    Indian Academy of Sciences (India)

    Nilanjan Sil


    Dec 18, 2017 ... Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa1−xAs. Perturbation method is used to calculate the binding energy within the framework of effective mass ...

  16. a generalisation of an approximate method to calculate inbreeding ...

    African Journals Online (AJOL)

    Where, Ais a common ancestor of the parents of. X; n is the number of generations from the sire of X to A and n' the number of generations from the dam of X to A. Subsequently, Wright & McPhee (1925) developed a method for calculating an approximate inbreeding co- efficient from a pedigree which is completed for only.

  17. Emergy Algebra: Improving Matrix Methods for Calculating Tranformities (United States)

    Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...

  18. Unstable optical resonator loss calculations using the prony method. (United States)

    Siegman, A E; Miller, H Y


    The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.

  19. Calculating resonance positions and widths using the Siegert approximation method

    Energy Technology Data Exchange (ETDEWEB)

    Rapedius, Kevin, E-mail: [Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels (Belgium)


    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear Schroedinger equations. This approach thus complements other treatments of the subject that mostly focus on methods based on continuation in the complex plane or on semiclassical approximations.

  20. Perturbation method for magnetic field calculations of nonconductive objects. (United States)

    Jenkinson, Mark; Wilson, James L; Jezzard, Peter


    Inhomogeneous magnetic fields produce artifacts in MR images including signal dropout and spatial distortion. A novel perturbative method for calculating the magnetic field to first order (error is second order) within and around nonconducting objects is presented. The perturbation parameter is the susceptibility difference between the object and its surroundings (for example, approximately 10 ppm in the case of brain tissue and air). This method is advantageous as it is sufficiently accurate for most purposes, can be implemented as a simple convolution with a voxel-based object model, and is linear. Furthermore, the method is simple to use and can quickly calculate the field for any orientation of an object using a set of precalculated basis images. Copyright 2004 Wiley-Liss, Inc.

  1. Measurement method of reverberation field reciprocity parameter

    Directory of Open Access Journals (Sweden)

    SUN Jundong


    Full Text Available This paper presents a method for measuring the reciprocity parameter based on the free field. It is able to achieve accurate measurement of the reverberation constant in a narrow band. The method uses the same transmitting and receiving system, and keeps the same set of parameters to measure the open circuit voltage output under different frequencies in a free field. The open circuit output voltage is measured through average technology in the reverberation control region, then the reverberation radius is calculated and the reciprocity constant obtained. This method uses a single frequency signal and the spatial averaging technique. It is simple, convenient and not suitable for complex measuring instruments. The validity of the method is verified by comparing the measured results with the reverberation time measurement.

  2. Experiences with leak rate calculations methods for LBB application

    Energy Technology Data Exchange (ETDEWEB)

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others


    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  3. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)


    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  4. Process control and optimization with simple interval calculation method

    DEFF Research Database (Denmark)

    Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar


    Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process...... the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions...

  5. Helicity methods in LO and NLO QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Daniel


    The goal of this thesis is the acceleration of numerical calculations of QCD observables, both at leading order and next-to-leading order in the coupling constant. In particular, the optimization of helicity and spin summation in the context of VEGAS Monte Carlo algorithms is investigated. In the literature, two such methods are mentioned but without detailed analyses. Only one of these methods can be used at next-to-leading order. This work presents a total of five different methods that replace the helicity sums with a Monte Carlo integration. This integration can be combined with the existing phase space integral, in the hope that this causes less overhead than the complete summation. For three of these methods, an extension to existing subtraction terms is developed which is required to enable next-to-leading order calculations. All methods are analyzed with respect to efficiency, accuracy, and ease of implementation before they are compared with each other. In this process, one method shows clear advantages in relation to all others.

  6. An efficient computational method for calculating ligand binding affinities.

    Directory of Open Access Journals (Sweden)

    Atsushi Suenaga

    Full Text Available Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we developed an efficient computational method for calculating protein-ligand binding affinity, which is based on molecular mechanics generalized Born/surface area (MM-GBSA calculations and Jarzynski identity. Jarzynski identity is an exact relation between free energy differences and the work done through non-equilibrium process, and MM-GBSA is a semimacroscopic approach to calculate the potential energy. To calculate the work distribution when a ligand is pulled out of its binding site, multiple protein-ligand conformations are randomly generated as an alternative to performing an explicit single-molecule pulling simulation. We assessed the new method, multiple random conformation/MM-GBSA (MRC-MMGBSA, by evaluating ligand-binding affinities (scores for four target proteins, and comparing these scores with experimental data. The calculated scores were qualitatively in good agreement with the experimental binding affinities, and the optimal docking structure could be determined by ranking the scores of the multiple docking poses obtained by the molecular docking process. Furthermore, the scores showed a strong linear response to experimental binding free energies, so that the free energy difference of the ligand binding (ΔΔG could be calculated by linear scaling of the scores. The error of calculated ΔΔG was within ≈ ± 1.5 kcal.mol(-1 of the experimental values. Particularly, in the case of flexible target proteins, the MRC-MMGBSA scores were more effective in ranking ligands than those generated by the MM-GBSA method using a single protein-ligand conformation. The results suggest that, owing to its lower computational costs and greater accuracy, the MRC-MMGBSA offers efficient means to rank the ligands, in

  7. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices (United States)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.


    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  8. Testing the QA Method for Calculating Jet v_{2}

    CERN Document Server

    Mueller, Jason


    For the summer, I was assigned to work on the ALICE experiment with Alice Ohlson. I wrote several programs throughout the summer that were used to calculate jet v 2 using a non-standard method described by my supervisor in her Ph.D. thesis. Though the project is not yet complete, significant progress has been made, and the results so far seem promising.

  9. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS (United States)

    Templin, R. J.


    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  10. Comparison of measured oxyhemoglobin saturation and oxygen content with analyzer-calculated values and hand-calculated values obtained in unsedated healthy dogs. (United States)

    Scott, Nancy E; Haskins, Steve C; Aldrich, Janet; Rezende, Marlis; Gallagher, Ryan M; Henderson, Matthew M


    To compare direct measurements of canine oxyhemoglobin (HbO2) saturation and blood oxygen content (ContO2) in healthy dogs with analyzer-calculated values derived by use of a human HbO2 relationship and with hand-calculated values derived by use of a canine HbO2 relationship. 17 healthy dogs. 3-mL samples of heparinized arterial and jugular venous blood were collected from each dog. The pH, Pco2, Po2, hemoglobin, HbO2, carboxyhemoglobin, methemoglobin, and ContO2 were measured; HbO2 and ContO2 were calculated automatically by analyzers and also hand-calculated. Blood gas analyzer-calculated and hand-calculated HbO2 values were compared with co-oximeter-measured HbO2 values. Analyzer-calculated and hand-calculated ContO2 values were compared with oxygen content analyzer-measured values. Hand-calculated HbO2 values for arterial and jugular venous samples were slightly but significantly lower than those calculated by a blood gas analyzer or obtained from a co-oximeter. Hand-calculated and analyzer-calculated arterial and venous ContO2 were similar to measured values. Although certain HbO2 and ContO2 values generated by use of the different methods were significantly different, these differences are unlikely to be clinically important in healthy dogs.

  11. The Three-Point Sinuosity Method for Calculating the Fractal Dimension of Machined Surface Profile (United States)

    Zhou, Yuankai; Li, Yan; Zhu, Hua; Zuo, Xue; Yang, Jianhua


    The three-point sinuosity (TPS) method is proposed to calculate the fractal dimension of surface profile accurately. In this method, a new measure, TPS is defined to present the structural complexity of fractal curves, and has been proved to follow the power law. Thus, the fractal dimension can be calculated through the slope of the fitted line in the log-log plot. The Weierstrass-Mandelbrot (W-M) fractal curves, as well as the real surface profiles obtained by grinding, sand blasting and turning, are used to validate the effectiveness of the proposed method. The calculation values are compared to those obtained from root-mean-square (RMS) method, box-counting (BC) method and variation method. The results show that the TPS method has the widest scaling region, the least fit error and the highest accuracy among the methods examined, which demonstrates that the fractal characteristics of the fractal curves can be well revealed by the proposed method.

  12. [Comparison between different calculation methods of limbs joints function]. (United States)

    Chen, Qing-Mu; Li, Wei; Wang, Ye-Qiong


    To analyze and compare different methods for assessment of the limbs joints function and to discuss the rationality of the methods. Eight hundred and six cases were collected from the Fujian Minzhong Forensic Appraisal Center from 2007 to 2010. These cases included injuries of large limbs joints with or without peripheral nerve injury. The loss of joint function was calculated according to the simple joint mobility method or the table method introduced in the book "Forensic Clinical Judicial Authentication Practice". The results of disability evaluation with different methods were analyzed and compared between different joints and injury patterns. In 642 cases of simple joint injuries without peripheral nerve injury, the results of disability evaluation based on simple joint mobility were the same as that based on the table. In 118 cases of joint injuries with peripheral nerve injury, all of them could be classified as disability, 33 cases (28.00%) had higher degree based on the table method than based on the simple joint mobility method. While 21 cases (17.80%) did not be evaluated as disabled based on the simple joint mobility method. The evaluation for loss of limb function would be easier, more scientific and reasonable by the direct table method than the simple joint mobility method.

  13. Fast calculation method of a CGH for a patch model using a point-based method. (United States)

    Ogihara, Y; Sakamoto, Y


    Holography is three-dimensional display technology. Computer-generated holograms (CGHs) are created by simulating light propagation on a computer, and they are able to display a virtual object. There are mainly two types of calculation methods of CGHs, a point-based method and the fast Fourier-transform (FFT)-based method. The FFT-based method is based on a patch model, and it is suited to accelerating the calculations as it calculates the light propagation across a patch as a whole. The calculations with the point-based method are characterized by a high degree of parallelism, and it is suited to accelerating graphics processing units (GPUs). The point-based method is not suitable for calculation with the patch model. This paper proposes a fast calculation algorithm for a patch model with the point-based method. The proposed method calculates the line on a patch as a whole regardless of the number of points on the line. When the proposed method is implemented on a GPU, the calculation time of the proposed method is shorter than with the point-based method.

  14. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch


    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  15. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz


    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  16. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser


    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.


    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)


    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  18. Comparison between ASHRAE and ISO thermal transmittance calculation methods

    DEFF Research Database (Denmark)

    Blanusa, Petar; Goss, William P.; Roth, Hartwig


    the Heat Transfer and Total Optical Properties of Fenestration Products, Public Review Draft of Standard 142P, American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, 1998]) and in Europe [ISO 10077-2. Thermal Performance of Windows, Doors and Shutters-Calculation of Thermal...... Transmittance-Part 2: Numerical Method for Frames, International Standards Organization, Geneva, 2003]. The two approaches, called the ASHRAE and ISO methods, are different in the way they treat the effect of the glazing spacer on the heat transfer through the frame and the glazing unit near the frame....... The ASHRAE method assumes that the spacer effects both the heat transfer through the frame and the heat transfer through the glazing in an "edge-of glass" region 63.5mm (2.5in.) from the glazing/frame sight line. The ISO method assumes that the additional heat transfer due to the existence of the spacer...


    Directory of Open Access Journals (Sweden)

    N. A. Balonin


    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  20. Evaluation of the shield calculation adequacy of radiotherapy rooms through Monte Carlo Method and experimental measures; Avaliacao da adequacao do calculo de blindagens de salas de radioterapia atraves do metodo de Monte Carlos e medidas experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Ramiro Conceicao


    The shielding calculation methodology for radiotherapy services adopted in Brazil and in several countries is that described in publication 151 of the National Council on Radiation Protection and Measurements (NCRP 151). This methodology however, markedly employs several approaches that can impact both in the construction cost and in the radiological safety of the facility. Although this methodology is currently well established by the high level of use, some parameters employed in the calculation methodology did not undergo to a detailed assessment to evaluate the impact of the various approaches considered. In this work the MCNP5 Monte Carlo code was used with the purpose of evaluating the above mentioned approaches. TVLs values were obtained for photons in conventional concrete (2.35g / cm{sup 3}), considering the energies of 6, 10 and 25 MeV, respectively, first considering an isotropic radiation source impinging perpendicular to the barriers, and subsequently a lead head shielding emitting a shaped beam, in the format of a pyramid trunk. Primary barriers safety margins, taking in account the head shielding emitting photon beam pyramid-shaped in the energies of 6, 10, 15 and 18 MeV were assessed. A study was conducted considering the attenuation provided by the patient's body in the energies of 6,10, 15 and 18 MeV, leading to new attenuation factors. Experimental measurements were performed in a real radiotherapy room, in order to map the leakage radiation emitted by the accelerator head shielding and the results obtained were employed in the Monte Carlo simulation, as well as to validate the entire study. The study results indicate that the TVLs values provided by (NCRP, 2005) show discrepancies in comparison with the values obtained by simulation and that there may be some barriers that are calculated with insufficient thickness. Furthermore, the simulation results show that the additional safety margins considered when calculating the width of the

  1. On the calculation of the topographic wetness index: evaluation of different methods based on field observations

    Directory of Open Access Journals (Sweden)

    R. Sørensen


    Full Text Available The topographic wetness index (TWI, ln(a/tanβ, which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables; rather the best methods seemed to be variable and site specific. However, we were able to identify some general characteristics of the best methods for different groups of measured variables. The results provide guiding principles for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models.

  2. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang


    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  3. Bulk Electric Load Cost Calculation Methods: Iraqi Network Comparative Study

    Directory of Open Access Journals (Sweden)

    Qais M. Alias


    Full Text Available It is vital in any industry to regain the spent capitals plus running costs and a margin of profits for the industry to flourish. The electricity industry is an everyday life touching industry which follows the same finance-economic strategy. Cost allocation is a major issue in all sectors of the electric industry, viz, generation, transmission and distribution. Generation and distribution service costing’s well documented in the literature, while the transmission share is still of need for research. In this work, the cost of supplying a bulk electric load connected to the EHV system is calculated. A sample basic lump-average method is used to provide a rough costing guide. Also, two transmission pricing methods are employed, namely, the postage-stamp and the load-flow based MW-distance methods to calculate transmission share in the total cost of each individual bulk load. The three costing methods results are then analyzed and compared for the 400kV Iraqi power grid considered for a case study.

  4. X-ray tube output based calculation of patient entrance surface dose: validation of the method

    Energy Technology Data Exchange (ETDEWEB)

    Harju, O.; Toivonen, M.; Tapiovaara, M.; Parviainen, T. [Radiation and Nuclear Safety Authority, Helsinki (Finland)


    X-ray departments need methods to monitor the doses delivered to the patients in order to be able to compare their dose level to established reference levels. For this purpose, patient dose per radiograph is described in terms of the entrance surface dose (ESD) or dose-area product (DAP). The actual measurement is often made by using a DAP-meter or thermoluminescent dosimeters (TLD). The third possibility, the calculation of ESD from the examination technique factors, is likely to be a common method for x-ray departments that do not have the other methods at their disposal or for examinations where the dose may be too low to be measured by the other means (e.g. chest radiography). We have developed a program for the determination of ESD by the calculation method and analysed the accuracy that can be achieved by this indirect method. The program calculates the ESD from the current time product, x-ray tube voltage, beam filtration and focus- to-skin distance (FSD). Additionally, for calibrating the dose calculation method and thereby improving the accuracy of the calculation, the x-ray tube output should be measured for at least one x-ray tube voltage value in each x-ray unit. The aim of the present work is to point out the restrictions of the method and details of its practical application. The first experiences from the use of the method will be summarised. (orig.)

  5. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios


    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  6. Error Correction of EMTDC Line and Cable Series Impedance Calculations Compared to Traditional Methods

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove


    In this paper we present comparison of different line and cable series impedance calculation methods, where the correction of a discovered PSCAD/EMIDC v.3.0.8 calculation error of the cable series impedance results n deviation under 0.1% instead of the previous method which gave approximately 10%......% deviation to other methods. The correction is done by adjusting he earth return path impedance for the cable model, and will thereby form the basis for a future comparison with measured data from a real full scale earth fault experiment on a mixed line and cable network.......In this paper we present comparison of different line and cable series impedance calculation methods, where the correction of a discovered PSCAD/EMIDC v.3.0.8 calculation error of the cable series impedance results n deviation under 0.1% instead of the previous method which gave approximately 10...

  7. A method for selecting the CIE standard general sky model with regard to calculating luminance distributions (United States)

    Ferraro, Vittorio; Marinelli, Valerio; Mele, Marilena


    It is known that the best predictions of sky luminances are obtainable by the CIE 15 standard skies model, but the predictions by this model need knowledge of the measured luminance distributions themselves, since a criterion for selecting the type of sky starting from the irradiance values has not found until now. The authors propose a new simple method of applying the CIE model, based on the use of the sky index Si. A comparison between calculated luminance data and data measured in Arcavacata of Rende (Italy), Lyon (France) and Pamplona (Spain) show a good performance of this method in comparison with other methods of calculation of luminance existing in the literature.

  8. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei


    A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...... method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial...

  9. Implications to Postsecondary Faculty of Alternative Calculation Methods of Gender-Based Wage Differentials. (United States)

    Hagedorn, Linda Serra


    A study explored two distinct methods of calculating a precise measure of gender-based wage differentials among college faculty. The first estimation considered wage differences using a formula based on human capital; the second included compensation for past discriminatory practices. Both measures were used to predict three specific aspects of…

  10. A method for transient, three-dimensional neutron transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, M.W. Jr. (Oak Ridge Y-12 Plant, TN (United States)); Dodds, H.L. (Tennessee Univ., Knoxville, TN (United States))


    This paper describes the development and evaluation of a method for solving the time-dependent, three-dimensional Boltzmann transport model with explicit representation of delayed neutrons. A hybrid stochastic/deterministic technique is utilized with a Monte Carlo code embedded inside of a quasi-static kinetics framework. The time-dependent flux amplitude, which is usually fast varying, is computed deterministically by a conventional point kinetics algorithm. The point kinetics parameters, reactivity and generation time as well as the flux shape, which is usually slowly varying in time, are computed stochastically during the random walk of the Monte Carlo calculation. To verify the accuracy of this new method, several computational benchmark problems from the Argonne National Laboratory benchmark book, ANL-7416, were calculated. The results are shown to be in reasonably good agreement with other independently obtained solutions. The results obtained in this work indicate that the method/code is working properly and that it is economically feasible for many practical applications provided a dedicated high performance workstation is available.

  11. A method for transient, three-dimensional neutron transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, M.W. Jr. (Martin Marietta Energy Systems, Inc. (United States)); Dodds, H.L. (Univ. of Tennessee (United States))


    This paper describes the development and evaluation of a method for solving the time-dependent, three-dimensional Boltzmann transport model with explicit representation of delayed neutrons. A hybrid stochastic/deterministic technique is utilized with a Monte Carlo code embedded inside of a quasi-static kinetics framework. The time-dependent flux amplitude, which is usually fast varying, is computed deterministically by a conventional point kinetics algorithm. The point kinetics parameters, reactivity and generation time as well as the flux shape, which is usually slowly varying in time, are computed stochastically during the random walk of the Monte Carlo calculation. To verify the accuracy of this new method, several computational benchmark problems from the Argonne National Laboratory benchmark book, ANL-7416, were calculated. The results are shown to be in reasonably good agreement with other independently obtained solutions. The results obtained in this work indicate that the method/code is working properly and that it is economically feasible for many practical applications provided a dedicated high performance workstation is available. (orig.)

  12. On the Methods for Calculating Annual Allowable Cut

    Directory of Open Access Journals (Sweden)

    V. А. Sokolov


    Full Text Available Crisis in supplying regions and the country related to available forest resources and low profitability of forest sector, as a whole, is an indicator of failure of the existing model of forest management and forest use organization in Russia at the present time. Many Russian regions, which are traditionally considered as forest industrial territories, face the challenge of lack of economically accessible forests. The forests are decreasing against a background of under exploitation of the annual allowable cut. This situation occurs in Siberia as well. In many cases, using calculated allowable cut will result in unsustainable harvest levels and a future decrease of accessible forest resources. Thus, the statement that «a volume of wood resource utilization is determined by allowable cut represented the scientifically grounded norm of sustainable forest use» is considered as no more than the declarative proposition. Modeling the normal forest, and using a formula of allowable cut calculation estimated for some decades based on the modeling, is totally unreliable and unreal. The long-term forecast should use analog methods, but it will hardly be sufficiently accurate and adequate to set norms. In order to estimate ecological and economic accessibility of forest resources, an algorithm was made, and a method and model were developed. This model is based on GIS-database and makes it possible to estimate accessibility of forest resources and to map it as well. The conclusion on necessity to determine annual allowable cut in two varieties was drawn following the procedures for calculating annual allowable cut. The first variety is silvicultural (according the currently used methods and the other one is economically accessible allowable cut, which could provide economic effective use of tradable mature wood, taking in to account ecological and economic accessibility of forest resources.

  13. Precision of methods for calculating identity-by-descent matrices using multiple markers

    NARCIS (Netherlands)

    Sorensen, A.C.; Pong Wong, R.; Windig, J.J.; Woolliams, J.A.


    A rapid, deterministic method (DET) based on a recursive algorithm and a stochastic method based on Markov Chain Monte Carlo (MCMC) for calculating identity-by-descent (IBD) matrices conditional on multiple markers were compared using stochastic simulation. Precision was measured by the mean squared

  14. Calculation-experimental method justifies the life of wagons

    Directory of Open Access Journals (Sweden)

    Валерія Сергіївна Воропай


    Full Text Available The article proposed a method to evaluate the technical state of tank wagons operating in chemical industry. An algorithm for evaluation the technical state of tank wagons was developed, that makes it possible on the basis of diagnosis and analysis of current condition to justify a further period of operation. The complex of works on testing the tanks and mathematical models for calculations of the design strength and reliability were proposed. The article is devoted to solving the problem of effective exploitation of the working fleet of tank wagons. Opportunities for further exploitation of cars, the complex of works on the assessment of their technical state and the calculation of the resources have been proposed in the article. Engineering research of the chemical industries park has reduced the shortage of the rolling stock for transportation of ammonia. The analysis of the chassis numerous faults and the main elements of tank wagons supporting structure after 20 years of exploitation was made. The algorithm of determining the residual life of the specialized tank wagons operating in an industrial plant has been proposed. The procedure for resource conservation of tank wagons carrying cargo under high pressure was first proposed. The improved procedure for identifying residual life proposed in the article has both theoretical and practical importance

  15. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.


    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  16. Extreme Wind Calculation Applying Spectral Correction Method – Test and Validation

    DEFF Research Database (Denmark)

    Rathmann, Ole Steen; Hansen, Brian Ohrbeck; Larsén, Xiaoli Guo


    We present a test and validation of extreme wind calculation applying the Spectral Correction (SC) method as implemented in a DTU Wind Condition Software. This method can do with a short-term(~1 year) local measured wind data series in combination with a long-term (10-20 years) reference modelled...... wind data series like CFSR and CFDDA reanalysis data for the site in question. The validation of the accuracy was performed by comparing with estimates by the traditional Annual Maxim a (AM) method and the Peak Over Threshold (POT) method, applied to measurements, for six sites: four sites located...... in Denmark, one site located in the Netherlands and one site located in the USA, comprising both on-shore and off-shore sites. The SC method was applied to 1-year measured wind data while the AM and POT methods were applied to long-term measured wind data. Further, the consistency of the SC method...

  17. Simplified method for calculation of equilibrium plasma composition (United States)

    Rydalevskaya, Maria A.


    In this work, a simplified method for the evaluation of equilibrium composition of plasmas consisted of monoatomic species is proposed. Multicomponent gas systems resulting from thermal ionization of spatially uniform mixtures are assumed enough rarefied to be treated as ideal gases even after multiple ionization steps. The method developed for the calculation of equilibrium composition of these mixtures makes use of the fundamental principles of statistical physics. Equilibrium concentrations of mixture components are determined by integration of distribution functions over the space of momentum and summation over electronic energy levels. These functions correspond to the entropy maximum. To determine unknown parameters, the systems of equations corresponding to the normalization conditions are derived. It is shown that the systems may be reduced to one algebraic equation if the equilibrium temperature is known. Numeral method to solve this equation is proposed. Special attention is given to the ionized mixtures, generated from the atoms of a single chemical species and the situations, when in the gas only the first- or the first- and second-order ionization are possible.

  18. Method of sections in analytical calculations of pneumatic tires (United States)

    Tarasov, V. N.; Boyarkina, I. V.


    Analytical calculations in the pneumatic tire theory are more preferable in comparison with experimental methods. The method of section of a pneumatic tire shell allows to obtain equations of intensities of internal forces in carcass elements and bead rings. Analytical dependencies of intensity of distributed forces have been obtained in tire equator points, on side walls (poles) and pneumatic tire bead rings. Along with planes in the capacity of secant surfaces cylindrical surfaces are used for the first time together with secant planes. The tire capacity equation has been obtained using the method of section, by means of which a contact body is cut off from the tire carcass along the contact perimeter by the surface which is normal to the bearing surface. It has been established that the Laplace equation for the solution of tasks of this class of pneumatic tires contains two unknown values that requires the generation of additional equations. The developed computational schemes of pneumatic tire sections and new equations allow to accelerate the pneumatic tire structure improvement process during engineering.

  19. CO2 uptake by a stand of Douglas fir: flux measurements compared with model calculations

    NARCIS (Netherlands)

    Vermetten, A.W.M.; Ganzeveld, L.; Jeuken, A.; Hofschreuder, P.; Mohren, G.M.J.


    Fluxes of CO2 were calculated by the gradient method from concentration differences, measured in the surface roughness layer above a Douglas fir stand in the Netherlands during a full year (1989). The annual course of the CO2 flux density clearly showed the influence of temperature and incoming

  20. A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods: Soil Heat Flux Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhongming [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Russell, Eric S. [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Missik, Justine E. C. [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Huang, Maoyi [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Strickland, Chris E. [Pacific Northwest National Laboratory, Richland Washington USA; Clayton, Ray [Pacific Northwest National Laboratory, Richland Washington USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland Washington USA; Ma, Yulong [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA


    We evaluated nine methods of soil heat flux calculation using field observations. All nine methods underestimated the soil heat flux by at least 19%. This large underestimation is mainly caused by uncertainties in soil thermal properties.

  1. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. (United States)

    Huang, Jianhua


    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  2. A convolution/superposition method using primary and scatter dose kernels formed for energy bins of X-ray spectra reconstructed as a function of off-axis distance: comparison of calculated and measured 10-MV X-ray doses in thorax-like phantoms. (United States)

    Kimura, Shigenobu; Sutoh, Kohji; Kamimura, Kazuo; Iwasaki, Akira; Sasamori, Makoto; Komai, Fumio; Seino, Morio; Terashima, Singo; Kubota, Mamoru; Hirota, Junichi; Hosokawa, Yoichiro


    We performed experimental studies on the convolution/superposition method reported in the former companion paper (Iwasaki in Radiol Phys Technol 4, 2011) using 10-MV X-ray beams from open-jaw-collimated fields. The method uses primary and scatter dose kernels formed for energy bins of X-ray spectra reconstructed as a function of off-axis distance. We made a comparison of calculations and measurements in water phantoms and thorax-like phantoms with respect to percentage depth dose curves, tissue-phantom ratio curves, and dose profiles. We made the dose calculation by taking into account the beam-hardening effect with depth and the off-axis radiation-softening effect. We found that the method could be used, in general, for performing accurate dose calculations.

  3. [Calculating method for crop water requirement based on air temperature]. (United States)

    Tao, Guo-Tong; Wang, Jing-Lei; Nan, Ji-Qin; Gao, Yang; Chen, Zhi-Fang; Song, Ni


    The importance of accurately estimating crop water requirement for irrigation forecast and agricultural water management has been widely recognized. Although it has been broadly adopted to determine crop evapotranspiration (ETc) via meteorological data and crop coefficient, most of the data in whether forecast are qualitative rather than quantitative except air temperature. Therefore, in this study, how to estimate ETc precisely only using air temperature data in forecast was explored, the accuracy of estimation based on different time scales was also investigated, which was believed to be beneficial to local irrigation forecast as well as optimal management of water and soil resources. Three parameters of Hargreaves equation and two parameters of McClound equation were corrected by using meteorological data of Xinxiang from 1970 to 2010, and Hargreaves equation was selected to calculate reference evapotranspiration (ET0) during the growth period of winter wheat. A model of calculating crop water requirement was developed to predict ETc at time scales of 1, 3, and 7 d intervals through combining Hargreaves equation and crop coefficient model based on air temperature. Results showed that the correlation coefficients between measured and predicted values of ETc reached 0.883 (1 d), 0.933 (3 d), and 0.959 (7 d), respectively. The consistency indexes were 0.94, 0.95 and 0.97, respectively, which showed that forecast error decreased with the increasing time scales. Forecasted accuracy with an error less than 1 mm x d(-1) was more than 80%, and that less than 2 mm x d(-1) was greater than 90%. This study provided sound basis for irrigation forecast and agricultural management in irrigated areas since the forecasted accuracy at each time scale was relatively high.

  4. A new method of calculating electrical conductivity with applications to natural waters (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.


    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  5. Output calculation of electron therapy at extended SSD using an improved LBR method

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, Hassaan A.; Gebreamlak, Wondesen T., E-mail:; Wright, Ben W.; Neglia, William J. [South Carolina Oncology Associates, Columbia, South Carolina 29210 (United States); Tedeschi, David J. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Mihailidis, Dimitris [CAMC Cancer Center and Alliance Oncology, Charleston, West Virginia 25304 (United States); Sobash, Philip T. [The Medical University of South Carolina, Charleston, South Carolina 29425 (United States); Fontenot, Jonas D. [Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809 (United States)


    Purpose: To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Methods: Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes—one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm{sup 3} Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. Results: For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSD{sub eff}) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σ{sub R}(z)] was calculated. Taking the cutout size dependence of σ{sub R}(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSD{sub eff} values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. Conclusions: The improved LBR method has been generalized to

  6. A refined method for calculating equivalent effective stratospheric chlorine (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick


    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  7. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim


    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  8. A Method of Calculating Motion Error in a Linear Motion Bearing Stage (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok


    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  9. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N.; Ohnishi, S. [National Maritime Research Inst., Tokyo (Japan); Sawamura, H.; Tanaka, Y.; Nishimura, K. [Computer Software Development Co. Ltd., Tokyo (Japan)


    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C.

  10. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness

    National Research Council Canada - National Science Library

    Tesny, Neal


    The evaluation and the analysis of high-altitude electromagnetic pulse response of shielded enclosures require the availability of software tools able to acquire data and calculate shielding effectiveness...

  11. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser


    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  12. Nanofibril Alignment in Flow Focusing: Measurements and Calculations. (United States)

    Håkansson, Karl M O; Lundell, Fredrik; Prahl-Wittberg, Lisa; Söderberg, L Daniel


    Alignment of anisotropic supermolecular building blocks is crucial to control the properties of many novel materials. In this study, the alignment process of cellulose nanofibrils (CNFs) in a flow-focusing channel has been investigated using small-angle X-ray scattering (SAXS) and modeled using the Smoluchowski equation, which requires a known flow field as input. This flow field was investigated experimentally using microparticle-tracking velocimetry and by numerically applying the two-fluid level set method. A semidilute dispersion of CNFs was modeled as a continuous phase, with a higher viscosity as compared to that of water. Furthermore, implementation of the Smoluchowski equation also needed the rotational Brownian diffusion coefficient, which was experimentally determined in a shear viscosity measurement. The order of the nanofibrils was found to increase during extension in the flow-focusing channel, after which rotational diffusion acted on the orientation distribution, driving the orientation of the fibrils toward isotropy. The main features of the alignment and dealignment processes were well predicted by the numerical model, but the model overpredicted the alignment at higher rates of extension. The apparent rotational diffusion coefficient was seen to increase steeply as the degree of alignment increased. Thus, the combination of SAXS measurements and modeling provides the necessary framework for quantified studies of hydrodynamic alignment, followed by relaxation toward isotropy.

  13. Gas flow calculation method of a ramjet engine (United States)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir


    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  14. Nonstandard Methods in Measure Theory

    Directory of Open Access Journals (Sweden)

    Grigore Ciurea


    to the study of the extension of vector measures. Applications of our results lead to simple new proofs for theorems of classical measure theory. The novelty lies in the use of the principle of extension by continuity (for which we give a nonstandard proof to obtain in an unified way some notable theorems which have been obtained by Fox, Brooks, Ohba, Diestel, and others. The methods of proof are quite different from those used by previous authors, and most of them are realized by means of nonstandard analysis.

  15. Phased Beam Tracing Method Using the Reflection Coefficient Calculated from the Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon; Rindel, Jens Holger


    The phased beam tracing method (PBTM) is a technique which can calculate the pressure impulse response instead of energy impulse response, by taking the phase information into account. Inclusion of the phase information can extend the application of beam tracing technique to the mid frequency range...... in spite of the fact that the usual assumptions of geometric acoustics still hold. In the calculation of pressure impulse response, it is essential to have the reflection characteristics of the surfaces in the enclosed space. There is a method to obtain the reflection coefficient of the surface using......, whereas Rindel proposed the angle dependent reflection coefficient which can be calculated from absorption coefficient under the several assumptions. In this research, the angle dependent reflection coefficients were adopted in the phased beam tracing method and the results are compared with measurement...

  16. [Influence of measurement position on calculating pear tree stem sap flow]. (United States)

    Sun, Huizhen; Kang, Sha-Ozhong; Gong, Daozhi


    By the method of heat pulse, this paper studied the influence of different measurement positions on calculating the stem sap flow velocity and quantity of pear trees. The results showed that at definite depths, the directional variation of the volume fraction of water and wood was lower than the seasonal change of wood physical parameters. The directional and seasonal variation of the volumetric water and wood was 0.01 - 0.03 and 0 - 0.02, and 0.02 - 0.09 and 0.02 -0.08, respectively. The sap flow velocity at definite depth, which was calculated by different depths wood physical parameters measured at the same time, had no significant difference, but that calculated by the same depth wood parameters measured at different time was significantly different. The sap flow quantity measured at the inner two points and four points was underestimated 1.5 and 4.9 times of that measured at the outer corresponding measurement positions, relative to the estimation obtained from a multi-point measurement. The sap flow quantity measured by four-point at the position of 0 - 0.6 from the cambium could represent the water consumption of whole tree.

  17. Energy-efficient and preservable windows. Measurements and calculations; Energieffektive bevaringsverdige vinduer. Maalinger og beregninger

    Energy Technology Data Exchange (ETDEWEB)

    Homb, Anders; Uvsloekk, Sivert


    SINTEF has carried out a project for Cultural Heritage and Enova to document specific qualities of energy-efficient and preservable windows. The work has been based on an older type two-rams window with simple frames and one glass divided into three squares of horizontal crossbars. There were produced two kinds of commodity window, respectively, with single glazing with Insulating. Measurements and calculations have been performed with two different distances from the outer glass to the last frame. The project had the following contents: Measurements of the U-value, Calculation of U-value of accurate and simplified method, Measurements of air density and drying ability, Measurement and evaluation of sound insulation, Estimation of the heat balance (eb)

  18. Calculation of Industrial Enterprise Ventilation System by Network Integral Method

    Directory of Open Access Journals (Sweden)

    Mihienkova Evgeniya I.


    Full Text Available This paper describe a ventilation system calculation of the technology building industrial enterprise. On the basis of the calculation model for the enterprise offered technical decision of ventilation systems, subject to a compliance exchange multiplicity, purification efficiency, decontamination from the work area; provided the required volume of gas extraction from process equipment according to the sanitary standards and environmental requirements. Produced selection of ventilation equipment parameters, solved the problem of the air exchange balancing between ventilation systems to prevent the emergence of parasitic flows between the rooms building. SigmaNet software package was used for the implement the calculation.

  19. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach (United States)

    Smidstrup, Søren; Stradi, Daniele; Wellendorff, Jess; Khomyakov, Petr A.; Vej-Hansen, Ulrik G.; Lee, Maeng-Eun; Ghosh, Tushar; Jónsson, Elvar; Jónsson, Hannes; Stokbro, Kurt


    We present an efficient implementation of a surface Green's-function method for atomistic modeling of surfaces within the framework of density functional theory using a pseudopotential localized basis set approach. In this method, the system is described as a truly semi-infinite solid with a surface region coupled to an electron reservoir, thereby overcoming several fundamental drawbacks of the traditional slab approach. The versatility of the method is demonstrated with several applications to surface physics and chemistry problems that are inherently difficult to address properly with the slab method, including metal work function calculations, band alignment in thin-film semiconductor heterostructures, surface states in metals and topological insulators, and surfaces in external electrical fields. Results obtained with the surface Green's-function method are compared to experimental measurements and slab calculations to demonstrate the accuracy of the approach.

  20. Dose calculation using a numerical method based on Haar wavelets integration

    Energy Technology Data Exchange (ETDEWEB)

    Belkadhi, K., E-mail: [Unité de Recherche de Physique Nucléaire et des Hautes Énergies, Faculté des Sciences de Tunis, Université Tunis El-Manar (Tunisia); Manai, K. [Unité de Recherche de Physique Nucléaire et des Hautes Énergies, Faculté des Sciences de Tunis, Université Tunis El-Manar (Tunisia); College of Science and Arts, University of Bisha, Bisha (Saudi Arabia)


    This paper deals with the calculation of the absorbed dose in an irradiation cell of gamma rays. Direct measurement and simulation have shown that they are expensive and time consuming. An alternative to these two operations is numerical methods, a quick and efficient way can furnish an estimation of the absorbed dose by giving an approximation of the photon flux at a specific point of space. To validate the numerical integration method based on the Haar wavelet for absorbed dose estimation, a study with many configurations was performed. The obtained results with the Haar wavelet method showed a very good agreement with the simulation highlighting good efficacy and acceptable accuracy. - Highlights: • A numerical integration method using Haar wavelets is detailed. • Absorbed dose is estimated with Haar wavelets method. • Calculated absorbed dose using Haar wavelets and Monte Carlo simulation using Geant4 are compared.

  1. A comparison of measured and calculated values of air kerma rates from 137Cs in soil

    Directory of Open Access Journals (Sweden)

    V. P. Ramzaev


    Full Text Available In 2010, a study was conducted to determine the air gamma dose rate from 137Cs deposited in soil. The gamma dose rate measurements and soil sampling were performed at 30 reference plots from the south-west districts of the Bryansk region (Russia that had been heavily contaminated as a result of the Chernobyl accident. The 137Cs inventory in the top 20 cm of soil ranged from 260 kBq m–2 to 2800 kBq m–2. Vertical distributions of 137Cs in soil cores (6 samples per a plot were determined after their sectioning into ten horizontal layers of 2 cm thickness. The vertical distributions of 137Cs in soil were employed to calculate air kerma rates, K, using two independent methods proposed by Saito and Jacob [Radiat. Prot. Dosimetry, 1995, Vol. 58, P. 29–45] and Golikov et al. [Contaminated Forests– Recent Developments in Risk Identification and Future Perspective. Kluwer Academic Publishers, 1999. – P. 333–341]. A very good coincidence between the methods was observed (Spearman’s rank coefficient of correlation = 0.952; P<0.01; on average, a difference between the kerma rates calculated with two methods did not exceed 3%. The calculated air kerma rates agreed with the measured dose rates in air very well (Spearman’s coefficient of correlation = 0.952; P<0.01. For large grassland plots (n=19, the measured dose rates were on average 6% less than the calculated kerma rates. The tested methods for calculating the air dose rate from 137Cs in soil can be recommended for practical studies in radiology and radioecology. 

  2. On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods. (United States)

    Michalski; Hardy; Saramago


    The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor-electron acceptor components of surface free energy) and the Owens-Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor-acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens-Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity. Copyright 1998 Academic Press.

  3. An automated Monte-Carlo based method for the calculation of cascade summing factors (United States)

    Jackson, M. J.; Britton, R.; Davies, A. V.; McLarty, J. L.; Goodwin, M.


    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ-γ, γ-X, γ-511 and γ-e- coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted.

  4. Method for measuring surface temperature (United States)

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM


    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  5. Calculation of the liquor system pliability using the mathematical simulation method. (United States)

    Koshurnikov, D S; Petraikin, A V; Martynov, A K; Sergienko, V I


    Liquor circulation is a directed flow of the liquor from sites of its secretion to sites of resorption. This slow flow is modulated by pulsation caused by heart work. Phase-contrast magnetic resonance imaging is a method for noninvasive measurements of the linear velocity of these pulses in the cerebral aqueduct. A mathematical model reproducing pulsed flow of the liquor in the cerebral aqueduct is proposed and the procedure of evaluation of these parameters is presented. The pliability liquor system can be calculated from the values of liquor flow linear velocity in the cerebral aqueduct, measured by noninvasive method.

  6. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle (United States)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng


    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  7. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales


    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  8. Three-dimensional hypersonic rarefied flow calculations using direct simulation Monte Carlo method (United States)

    Celenligil, M. Cevdet; Moss, James N.


    A summary of three-dimensional simulations on the hypersonic rarefied flows in an effort to understand the highly nonequilibrium flows about space vehicles entering the Earth's atmosphere for a realistic estimation of the aerothermal loads is presented. Calculations are performed using the direct simulation Monte Carlo method with a five-species reacting gas model, which accounts for rotational and vibrational internal energies. Results are obtained for the external flows about various bodies in the transitional flow regime. For the cases considered, convective heating, flowfield structure and overall aerodynamic coefficients are presented and comparisons are made with the available experimental data. The agreement between the calculated and measured results are very good.

  9. Comparison of methods for calculating serum osmolality: multivariate linear regression analysis. (United States)

    Rasouli, Mehdi; Kalantari, Kiarash Rezaei


    There are several methods for calculating serum osmolality, and their accordance with measured osmolality is the subject of controversy. The concentrations of sodium, potassium, glucose, blood urea nitrogen (BUN) and osmolalities of 210 serum samples were measured. Two empirical equations were deduced for the calculation of serum osmolality by regression analysis of the data. To choose the best equation, chemical concentrations were also used to calculate osmolalities according to our formulas and 16 different equations were taken from the literature and compared with the measured osmolalities. Correlation and linear regression analyses were performed using Excel and SPSS software. Multiple linear regression analysis showed that serum concentrations of sodium (beta = 0.778, pformula presented by Dorwart and Chalmers gave inferior results to those obtained with our formulas. Our data suggest use of the Worthley et al. formula Osm = 2[Na +]+glucose+BUN for rapid mental calculation and the formulas of Bhagat et al. or ours for calculation of serum osmolality by equipment linked to a computer.

  10. Application of MCNP nonanalog techniques for calculations of reaction rate measurements at the BFS facilities

    Directory of Open Access Journals (Sweden)

    O.N. Andrianova


    Full Text Available An analysis of measurements of criticality, central reaction rate ratios, reaction rate distributions and reactivity coefficients performed at the BFS critical assemblies is important both for obtaining information required to refine neutron data and assessing the accuracy of neutron-physical characteristics. The high core heterogeneity of critical assemblies dictates the need for using codes capable of reproducing an accurate description of the geometry and detailed representation of the energy dependence of neutron data. At the same time, serial verification tests of evaluated nuclear data libraries and processing and transport codes require significant computer time to obtain results of sufficient precision. In such cases, it is possible to achieve the required accuracy in measuring neutron-physical characteristics by using non-analogous calculation methods (variance reduction methods. The paper presents the algorithms for improving the efficiency of calculations based on non-analogous methods implemented in the MCNP code as exemplified by an analysis of experiments on measuring reaction rates in critical multiplying systems with a complex heterogeneous composition. The results of the analysis have shown that the combination of mesh-based weight window with energy splitting/roulette leads to a significant increase in the calculation efficiency and a reduction of computational time from a few days to a few hours at a statistical error in the spectral indexes of less than 2%.

  11. Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry (United States)

    Hamilton, H. H., II


    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.

  12. Calculating critical orientations of polyhedra for similarity measure evaluation

    NARCIS (Netherlands)

    Bekker, Henk; Roerdink, Jos B.T.M.


    This paper studies a problem related to the computation of similarity measures for two convex polyhedra based on Minkowski sums and mixed volumes. To compute the similarity measure a function has to be evaluated over a number so-called critical relative orientations of these polyhedra. An open

  13. Bubble measuring instrument and method (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)


    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  14. An automated Monte-Carlo based method for the calculation of cascade summing factors

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.J., E-mail:; Britton, R.; Davies, A.V.; McLarty, J.L.; Goodwin, M.


    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ–γ, γ–X, γ–511 and γ–e{sup −} coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted. - Highlights: • Versatile method to calculate coincidence summing factors for gamma-spectrometry analysis. • Based solely on ENSDF format nuclear data and detector efficiency characterisations. • Enables generation of a CSF library for any detector, geometry and radionuclide. • Improves measurement accuracy and reduces acquisition times required to meet MDA.

  15. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi


    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  16. Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mert Aybat, Ted Rogers, Alexey Prokudin


    In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.

  17. Method of calculating heat transfer in furnaces of small power

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel


    Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.

  18. Standard practice for calculation of corrosion rates and related information from electrochemical measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers the providing of guidance in converting the results of electrochemical measurements to rates of uniform corrosion. Calculation methods for converting corrosion current density values to either mass loss rates or average penetration rates are given for most engineering alloys. In addition, some guidelines for converting polarization resistance values to corrosion rates are provided. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  19. SU-F-BRCD-03: Dose Calculation of Electron Therapy Using Improved Lateral Buildup Ratio Method. (United States)

    Gebreamlak, W; Tedeschi, D; Alkhatib, H


    To calculate the percentage depth dose of any irregular shape electron beam using modified lateral build-up-ratio method. Percentage depth dose (PDD) curves were measured using 6, 9, 12, and 15MeV electron beam energies for applicator cone sizes of 6×6, 10×10, 14×14, and 14×14cm2 . Circular cutouts for each cone were prepared from 2.0cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The scanning was done using a water tank and two diodes - one for the signal and the other a stationary reference outside the tank. The water surface was determined by scanning the signal diode slowly from water to air and by noting the sharp change of the percentage depth dose curve at the water/air interface. The lateral build-up-ratio (LBR) for each circular cutout was calculated from the measured PDD curve using the open field of the 14×14 cm2 cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter (sigma) of the electron shower was calculated. Unlike the commonly accepted assumption that sigma is independent of cutout size, it is shown that the sigma value increases linearly with circular cutout size. Using this characteristic of sigma, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that sigma increases with cutout size. For radius of circular cutout sizes up to the equilibrium range of the electron beam, the increase of sigma with the cutout size is linear. The percentage difference of the calculated PDD from the measured PDD for irregularly shaped cutouts was under 1.0%. Similar Result was obtained for four electron beam energies (6, 9, 12, and 15MeV). © 2012 American Association of Physicists in Medicine.

  20. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy (United States)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  1. An efficient orbital transformation method for electronic structure calculations


    VandeVondle, J; Hutter, J


    An efficient method for optimizing single-determinant wave functions of medium and large systems is presented. It is based on a minimization of the energy functional using a new set of variables to perform orbital transformations. With this method convergence of the wave function is guaranteed. Preconditioners with different computational cost and efficiency have been constructed. Depending on the preconditioner, the method needs a number of iterations that is very similar to the established ...

  2. 7 CFR 51.308 - Methods of sampling and calculation of percentages. (United States)


    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Methods of Sampling and Calculation of Percentages § 51.308 Methods of sampling and calculation of percentages. (a) When the numerical... 7 Agriculture 2 2010-01-01 2010-01-01 false Methods of sampling and calculation of percentages. 51...

  3. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    Determination of types and amounts for clay minerals in soil are important in environmental, agricultural, and geological investigations. Many reliable methods have been established to identify clay mineral types. However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study ...

  4. Photon path length distributions for cloudy skies – oxygen A-Band measurements and model calculations

    Directory of Open Access Journals (Sweden)

    O. Funk


    Full Text Available This paper addresses the statistics underlying cloudy sky radiative transfer (RT by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999. Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD. This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements. Key words. Meteorology and atmospheric dynamics (radiative processes; instruments and techniques

  5. Photon path length distributions for cloudy skies – oxygen A-Band measurements and model calculations

    Directory of Open Access Journals (Sweden)

    O. Funk

    Full Text Available This paper addresses the statistics underlying cloudy sky radiative transfer (RT by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999. Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD. This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements.

    Key words. Meteorology and atmospheric dynamics (radiative processes; instruments and techniques

  6. An improved method for calculating toxicity-based pollutant loads: Part 1. Method development. (United States)

    Smith, Rachael A; Warne, Michael St J; Mengersen, Kerrie; Turner, Ryan Dr


    Pollutant loads are a means for assessing regulatory compliance and setting targets to reduce pollution entering receiving waterbodies. However, a pollutant load is often comprised of multiple chemicals, which may exert joint toxicity on biota. When the ultimate goal for assessing pollutant loads is to protect ecosystems from adverse effects of toxicants, then the total pollutant load needs to be calculated based on the principles of mixture toxicology. In this article, an improved method is proposed to convert a pollutant load to a toxicity-based load (toxic load) using a modified toxic equivalency factor (TEF) derivation method. The method uses the relative potencies (RePs) of multiple species to represent the response of the ecological community. The TEF is calculated from a percentile of a cumulative distribution function (CDF) fitted to the RePs. The improvements permit the determination of which percentile of the CDF generates the most environmentally relevant and robust toxic loads. That is, environmental relevance ensures that a reduction in the toxic load is likely to result in a corresponding improvement in ecosystem health and robustness ensures that the calculation of the toxic loads is not biased by the reference chemical used. The improved methodology will therefore ensure that correct management decisions will be made and ultimately, a reduction in the toxic load will lead to a commensurate improvement in water quality. Integr Environ Assess Manag 2017;13:746-753. © 2016 SETAC. © 2016 SETAC.


    Directory of Open Access Journals (Sweden)

    A. Yu. Zhuravlev


    network coefficients. When building the FM reversal model in parallel magnetic fields, the most accurate methods are the approximation ones that take into account not only the changes in values and over time, but also their derivatives. The development of computer hardware and software makes real the mathematical methods for calculating TC with significant change in ferromagnetic inductance, including the saturation areas. Herewith, it is important to search for approximating analytical expression that describes the dynamic limit hysteresis loop (HL. Practical value. The changes in the electrical parameters of the same TC were analysed using the classical and the new calculation methods, the difference made less than 10%. The work introduced some measures to increase operational noise immunity of TC.

  8. Open Photoacoustic Cell for Blood Sugar Measurement: Numerical Calculation of Frequency Response

    CERN Document Server

    Baumann, Bernd; Teschner, Mark


    A new approach for continuous and non-invasive monitoring of the glucose concentration in human epidermis has been suggested recently. This method is based on photoacoustic (PA) analysis of human interstitial fluid. The measurement can be performed in vitro and in vivo and, therefore, may form the basis for a non-invasive monitoring of the blood sugar level for diabetes patients. It requires a windowless PA cell with an additional opening that is pressed onto the human skin. Since signals are weak, advantage is taken of acoustic resonances of the cell. Recently, a numerical approach based on the Finite Element (FE) Method has been successfully used for the calculation of the frequency response function of closed PA cells. This method has now been adapted to obtain the frequency response of the open cell. Despite the fact that loss due to sound radiation at the opening is not included, fairly good accordance with measurement is achieved.

  9. Quality Assessment of Predicted Protein Models Using Energies Calculated by the Fragment Molecular Orbital Method. (United States)

    Simoncini, David; Nakata, Hiroya; Ogata, Koji; Nakamura, Shinichiro; Zhang, Kam Yj


    Protein structure prediction directly from sequences is a very challenging problem in computational biology. One of the most successful approaches employs stochastic conformational sampling to search an empirically derived energy function landscape for the global energy minimum state. Due to the errors in the empirically derived energy function, the lowest energy conformation may not be the best model. We have evaluated the use of energy calculated by the fragment molecular orbital method (FMO energy) to assess the quality of predicted models and its ability to identify the best model among an ensemble of predicted models. The fragment molecular orbital method implemented in GAMESS was used to calculate the FMO energy of predicted models. When tested on eight protein targets, we found that the model ranking based on FMO energies is better than that based on empirically derived energies when there is sufficient diversity among these models. This model diversity can be estimated prior to the FMO energy calculations. Our result demonstrates that the FMO energy calculated by the fragment molecular orbital method is a practical and promising measure for the assessment of protein model quality and the selection of the best protein model among many generated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch


    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  11. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  12. A comparison of pumping speed measurement methods

    CERN Document Server

    Denison, D R


    A comparison of pumping speed measurement method was made using three types of apparatus. These were: (i) the Fischer-Mommsen system, developed at CERN in which the gas flow rate is measured by the pressure drop across an orifice of known conductance at the test vessel inlet and the pressure gauge is arrayed to serve as a molecular flux transducer, (ii) the three gauge system used by some pump manufacturers in which the gas flow rate is determined by measuring the pressure drop across a long tube whose conductance is calculated from its dimensions and (iii) the constant pressure/pipette system in which the time is measured to evacuate a known quantity of gas. A sputter-ion pump with Ti and Ta cathodes and 32 Penning cells was used as the test pump. The Fischer and Mommsen and pipette procedures gave good agreement for the pumping speeds of N/sub 2/ (within 1%) but allowance had to be made for mass discrimination in the gas flow through an orifice when air was pumped. The three gauge method consistently gave a...

  13. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  14. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.


    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  15. Methods for calculating Protection Equality for conservation planning. (United States)

    Chauvenet, Alienor L M; Kuempel, Caitlin D; McGowan, Jennifer; Beger, Maria; Possingham, Hugh P


    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth's land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity's Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an "ecologically representative" sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country's borders are protected. We present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country's PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats.

  16. Methods for calculating Protection Equality for conservation planning (United States)

    Kuempel, Caitlin D.; McGowan, Jennifer; Beger, Maria; Possingham, Hugh P.


    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth’s land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity’s Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an “ecologically representative” sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country’s borders are protected. We present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country’s PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats. PMID:28199341

  17. Calculating the reflected radiation error between turbine blades and vanes based on double contour integral method (United States)

    Feng, Chi; Li, Dong; Gao, Shan; Daniel, Ketui


    This paper presents a CFD (Computation Fluid Dynamic) simulation and experimental results for the reflected radiation error from turbine vanes when measuring turbine blade's temperature using a pyrometer. In the paper, an accurate reflection model based on discrete irregular surfaces is established. Double contour integral method is used to calculate view factor between the irregular surfaces. Calculated reflected radiation error was found to change with relative position between blades and vanes as temperature distribution of vanes and blades was simulated using CFD. Simulation results indicated that when the vanes suction surface temperature ranged from 860 K to 1060 K and the blades pressure surface average temperature is 805 K, pyrometer measurement error can reach up to 6.35%. Experimental results show that the maximum pyrometer absolute error of three different targets on the blade decreases from 6.52%, 4.15% and 1.35% to 0.89%, 0.82% and 0.69% respectively after error correction.

  18. An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220 (United States)

    Rezaeian, P.; Ataenia, V.; Shafiei, S.


    In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.

  19. Potential theoretic methods for far field sound radiation calculations (United States)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.


    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  20. Histogram Planimetry Method for the Measurement of Irregular Wounds. (United States)

    Yesiloglu, Nebil; Yildiz, Kemalettin; Cem Akpinar, Ali; Gorgulu, Tahsin; Sirinoglu, Hakan; Ozcan, Arzu


    Irregularly shaped wounds or flap borders usually require specified software or devices to measure their area and follow-up wound healing. In this study, an easy way of area measurement called histogram planimetry (HP) for wounds with irregular geometric shapes is defined and compared to conventional millimetric wound measurement. Ten irregularly bordered geometric shapes were measured by 4 different individuals working as surgical assistants using both HP and manual millimetric measurement tools. The amount of time for each wound shape calculation as well as the measurements of the wound areas were noted. All measurements were compared for each method and between each individual using the Wilcoxon signed-rank test. There was no statistically significant difference between 2 measurement methods by means of measured areas; however, measurement time was significantly lower when the HP method was used. There also was no significant difference between the individuals' measurements and calculation times. These results indicated that HP is useful as a conventional millimetric square wound measurement technique with significantly lower measurement times. Due to the development of photo-editor software technologies, measurements in the surgical field have become more accurate and rapid than conventional manual methods without consuming the time and energy needed for other studies. A future study including comparisons between the presented method and complex computerized measurement methods, in terms of duration and accuracy, may provide additional supportive data for the authors' method.

  1. Method for calculating voltage distribution along lengthy insulator strings

    Energy Technology Data Exchange (ETDEWEB)

    Perelman, L.S.


    This computer method is based on the simultaneous solution of a set of equations with potential coefficients for charges of conductors, tower and insulator caps, and a set of equations for the insulator capacitance chain. The effect of various factors on the voltage distribution along strings for 750 and 1150/1500 kV lines is considered.

  2. A new method for the calculation of Sommerfeld screening ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 6. A new method for ... Screening parameters; spin doublets; irregular doublets; subshell; energy values; Hertz law. ... It requires neither the knowledge of the energy separations of spin doublet levels nor is it based on the application of the Hertz law. The only ...

  3. Hourly Calculation Method of Air Source Heat Pump Behavior

    Directory of Open Access Journals (Sweden)

    Ludovico Danza


    Full Text Available The paper describes an hourly simplified model for the evaluation of the energy performance of heat pumps in cooling mode maintaining a high accuracy and low computational cost. This approach differs from the methods used for the assessment of the overall energy consumption of the building, normally placed in the so-called white or black box models, where the transient conduction equation is deterministically and stochastically solved, respectively. The present method wants to be the expression of the grey box model, taking place between the previous approaches. The building envelope is defined using a building thermal model realized with a 3 Resistance 1 Capacitance (3R1C thermal network based on the solution of the lumped capacitance method. The simplified model evaluates the energy efficiency ratio (EER of a heat pump through the determination of the hourly second law efficiency of a reversed Carnot cycle. The results of the simplified method were finally compared with those provided by EnergyPlus, a dynamic building energy simulation program, and those collected from an outdoor test cell in real working conditions. The results are presented in temperatures and energy consumptions profiles and are validated using the Bland-Altman test.

  4. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier


    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  5. Comparison of stratum corneum thickness between two proposed methods of calculation using Raman spectroscopic depth profiling of skin water content. (United States)

    Lee, M; Won, K; Kim, E J; Hwang, J S; Lee, H K


    The stratum corneum (SC) is the most important layer for the barrier function of skin, so investigation of the SC is very important in cosmetic and medical research. Here, we calculated the SC thickness using the depth profile of the skin's water concentration based on previously described methods, and then compared the results. Seven Korean women in their 30s participated in this study. Raman spectroscopy was used to measure the in vivo depth profile of skin water concentration. A total of 21 areas were measured at forearm. Microsoft Excel 2007 was used to calculate SC thickness based on the slope and intersection methods. The slope method and the intersection method gave a forearm SC thickness calculated at 21.3 ± 2.6 μm and 17.6 ± 2.8 μm, respectively. There was a significant difference between the two calculation methods but the two methods showed strong correlation of SC thickness results (r = .899). Although there was a difference in calculated SC thickness of about 20% between the two methods, these results reveal that the two SC thickness calculation methods using Raman spectroscopy were suitable for measuring SC thickness, a finding consistent with other published results. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. (United States)

    Yaralioglu, Goksen G; Ergun, Arif Sanli; Bayram, Baris; Haeggström, Edward; Khuri-Yakub, Butrus T


    The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our calculations, and the FEM results are compared with the analytical results obtained with parallel plate approximation. The effect of series and parallel capacitances in the CMUT also is investigated. The FEM calculations of the CMUT indicate that the electromechanical coupling coefficient is independent of any series capacitance that may exist in the structure. The series capacitance, however, alters the collapse voltage of the membrane. The parallel parasitic capacitance that may exist in a CMUT or is external to the transducer reduces the coupling coefficient at a given bias voltage. At the collapse, regardless of the parasitics, the coupling coefficient reaches unity. Our experimental measurements confirm a coupling coefficient of 0.85 before collapse, and measurements are in agreement with theory.

  7. Limitations of Significance Testing in Clinical Research: A Review of Multiple Comparison Corrections and Effect Size Calculations with Correlated Measures. (United States)

    Vasilopoulos, Terrie; Morey, Timothy E; Dhatariya, Ketan; Rice, Mark J


    Modern clinical research commonly uses complex designs with multiple related outcomes, including repeated-measures designs. While multiple comparison corrections and effect size calculations are needed to more accurately assess an intervention's significance and impact, understanding the limitations of these methods in the case of dependency and correlation is important. In this review, we outline methods for multiple comparison corrections and effect size calculations and considerations in cases of correlation and summarize relevant simulation studies to illustrate these concepts.

  8. Sub-pixel Area Calculation Methods for Estimating Irrigated Areas

    Directory of Open Access Journals (Sweden)

    Suraj Pandey


    Full Text Available The goal of this paper was to develop and demonstrate practical methods forcomputing sub-pixel areas (SPAs from coarse-resolution satellite sensor data. Themethods were tested and verified using: (a global irrigated area map (GIAM at 10-kmresolution based, primarily, on AVHRR data, and (b irrigated area map for India at 500-mbased, primarily, on MODIS data. The sub-pixel irrigated areas (SPIAs from coarse-resolution satellite sensor data were estimated by multiplying the full pixel irrigated areas(FPIAs with irrigated area fractions (IAFs. Three methods were presented for IAFcomputation: (a Google Earth Estimate (IAF-GEE; (b High resolution imagery (IAF-HRI; and (c Sub-pixel de-composition technique (IAF-SPDT. The IAF-GEE involvedthe use of “zoom-in-views” of sub-meter to 4-meter very high resolution imagery (VHRIfrom Google Earth and helped determine total area available for irrigation (TAAI or netirrigated areas that does not consider intensity or seasonality of irrigation. The IAF-HRI isa well known method that uses finer-resolution data to determine SPAs of the coarser-resolution imagery. The IAF-SPDT is a unique and innovative method wherein SPAs aredetermined based on the precise location of every pixel of a class in 2-dimensionalbrightness-greenness-wetness (BGW feature-space plot of red band versus near-infraredband spectral reflectivity. The SPIAs computed using IAF-SPDT for the GIAM was within2 % of the SPIA computed using well known IAF-HRI. Further the fractions from the 2 methods were significantly correlated. The IAF-HRI and IAF-SPDT help to determine annualized or gross irrigated areas (AIA that does consider intensity or seasonality (e.g., sum of areas from season 1, season 2, and continuous year-round crops. The national census based irrigated areas for the top 40 irrigated nations (which covers about 90% of global irrigation was significantly better related (and had lesser uncertainties and errors when

  9. Method for Calculation of Steam-Compression Heat Transformers

    Directory of Open Access Journals (Sweden)

    S. V. Zditovetckaya


    Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.

  10. A method for calculating strut and splitter plate noise in exit ducts: Theory and verification (United States)

    Fink, M. R.


    Portions of a four-year analytical and experimental investigation relative to noise radiation from engine internal components in turbulent flow are summarized. Spectra measured for such airfoils over a range of chord, thickness ratio, flow velocity, and turbulence level were compared with predictions made by an available rigorous thin-airfoil analytical method. This analysis included the effects of flow compressibility and source noncompactness. Generally good agreement was obtained. This noise calculation method for isolated airfoils in turbulent flow was combined with a method for calculating transmission of sound through a subsonic exit duct and with an empirical far-field directivity shape. These three elements were checked separately and were individually shown to give close agreement with data. This combination provides a method for predicting engine internally generated aft-radiated noise from radial struts and stators, and annular splitter rings. Calculated sound power spectra, directivity, and acoustic pressure spectra were compared with the best available data. These data were for noise caused by a fan exit duct annular splitter ring, larger-chord stator blades, and turbine exit struts.

  11. Influence of the GZ calculation method on parametric roll prediction

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena


    to obtain the probability that the roll motion will exceed a given limiting angle. The results have been compared to the results by a Monte Carlo simulation. Using FORM the computational time is greatly reduced as compared to direct simulations, still retaining the probability of failure of the correct...... to on-board decision support systems, where a computationally efficient method is needed in order to have an operationally feasible time frame....

  12. The DV-Xα molecular-orbital calculation method

    CERN Document Server

    Ishii, Tomohiko; Ogasawara, Kazuyoshi


    This multi-author contributed volume contains chapters featuring the development of the DV-Xα method and its application to a variety of problems in Materials Science and Spectroscopy written by leaders of the respective fields. The volume contains a Foreword written by the Chairs of Japanese and Korea DV-X alpha Societies. This book is aimed at individuals working in Quantum Chemistry.

  13. Effective Discharge Calculation Methods and Variability: Application to the Trinity and Brazos Rivers, Texas (United States)

    Hosseiny, H.; Strom, K.


    Effective discharge calculations are based on continuous recordings of daily discharge, cross-sectional stream properties, and measured or calculated sediment transport rates. This study investigates how different flow frequency analysis and varying amounts of collected on-site cross sectional and sediment data impact the final calculated effective discharge. The analysis is carried out for six river stations on the lower Brazos River and four stations on the middle Trinity River in the state of Texas, USA. Data obtained at each site includes mean daily flow discharge, measured suspended sediment concentration over a range of flow conditions, bed sediment samples and cross sectional geometry. Bed load rating curves are developed based on bed sediment samples and the Einstein-Brown formula. The flow frequency analysis is carried out using (1) equal arithmetic intervals with bin numbers of 25, 50 and 100, and (2) the kernel density estimate method. To answer the question of what kind of on-site measured data is essential for calculating the effective discharge, 4 scenarios using different combinations of measured and unmeasured data are defined. At one end of the scenario spectrum, all measured data is used. At the other end, the only on-site data used is the bed material grain size distribution. Results show that if a smoothed sediment load histogram is used, then the effective discharge is not sensitive to the flow frequency analysis method or to the varying levels of on-site data used in the analysis. The outcome of this is that on the Trinity and Brazos rivers, effective discharge can be adequately calculated using only the bed material size information, USGS daily flow data, and the top width of the river obtained from Google Earth. Comparing the calculated effective discharge to other flow metrics showed that the effective discharge on the Trinity is significantly smaller than the bankfull discharge. Effective discharge on the Trinity ranges between 15000 to

  14. New method of GPS orbit determination from GCPS network for the purpose of DOP calculations

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar


    Full Text Available The accuracy of GPS measurement satisfies the requirements of some applications, but many applications require an improvement of GPS measurement accuracy. For precise positioning by GPS, it is necessary to perform GPS mission planning. The GPS mission planning is a pre-survey task in which the values of Dilution Of Precision (DOP should be predicted for the observation points, this task should determine the best observation periods which meet the project requirements. The main purpose of this work is to study a rather simple but still fairly accurate algorithm to determine the artificial satellite orbits for the purpose of DOP calculation. The orbit determination algorithm proposed in this paper is implemented by using several reference stations and calculated the orbits by new algorithm; inverse GPS. Inverse GPS means that reference stations are considered as satellites and satellite as receiver. This new algorithm used to calculate the satellite orbit which is mainly used to calculate the DOP. A comparison is done between the estimated PDOP by using satellite coordinates from new method and from the SP3 (Standard Product # 3 file.

  15. Robust segmentation methods with an application to aortic pulse wave velocity calculation. (United States)

    Babin, Danilo; Devos, Daniel; Pižurica, Aleksandra; Westenberg, Jos; Vansteenkiste, Ewout; Philips, Wilfried


    Aortic stiffness has proven to be an important diagnostic and prognostic factor of many cardiovascular diseases, as well as an estimate of overall cardiovascular health. Pulse wave velocity (PWV) represents a good measure of the aortic stiffness, while the aortic distensibility is used as an aortic elasticity index. Obtaining the PWV and the aortic distensibility from magnetic resonance imaging (MRI) data requires diverse segmentation tasks, namely the extraction of the aortic center line and the segmentation of aortic regions, combined with signal processing methods for the analysis of the pulse wave. In our study non-contrasted MRI images of abdomen were used in healthy volunteers (22 data sets) for the sake of non-invasive analysis and contrasted magnetic resonance (MR) images were used for the aortic examination of Marfan syndrome patients (8 data sets). In this research we present a novel robust segmentation technique for the PWV and aortic distensibility calculation as a complete image processing toolbox. We introduce a novel graph-based method for the centerline extraction of a thoraco-abdominal aorta for the length calculation from 3-D MRI data, robust to artifacts and noise. Moreover, we design a new projection-based segmentation method for transverse aortic region delineation in cardiac magnetic resonance (CMR) images which is robust to high presence of artifacts. Finally, we propose a novel method for analysis of velocity curves in order to obtain pulse wave propagation times. In order to validate the proposed method we compare the obtained results with manually determined aortic centerlines and a region segmentation by an expert, while the results of the PWV measurement were compared to a validated software (LUMC, Leiden, the Netherlands). The obtained results show high correctness and effectiveness of our method for the aortic PWV and distensibility calculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effective and efficient method of calculating Bessel beam fields

    CSIR Research Space (South Africa)

    Litvin, IA


    Full Text Available -ordinates. The success of the method is shown for the case of Bessel beams and Bessel-Gauss fields passing through non-transparent obstacles, as well as the for case of these fields propagating through a scattering medium. Keywords: Bessel beams, scattering media... is the reconstruction of their amplitude and phase immediately behind an obstacle9-15. This property has been exploited for a range of applications, from optical tweezers to the optical probing of scattering media. The property can be explained by considering...

  17. Measuring ambiguity in HLA typing methods.

    Directory of Open Access Journals (Sweden)

    Vanja Paunić

    Full Text Available In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched, but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure

  18. Active medical implants and occupational safety--measurement and numerical calculation of interference voltage. (United States)

    Gustrau, F; Bahr, A; Goltz, S; Eggert, S


    Low frequency electric and magnetic fields may interfere with implanted cardiac pacemakers causing a life-threatening malfunction of the device. In order to assess the safety of workers in the vicinity of industrial electrical devices the interference voltage at the input port of a pacemaker is an important measure. In order to investigate the coupling of fields emanating from electrical devices a numerical method for the calculation of interference voltages is presented and applied to the investigation of homogeneous electric and magnetic fields in the frequency range from 50 Hz to 1 MHz. Implantation of the pacemaker in the right pectoral, left pectoral and abdominal area using a realistic model of the human body as well as different grounding conditions are considered. The numerical method is successfully validated by measurements and shows good agreement with results in the literature.

  19. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    Directory of Open Access Journals (Sweden)

    Anders Skovgård Olsen


    Full Text Available Estimating the expected annual damage (EAD due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results indicate that within each catchment this may be a feasible approach. However the unit costs varies substantially between different case study areas. Hence it is not feasible to develop unit costs that can be used to calculate EAD, most likely because the urban landscape is too heterogeneous.

  20. Measurement and Calculation of Frictional Loss in Large Two-Stroke Engines

    DEFF Research Database (Denmark)

    Vølund, Anders


    The total frictional loss in a large two-stroke marine diesel engine is rather well determined. However, the contribution (size and distribution) from the different machine elements are not well known. The aim of this study is to establish methods to measure and calculate friction in the piston...... assembly and guide shoe system for a large two-stroke marine diesel engine. These components are the two major contributors to the total friction in a two-stroke marine diesel engine. The piston pack represents approximately 60% of the total mechanical loss at full load and the guide shoe system 23...

  1. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    Directory of Open Access Journals (Sweden)

    Gueton O.


    Full Text Available The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR, is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…. This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE of CEA, Cadarache to increase the experimental measurement accuracy.

  2. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue (United States)

    Colombier, A.-C.; Amharrak, H.; Fourmentel, D.; Ravaux, S.; Régnier, D.; Gueton, O.; Hudelot, J.-P.; Lemaire, M.


    The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR), is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…). This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: bid.1"> Development of a Monte Carlo code (FIFRELIN) to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core bid.2"> Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core bid.3"> Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 bid.4"> Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE) of CEA, Cadarache to increase the experimental measurement accuracy.

  3. Control rod worth calculations using deterministic and stochastic methods

    Energy Technology Data Exchange (ETDEWEB)

    Varvayanni, M. [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Savva, P., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N. [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece)


    Knowledge of the efficiency of a control rod to absorb excess reactivity in a nuclear reactor, i.e. knowledge of its reactivity worth, is very important from many points of view. These include the analysis and the assessment of the shutdown margin of new core configurations (upgrade, conversion, refuelling, etc.) as well as several operational needs, such as calibration of the control rods, e.g. in case that reactivity insertion experiments are planned. The control rod worth can be assessed either experimentally or theoretically, mainly through the utilization of neutronic codes. In the present work two different theoretical approaches, i.e. a deterministic and a stochastic one are used for the estimation of the integral and the differential worth of two control rods utilized in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system SCALE (modules NITAWL/XSDRNPM) and CITATION is used, while the stochastic one is made using the Monte Carlo code TRIPOLI. Both approaches follow the procedure of reactivity insertion steps and their results are tested against measurements conducted in the reactor. The goal of this work is to examine the capability of a deterministic code system to reliably simulate the worth of a control rod, based also on comparisons with the detailed Monte Carlo simulation, while various options are tested with respect to the deterministic results' reliability.

  4. Recommended environmental dose calculation methods and Hanford-specific parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. (Pacific Northwest Lab., Richland, WA (United States)); Davis, J.S. (Westinghouse Hanford Co., Richland, WA (United States))


    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  5. Dynamic Inertia Measurement Method Project (United States)

    National Aeronautics and Space Administration — Critically important inertia measurements are complex and expensive to obtain due to the extensive fixturing and custom instrumentation of conventional...

  6. Preconditioned Conjugate Gradient methods for low speed flow calculations (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing


    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  7. Time domain finite element method for the calculation of impulse response of enclosed spaces. Room acoustics application (United States)

    Papadakis, Nikos; Stavroulakis, Georgios E.


    This paper presents an assessment of the accuracy and applicability of the Time Domain Finite Element Method (TDFEM) for sound-field analysis of enclosed spaces. An outline of the method is displayed for the calculation of the impulse response of a reverberant room. Frequency response and cumulative spectral decay which are useful for the representation of spaces can be derived from the impulse response. Room impulse response of an actual room was first measured with the Maximum Length Sequence (MLS) technique and then calculated with the time domain finite element method in the low frequency range. Frequency response and cumulative spectral decay are extracted from the calculated impulse response and then compared with the measured ones. The computed parameters agree well with the measured ones. The time domain finite element method is a valuable technique for accurate prediction of the sound field of enclosed spaces.

  8. Comparison of measured and calculated temperatures for a Mach 8 hypersonic wing test structure (United States)

    Quinn, R. D.; Fields, R. A.


    Structural temperatures were measured on a hypersonic wing test structure during a heating test that simulated a Mach 8 thermal environment. Measured data are compared to design calculations and temperature predictions obtained from a finite-difference thermal analysis.

  9. An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines

    DEFF Research Database (Denmark)

    Zhang, Wen-juan; Huang, Shou-dao; Chen, Zhe


    was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used......An analytic electromagnetic calculation method for doubly fed induction generator (DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed....... The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure...

  10. A new method to calculate the beam charge for an integrating current transformer. (United States)

    Wu, Yuchi; Han, Dan; Zhu, Bin; Dong, Kegong; Tan, Fang; Gu, Yuqiu


    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  11. Solution of Cubic Equations by Iteration Methods on a Pocket Calculator (United States)

    Bamdad, Farzad


    A method to provide students a vision of how they can write iteration programs on an inexpensive programmable pocket calculator, without requiring a PC or a graphing calculator is developed. Two iteration methods are used, successive-approximations and bisection methods.

  12. A spatial method to calculate small-scale fisheries effort in data poor scenarios (United States)

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio


    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally. PMID:28406918

  13. Evaluation of methods for calculating maximum allowable standing height in amputees competing in Paralympic athletics. (United States)

    Connick, M J; Beckman, E; Ibusuki, T; Malone, L; Tweedy, S M


    The International Paralympic Committee has a maximum allowable standing height (MASH) rule that limits stature to a pre-trauma estimation. The MASH rule reduces the probability that bilateral lower limb amputees use disproportionately long prostheses in competition. Although there are several methods for estimating stature, the validity of these methods has not been compared. To identify the most appropriate method for the MASH rule, this study aimed to compare the criterion validity of estimations resulting from the current method, the Contini method, and four Canda methods (Canda-1, Canda-2, Canda-3, and Canda-4). Stature, ulna length, demispan, sitting height, thigh length, upper arm length, and forearm length measurements in 31 males and 30 females were used to calculate the respective estimation for each method. Results showed that Canda-1 (based on four anthropometric variables) produced the smallest error and best fitted the data in males and females. The current method was associated with the largest error of those tests because it increasingly overestimated height in people with smaller stature. The results suggest that the set of Canda equations provide a more valid MASH estimation in people with a range of upper limb and bilateral lower limb amputations compared with the current method. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Low level TOC measurement method (United States)

    Ekechukwu, Amy A.


    A method for the determination of total organic carbon in an aqueous sample by trapping the organic matter on a sorbent which is carbon free and analyzing the sorbent by combustion and determination of total CO.sub.2 by IR.


    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL


    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  16. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov


    electrochemical measurements as well as elemental analysis look very promising for elucidating corrosion reaction mechanisms. The study of initial surface reactions at the atomic or submicron level is becoming an important field of research in the understanding of corrosion processes. At present, mainly two...... scanning microscope techniques are employed investigating corrosion processes, and usually in situ: in situ scanning tunneling microscopy (in situ STM) and in situ scanning force microscopy (in situ AFM). It is these techniques to which attention is directed here....

  17. Measured density and calculated baricity of custom-compounded drugs for chronic intrathecal infusion. (United States)

    Hejtmanek, Michael R; Harvey, Tracy D; Bernards, Christopher M


    To minimize the frequency that intrathecal pumps require refilling, drugs are custom compounded at very high concentrations. Unfortunately, the baricity of these custom solutions is unknown, which is problematic, given baricity's importance in determining the spread of intrathecally administered drugs. Consequently, we measured the density and calculated the baricity of clinically relevant concentrations of multiple drugs used for intrathecal infusion. Morphine, clonidine, bupivacaine, and baclofen were weighed to within 0.0001 g and diluted in volumetric flasks to produce solutions of known concentrations (morphine 1, 10, 25, and 50 mg/mL; clonidine 0.05, 0.5, 1, and 3 mg/mL; bupivacaine 2.5, 5, 10, and 20 mg/mL; baclofen 1, 1.5, 2, and 4 mg/mL). The densities of the solutions were measured at 37°C using the mechanical oscillation method. A "best-fit" curve was calculated for plots of concentration versus density for each drug. All prepared solutions of clonidine and baclofen were hypobaric. Higher concentrations of morphine and bupivacaine were hyperbaric, whereas lower concentrations were hypobaric. The relationship between concentration and density is linear for morphine (r > 0.99) and bupivacaine (r > 0.99) and logarithmic for baclofen (r = 0.96) and clonidine (r = 0.98). This is the first study to examine the relationship between concentration and density for custom drug concentrations commonly used in implanted intrathecal pumps. We calculated an equation that defines the relationship between concentration and density for each drug. Using these equations, clinicians can calculate the density of any solution made from the drugs studied here.

  18. Oscillator strengths for high-excitation Ti II from laboratory measurements and calculations (United States)

    Lundberg, H.; Hartman, H.; Engström, L.; Nilsson, H.; Persson, A.; Palmeri, P.; Quinet, P.; Fivet, V.; Malcheva, G.; Blagoev, K.


    This work reports new experimental radiative lifetimes of six 3d2(3F)5s levels in singly ionized titanium, with an energy around 63 000 cm-1 and four 3d2(3F)4p odd parity levels where we confirm previous investigations. Combining the new 5s lifetimes with branching fractions measured previously by Pickering et al., we report 57 experimental log gf values for transitions from the 5s levels. The lifetime measurements are performed using time-resolved laser-induced fluorescence on ions produced by laser ablation. One- and two-step photon excitation is employed to reach the 4p and 5s levels, respectively. Theoretical calculations of the radiative lifetimes of the measured levels as well as of oscillator strengths for 3336 transitions from these levels are reported. The calculations are carried out by a pseudo-relativistic Hartree-Fock method taking into account core-polarization effects. The theoretical results are in a good agreement with the experiments and are needed for accurate abundance determinations in astronomical objects.

  19. Using the years-of-healthy-life measure to calculate QALYs. (United States)

    Muennig, P A; Gold, M R


    The quality-adjusted life year (QALY) is an attractive outcome measure because it captures both health-related quality of life (HRQL) and life expectancy in a single metric. We present a method for calculating QALYs that is simple, utilizes data that are free of charge, and may improve consistency in burden-of-disease investigations. For purposes of illustration, we calculated the burden of disease due to stroke using two abridged life tables, each adjusted for HRQL. The first life table was generated using all-cause mortality and morbidity data (a reference cohort) and the second was generated using all diseases except stroke (a stroke-free cohort). The difference in total QALYs and in quality-adjusted life expectancy (QALE) was determined by subtraction. Approximately 61,328 (95% CI=60,272, 62,383) QALYs were lost to stroke in the life-table cohort. Stroke is responsible for a decrement of 0.03 years of life expectancy and 0.61 years of QALE in the United States. The "years of health life"measure affords a rapid, inexpensive, and sensitive means for estimating the burden of disease for local health priorities and may assist research efforts in including QALYs as an outcome measure.

  20. Raw material consumption of the European Union--concept, calculation method, and results. (United States)

    Schoer, Karl; Weinzettel, Jan; Kovanda, Jan; Giegrich, Jürgen; Lauwigi, Christoph


    This article presents the concept, calculation method, and first results of the "Raw Material Consumption" (RMC) economy-wide material flow indicator for the European Union (EU). The RMC measures the final domestic consumption of products in terms of raw material equivalents (RME), i.e. raw materials used in the complete production chain of consumed products. We employed the hybrid input-output life cycle assessment method to calculate RMC. We first developed a highly disaggregated environmentally extended mixed unit input output table and then applied life cycle inventory data for imported products without appropriate representation of production within the domestic economy. Lastly, we treated capital formation as intermediate consumption. Our results show that services, often considered as a solution for dematerialization, account for a significant part of EU raw material consumption, which emphasizes the need to focus on the full production chains and dematerialization of services. Comparison of the EU's RMC with its domestic extraction shows that the EU is nearly self-sufficient in biomass and nonmetallic minerals but extremely dependent on direct and indirect imports of fossil energy carriers and metal ores. This implies an export of environmental burden related to extraction and primary processing of these materials to the rest of the world. Our results demonstrate that internalizing capital formation has significant influence on the calculated RMC.

  1. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer


    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  2. Calculation of measurement uncertainty for plastic (ABS material in flexural testing

    Directory of Open Access Journals (Sweden)

    Gunay A.


    Full Text Available In order to determine mechanical properties of materials various kind of tests can be applied by means of using their tensile strength, lower yield stress, proof stress, impact strength, Brinell, Rockwell and surface hardness, elongation after fracture properties. Among these tests, three point flexural testing method has some advantages such as easy preparation (production of samples and no gripping problems comparing to tension test. Flexural tests results should be obtained accurately to provide expected testing performance. The measurement uncertainty of flexural tests should be calculated by conducting all effective uncertainty parameters during the test procedure. In this study, the measurement uncertainty of the flexural test of ABS (Acrylonitrile Butadiene Styrene material was investigated, which is widely used as industrial plastic material in many applications.

  3. Computing Fuzzy Queueing Performance Measures by L-R Method

    Directory of Open Access Journals (Sweden)

    J.P. Mukeba Kanyinda


    Full Text Available This article shows that the {\\it L-R method} introduced in this work is one of valid methods for computing performance measures of fuzzy queues. Using this calculation technique, we find the number of customers and the waiting time of a simple queue M/M/1 in fuzzy environment. L-R method has the advantage of being short, convenient and flexible compared to the well-known and called alpha-cuts method.

  4. Parallel and serial methods of calculating thermal insulation in European manikin standards. (United States)

    Kuklane, Kalev; Gao, Chuansi; Wang, Faming; Holmér, Ingvar


    Standard No. EN 15831:2004 provides 2 methods of calculating insulation: parallel and serial. The parallel method is similar to the global one defined in Standard No. ISO 9920:2007. Standards No. EN 342:2004, EN 14058:2004 and EN 13537:2002 refer to the methods defined in Standard No. EN ISO 15831:2004 for testing cold protective clothing or equipment. However, it is necessary to consider several issues, e.g., referring to measuring human subjects, when using the serial method. With one zone, there is no serial-parallel issue as the results are the same, while more zones increase the difference in insulation value between the methods. If insulation is evenly distributed, differences between the serial and parallel method are relatively small and proportional. However, with more insulation layers overlapping in heavy cold protective ensembles, the serial method produces higher insulation values than the parallel one and human studies. Therefore, the parallel method is recommended for standard testing.

  5. The numerical method of inverse Laplace transform for calculation of overvoltages in power transformers and test results

    Directory of Open Access Journals (Sweden)

    Mikulović Jovan Č.


    Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020

  6. Methods for measurement of durability parameters

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place


    Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....

  7. Proton capture reaction cross section measurements on 162Er as a probe of statistical model calculations (United States)

    Özkan, N.; Güray, R. T.; Yalçın, C.; Tan, W. P.; Aprahamian, A.; Beard, M.; deBoer, R. J.; Almaraz-Calderon, S.; Falahat, S.; Görres, J.; Li, Q.; Sauerwein, A.; Sonnabend, K.; Wiescher, M.; Fülöp, Zs.; Gyürky, Gy.; Somorjai, E.; Greene, J.


    It is crucial to measure reaction cross sections relevant to the astrophysical γ process so that theoretical reaction rates can be tested and validated with experimental data. The total cross sections for the 162Er(p ,γ )163Tm and the 162Er(p ,n )162Tm reactions have been measured by the activation method in center-of-mass energies from 3.973 to 8.944 MeV and from 5.962 to 8.944 MeV, respectively. The nucleus 162Er is the heaviest p nuclide to be measured by the activation method using γ -ray spectroscopy, so far. It is important to note that the energy range for the (p ,γ ) reaction measurement covers a large fraction of the astrophysically relevant energy region between 2.71 and 5.34 MeV. The targets were prepared by evaporating 28.2 % isotopically enriched Er1622O3 powder onto carbon backing foils, and bombarded with proton beams provided by the FN Tandem Accelerator at the University of Notre Dame. The reaction yields have been determined by the observed activity of produced radioactive isotopes, which was detected offline by a high-purity germanium detector. The results are presented and compared with calculations from two statistical model codes: non-smoker and talys.

  8. [Calculating the stark broadening of welding arc spectra by Fourier transform method]. (United States)

    Pan, Cheng-Gang; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao


    It's the most effective and accurate method to calculate the electronic density of plasma by using the Stark width of the plasma spectrum. However, it's difficult to separate Stark width from the composite spectrum linear produced by several mechanisms. In the present paper, Fourier transform was used to separate the Lorentz linear from the spectrum observed, thus to get the accurate Stark width. And we calculated the distribution of the TIG welding arc plasma. This method does not need to measure arc temperature accurately, to measure the width of the plasma spectrum broadened by instrument, and has the function to reject the noise data. The results show that, on the axis, the electron density of TIG welding arc decreases with the distance from tungsten increasing, and changes from 1.21 X 10(17) cm(-3) to 1.58 x 10(17) cm(-3); in the radial, the electron density decreases with the distance from axis increasing, and near the tungsten zone the biggest electronic density is off axis.

  9. Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang [School of Power and Mechanical Engineering, Wuhan University, Wuhan (China); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Geng, Dalong; Wang, Xudong, E-mail: [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)


    A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.

  10. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. (Brookhaven National Lab., Upton, NY (USA). Medical Dept.); Benary, V. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Tel Aviv Univ. (Israel)); Kalef-Ezra, J. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Ioannina Univ. (Greece)); Wielopolski, L. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. State Univ. of New


    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  11. A method of solid-solid phase equilibrium calculation by molecular dynamics. (United States)

    Karavaev, A V; Dremov, V V


    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  12. Calculating thermal radiation of a vibrational nonequilibrium gas flow using the method of k-distribution (United States)

    Molchanov, A. M.; Bykov, L. V.; Yanyshev, D. S.


    The method has been developed to calculate infrared radiation of vibrational nonequilibrium gas based on k-distribution. A comparison of the data on the calculated nonequilibrium radiation with results of other authors and with experimental data has shown satisfactory agreement. It is shown that the results of calculation of radiation intensity using nonequilibrium and equilibrium methods significantly differ from each other. The discrepancy increases with increasing height (decreasing pressure) and can exceed an order of magnitude.

  13. arXiv Multi-loop calculations: numerical methods and applications

    CERN Document Server

    Borowka, S.; Jahn, S.; Jones, S.P.; Kerner, M.; Schlenk, J.


    We briefly review numerical methods for calculations beyond one loop and then describe new developments within the method of sector decomposition in more detail. We also discuss applications to two-loop integrals involving several mass scales.


    Directory of Open Access Journals (Sweden)



    Full Text Available Originally known as the Estimated Cost System, it has evolved, nowadays being called Standard Cost Accounting. Standard cost calculation method is based on scheduled cost, pre-calculated, set before the start of the manufacturing process itself. This method allows the determination of the elements that influence the amount of costs and their deviations from the predetermined costs.



    Sanjay B Patil; Dr Shrikant K Bodhe


    In order to increase the average sugarcane yield per acres with minimum cost farmers are adapting precision farming technique. This paper includes the area measurement of sugarcane leaf based on image processing method which is useful for plants growth monitoring, to analyze fertilizer deficiency and environmental stress,to measure diseases severity. In image processing method leaf area is calculated through pixel number statistic. Unit pixel in the same digital images represent the same size...

  16. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug


    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  17. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations (United States)

    Furnish, M. D.; Boslough, M. B.; Gray, G. T., III; Remo, J. L.

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2-20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  18. Free testosterone by direct and calculated measurement versus equilibrium dialysis in a clinical population. (United States)

    Kacker, Ravi; Hornstein, Abby; Morgentaler, Abraham


    The value of clinically available free testosterone (FT) assays remains controversial. Here, we evaluate the agreement between the radioimmunoassay (RIA) and calculated FT (cFT) versus equilibrium dialysis (EqD), considered the gold standard. Fifty-six consecutive men (aged 26-77) had blood samples assessed for FT, including men with treated and untreated testosterone deficiency (TD) and men without TD. Samples were split and tested by the two methodologies at a Quest Diagnostics national reference laboratory. cFT was calculated by the Vermeulen method. A robust correlation was noted for RIA and EqD (r = 0.966) and for cFT and EqD (r = 0.986). Strong correlations were observed for men receiving testosterone therapy and for men in the lowest and highest quartiles for total and FT. The correlation of total testosterone with FT was similar for cFT (r = 0.843), RIA (r = 0.806), and EqD (r = 0.809). Sex-hormone binding globulin (SHBG) was not correlated with any measure of FT. Bland-Altman analysis demonstrated similar bias for both cFT and RIA, although cFT consistently overestimated FT. Numerical values for RIA were approximately one seventh of EqD values. These results support the clinical use of both RIA and cFT as measures of FT. Due to numerical differences, each test requires its own set of reference values.

  19. Conventional method for the calculation of the global energy cost of buildings; Methode conventionnelle de calcul du cout global energetique des batiments

    Energy Technology Data Exchange (ETDEWEB)



    A working group driven by Electricite de France (EdF), Chauffage Fioul and Gaz de France (GdF) companies has been built with the sustain of several building engineering companies in order to clarify the use of the method of calculation of the global energy cost of buildings. This global cost is an economical decision help criterion among others. This press kit presents, first, the content of the method (input data, calculation of annual expenses, calculation of the global energy cost, display of results and limitations of the method). Then it fully describes the method and its appendixes necessary for its implementation: economical and financial context, general data of the project in progress, environmental data, occupation and comfort level, variants, investment cost of energy systems, investment cost for the structure linked with the energy system, investment cost for other invariant elements of the structure, calculation of consumptions (space heating, hot water, ventilation), maintenance costs (energy systems, structure), operation and exploitation costs, tariffs and consumption costs and taxes, actualized global cost, annualized global cost, comparison between variants. The method is applied to a council building of 23 flats taken as an example. (J.S.)

  20. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala


    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  1. Temperature retrievals from satellite radiance measurements - An empirical method (United States)

    Fritz, S.


    This paper presents a method for using satellite measurements to interpolate vertical temperature soundings between radiosonde stations. The calculations presented show that especially in the 1000-800 mb layer, where linear methods of temperature retrieval usually contain large errors, the proposed method reduces the errors substantially. The method finds a set of coefficients, which when multiplied by corresponding measured radiance quantities, yield zero temperature error at a radiosonde station. This derived set of coefficients is then applied to satellite radiance measurements at places between the radiosonde stations. The computations show, for example, that the average absolute error in the layer 1000-800 mb is only 0.3 K when the corresponding 'minimum-information' method error was 2.9 K. The method may be most applicable to measurements from geostationary satellites, but should also be applicable to measurements from polar orbiting satellites under certain conditions.

  2. Calculation method for laser radar cross sections of rotationally symmetric targets. (United States)

    Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui


    The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.

  3. The Calculation Methods of the Specific Fuel Rate in Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva


    Full Text Available The paper discusses a specific fuel rate in combined heat and electricity production using CHP technology. There are two objectives for calculation of specific fuel rate: a CHP technical efficiency estimate, b increasing CHP competitiveness at electricity and district heat markets. Currently, development of a number of thermo-dynamical methods of calculation solves the first problem while to solve the second one there is a number of developed economical methods of calculation. In Russia despite a decade of the wholesale electricity market progress the CHP market offers are still tightly connected with technical efficiency rate. To estimate the technical efficiency rate is widely used the least effective thermo-dynamical method – so called “physical” method”. The paper formulates a problem statement that is the specific fuel rate calculation and reviews the most widely applied methods. The review consists of two parts: in the first the Russian methods are discussed, and in the second one the methods widely used in the countries with highly developed electricity and district heat markets. A new thermo-dynamical method to calculate the specific fuel rate is introduced, which uses the linear characteristic curves of a steam turbine. The developed method allows us to take into consideration the energy inequality of the CHP products. Another advantages of this new method are calculation simplicity and small number of input data. To compare the effectiveness of different methods were introduced comparison rules and also calculations were performed. The comparison of thermo-dynamical methods shows that the most effective methods are an exergy method and also the method that takes into consideration the reduced generation of electricity (work method. Calculation complexity and large number of input data are main disadvantages of these methods. The comparison of economical methods shows that the most effective from stated point of view are a

  4. Optical response of the sodium alanate system : GW0-BSE calculations and thin film measurements

    NARCIS (Netherlands)

    Van Setten, M.J.; Gremaud, R.; Brocks, G.; Dam, B.; Kresse, G.; De Wijs, G.A.


    We calculate from first principles the optical spectra of the hydrides in the sodium alanate hydrogen storage system: NaH, NaAlH4, and Na3AlH6. In particular we study the effects of systematic improvements of the theoretical description. To benchmark the calculations we also measure the optical

  5. Optical response of the sodium alanate system: GW0-BSE calculations and thin film measurements

    NARCIS (Netherlands)

    van Setten, M.J.; Germaud, R.; Brocks, G.; Dam, B.; Kresse, G.; de Wijs, G.A.


    We calculate from first principles the optical spectra of the hydrides in the sodium alanate hydrogen storage system: NaH, $NaAlH_4$, and $Na_3AlH_6$. In particular we study the effects of systematic improvements of the theoretical description. To benchmark the calculations we also measure the

  6. A simplified proximal isovelocity surface area method for mitral valve area calculation in mitral stenosis: not requiring angle correction and calculator

    Directory of Open Access Journals (Sweden)

    Omer Yiginer


    Full Text Available Aim To simplify proximal isovelocity surface area (PISA method for mitral valve area (MVA calculation that does not necessitate the usage of a calculator and angle correction, and to compare values estimated using this novel method with the values obtained by the conventional PISA, planimetry and pressure half-time (PHT methods.Methods We evaluated patients with a wide range of mitral stenosis (MS severity. The MVA was measured by the methods of PHT (MVA PHT, planimetry (MVApl, conventional PISA (MVAC-PISA and the novel method of simple PISA (MVAS-PISA. Application of simple PISA was performed subsequently by division of the peak mitral inflow velocity by four; measurement of the radius by adjusting the aliasing velocity to this value; square of the radius gives the MVAS-PISA. Results Twenty patients were enrolled in the study. Peak and mean pressure gradients of patients were 20 ± 6 mmHg and 10±4 mmHg,respectively. The average values of MVApl, MVAPHT, MVAC-PISA, and MVA S-PISA were 1,54±0,41, 1,65±0,40, 1,58±0,42, 1,57 ± 0,44 cm2, respectively. MVAS-PISA had a strong correlation with the MVAC-PISA, MVApl and MVAPHT . Furthermore, there was no signi- ficant difference between simple PISA and the other methods. The agreement between planimetry and simple PISA methods for detecting severe mitral stenosis (MVA<1.5 cm2 determined by ROC analysis was very good with a sensitivity and specificity of 100 % and 92%, respectively. Conclusion Simple PISA is a user friendly method which does not take time and gives simple and correct results. If the diagnostic power of the technique is proven by more comprehensive studies, it can supersede the conventional PISA method.

  7. Reflection and transmission calculations in a multilayer structure with coherent, incoherent, and partially coherent interference, using the transmission line method. (United States)

    Stathopoulos, N A; Savaidis, S P; Botsialas, A; Ioannidis, Z C; Georgiadou, D G; Vasilopoulou, M; Pagiatakis, G


    A generalized transmission line method (TLM) that provides reflection and transmission calculations for a multilayer dielectric structure with coherent, partial coherent, and incoherent layers is presented. The method is deployed on two different application fields. The first application of the method concerns the thickness measurement of the individual layers of an organic light-emitting diode. By using a fitting approach between experimental spectral reflectance measurements and the corresponding TLM calculations, it is shown that the thickness of the films can be estimated. The second application of the TLM concerns the calculation of the external quantum efficiency of an organic photovoltaic with partially coherent rough interfaces between the layers. Numerical results regarding the short circuit photocurrent for different layer thicknesses and rough interfaces are provided and the performance impact of the rough interface is discussed in detail.

  8. Calculation method of reliability on combine harvester transmission belt by considering dynamic stress (United States)

    Guan, Zhuohuai; Li, Liang; Wu, Chongyou


    Transmission belt is one of the most likely to fail parts of combine harvester, which affecting the machine reliability seriously. Dynamic strength occurs along with vibration during the operation and must be taken into account when calculating reliability, especially in harsh working environment like harvesting. However, the existing calculation method of reliability on combine harvester transmission belt didn’t take the dynamic strength into account. In this research, a reliability calculation method was proposed based on the dynamic analysis of transmission belt. The nonlinear dynamic equation was built using string and beam model. Through the equation, relationship between belt speed and dynamic stress was deduced. Considering dynamic stress and regarding uncertain parameters as random uncertain parameters, reliability calculation model was built. Finally, an example was presented and the above mentioned dynamic reliability calculation method was simulated to verify the theoretical analysis in this paper and tested by the Monte-Carlo method.

  9. A New Measure of the Calculation of Semantic Distance between Ontology Concepts


    Abdeslem DENNAI; Sidi Mohammed BENSLIMANE


    Semantic similarity calculation models are found in many applications, with the aim to give additional knowledge to reason about their data. The choice of a similarity measure is quite crucial for a successful implementation of reasoning. In this work, we present an update of similarity calculation presented by Wu and Palmer which is considered the fastest in time generation of similarity. The results obtained show that the measure produced provides a significant improvem...

  10. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods (United States)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin


    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  11. [Calculation and analysis of arc temperature field of pulsed TIG welding based on Fowler-Milne method]. (United States)

    Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang


    Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding.

  12. Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces (United States)

    Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.


    The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.

  13. Integration method to calculate the stress field in the optical fiber (United States)

    Ji, Minning; Chen, Dandan; Huang, Liujun


    An integration method based on superposition theorem to calculate the stress field in the optical fiber with arbitrary shape stress elements is derived. The identity between the theoretical analysis result and the integration method in the optical fiber with sector shape bow-tie stress elements is proved. The integration method calculation is compared with the Comsol Multiphysics software simulation and they are agreed well with each other.

  14. A new method for calculating the average period of current assets turnover in the analyzed period

    Directory of Open Access Journals (Sweden)

    Kulakova Julija Nikolaevna


    Full Text Available The aim of this study is to develop a new method for calculating the average period of current assets turnover during the analyzed period without using of financial results (revenue, cost, etc.. To prove the advantages of the proposed method in comparison with the traditional method of calculating turnover the example of estimating the mean residence time in the analyzed period of working capital in the form of receivables is developed.

  15. Measurements of serum-free thyroid hormone concentrations by ultrafiltration. A comparison with equilibrium dialysis and mathematical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Norimichi; Hagiwara, Kohji; Taguchi, Hideo; Murakami, Shigeki; Taguchi, Shizuko


    An ultrafiltration method (UF) for measuring free thyroxine (FT/sub 4/) and free triiodothyronine (FT/sub 3/) using the Diaflow YM membrane (Centricon-10) is described. The results are compared with those by equilibrium dialysis (ED) and also by mathematical calculations derived from T/sub 4/, T/sub 3/, and binding protein concentrations. The precision with the UF method was excellent. The normal ranges of FT/sub 4/ and FT/sub 3/ by the three methods are all comparable. There was a high degree of correlation of FT/sub 4/ or FT/sub 3/ results by UF with those by ED and by calculation (r = 0.940 - 0.974, n = 161, P < 0.001). FT/sub 4/ and FT/sub 3/ by all methods agreed well for hyperthyroidism, hypothyroidism, and for patients with low T/sub 4/-binding globulin. The mean FT/sub 3/ in pregnancy was lower than the normal value for all methods, and FT/sub 4/ concentrations by UF and calculation also decreased in late pregnancy. The mean FT/sub 4/ by UF and ED in low T/sub 3/ syndrome were significantly higher than in the normal controls, while the calculated FT/sub 4/ was lower. The FT/sub 3/ in low T/sub 3/ syndrome distributed normal to subnormal in all methods. These results indicate that a) the UF method is a reliable reference method for measuring FT/sub 4/ and FT/sub 3/ concentrations;b) the UF results agree well with those by ED and also with theoretically derived values in subjects with thyroid diseases and TBG abnormalities;c) for patients with low T/sub 3/ syndrome, the FT/sub 4/ results obtained by UF and ED are similarly discrepant from the calculated results, implying the existence of binding inhibitor(s) which affect both UF and ED measurements

  16. A collocation method for surface tension calculations with the density gradient theory

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.


    Surface tension calculations are important in many industrial applications and over a wide range of temperatures, pressures and compositions. Empirical parachor methods are not suitable over a wide condition range and the combined use of density gradient theory with equations of state has been...... proposed in literature. Often, many millions of calculations are required in the gradient theory methods, which is computationally very intensive. In this work, we have developed an algorithm to calculate surface tensions an order of magnitude faster than the existing methods, with no loss of accuracy...

  17. Simplified calculation methods for all-vertical-piled wharf in offshore deep water (United States)

    Wang, Yuan-zhan; He, Lin-lin


    All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the `plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by

  18. Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy. (United States)

    Brouwer, Darren H; Moudrakovski, Igor L; Darton, Richard J; Morris, Russell E


    Combining quantum-chemical calculations and ultrahigh-field NMR measurements of (29)Si chemical shielding (CS) tensors has provided a powerful approach for probing the fine details of zeolite crystal structures. In previous work, the quantum-chemical calculations have been performed on 'molecular fragments' extracted from the zeolite crystal structure using Hartree-Fock methods (as implemented in Gaussian). Using recently acquired ultrahigh-field (29) Si NMR data for the pure silica zeolite ITQ-4, we report the results of calculations using recently developed quantum-chemical calculation methods for periodic crystalline solids (as implemented in CAmbridge Serial Total Energy Package (CASTEP) and compare these calculations to those calculated with Gaussian. Furthermore, in the context of NMR crystallography of zeolites, we report the completion of the NMR crystallography of the zeolite ITQ-4, which was previously solved from NMR data. We compare three options for the 'refinement' of zeolite crystal structures from 'NMR-solved' structures: (i) a simple target-distance based geometry optimization, (ii) refinement of atomic coordinates in which the differences between experimental and calculated (29)Si CS tensors are minimized, and (iii) refinement of atomic coordinates to minimize the total energy of the lattice using CASTEP quantum-chemical calculations. All three refinement approaches give structures that are in remarkably good agreement with the single-crystal X-ray diffraction structure of ITQ-4. Copyright © 2010 John Wiley & Sons, Ltd.


    Energy Technology Data Exchange (ETDEWEB)



    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300T{center_dot}m and 10OT{center_dot}m. Fast ramp times are needed. These can cause problems of ac loss and field distortion in the magnets. For the high energy ring, a lm model dipole magnet has been built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical dewar. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  20. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants (United States)

    Cooper, Paul D.


    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  1. A method for calculating and continuing static solutions for flexible multibody systems

    NARCIS (Netherlands)

    Meijaard, J.P.


    This presentation describes some modifications in the calculation of static solutions in the program SPACAR and the implementation of an arc continuation method to calculate a branch of static solutions for varying parameters. The equations to be solved are stated in a descriptor form, which can be

  2. Calculation of the potential field in nerve stimulation using a multigrid method

    NARCIS (Netherlands)

    Hoekema, R.; Hoekema, Rudolf; Struijk, J.J.; Struijk, Johannes J.; Venner, Cornelis H.; Goodall, E.V.; Goodall, Eleanor V.; Holsheimer, J.


    This paper deals with the first step in the modeling of newe stimulation: the calculation of the potential field in a 3D volume conductor model of the nerve. surroundings and electrodes. Because of its time efficiency, a multigrid method was used to calculate the field. Compared to a Gauss-Seidel

  3. Fiber-optical method of pyrometric measurement of melts temperature (United States)

    Zakharenko, V. A.; Veprikova, Ya R.


    There is a scientific problem of non-contact measurement of the temperature of metal melts now. The problem is related to the need to achieve the specified measurement errors in conditions of uncertainty of the blackness coefficients of the radiating surfaces. The aim of this work is to substantiate the new method of measurement in which the influence of the blackness coefficient is eliminated. The task consisted in calculating the design and material of special crucible placed in the molten metal, which is an emitter in the form of blackbody (BB). The methods are based on the classical concepts of thermal radiation and calculations based on the Planck function. To solve the problem, the geometry of the crucible was calculated on the basis of the Goofy method which forms the emitter of a blackbody at the immersed in the melt. The paper describes the pyrometric device based on fiber optic pyrometer for temperature measurement of melts, which implements the proposed method of measurement using a special crucible. The emitter is formed by the melt in this crucible, the temperature within which is measured by means of fiber optic pyrometer. Based on the results of experimental studies, the radiation coefficient ε‧ > 0.999, which confirms the theoretical and computational justification is given in the article

  4. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama


    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  5. Fast calculation of spherical computer generated hologram using spherical wave spectrum method. (United States)

    Jackin, Boaz Jessie; Yatagai, Toyohiko


    A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.

  6. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers (United States)

    Stock, H. W.


    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  7. Measurement methods of ultrasonic transducer sensitivity. (United States)

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua


    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Appraising current methods for preclinical calculation of burn size - A pre-hospital perspective. (United States)

    Thom, David


    Calculation of the percentage of total body surface area burnt is a vital tool in the assessment and management of patients sustaining burns. Guiding both treatment and management protocols. Currently there is debate as to which method of estimation is the most appropriate for pre-hospital use. A literature review was undertaken to appraise current literature and determine the most appropriate methods for the pre-hospital setting. The review utilised MEDLINE and structured hand searching of Science Direct, OpenAthens, COCHRANE and Google Scholar. Fourteen studies were identified for review comparing various methods. The palm including digits was identified to represent 0.8% of total body surface area with the palm excluding digits representing 0.5%. Wallace's Rule of Nines was found to be an appropriate method of estimation. Variation in accuracy is accountable to expertise, experience and patients body type however current technology and smartphone applications are attempting to counter this. Palm including digits measurements multiplied by 0.8 is suitable for assessing minor (<10%) burns however for larger burns Wallace's Rule of Nines is advocated. Further development of technology suggests computerised applications will become more commonplace. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography (United States)

    Koshti, Ajay M. (Inventor)


    Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.

  10. Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography (United States)

    Koshti, Ajay M. (Inventor)


    Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.

  11. Volumic activities measurements and equivalent doses calculation of indoor 222Rn in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelmajid Choukri


    Full Text Available Purpose: As a way of prevention, we have measured the volumic activities of indoor 222Rn and we have calculated the corresponding effective dose in some dwellings and enclosed areas in Morocco. Seasonal variation of Radon activities and Relationships between variation of these activities and some parameters such height, depth and type of construction were also established in this work.Methods: The passive time-integrated method of using a solid state nuclear track detector (LR-115 type II was employed. These films, cut in pieces of 3.4 ´ 2.5 cm2, were placed in detector holders and enclosed in heat-scaled polyethylene bags.Results: The measured volumic activities of radon vary in houses, between 31 and 136 Bq/m3 (0.55 and 2.39 mSv/year with an average value of 80 Bq/m3 (1.41 mSv/year. In enclosed work area, they vary between 60 Bq/m3 (0.38 mSv/year in an ordinary area to 1884 Bq/m3 (11.9 mSv/year at not airy underground level of 12 m. the relatively higher volumic activities of 222Rn in houses were measured in Youssoufia and khouribga towns situated in regions rich in phosphate deposits. Measurements at the geophysical observatory of Berchid show that the volumic activity of radon increases with depth, this is most probably due to decreased ventilation. Conclusion: The obtained results show that the effective dose calculated for indoor dwellings are comparable to those obtained in other regions in the word. The risks related to the volumic activities of indoor radon could be avoided by simple precautions such the continuous ventilation. The reached high value of above 1884 Bq/m3 don't present any risk for workers health in the geophysical observatory of Berchid because workers spend only a few minutes by day in the cellar to control and reregister data.

  12. An occlusion insensitive adaptive focus measurement method. (United States)

    Aydin, Tarkan; Akgul, Yusuf S


    This paper proposes a new focus measurement method for Depth From Focus to recover depth of scenes. The method employs an all-focused image of the scene to address the focus measure ambiguity problem of the existing focus measures in the presence of occlusions. Depth discontinuities are handled effectively by using adaptively shaped and weighted support windows. The size of the support window can be increased conveniently for more robust depth estimation without introducing any window size related Depth From Focus problems. The experiments on the real and synthetically refocused images show that the introduced focus measurement method works effectively and efficiently in real world applications.

  13. A Failure Probability Calculation Method for Power Equipment Based on Multi-Characteristic Parameters

    Directory of Open Access Journals (Sweden)

    Hang Liu


    Full Text Available Although traditional fault diagnosis methods can qualitatively identify the failure modes for power equipment, it is difficult to evaluate the failure probability quantitatively. In this paper, a failure probability calculation method for power equipment based on multi-characteristic parameters is proposed. After collecting the historical data of different fault characteristic parameters, the distribution functions and the cumulative distribution functions of each parameter, which are applied to dispersing the parameters and calculating the differential warning values, are calculated by using the two-parameter Weibull model. To calculate the membership functions of parameters for each failure mode, the Apriori algorithm is chosen to mine the association rules between parameters and failure modes. After that, the failure probability of each failure mode is obtained by integrating the membership functions of different parameters by a weighted method, and the important weight of each parameter is calculated by the differential warning values. According to the failure probability calculation result, the series model is established to estimate the failure probability of the equipment. Finally, an application example for two 220 kV transformers is presented to show the detailed process of the method. Compared with traditional fault diagnosis methods, the calculation results not only identify the failure modes correctly, but also reflect the failure probability changing trend of the equipment accurately.

  14. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin


    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  15. A Novel Energy Yields Calculation Method for Irregular Wind Farm Layout

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen


    for the energy yields in irregular wind farm considering wake effect would be difficult.In this paper, a mathematical model which includes the impacts of the variation of both wind direction and velocityon wake effect is established. Based on the wake model, a binary matrix method is proposed for the energy...... yields calculation forirregular wind farms.The results show that the proposed wake model is effective in calculating the wind speeddeficit. The calculation framework is applicable for energy yields calculation in irregular wind farms....

  16. A suggestion of a new method for the calculation of the coating thickness in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C. M.; Kwon, Y. D.; Kwon, S. B. [Kyungpook National University, Daegu (Korea, Republic of); Kim, G. Y. [POSCO Technical Research laboratories, Gumgo-dong (Korea, Republic of)


    It is known that the distributions of the impinging pressure gradient and the shear stress at the strip surface play a decisive key role in the decision of the coating thickness in hot-dip galvanizing. So, to predict the exact coating thickness, it is essential that the distributions of the impinging wall jet pressure and the shear stress acting between the liquid film and jet stream are measured (or calculated) exactly for each specific coating condition. So far, to obtain the impinging wall jet pressure, it was assumed that the jet issuing from an air-knife is similar to the Hiemenz plane stagnation flow, and the wall shear stress could be predicted by an equation using the assumption of a non-negative Gaussian profile in impinging wall jet pressure in general, so that it cannot be reliable for some impinging wall jet regions and nozzle systems intrinsically. Nevertheless, one cannot find a suitable method to cope with the difficulties in measuring/calculating of the shear stress and the impinging wall jet pressure. Such a difficulty which will cause an inaccuracy in the coating thickness prediction. With these connections, in the present study, we suggest a new method named as a two-step calculation method to calculate the final coating thickness, which consists of the air jet analysis and coating thickness calculation. And, from the comparison of the results one may confirm the validation of the new suggested method.

  17. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  18. Innovative methods for calculation of freeway travel time using limited data : executive summary report. (United States)


    ODOTs policy for Dynamic Message Sign : utilization requires travel time(s) to be displayed as : a default message. The current method of : calculating travel time involves a workstation : operator estimating the travel time based upon : observati...

  19. Numerical Methods for the Stray-Field Calculation: A Comparison of recently developed Algorithms

    CERN Document Server

    Abert, Claas; Selke, Gunnar; Drews, André; Schrefl, Thomas


    Different numerical approaches for the stray-field calculation in the context of micromagnetic simulations are investigated. We compare finite difference based fast Fourier transform methods, tensor grid methods and the finite-element method with shell transformation in terms of computational complexity, storage requirements and accuracy tested on several benchmark problems. These methods can be subdivided into integral methods (fast Fourier transform methods, tensor-grid method) which solve the stray field directly and in differential equation methods (finite-element method), which compute the stray field as the solution of a partial differential equation. It turns out that for cuboid structures the integral methods, which work on cuboid grids (fast Fourier transform methods and tensor grid methods) outperform the finite-element method in terms of the ratio of computational effort to accuracy. Among these three methods the tensor grid method is the fastest. However, the use of the tensor grid method in the c...

  20. Methods for calculation of undelivered electricity in medium voltage network that is not integrated into the remote control system

    Directory of Open Access Journals (Sweden)

    Vrcelj Nada


    Full Text Available The method is based on data obtained from the so-called. hand-held measuring current at 10 kV voltage level and from reports of outages at reclosers that are installed in a part of network that is observed. At first, is calculates the electrical load of the main distribution power lines, and then simulates the corresponding power flow and calculates the undelivered electricity. The method was applied to parts of the network PD ED Belgrade that are not in the remote control system and is developed for the purpose of considering the effects of automation in the 10 kV PD ED Belgrade.

  1. Contemporary methods of body composition measurement

    DEFF Research Database (Denmark)

    Fosbøl, Marie Ø; Zerahn, Bo


    Reliable and valid body composition assessment is important in both clinical and research settings. A multitude of methods and techniques for body composition measurement exist, all with inherent problems, whether in measurement methodology or in the assumptions upon which they are based....... This review is focused on currently applied methods for in vivo measurement of body composition, including densitometry, bioimpedance analysis, dual-energy X-ray absorptiometry, computed tomography (CT), magnetic resonance techniques and anthropometry. Multicompartment models including quantification of trace...

  2. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services. (United States)

    Rajabi, A; Dabiri, A


    Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990's. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services.

  3. A comparison of methods for detonation pressure measurement (United States)

    Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J.


    Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of 1.66 g cm^{-3} were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.

  4. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.


    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative


    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...

  6. Hydration of Decorative Beads: An Exercise in Measurement, Calculations, and Graphical Analysis (United States)

    Hill, Rebecca A.; Nicholson, Christopher P.


    Throughout the general chemistry lab curriculum, a common shortcoming is the way in which students measure, record, and manipulate quantitative data. From initial measurements with different digital and analog instruments to proper conversions, calculations, and comparisons, students are often expected to be experts before they have been taught…

  7. Qualification of a Method to Calculate the Irrecoverable Pressure Loss in High Reynolds Number Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, K. C.; Coffield, R. D.


    High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.

  8. Testing Equation Method Modification for Demanding Energy Measurements Verification

    Directory of Open Access Journals (Sweden)

    Elena Kochneva


    Full Text Available The paper is devoted to the mathematical approaches of the measurements received from Automatic Meter Reading Systems verification. Reliability of metering data can be improved by application of the new issue named Energy Flow Problem. The paper considers demanding energy measurements verification method based on verification expressions groups analysis. Bad data detection and estimates accuracy calculation is presented using the Automatic Meter Reading system data from the Russian power system fragment.

  9. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.


    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  10. Calculation reduction method for color computer-generated hologram using color space conversion

    CERN Document Server

    Shimobaba, Tomoyoshi; Oikawa, Minoru; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi


    We report a calculation reduction method for color computer-generated holograms (CGHs) using color space conversion. Color CGHs are generally calculated on RGB space. In this paper, we calculate color CGHs in other color spaces: for example, YCbCr color space. In YCbCr color space, a RGB image is converted to the luminance component (Y), blue-difference chroma (Cb) and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well-recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space.

  11. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie


    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  12. Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

    Directory of Open Access Journals (Sweden)

    Ana I. Ramos


    Full Text Available Background: Aescin, a natural mixture of saponins occurring in Aesculus hippocastanum, exhibits important flebotonic properties, being used in the treatment of chronic venous insufficiency in legs. The inclusion of aescin into cyclodextrins (CDs is a technical solution for its incorporation into the textile of stockings, but details of the physicochemistry of these host–guest systems are lacking. This work investigates the inclusion of aescin into the cavities of two native cyclodextrins, β-CD and γ-CD.Results: The continuous variation method applied to aqueous-phase 1H nuclear magnetic resonance (1H NMR has demonstrated that the preferred CD/aescin inclusion stoichiometries are 2:1 with β-CD and 1:1 with γ-CD. The affinity constant calculated for γ-CD·aescin was 894 M−1, while for 2β-CD·aescin it was estimated to be 715 M−1. Density functional theory (DFT calculations on the interaction of aescin Ib with CDs show that an inclusion can indeed occur and it is further demonstrated that the wider cavity of γ-CD is more adequate to accommodate this large guest. ROESY spectroscopy is consistent with the formation of a complex in which the triterpenic moiety of aescin is included into the cavity of γ-CD. The higher stability of this geometry was confirmed by DFT. Furthermore, DFT calculations were applied to determine the chemical shifts of the protons H3 and H5 of the CDs in the optimised structures of the inclusion complexes. The calculated values are very similar to the experimental data, validating the approach made in this study by NMR.Conclusion: The combination of experimental data from aqueous-state NMR measurements and theoretical calculations has demonstrated that γ-CD is the most suitable host for aescin, although the inclusion also occurs with β-CD. The geometry of the γ-CD·aescin complex is characterised by the inclusion of the triterpene segment of aescin into the host cavity.

  13. Comparison of Methods Used in Calculated of Cooling Loads: The Case of Elementary School

    Directory of Open Access Journals (Sweden)



    Full Text Available Nowadays, in terms of continuity of indoor environment comfort conditions and decreased initial investment, maintenance and operating costs, selected of a appropriate cooling system is important in buildings. In the selection of cooling system, system capacity need to determine according to building cooling load. That cooling load is not calculated in the reliability way cause selected cooling system that is not suitable to building, increase cooling system cost and aggravation indoor environment comfort conditions. Therefore, the reliability calculation method should be used in the calculation of building cooling loads. There are several methods that calculates building cooling loads. In this study, TEDT/TA, HB, TFM, CLTD/SCL/CLF and RTS methods that are used commonly from this methods are compared according to their using data, coefficients and calculation procedure. The elementary school that is located in İstanbul is selected to compared of numerical differences among these methods and cooling loads of this building for July 21 that is design day are determined according to calculation templates prepared in MS Excel using TEDT/TA, TFM, CLTD/SCL/CLF and RTS methods. Obtained results are found difference between 5% and 25% according to building occupancy period.

  14. Absorbed dose calculations using mesh-based human phantoms and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)


    Full text. Health risks attributable to ionizing radiation are considered to be a function of the absorbed dose to radiosensitive organs and tissues of the human body. However, as human tissue cannot express itself in terms of absorbed dose, exposure models have to be used to determine the distribution of absorbed dose throughout the human body. An exposure model, be it physical or virtual, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the absorbed dose to organ and tissues of interest. Female Adult meSH (FASH) and the Male Adult meSH (MASH) virtual phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools. Representing standing adults, FASH and MASH have organ and tissue masses, body height and mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which transports photons, electrons and positrons through arbitrary media. This presentation reports on the development of the FASH and the MASH phantoms and will show dosimetric applications for X-ray diagnosis and for prostate brachytherapy. (author)

  15. Using matrix summation method for three dimensional dose calculation in brachytherapy. (United States)

    Zibandeh-Gorji, Mahmoud; Mowlavi, Ali Asghar; Mohammadi, Saeed


    The purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method. Monte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running. The MCNPX code has been used to calculate radiation dose around a (192)Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method. Three dimensional (3D) dose results and isodose curves were presented for (192)Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources. The matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study.

  16. Roundtrip matrix method for calculating the leaky resonant modes of open nanophotonic structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper


    We present a numerical method for calculating quasi-normal modes of open nanophotonic structures. The method is based on scattering matrices and a unity eigenvalue of the roundtrip matrix of an internal cavity, and we develop it in detail with electromagnetic fields expanded on Bloch modes...... of periodic structures. This procedure is simpler to implement numerically and more intuitive than previous scattering matrix methods, and any routine based on scattering matrices can benefit from the method. We demonstrate the calculation of quasi-normal modes for two-dimensional photonic crystals where...

  17. A New Method for Calculating the Transfer Functions in Quasiresonant Converters

    Directory of Open Access Journals (Sweden)

    LASCU, M.


    Full Text Available A matrix method for deriving the audiosusceptibility and the control to output transfer functions in quasiresonant converters (QRCs is presented. The method is based on the state-space description of the parent converter and it has the advantage of generality in the sense it can be applied to any topology. Moreover, it can be easily absorbed in MATLAB under Symbolic Toolbox, substantially reducing the calculation effort and time. Using this method the control to output transfer function of the QRC Cuk converter is calculated for the first time. The method is verified compared to other tools and perfect agreement is observed for second order classical converters.

  18. Calibration free method for measurement of the AC magnetization loss

    Energy Technology Data Exchange (ETDEWEB)

    Souc, Jan [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 842 39 Bratislava (Slovakia); Goemoery, Fedor [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 842 39 Bratislava (Slovakia); Vojenciak, Michal [Department of Power Electrical Systems, University of Zilina, Vel' ky diel, 010 26 Zilina (Slovakia)


    A calibration free measurement method for determination of the magnetization loss of superconducting samples exposed to the external AC magnetic field is presented. The idea is based on the measurement of the part of the power which is supplied by the AC source to the AC magnet generating the magnetic field, in which the sample is located. It uses a coil wound in parallel to the AC field magnet as the measurement coil. To achieve the necessary sensitivity, two identical systems are used, each consisting of an AC magnet and a measurement coil, one of them containing the sample and the other left empty. No measurement and/or calculation of the calibration constant is required. To confirm the suitability of this method, the loss of a Cu sample with known dissipation was measured. The applicability to the AC magnetization loss measurements of superconducting tapes is presented.

  19. Numerical method for calculating sound radiation characteristics of plate structure excited by turbulent boundary layer

    Directory of Open Access Journals (Sweden)

    LI Zuhui


    Full Text Available As the turbulent boundary layer (TBL is one of the most important sources of vibration and noise in underwater vehicles, there is an important significance in studying the numerical method for the calculation of flow-induced noise. In this paper, the methods of Principal Component Analysis (PCA and Vibro-Acoustic Transfer Vectors (VATV based on LMS Virtual Lab software are used to calculate the sound characteristics of a plate structure excited by TBL. The Corcos model of the wave number-frequency spectrum of the wall pressure field beneath the TBL is used to describe random excitation. By comparing the calculating time and sound pressure auto power spectra curves of the two methods, the following conclusions are obtained: both the VATV method and PCA method can be used effectively for the calculation of the flow-induced noise of structures excited by the TBL, and the results of the two methods match; the VATV method can quickly forecast the structure of flow-induced noise and takes up fewer computing resources than the PCA method; the PCA method can also obtain the structure vibration response in comparison with the VATV method. The current work can serve as a reference for the rapid prediction of the flow-induced noise of underwater structures.

  20. Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes. (United States)

    Chaparro, Diego; Alí-Torres, Jorge


    Molecular phenomena involving electron transfer and reduction/oxidation processes are of the utmost importance in chemistry. However, accurate computational calculations of standard reduction potentials (SRPs) for transition metal complexes are still challenging. For this reason, some computational strategies have been proposed in order to overcome the main limitations in SRP calculations for copper complexes. However, these strategies are limited to particular coordination spheres and do not represent a general methodology. In this work, we present standard reduction potential calculations for copper complexes in aqueous solution covering a wide range of coordination spheres. These calculations were performed using the M06-2X density functional, and by employing the direct and isodesmic approaches. Result analysis reveals that values obtained with the use of the isodesmic method are in better agreement with experimental values than those obtained from the direct method (mean unsigned error 0.39 V with the direct and 0.08 V with the isodesmic method). This approach provides values with errors comparable to the experimental uncertainty due to the proper cancellation of computational errors. These results strongly suggest the isodesmic approach as an adequate methodology for the calculation of SRPs for copper complexes with diverse coordination spheres. Graphical Abstract Comparison between direct and isodesmic methods in the calculation of standard reduction potentials for copper complexes using DFT methods.

  1. Robustness of railway rolling stock speed calculation using ground vibration measurements

    Directory of Open Access Journals (Sweden)

    Kouroussis Georges


    Full Text Available Evaluating railway vehicle speed is an important task for both railway operators and researchers working in the area of vehicle/track dynamics, noise and vibration assessment. The objective of this paper is to present a new technique capable of automatically calculating train speed from vibration sensors placed at short or long distances from the track structure. The procedure combines three separate signal processing techniques to provide high precision speed estimates. In order to present a complete validation, the robustness of the proposed method is evaluate using synthetic railway vibration time histories generated using a previously validated vibration numerical model. A series of simulations are performed, analysing the effect of vehicle speed, singular wheel and rail surface defects, and soil configuration. Virtual conditions of measurement are also examined, taking into account external sources other than trains, and sensor response. It is concluded that the proposed method offers high performance for several train/track/soil arrangements. It is also used to predict train speeds during field trials performed on operational railway lines in Belgium and in UK.

  2. Palmar abduction: reliability of 6 measurement methods in healthy adults. (United States)

    de Kraker, M; Selles, R W; Schreuders, T A R; Stam, H J; Hovius, S E R


    The aim of the current study was to assess reliability of 6 palmar thumb abduction measurement methods: conventional goniometry, the Inter Metacarpal Distance, the method described by the American Medical Association, the method described by the American Society of Hand Therapists, and 2 new methods: the Pollexograph-thumb and the Pollexograph-metacarpal. An experienced hand therapist and a less-experienced examiner (trainee in plastic surgery) measured the right hands of 25 healthy subjects. Palmar abduction was measured both passively and actively. Means and ranges for palmar abduction were calculated, and intrarater and interrater reliability was expressed in intraclass correlation coefficients, standard errors of measurement, and smallest detectable differences. Mean active and passive angles measured with goniometry resembled values measured with the Pollexograph-thumb method (approximately 60 degrees). Mean angles found with the Pollexograph-metacarpal method were approximately 48 degrees. Mean active and passive distances for the Inter Metacarpal Distance were 64 mm. Mean active and passive distances found with the American Society of Hand Therapists method were 97 to 101 mm, and mean distances found with the American Medical Association method were 67 to 70 mm for active and passive measurements. Intraclass correlation coefficients for the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter Metacarpal Distance indicated good and significantly higher intrarater agreement for active and passive measurements than intraclass correlation coefficients of conventional goniometry, the American Society of Hand Therapists method, and the American Medical Association method, which showed only moderate agreement. For interrater reliability, the same measurement methods were found to be most reliable: the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter Metacarpal Distance. We found that the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter

  3. Calculating Ivalent Dose Rate Field Structure Applying the Method of Optimal Interpollation in the Baltic Sea Coast

    Directory of Open Access Journals (Sweden)

    Dmitrijus Styra


    Full Text Available Equivalent dose rate measurements were carried out in the Baltic Sea coast near Juodkrantė. The measurements were performed at the ground level and 1 meter above it at 63 points within the territory of 2,0´0,2 km on 2 July 2008 and 10 July 2008 under conditions of northern and southern wind directions respectively. The extreme rates of the equivalent dose rate were 51 and 90 nSv/h respectively which means that the structure of the equivalent dose field was unhomogeneous. The method of optimal interpollation was used to calculate and evaluate the structure of the equivalent dose rate field. This method was used in 3 cases when 63, 33 and 18 numbers of measurement were carried out. The identical structures of the equivalent dose field were accepted. Using 18 measurement points, coincidence between the measured and calculated values of the equivalent dose rate was satisfactory. Difference between the measured and calculated values does not exceed 15% in 80% of the measurement points.Article in Lithuanian

  4. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Directory of Open Access Journals (Sweden)

    M. Malík


    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  5. Logarithmic derivative method and system for capacitance measurement. (United States)

    Wu, Yichun; Wang, Lingzhi; Cai, Yuanfeng; Wu, Cunqiao


    A novel method based on logarithmic derivative is introduced to analyze multi-lifetime decay. As the discharge voltage signal of a RC circuit is a special kind of multi-lifetime exponential decay, the logarithmic derivative method can be used to measure single capacitance and multiple capacitances. With the logarithmic derivative method, a log(t) curve strongly peaked at precisely log(τ) is obtained, where the lifetime τ equals to RC. In a measurement system, if the resistance R is known, then the capacitance under test can be calculated. A logarithmic derivative curve fitting method is also presented, which has better anti-noise capability than the method that simply finds the maximum data on the peak. The curve fitting method can also be used for multiple capacitors measurement. To measure small capacitances, a large enough time window of the measuring instrument is required. Based on a field programmable gate array and a high speed analog-to-digital converter, a measurement system is developed. This system can provide the 16-bit resolution with sampling rate up to 250 MHz, which has a large enough time window for measuring lifetime shorter than 10(-8) s. To reduce the amount of data needed to be stored and the noise due to the derivative treatment of transient data, the interpolation and noise-filter algorithms are employed. Experiments indicate that the logarithmic derivative method and system are suitable for the measurement of capacitances discharge and other exponential decay processes.

  6. Ionized Calcium Measurement in Serum and Plasma by Ion Selective Electrodes: Comparison of Measured and Calculated Parameters


    Jafri, Lena; Khan, Aysha Habib; Azeem, Saba


    To determine the concentration of ionized calcium (iCa) collected in lithium heparin and gel tubes and to correlate the measured iCa with calculated iCa. Anaerobic fasting blood samples were simultaneously collected from healthy laboratory workers in lithium-heparin and gel tubes. iCa, pH, total calcium (CaT), total protein and albumin were measured. Ionized Ca was calculated with albumin and globulin values using an appropriate formula. Mean iCa in gel tubes showed a positive constant bias o...


    Directory of Open Access Journals (Sweden)

    Felicia Sabou


    Full Text Available The paper present the importance of the method on commands in cost calculation and the particularities of the cost calculation method on commands in the furniture industry. This paper presents a hypotetical study on the method on commands, considering the observations made during 2013-2014, on how it is organized and managed accounts management using method on commands.By presenting this hypothetical model about the accounting in management accounting using the method on commands, the paper contributes to the correct application of this method in practice, specifically in management accounting in companies from the furniture industry. In my opinion the method on commands is an appropriate method for achieving management accounting for companies that have as main activity the production of furniture. When applying the method on commands in cost calculation and in management accounting, the companies must to consider the particularities of the cost calculation, in the furniture industry, like: technical and economic factors from this sector, the technical details of each command, the codification of the commands, planning materials and labor costs for each command, monitoring and recording production costs, registration of the direct costs, distribution of the indirect costs on commands, registration of the indirect costs and registration in management accounting.

  8. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position. (United States)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan


    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  9. Methods for calculating the severity of demineralization on tooth surfaces from PS-OCT scans (United States)

    Le, Michael H.; Darling, Cynthia L.; Fried, Daniel


    Several studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively measure the severity of subsurface demineralization in enamel and dentin. The reflectivity in the polarization state orthogonal to the initial linear polarization incident on the tissue is low at sound tissues interfaces and high in demineralized areas that strongly scatter and depolarize the light. The purpose of this study was to develop improved algorithms for assessing the depth and severity of demineralization from PS-OCT scans for use with 2D and 3D tomographic images. Subsurface caries-like lesions of increasing depth and severity were produced in adjoining windows on ten bovine enamel samples by exposure to demineralization over periods of 1 to 4 days. Each sample also had a sound window to be used as a control. PS-OCT scans were acquired for each sample and analyzed using various methods to calculate the lesion depth and area. Algorithms were developed and used to automatically detect the lesion depth and area, and calculate the volume for improved assessment of lesion severity. Both fixed-depth and automatic edge-finding algorithms were able to detect significant differences between each of the days and sound enamel. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. Mean lesion depths ranged from 40 to 100 µm. This demonstrates the edge-finding algorithm can be used to automatically determine the depth and severity of early lesions for the rapid analysis of PS-OCT images.

  10. Methods to measure tax evasion: a review

    National Research Council Canada - National Science Library

    Hugo A Macías Cardona; Luis Fernando Agudelo Henao; Mario Ricardo López Ramírez


    .... Methods to measure tax evasion: a review. Semest. Econ. [online]. 2007, vol.10, n.20, pp. 67-85. ISSN 0120-6346. Fiscal deficit in Colombia makes it necessary to establish alternatives different to those implying expense control...

  11. Positron collisions with acetylene calculated using the R-matrix with pseudo-states method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Galiatsatos, Pavlos G; Tennyson, Jonathan, E-mail: [Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT (United Kingdom)


    Eigenphase sums, total cross sections and differential cross sections are calculated for low-energy collisions of positrons with C{sub 2}H{sub 2}. The calculations demonstrate that the use of appropriate pseudo-state expansions very significantly improves the representation of this process giving both realistic eigenphases and cross sections. Differential cross sections are strongly forward peaked in agreement with the measurements. These calculations are computationally very demanding; even with improved procedures for matrix diagonalization, fully converged calculations are too expensive with current computer resources. Nonetheless, the calculations show clear evidence for the formation of a virtual state but no indication that acetylene actually binds a positron at its equilibrium geometry.

  12. Linear scaling 3D fragment method for large-scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Lin-Wang; Lee, Byounghak; Shan, HongZhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David


    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39% of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N{sup 3}) methods, and the potential for petascale computation using the LS3DF method.

  13. A method of calculation on the airloading of vertical axis wind turbine (United States)

    Azuma, A.; Kimura, S.

    A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.

  14. Methods, software and datasets to verify DVH calculations against analytical values: Twenty years late(r)

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Hunt, Dylan; Tonner, Brian; Zhang, Geoffrey; Feygelman, Vladimir, E-mail: [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)


    %) scored deviations for PINNACLE vs PlanIQ in Test 1, while Test 2 would yield 53 (25%) vs 17 (8%). In Test 3, statistical analyses of volume errors extracted continuously along the curves show PINNACLE to have more errors and higher variability (relative to PlanIQ), primarily due to PINNACLE’s lack of sufficient 3D grid supersampling. Another major driver for PINNACLE errors is an inconsistency in implementation of the “end-capping”; the additional volume resulting from expanding superior and inferior contours halfway to the next slice is included in the total volume calculation, but dose voxels in this expanded volume are excluded from the DVH. PlanIQ had fewer deviations, and most were associated with a rotated cylinder modeled by rectangular axial contours; for coarser axial spacing, the limited number of cross-sectional rectangles hinders the ability to render the true structure volume. Conclusions: The method is applicable to any DVH-calculating software capable of importing DICOM RT structure set and dose objects (the authors’ examples are available for download). It includes a collection of tests that probe the design of the DVH algorithm, measure its accuracy, and identify failure modes. Merits and applicability of each test are discussed.

  15. Hubbell rectangular source integral calculation using a fast Chebyshev wavelets method. (United States)

    Manai, K; Belkadhi, K


    An integration method based on Chebyshev wavelets is presented and used to calculate the Hubbell rectangular source integral. A study of the convergence and the accuracy of the method was carried out by comparing it to previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Calculation of condition indices for road structures using a deduct points method

    CSIR Research Space (South Africa)

    Roux, MP


    Full Text Available ) and relevancy (R) rating. The DER-rating method has been included in the Draft TMH19 Manual for the Visual Assessment of Road Structures. The D, E, and R ratings are used to calculate condition indices for road structures. The method used is a deduct...

  17. Comparative analysis of methods and results of numerical calculations of plywood panel

    Directory of Open Access Journals (Sweden)

    Ladnykh Irene


    Full Text Available The article discusses the new type of plywood panel for low-rise building. Сalculating methods for the plywood panels are considered according with the codes of rules and the method for calculating sandwich panels with a honeycomb, proposed by Soviet scientists for aviation structures.

  18. Comparison of Two Methods for Speeding Up Flash Calculations in Compositional Simulations

    DEFF Research Database (Denmark)

    Belkadi, Abdelkrim; Yan, Wei; Michelsen, Michael Locht


    Flash calculation is the most time consuming part in compositional reservoir simulations and several approaches have been proposed to speed it up. Two recent approaches proposed in the literature are the shadow region method and the Compositional Space Adaptive Tabulation (CSAT) method. The shado...

  19. A Calculation Method of Equivalent Circuit Constants of Synchronous Machines Considering Field Transient Characteristics Using DC Decay Testing Method with Open and Shorted Field Windings (United States)

    Kano, Takashi; Watanabe, Yasutoshi; Ara, Takahiro; Matsumura, Toshiro

    It has been reported that the calculated values of field transient behavior in a synchronous machine differ considerably from the measured values. This discrepancy is caused by the use of equivalent circuit constants in standardized tests provied by JEC2130 and IEC60034-4, in which the mutual leakage reactance between the damper and field windings is not accounted for. The authors have been studying a method for calculating equivalent circuit constants for the accurate simulation of transient behavior including the field winding side, by means of a standstill test with a small-capacity DC power supply (DC decay testing method). The authors have previously presented a calculation method using operational impedances with the field windings opened, shorted, and inserted with an external resistance, obtained by the DC decay test. This paper presents a new method in which the external resistance used in our previous method is no longer needed. Instead, the field winding impedance is determined based on its invariability against slip. The validity of the new method is demonstrated by comparing the calculated and measured values of the armature and field currents during a sudden three-phase short-circuit using 10kVA-200V-31.9A-4P-50Hz test machines.

  20. Numerical Calculation Method of Apparent Contact Angles on Heterogeneous Double-Roughness Surfaces. (United States)

    Dong, Jian; Jin, Yanli; Dong, He; Sun, Li


    Double-roughness surfaces can be used to mimic lotus surfaces. The apparent contact angles (ACAs) of droplets on these surfaces were first calculated by Herminghaus. Then Patankar utilized the pillar model to improve the Herminghaus approach and put forward the formulas for ACAs calculation of the homogeneous double-roughness surfaces where the dual-scale structures and the bases were the same wettable materials. In this paper, we propose a numerical calculation method of ACAs on the heterogeneous double-roughness surfaces where the dual-scale structures and the bases are made of different wettable materials. This numerical calculation method has successfully enhanced the Herminghaus approach. It is promising to become a novel design approach of heterogeneous superhydrophobic surfaces, which are frequently applied in technical fields of self-cleaning, anti-icing, antifogging, and enhancing condensation heat transfer.

  1. The method to calculate concentration of CO2 and H2S in the liquid phase.

    Directory of Open Access Journals (Sweden)

    YUDIN Pavel Evgenievich


    Full Text Available The article proposes the method to calculate the necessary concentration of dissolved gases in the liquid phase. It also deals with development of the computer program that could consider all the main parameters of the tests. The numerous mathematical calculations resulted in formulation of the method to calculate concentration of dissolved gases in the liquid phase. The implementation of the developed model in the form of the software product «Autoclave 2.1» is presented. The developed methodology for calculating the concentration of dissolved gases in the liquid phase is designed to perform accelerated tests that concern resistance of internal anticorrosive coatings of pipelines to aggressive media and explosive decompression, to intensify corrosion processes and to identify the main mechanisms and patterns of changes in the physical, mechanical and operational properties of coatings from hydrothermal influences of fishing environments.

  2. Methods and frameworks for crosscultural measurement. (United States)

    Johnson, Timothy P


    There is little agreement regarding best practices for constructing and assessing the quality of crosscultural measures. This paper discusses several topics that are relevant to further progress in this area: 1) a lack of consensus regarding conceptualizations of equivalence; 2) emphasis on shared methods versus shared meaning; and 3) the application of cultural theories to measurement problems. Future progress in crosscultural measurement will benefit from continued exploration of these issues.

  3. Comparison of analytical calculations with experimental measurements for polarized light scattering by microorganisms (United States)

    Hull, Patricia G.; Shaw, Felecia G.; Quinby-Hunt, Mary S.; Shapiro, Daniel B.; Hunt, Arlon J.; Leighton, Terrence


    The consequences of light scattering from both spherical and non-spherical particles on the propagation of light in the ocean were investigated. The scattering from an ensemble of non- spherical micro-organisms is calculated using the coupled-dipole approximation with an orientational average over Euler angles using Gauss-Legendre integration. Mie calculations provide rigorous solutions for spherical particles and are considerably less computer intensive than the coupled-dipole approximation. Furthermore, they have been shown to accurately predict the scattering for marine organisms that are nearly spherical. Scattering matrix elements calculated using the coupled-dipole approximation were compared with those obtained using Mie calculations in the limit as an ellipsoidal object approaches a sphere in order to assess the limits of applicability of the Mie theory to ellipsoidal particles. Experimental measurements of the scattering matrix elements for spherical particles (latex spheres) and ellipsoidal particles (Bacillus subtilis) were used to test the validity of our analytical approach.

  4. A calculation method to estimate partial half-lives for exotic radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L. [Centro Brasileiro de Pesquisas Fisicas - CBPF/MCTI, Rio de Janeiro-RJ (Brazil)


    Careful analysis of our previous semiempirical model for the cluster radioactivity of translead nuclei suggests that a simple function of some characteristics of the emitted cluster and the daughter nucleus can account for the trends observed in the half-lives of these exotic decay processes. The half-life T{sub 1/2} is found to be expressed in terms of the atomic numbers of the product nuclei and the Q-value of the two-body disintegrating system as {tau}=logT{sub 1/2}(s)=(aZ{sub C}+b)(Z{sub D}/Q){sup 1/2}+(cZ{sub C}+d), by using a unique set of four parameters a, b, c and d, their values being determined from the fitting of this expression to the available data. About 85% of measurements are reproduced within one order of magnitude, and only in 5% of cases the calculated half-lives differ from the experimental ones by more than two orders of magnitude. It is also shown that, for some selected cases of cluster emission not yet measured, the method presented here anticipates results which are comparable to the ones obtained from systematic studies, making it a useful tool for fast estimation of half-life values of exotic radioactivities. (orig.)

  5. Center Impedance Method for Damping Measurement

    Directory of Open Access Journals (Sweden)

    D. Malogi


    Full Text Available Damping materials are used extensively for reduction of vibration and noise. These damping materials have viscoelastic characteristics and are used by automotive and other industries. Testing of these materials is important in order to predict their performance and traditionally the damping properties are measured by the Oberst method. This paper discusses an alternate method called the Center Impedance method where force and response are measured directly and the damping properties are obtained. The Center Impedance method is easy to use requiring only standard vibration equipment for excitation, namely, shaker, and is easy to control the experiment for repeatability. Results of beams tested by both Oberst and Center Impedance methods are presented in order to validate this test method.

  6. A New Method for Calculating Deflection of FRP Reinforced Concrete Beams Using the Tension Stiffening Concept


    Sheitt, Feras; Razaqpur, A. Ghani (Co-Supervisor)


    Accurate calculation of the deflection of reinforced concrete members has been a challenge since the inception of modern reinforced concrete. Many formulas and methods have been developed, over the years. However, most of them are empirical in nature and do not predict accurately the flexural deflection of reinforced concrete members over the entire loading range. Deflection calculation has important impact on the satisfactory performance of structures, especially in performance based design ...

  7. Refractive index measurement based on confocal method (United States)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang


    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  8. Evaluation of the Novel Method and the Regression Equation for Calculation of Low-Density Lipoprotein Cholesterol

    Directory of Open Access Journals (Sweden)

    Muhammad Saiedullah


    Full Text Available Background: Friedewald’s formula (FF is used worldwide to calculate low-density lipoprotein cholesterol (LDL-chol. But it has several shortcomings: overestimation at lower triglyceride (TG concentrations and underestimation at higher concentrations. In FF, TG to very low-density lipoprotein cholesterol (VLDL-chol ratio (TG/VLDL-chol is considered as constant, but practically it is not a fixed value. Recently, by analyzing lipid profiles in a large population, continuously adjustable values of TG/VLDL-chol were used to derive a novel method (NM for the calculation of LDL-chol. Objective: The aim of this study was to evaluate the performance of the novel method compared with direct measurement and regression equation (RE developed for Bangladeshi population. Materials and Methods: In this cross-sectional comparative study we used lipid profiles of 955 adult Bangladeshi subjects. Total cholesterol (TC, TG, HDL-chol and LDL-chol were measured by direct methods using automation. LDL-chol was also calculated by NM and RE. LDL-chol calculated by NM and RE were compared with measured LDL-chol by twotailed paired t test, Pearson’s correlation test, bias against measured LDL-chol by Bland-Altman test, accuracy within ±5% and ±12% of measured LDL-chol and by inter-rater agreements with measured LDL-chol at different cut-off values. Results: The mean values of LDL-chol were 110.7 ± 32.0 mg/dL for direct measurement, 111.9 ± 34.8 mg/dL for NM and 113.2 ± 31.7 mg/dL for RE. Mean values of calculated LDL-chol by both NM and RE differed from that of measured LDL-chol (p130 mg/dL were 0.816 vs 0.815, 0.637 vs 0.649 and 0.791 vs 0.791 for NM and RE respectively. Conclusion: This study reveals that NM and RE developed for Bangladeshi population have similar performance and can be used for the calculation of LDL-chol.

  9. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  10. Absolute method of measuring magnetic susceptibility (United States)

    Thorpe, A.; Senftle, F.E.


    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  11. A new method for calculating saddle seat height with an emphasis on optimal posture based on trigonometric relations. (United States)

    Babaei, Hamidreza; Razeghi, Mohsen; Choobineh, Alireza; Pakshir, Hamidreza; Rajaeifard, Abdolreza; Rezaian, Jafar


    Based on the literature, the ergonomic saddle chair provides the most appropriate posture for users. Determination of the seat height is critical to establish the proper posture, carried out using various methods of anthropometry. This study aimed to develop a simple and applied method for determining the saddle seat height with an emphasis on appropriate posture. In this study, anthropometric dimensions including weight, body height, popliteal height and seat height at 135° knee angle in 150 male and female dentists were measured. In the laboratory, to determine the 'acetabuloischial number', 25 male and female natural hip bones were measured. The mean saddle-chair height with knee angle of 135° was then compared by two different methods, field measurement and the new calculation method. The results showed a strong correlation between data gathered from the two different methods, the field measurement and the new calculation method (98%), and Cronbach's α from the intraclass correlation was equal to 0.994 (p seat based on body height and popliteal height.

  12. Cross section measurements and theoretical calculations of proton induced nuclear reactions on natural tellurium

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.A.; Al-Abyad, M. [Atomic Energy Authority, Cairo (Egypt). Cyclotron Facility


    Excitation functions of the reactions {sup nat}Te(p,xn){sup 123,124,126,130}I were measured from their respective thresholds up to 17 MeV. The conventional stacked-foil technique was used where the samples for irradiation were prepared by a sedimentation process. The measured excitation functions were compared with both the data available in the literature and the results of theoretical calculations using the codes TALYS-1.2 and ALICE-IPPE. The present experimental data show good agreement with TALYS-1.2 calculations but some deviations from ALICE-IPPE results. From the experimental data the integral yields of the investigated radionuclides were calculated as a function of the proton energy. The most dominating product is {sup 130}I. (orig.)

  13. A compact and inexpensive device using an electronic calculator for measuring ambulatory activity in mice. (United States)

    Masuda, Y; Murai, S; Saito, H; Murakami, H; Itoh, T


    A device for measuring ambulatory activity in mice was developed. The device consisted of a plastic case, a bed plate, a step board (as a detector) and a calculator (as a recorder). A 2.2 cm width section was cut out from the middle of the case bottom in the direction of the minor axis and a step board, a width of 2 cm, was placed in the opening. A short bolt was screwed into one end of the step board and the head of the bolt was placed on the equal key of the calculator. The calculator counted the number of times the mouse stood on the step board. The validity of the device was demonstrated by measuring the effect of methamphetamine (1-4 mg/kg) on the ambulatory activity in mice.


    Directory of Open Access Journals (Sweden)

    Zmago Turk


    Full Text Available Background. There is a positive correlation between the size of intervertebral disc (IVD and the incidence of Low Back Pain (LBP. Columbini evaluated the size of IVD anthropometricaly but how this measurement correlates with radiologic measurements of IVD square size is steel unknown.Objective. The aim of the study was to search for non-invasive method and cheap and fast evaluation of IVD size with the modification of Columbini’s antropometric formula.Materials and methods. The measurements (anthropometrics, X-ray, CT with range of interest measurement [ROI] were done on 40 bus-drivers. The realibility test was done on 65 bus-drivers.Results. CT measurement of the size of the intervertebral disc was done using ROI (Range of Interest. Using the statistical analysis based on linear regression, correlation, curve fitting and realibility the author made the modification of Columbini’s formula. The incidence of Low Back Pain was statistically significantly higher in people with smaller IVD, particularly in men.Conclusions. With the Columbini’s method of anthropometric measurement of the size of IVD modified by Turk it is possible to make the right measurement prognosis in 89% of cases. Consequently, there is no need to use invasive and costly diagnostic radiologic methods.


    Directory of Open Access Journals (Sweden)

    Nicu Ioana Elena


    Full Text Available One of the priorities of economic research has been and remains the re-evaluation of the notion of performance and especially exploring and finding some indicators that would reflect as accurately as possible the subtleties of the economic entity. The main purpose of this paper is to highlight the main company performance measurement and reporting methods. Performance is a concept that raises many question marks concerning the most accurate or the best method of reporting the performance at the company level. The research methodology has aimed at studying the Romanian and foreign specialized literature dealing with the analyzed field, studying magazines specialized on company performance measurement. If the financial performance measurement indicators are considered to offer an accurate image of the situation of the company, the modern approach through non-financial indicators offers a new perspective upon performance measurement, which is based on simplicity. In conclusion, after the theoretical study, I have noticed that the methods of performance measurement, reporting and interpretation are various, the opinions regarding the best performance measurement methods are contradictive and the companies prefer resorting to financial indicators that still play a more important role in the consolidation of the company performance measurement than the non-financial indicators do.

  16. Comparison between Two Methods to Calculate the Transition Matrix of Orbit Motion

    Directory of Open Access Journals (Sweden)

    Ana Paula Marins Chiaradia


    Full Text Available Two methods to evaluate the state transition matrix are implemented and analyzed to verify the computational cost and the accuracy of both methods. This evaluation represents one of the highest computational costs on the artificial satellite orbit determination task. The first method is an approximation of the Keplerian motion, providing an analytical solution which is then calculated numerically by solving Kepler's equation. The second one is a local numerical approximation that includes the effect of 2. The analysis is performed comparing these two methods with a reference generated by a numerical integrator. For small intervals of time (1 to 10 s and when one needs more accuracy, it is recommended to use the second method, since the CPU time does not excessively overload the computer during the orbit determination procedure. For larger intervals of time and when one expects more stability on the calculation, it is recommended to use the first method.

  17. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates (United States)

    Wei, Hui; Gong, Guanghong; Li, Ni


    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  18. Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method (United States)

    Gilbreth, C. N.; Alhassid, Y.


    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  19. Measuring elevated intracranial pressure through noninvasive methods

    DEFF Research Database (Denmark)

    Kristiansson, Helena; Nissborg, Emelie; Bartek, Jiri


    techniques available. Several methods for noninvasive measuring of elevated ICP have been proposed: radiologic methods including computed tomography and magnetic resonance imaging, transcranial Doppler, electroencephalography power spectrum analysis, and the audiological and ophthalmological techniques......Elevated intracranial pressure (ICP) is an important cause of secondary brain injury, and a measurement of ICP is often of crucial value in neurosurgical and neurological patients. The gold standard for ICP monitoring is through an intraventricular catheter, but this invasive technique...... is associated with certain risks. Intraparenchymal ICP monitoring methods are considered to be a safer alternative but can, in certain conditions, be imprecise due to zero drift and still require an invasive procedure. An accurate noninvasive method to measure elevated ICP would therefore be desirable...

  20. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  1. Measurements and calculations of noise in the streets of Amsterdam, Rotterdam, and Paris

    NARCIS (Netherlands)

    Salomons, E.


    Results of noise measurements in the streets of Amsterdam, Rotterdam, and Paris are presented. Noise levels and GPS coordinates have been recorded during several trips by bicycle and by foot. For comparison, noise levels have also been calculated from average traffic intensities. Both the

  2. Calculation of exact vibration modes for plane grillages by the dynamic stiffness method (United States)

    Hallauer, W. L., Jr.; Liu, R. Y. L.


    A dynamic stiffness method is developed for the calculation of the exact modal parameters for plane grillages which consist of straight and uniform beams with coincident elastic and inertial axes. Elementary bending-torsion beam theory is utilized, and bending translation is restricted to one direction. The exact bending-torsion dynamic stiffness matrix is obtained for a straight and uniform beam element with coincident elastic and inertial axes. The element stiffness matrices are assembled using the standard procedure of the static stiffness method to form the dynamic stiffness matrix of the complete grillage. The exact natural frequencies, mode shapes, and generalized masses of the grillage are then calculated by solving a nonlinear eigenvalue problem based on the dynamic stiffness matrix. The exact modal solutions for an example grillage are calculated and compared with the approximate solutions obtained by using the finite element method.

  3. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis. (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi


    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  4. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method

    Directory of Open Access Journals (Sweden)

    Pedro L. Valencia


    Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].

  5. Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.


    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

  6. Development of simplified methods and data bases for radiation shielding calculations for concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bhuiyan, S.I.; Roussin, R.W.; Lucius, J.L.; Marable, J.H.; Bartine, D.A.


    Two simplified methods have been developed which allow rapid and accurate calculations of the attenuation of neutrons and gamma rays through concrete shields. One method, called the BEST method, uses sensitivity coefficients to predict changes in the transmitted dose from a fission source that are due to changes in the composition of the shield. The other method uses transmission factors based on adjoint calculations to predict the transmitted dose from an arbitrary source incident on a given shield. The BEST method, utilizing an exponential molecule that is shown to be a significant improvement over the traditional linear model, has been successfully applied to slab shields of standard concrete and rebar concrete. It has also been tested for a special concrete that has been used in many shielding experiments at the ORNL Tower Shielding Facility, as well as for a deep-penetration sodium problem. A comprehensive data base of concrete sensitivity coefficients generated as part of this study is available for use in the BEST model. For problems in which the changes are energy independent, application of the model and data base can be accomplished with a desk calculator. Larger-scale calculations required for problems that are energy dependent are facilitated by employing a simple computer code, which is included, together with the data base and other calculational aids, in a data package that can be obtained from the ORNL Radiation Shielding Information Center (request DLC-102/CONSENT). The transmission factors used by the second method are a byproduct of the sensitivity calculations and are mathematically equivalent to the surface adjoint function phi*, which gives the dose equivalent transmitted through a slab of thickness T due to one particle incident on the surface in the gth energy group and jth direction. 18 refs., 1 fig., 50 tabs.

  7. Image based method for aberration measurement of lithographic tools (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa


    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  8. Calculation method and simulation of work of the ring elastic compensator for sheet-forming

    Directory of Open Access Journals (Sweden)

    Kukhar Volodymyr


    Full Text Available The design of the elastic ring compensator of «press-and-die” system errors, the method and software for calculating its geometric parameters are given in the article. The developed method is based on the account of unevenness of the radial and altitudinal deformation (barrel-type shape of the elastic working element made of polyurethane. A specific example of computer implementation of the developed mathematical model for calculating the sizes of such a compensator for steel-forming operations on an open-crank press is made. Approbation of the compensator was carried out in industrial conditions.

  9. Improved method for calculating neoclassical transport coefficients in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M., E-mail: [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)


    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.

  10. Polarizable Embedded RI-CC2 Method for Two-Photon Absorption Calculations

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Khah, Alireza Marefat; Christiansen, Ove


    We present a novel polarizable embedded resolution-of-identity coupled cluster singles and approximate doubles (PERI-CC2) method for calculation of two-photon absorption (TPA) spectra of large molecular systems. The method was benchmarked for three types of systems: a water-solvated molecule...... of formamide, a uracil molecule in aqueous solution, and a set of mutants of the channelrhodopsin (ChR) protein. The first test case shows that the PERI-CC2 method is in excellent agreement with the PE-CC2 method and in good agreement with the PE-CCSD method. The uracil test case indicates that the effects...

  11. Calculation of drag and torque coefficients by time-independent lattice-Boltzmann method. (United States)

    Ding, E J


    A method is developed to calculate the drag and torque coefficients of an isolated particle in a Stokes flow. The method is based on solving the time-independent lattice-Boltzmann equation. The advantage of this method is that the algorithm is easy to code, the method can be applied to any shape of the particle without complicated implementation, and the computational cost is independent of the shape of the particle. This method is validated and shown to be accurate by comparing with analytical solutions for certain problems.

  12. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  13. Two innovative pore pressure calculation methods for shallow deep-water formations (United States)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei


    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  14. Research on Power Calculation Method of High Speed Rotary Device under Wind Loads Crystals (United States)

    Ji, M. S.; Xue, Y.; Wu, N.


    The wind load has a great influence on the power of large rotary devices working outdoors. In the power calculation formula of the rotary devices, the static air pressure is often used as the wind resistance of the whole device. But in fact, the rotating device bears the dynamic wind pressure during the rotation. This method of calculation will lead to large deviation. Based on this, this paper emphatically studied the dynamic wind load of the rotating device under rotation, and gave a more accurate formula for the calculation of the rotating power. This formula solves the problem of power calculation of the rotating device in high speed rotation. It can be widely used in all kinds of rotating devices.

  15. Precision calculation of processes used for luminosity measurement at the ZEUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Makarenko, V. [NCPHEP, Minsk (Belarus)


    The process pe{sup {+-}} {yields} pe{sup {+-}}{gamma} with the photon emitted along the electron beam axis is used for luminosity measurement at HERA. In this paper the process is calculated including one-loop QED radiative corrections. In the ZEUS experiment, both the electron and the photon can be detected. Therefore both photon and electron spectra with and without the {gamma}-e coincidence are analyzed. We also calculate the process pe{sup {+-}} {yields} pe{sup {+-}}l{sup -}l{sup +} which contributes to the background in the electron tagger. (orig.)

  16. Precision calculation of processes used for luminosity measurement at the ZEUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T. [DESY, Hamburg (Germany); Makarenko, V. [NCPHEP, Minsk (Belarus)


    The process pe {sup {+-}}{yields}pe{sup {+-}}{gamma} with the photon emitted along the electron beam axis is used for luminosity measurement at HERA. In this paper the process is calculated including one-loop QED radiative corrections. In the ZEUS experiment, both the electron and the photon can be detected. Therefore both photon and electron spectra with and without the {gamma}-e coincidence are analyzed. We also calculate the process pe{sup {+-}}{yields}pe {sup {+-}}l{sup -}l{sup +} which contributes to the background in the electron tagger. (orig.)

  17. On the Methods to Measure Powder Flow. (United States)

    Tan, Geoffrey; Morton, David A V; Larson, Ian


    The flow of powders can often play a critical role in the manufacturing of pharmaceutical products. Many of these processes require good, consistent and predictable flow of powders to ensure continuous production of pharmaceutical dosages and to ensure their quality. Therefore, the flow of powders is of paramount importance to the pharmaceutical industry and thus the measuring and evaluating of powder flow is of utmost importance. At present, there are numerous methods in which the flow of powders can be measured. However, due to the complex and environment-dependent nature of powders, no one method exists that is capable of providing a complete picture of the behaviour of powders under dynamic conditions. Some of the most commonly applied methods to measure the flow of powders include: density indices, such as the Carr index and Hausner ratio, powder avalanching, the angle of repose (AOR), flow through an orifice, powder rheometry and shear cell testing.

  18. Energy Production Calculations with Field Flow Models and Windspeed Predictions with Statistical Methods (United States)

    Rüstemoǧlu, Sevinç; Barutçu, Burak; Sibel Menteş, Å.ž.


    The continuous usage of fossil fuels as primary energy source is the reason of the emission of CO and powerless economy of the country affected by the great flactuations in the unit price of energy sources. In recent years, developments in wind energy sector and the supporting new renewable energy policies of the countries allow the new wind farm owners and the firms who expect to be an owner to consider and invest on the renewable sources. In this study, the annual production of the turbines with 1.8 kW and 30 kW which are available for Istanbul Technical University in Energy Institute is calculated by Wasp and WindPro Field Flow Models and the wind characteristics of the area are analysed. The meteorological data used in calculation includes the period between 02.March.2000 and 31.May.2004 and is taken from the meteorological mast ( ) in Istanbul Technical University's campus area. The measurement data is taken from 2 m and 10 m heights with hourly means. The topography, roughness classes and shelter effects are defined in the models to make accurate extrapolation to the turbine sites. As an advantage, the region is nearly 3.5 km close to the Istanbul Bosphorous but as it can be seen from the Wasp and WindPro Model Results, the Bosphorous effect is interrupted by the new buildings and hight forestry. The shelter effect of these high buildings have a great influence on the wind flow and decrease the high wind energy potential which is produced by the Bosphorous effect. This study, which determines wind characteristics and expected annual production, is important for this Project Site and therefore gains importance before the construction of wind energy system. However, when the system is operating, developing the energy management skills, forecasting the wind speed and direction will become important. At this point, three statistical models which are Kalman Fitler, AR Model and Neural Networks models are used to determine the success of each method for correct

  19. Measurements and computer calculations of pulverized-coal combustion at Asnaes Power Station 4

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J.


    Measurements have been performed on a front-fired 270 MW (net electrical out-put) pulverized-coal utility furnace with 24 swirl-stabilized burners, placed in four horizontal rows. Apart from continuous operational measurements, special measurements were performed as follows. At one horizontal level above the upper burner row, gas temperatures were measured by an acoustic pyrometer. At the same level and at the level of the second upper burner row, irradiation to the walls was measured in ten positions by means of specially designed 2 {pi}-thermal radiation meters. Fly-ash was collected and analysed for unburned carbon. Coal size distribution to each individual burner was measured. Eight different cases were measured. On a Columbian coal, three cases with different oxygen concentrations in the exit-gas were measured at a load of 260 MW, and in addition, measurements were performed at reduced loads of 215 MW and 130 MW. On a South African coal blend measurements were performed at a load of 260 MW with three different oxygen exit concentrations. Each case has been simulated by a three-dimensional numerical computer code for the prediction of distribution of gas temperatures, species concentrations and thermal radiative net heat absorption on the furnace walls. Comparisons between measured and calculated gas temperatures, irradiation and unburned carbon are made. Measured results among the cases differ significantly, and the computational results agree well with the measured results. (au)

  20. A New Displacement-based Approach to Calculate Stress Intensity Factors With the Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Marco Gonzalez

    Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.

  1. Perspective: Methods for large-scale density functional calculations on metallic systems. (United States)

    Aarons, Jolyon; Sarwar, Misbah; Thompsett, David; Skylaris, Chris-Kriton


    Current research challenges in areas such as energy and bioscience have created a strong need for Density Functional Theory (DFT) calculations on metallic nanostructures of hundreds to thousands of atoms to provide understanding at the atomic level in technologically important processes such as catalysis and magnetic materials. Linear-scaling DFT methods for calculations with thousands of atoms on insulators are now reaching a level of maturity. However such methods are not applicable to metals, where the continuum of states through the chemical potential and their partial occupancies provide significant hurdles which have yet to be fully overcome. Within this perspective we outline the theory of DFT calculations on metallic systems with a focus on methods for large-scale calculations, as required for the study of metallic nanoparticles. We present early approaches for electronic energy minimization in metallic systems as well as approaches which can impose partial state occupancies from a thermal distribution without access to the electronic Hamiltonian eigenvalues, such as the classes of Fermi operator expansions and integral expansions. We then focus on the significant progress which has been made in the last decade with developments which promise to better tackle the length-scale problem in metals. We discuss the challenges presented by each method, the likely future directions that could be followed and whether an accurate linear-scaling DFT method for metals is in sight.

  2. An update on the discrepancy between calculated and measured neutron-induced radioactivity levels in Hiroshima. (United States)

    Hunter, Nezahat; Charles, Monty W


    The thermal neutron activation measurements carried out over many years in Hiroshima and Nagasaki have been the subject of ongoing debate in recent years because they indicate that current DS86 neutron doses may have been significantly underestimated in Hiroshima. Long-lived neutron activation products, 60Co, 152Eu, 154Eu and 36Cl, which are still detectable today using modern analytical techniques, appear to indicate that DS86 calculated thermal neutron activation products decrease with distance more rapidly than the measured values. The latest thermal neutron activation measurements have been collated and a new relationship for the measured to calculated (M/C) ratio of induced activity has been derived as a function of slant range. This indicates a stronger dependence of M/C on slant range than previously derived by Straume et al (1992 Health Phys. 63 421-6) and emphasises even more the discrepancy between measured and calculated (DS86) neutron doses at distances beyond 1 km. While the main body of thermal neutron activation data appears to support a significant increase in the DS86 neutron dose component in Hiroshima, there are some thermal neutron activation measurements and some very recent fast neutron activation measurements which suggest that the discrepancy may not be so great. The extent of the required revision to the neutron component of the DS86 dosimetry remains the subject of ongoing new neutron activation measurements and re-analysis of existing published measurements. A companion paper considers the impact on radiation risk estimates of possible modifications to the DS86 dosimetry system on the basis of a broad range of interpretations of the neutron activation data.

  3. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song


    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  4. Calculation methods study on hot spot stress of new girder structure detail (United States)

    Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing


    To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.

  5. Method to measure the relaxation rates of molecular levels (United States)

    Bakos, J. S.; Mandula, K.; Sorlei, Zsuzsa

    The influence of buffer gases (He and SF6) on vibrational and relaxational rates has been studied. The line shapes (width and amplitude) of the small signal gain of the 119-micron methanol laser line are measured at different methanol vapor and buffer gas pressures using an infrared far-infrared double resonance method. The relaxation rates are calculated using the modified rate equations of the Henningsen-Jensen model.

  6. Fast Integral method for the calculation of Hartree and Exchange terms in DFT and TDDFT (United States)

    Zuzovski, Michael; Boag, Amir; Natan, Amir


    The Hartree and Exchange terms can become a computational intensive task in DFT and TDDFT calculations of large structures. Existing methods use either iterative solvers such as conjugate gradient or multi-grid methods or use FFT for the calculation of those terms via the solution of the Poisson equation. With iterative solvers, the problem of setting the boundary conditions is often time consuming by itself as approximations such as the multipole expansion might not converge easily for structures with high aspect ratio. With FFT one needs to use a larger box for the calculation of finite systems. We present an alternative integral method to calculate the Hartree and Exchange terms in DFT and TDDFT. We first describe the algorithm and show that it has O(N) scaling for elongated structures. We then show some examples of long 1D chains ground state and time dependent calculations that use this algorithm. Finally we discuss some possible applications for more advanced functionals that include the Fock exchange or screened exchange. A.N. wishes to acknowledge support from ISF Grant 1722/13, AN and AB wish to acknowledge support from the bi-national Isael-France research grant.

  7. Method for calculating required shielding in medical x-ray rooms; Roentgentutkimushuoneen saeteilysuojauksen laskeminen

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, J


    The new annual radiation dose limits - 20 mSv (previously 50 mSv) for radiation workers and 1 mSv (previously 5 mSv) for other persons - implies that the adequacy of existing radiation shielding must be re-evaluated. In principle, one could assume that the thicknesses of old radiation shields should be increased by about one or two half-value layers in order to comply with the new dose limits. However, the assumptions made in the earlier shielding calculations are highly conservative; the required shielding was often determined by applying the maximum high-voltage of the x-ray tube for the whole workload. A more realistic calculation shows that increased shielding is typically not necessary if more practical x-ray tube voltages are used in the evaluation. We have developed a PC-based calculation method for calculating the x-ray shielding which is more realistic than the highly conservative method formerly used. The method may be used to evaluate an existing shield for compliance with new regulations. As examples of these calculations, typical x-ray rooms are considered. The lead and concrete thickness requirements as a function of x-ray tube voltage and workload are also given in tables. (author) 18 refs.

  8. Combined non-contact coordinate measurement system and calibration method (United States)

    Fan, Yiyan; Zhao, Bin


    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  9. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul


    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  10. Three methods to measure RH bond energies

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J. [Argonne National Lab., IL (United States); Ellison, G.B. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Gutman, D. [Catholic Univ. of America, Washington, DC (United States). Dept. of Chemistry


    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  11. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Energy Technology Data Exchange (ETDEWEB)

    McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)


    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  12. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)


    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  13. Methods for measuring acoustic power of an ultrasonic neurosurgical device. (United States)

    Petosić, Antonio; Ivancević, Bojan; Svilar, Dragoljub; Stimac, Tihomir; Paladino, Josip; Oresković, Darko; Jurjević, Ivana; Klarica, Marijan


    Measurement of the acoustic power in high-energy ultrasonic devices is complex due to occurrence of the strong cavitation in front of the sonotrode tip. In our research we used three methods for characterization of our new ultrasonic probe for neuroendoscopic procedures. The first method is based on the electromechanical characterization of the device measuring the displacement of the sonotrode tip and input electrical impedance around excitation frequency with different amounts of the applied electrical power The second method is based on measuring the spatial pressure magnitude distribution of an ultrasound surgical device produced in an anechoic tank. The acoustic reciprocity principle is used to determinate the derived acoustic power of equivalent ultrasound sources at frequency components present in the spectrum of radiated ultrasonic waves. The third method is based on measuring the total absorbed acoustic power in the restricted volume of water using the calorimetric method. In the electromechanical characterization, calculated electroacoustic efficiency factor from equivalent electrical circuits is between 40-60%, the same as one obtained measuring the derived acoustic power in an anechoic tank when there is no cavitation. When cavitation activity is present in the front of the sonotrode tip the bubble cloud has a significant influence on the derived acoustic power and decreases electroacoustic efficiency. The measured output acoustic power using calorimetric method is greater then derived acoustic power, due to a large amount of heat energy released in the cavitation process.

  14. Accelerated complete-linearization method for calculating NLTE model stellar atmospheres (United States)

    Hubeny, I.; Lanz, T.


    Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.

  15. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft

    Directory of Open Access Journals (Sweden)

    Bai-gang Mi


    Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.

  16. New method to estimate the sample size for calculation of a proportion assuming binomial distribution. (United States)

    Vallejo, Adriana; Muniesa, Ana; Ferreira, Chelo; de Blas, Ignacio


    Nowadays the formula to calculate the sample size for estimate a proportion (as prevalence) is based on the Normal distribution, however it would be based on a Binomial distribution which confidence interval was possible to be calculated using the Wilson Score method. By comparing the two formulae (Normal and Binomial distributions), the variation of the amplitude of the confidence intervals is relevant in the tails and the center of the curves. In order to calculate the needed sample size we have simulated an iterative sampling procedure, which shows an underestimation of the sample size for values of prevalence closed to 0 or 1, and also an overestimation for values closed to 0.5. Attending to these results we proposed an algorithm based on Wilson Score method that provides similar values for the sample size than empirically obtained by simulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Normalized impact factor (NIF): an adjusted method for calculating the citation rate of biomedical journals. (United States)

    Owlia, P; Vasei, M; Goliaei, B; Nassiri, I


    The interests in journal impact factor (JIF) in scientific communities have grown over the last decades. The JIFs are used to evaluate journals quality and the papers published therein. JIF is a discipline specific measure and the comparison between the JIF dedicated to different disciplines is inadequate, unless a normalization process is performed. In this study, normalized impact factor (NIF) was introduced as a relatively simple method enabling the JIFs to be used when evaluating the quality of journals and research works in different disciplines. The NIF index was established based on the multiplication of JIF by a constant factor. The constants were calculated for all 54 disciplines of biomedical field during 2005, 2006, 2007, 2008 and 2009 years. Also, ranking of 393 journals in different biomedical disciplines according to the NIF and JIF were compared to illustrate how the NIF index can be used for the evaluation of publications in different disciplines. The findings prove that the use of the NIF enhances the equality in assessing the quality of research works produced by researchers who work in different disciplines. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Comparison of Different Methods for the Calculation of the Microvascular Flow Index

    Directory of Open Access Journals (Sweden)

    Mario O. Pozo


    Full Text Available The microvascular flow index (MFI is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0, intermittent (1, sluggish (2, or normal (3. There are three approaches to compute MFI: (1 the average of the predominant flow in each of the four quadrants (MFIby quadrants, (2 the direct assessment during the bedside video acquisition (MFIpoint of care, and (3 the mean value of the MFIs determined in each individual vessel (MFIvessel by vessel. We hypothesized that the agreement between the MFIs is poor and that the MFIvessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC velocity was also measured. There were wide 95% limits of agreement between MFIby quadrants and MFIpoint of care (1.46, between MFIby quadrants and MFIvessel by vessel (2.85, and between MFIby point of care and MFIvessel by vessel (2.56. The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFIvessel by vessel showed the best R2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFIvessel by vessel might be better.

  19. Calculation of partial isotope incorporation into peptides measured by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Harms Hauke


    Full Text Available Abstract Background Stable isotope probing (SIP technique was developed to link function, structure and activity of microbial cultures metabolizing carbon and nitrogen containing substrates to synthesize their biomass. Currently, available methods are restricted solely to the estimation of fully saturated heavy stable isotope incorporation and convenient methods with sufficient accuracy are still missing. However in order to track carbon fluxes in microbial communities new methods are required that allow the calculation of partial incorporation into biomolecules. Results In this study, we use the characteristics of the so-called 'half decimal place rule' (HDPR in order to accurately calculate the partial13C incorporation in peptides from enzymatic digested proteins. Due to the clade-crossing universality of proteins within bacteria, any available high-resolution mass spectrometry generated dataset consisting of tryptically-digested peptides can be used as reference. We used a freely available peptide mass dataset from Mycobacterium tuberculosis consisting of 315,579 entries. From this the error of estimated versus known heavy stable isotope incorporation from an increasing number of randomly drawn peptide sub-samples (100 times each; no repetition was calculated. To acquire an estimated incorporation error of less than 5 atom %, about 100 peptide masses were needed. Finally, for testing the general applicability of our method, peptide masses of tryptically digested proteins from Pseudomonas putida ML2 grown on labeled substrate of various known concentrations were used and13C isotopic incorporation was successfully predicted. An easy-to-use script 1 was further developed to guide users through the calculation procedure for their own data series. Conclusion Our method is valuable for estimating13C incorporation into peptides/proteins accurately and with high sensitivity. Generally, our method holds promise for wider applications in qualitative

  20. Measurement of AC loss of superconductors by vaporizing method

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Hiroshi; Isono, Takaaki; Matsui, Kunihiro; Fujisaki, Reishi; Nunoya, Yoshihiko; Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment


    In Japan Atomic Energy Research Institute, the development of superconducting pulse conductors for next period nuclear fusion reactors has been carried out. For these conductors, the rated current of 46 kA and the rated magnetic field of 13T are demanded. When the pulse excitation of superconductors is carried out, AC loss arises, and the temperature of the superconductors rises, and when it exceeds a certain value, the superconducting state cannot be maintained. Therefore, the AC loss of pulse conductors must be limited to a low value. It is difficult to evaluate the AC loss of superconductors by calculation, therefore, it is evaluated by actual measurement. There are magnetizing method and vaporizing method for measuring the AC loss. This time, the equipment for measuring the AC loss of 40 kA class superconductors by vaporizing method which measures the helium gas quantity vaporizing at the time of AC loss occurrence was designed and manufactured for the first time. The method of measuring the AC loss, the structure of the measuring equipment, the helium gas recovering part and the measuring part, the countermeasures for preventing helium gas leakage, the resistance heater for calibration, and the results of measurement are reported. (K.I.)

  1. Efficiency measurement of hydro machine by thermodynamic method

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Shantaram S.; Kumar, Arun [Indian Institute of Technology Roorkee, Uttarakhand (India). Alternate Hydro Energy Centre], E-mails:,; Verma, H.K. [Indian Institute of Technology Roorkee, Uttarakhand (India). Dept. of Electrical Engineering], E-mail:


    The thermodynamic method is an absolute method of measuring hydraulic efficiency of hydraulic machines based on the principle of conservation of energy, i.e. first law of thermodynamics. The efficiency is calculated directly from the specific hydraulic energy and specific mechanical energy equations. The temperature difference between the inlet and outlet of the machine is very small, typically of the order of a few milli-Kelvins. Hence it is a very difficult and critical task to measure the temperature rise accurately. High-resolution high-accuracy data acquisition system along with precision type temperature sensors are essential for temperature measurements. Efficiency measurement using thermodynamic method has been carried out by the authors in laboratory, both on a turbine and a pump, using stable temperature sensors, electronic pressure transmitters and high-precision high-resolution data acquisition system. Thermo-wells are formed at inlet and outlet of the machine under test for simultaneous temperature measurement at both the points. High-precision RTDs of Pt-100 type (class 1/10 DIN, 0.03 deg C accuracy) are used for the measurement of temperatures. The results of efficiency measurement of turbine and pump in laboratory using thermodynamic method have been found to be very satisfactory. The same instrumentation with suitable adaptation can be used for the efficiency measurement on site. (author)

  2. Method of superconducting joint and its measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Lee, Ho Jin; Hong, Gye Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    The development of joint techniques for superconducting wires is essential to fabricate the high quality superconducting magnet. In this report, the various joining methods and their measuring techniques were reviewed. In order to fabricate a precise superconducting magnet, joining and measuring experiment by using the field decay technique carried out. The contact resistance of coupled specimens with joint was measured as 3.0 x 10{sup -15} ohm at 1 Tesla which is lower than that of the real operating condition of MRI magnet. It is expected that these data can be used to design and fabricate the superconducting magnets successfully. (Author) 12 refs., 20 figs., 2 tabs.

  3. Limitations of Calculating Field Distributions and Magnetic Susceptibilities in MRI using a Fourier Based Method (United States)

    Cheng, Yu-Chung N.; Neelavalli, Jaladhar; Haacke, E. Mark


    A discrete Fourier based method for calculating field distributions and local magnetic susceptibility in MRI is carefully studied. Simulations suggest that the method based on discrete Greens functions in both 2D and 3D spaces has less error than the method based on continuous Greens functions. The 2D field calculations require the correction of the “Lorentz disk, which is similar to the Lorentz sphere term in the 3D case. A standard least squares fit is proposed for the extraction of susceptibility for a single object from MR images. Simulations and a phantom study confirm both the discrete method and the feasibility of the least squares fit approach. Finding accurate susceptibility values of local structures in the brain from MR images may be possible with this approach in the future. PMID:19182322

  4. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding (United States)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam


    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  5. A Method to Calculate the Surface Tension of a Cylindrical Droplet (United States)

    Wang, Xiaosong; Zhu, Ruzeng


    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  6. Graph-analytic method of approximate calculation of the levels and contours of noise from aircraft

    Directory of Open Access Journals (Sweden)

    О.І. Запорожець


    Full Text Available  The paper presents substantiation of methodologies for evaluation of aircraft noise levels and noise countures using their acoustical characteristics approved in the certificate of aircraft type. The graphic analytical method of noise levels and noise contures is analysed. The comparison of certified noise levels and noise levels calculated for EPNL criteria is done using INM software.

  7. Miniworkshop on Methods of Electronic Structure Calculations and Working Group on Disordered Alloys

    CERN Document Server

    Andersen, O K; Mookerjee, A


    Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.

  8. 20 CFR 1001.150 - Method of calculating State basic grant awards. (United States)


    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Method of calculating State basic grant awards. 1001.150 Section 1001.150 Employees' Benefits OFFICE OF THE ASSISTANT SECRETARY FOR VETERANS' EMPLOYMENT AND TRAINING SERVICE, DEPARTMENT OF LABOR SERVICES FOR VETERANS Formula for the Allocation of...

  9. 24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods (United States)


    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Development of Standards; Calculation Methods II Appendix II to Subpart C of Part 51 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development ENVIRONMENTAL CRITERIA AND STANDARDS Siting of HUD...

  10. Improved method for the cutting coefficients calculation in micromilling force modeling

    NARCIS (Netherlands)

    Li, P.; Oosterling, J.A.J.; Hoogstrate, A.M.; Langen, H.H.


    This paper discusses the influence of runout on the calculation of the coefficients of mechanistic force models in micromilling. A runout mode is used to study the change of chip thickness, tool angles, and immersion period of two cutting edges of micro endmills due to runout. A new method to find

  11. Calculation of the Centre of Gravity of the Cone Utilizing the Method of Archimedes (United States)

    Magnaghi, C. P.; Assis, A. K. T.


    Archimedes calculated the centre of gravity of the cone but the proof of this theorem is not extant in his works. Knorr made a reconstruction of this proof utilizing geometrical arguments. This paper proves this theorem by means of a physical demonstration utilizing the law of the lever, and by adapting from Archimedes the method of mechanical…

  12. A simple performance calculation method for LH2/LOX engines with different power cycles (United States)

    Schmucker, R. H.


    A simple method for the calculation of the specific impulse of an engine with a gas generator cycle is presented. The solution is obtained by a power balance between turbine and pump. Approximate equations for the performance of the combustion products of LH2/LOX are derived. Performance results are compared with solutions of different engine types.


    Directory of Open Access Journals (Sweden)

    Ahmet ALTINTAŞ


    Full Text Available Nowadays, active power filter plays an important role in reducing harmonic current and reactive power in power lines. The reliability and effectiveness of an active power filter depends basically on three characteristics. These are the modulation method, the design characteristics of the PWM modulator and the method implemented to generate compensation current. For the last one, there are many proposed methods. Most of them complicated and hence difficult to implement and adjust. In this study, a new method to calculate compensation current is improved and tested in single-phase parallel active power filter controlled by microcontroller. Experimental and simulation results are presented in the paper.

  14. General method for calculating the self-induced magnetic force of an axisymmetric toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Bobbio, S.; Rubinacci, G. (Naples Univ. (Italy). Ist. Elettrotecnico)


    A method is presented for computing the class of axisymmetric current distributions flowing in a torus whose peripheral surface is a flux surface for the magnetic field produced by the current itself. The method allows the correct calculation of the 'self-induced' magnetic forces arising from the interaction between these currents and their own field. The general expression for the self-induced force is given and an approximate formula is presented in the large aspect-ratio limit.

  15. Method and First Results of Calculation of Slant-Range Differences to Active Geostationary Telecommunication Satellite (United States)

    Bushuev, F. I.; Kalyuzhny, N. A.; Sybiryakova, Ye. S.; Shulga, A. V.; Gorbanev, Yu. M.


    A method for calculation of slant-range differences to the active geostationary telecommunication satellite (GEO Telecom Satellite) is described in the article. The method is developed in the “Mykolaiv Astronomical Observatory” Research Institute. The results of observation of the “Eutelsat- 25C” and “Eutelsat-13B” satellites with two receiving stations of digital satellite TV are discussed. The accuracy of determination of slant-range differences to the GEO Telecom Satellite is presented.

  16. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe (United States)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.


    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  17. Data Availability for Carbon Calculators in Measuring GHG Emissions Produced by the Food Sector

    Directory of Open Access Journals (Sweden)

    Pegah Amani


    Full Text Available  The continuing increase in burning fossil fuels over recent decades along with the changing land use have resulted in a considerable increase in the amount of greenhouse gases (GHGs which can potentially lead to climate change. Adaptation processes will become necessary in order to cope with these challenges in the future. Despite individuals’ and institutions’ willingness to reduce the amount of GHG emissions caused by their actions or their "carbon footprints", they may lack the knowledge to make effective choices. Carbon calculators have been developed to address these knowledge gaps by measuring and communicating the overall magnitude of the impacts and also the extent to which different behavior patterns contribute to GHG emissions. LCA databases, as providers of inventory data for carbon calculators, have an important role in helping to develop more complete and accurate tools to measure and report produced GHG emissions. For emissions-intensive behavior patterns, the food life cycle is a significant contributor to emissions resulting from activities including agriculture, processing, transport, storage, retail, consumption, and waste handling. This research seeks to classify and characterize these calculators and the agricultural activities or practices they cover, to provide the reader with an idea on the differences between these calculators, and why some of them could be more applicable to the food sector. The intent is to bring clarity to the discussion which could be a step forward in paving the way for the development of more reliable and comprehensive carbon calculators for measuring the GHG emissions of the food sector

  18. Comparison of Thermal Properties Measured by Different Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan [Geo Innova AB, Linkoeping (Sweden); Kukkonen, Ilmo [Geological Survey of Finland, Helsinki (Finland); Haelldahl, Lars [Hot Disk AB, Uppsala (Sweden)


    A strategy for a thermal site descriptive model of bedrock is under development at SKB. In the model different kinds of uncertainties exist. Some of these uncertainties are related to the potential errors in the methods used for determining thermal properties of rock. In two earlier investigations thermal properties of rock samples were analysed according to the TPS method (transient plane source). Thermal conductivity and thermal diffusivity were determined using the TPS method. For a comparison, the same samples have been measured at the Geological Survey of Finland (GSF), using different laboratory methods. In this later investigation, the thermal conductivity was determined using the divided-bar method and the specific heat capacity using a calorimetric method. The mean differences between the results of different methods are relatively low but the results of individual samples show large variations. The thermal conductivity measured by the divided bar method gives for most samples slightly higher values, in average about 3%, than the TPS method. The specific heat capacity measured by the calorimetric method gives lower values, in average about 2%, than the TPS method. Consequently, the thermal diffusivity calculated from thermal conductivity and specific heat capacity gives higher values, in average about 6%, than the TPS method. Reasons for the differences are estimated mainly to be dependent on differences between the samples, errors in the temperature dependence of specific heat and in the transformation from volumetric to specific heat. The TPS measurements are performed using two pieces (sub-samples) of rock. Only one of these two sub-samples was measured using the divided bar method and the calorimetric method. Further, sample preparation involved changes in the size of some of the samples. The mean differences between the results of different methods are within the margins of error reported by the measuring laboratories. However, systematic errors in


    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory


    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of

  20. Empirical Validation of Simple Calculation Method for Assessment of Energy Performance in Double-Skin Façade Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Thomas, Sara Jessica; Larsen, Olena Kalyanova


    When designing new buildings a Double-Skin Facades (DSF) concept is recurrently discussed as an energy saving solution. There is a strong demand for a tool, which could estimate the energy performance of a DSF building in an early design stage, in order to assess whether it fulfills the Energy...... Performance Building Directive. Therefore, the Bestfacade Project Group has developed the Simple Calculation Method (SCM). In this paper the calculations of DSF performance using SCM are compared against experimental data gathered in a full-scale model for three data-sets from different periods of the year....... The SCM is recommended for assessing a seasonal DSF performance, however, it gives more reliable results if SCM is applied for shorter periods. Detailed calculation results tend to differ from the measurements, mainly due to overestimating the cooling demand. The validation described in this paper led...

  1. Calculated Low-Speed Steady and Time-Dependent Aerodynamic Derivatives for Several Different Wings Using a Discrete Vortex Method (United States)

    Riley, Donald R.


    Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb <.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.

  2. Development of an X-ray installation for the study of secondary electrons: preliminary measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Baguena, A.; Shaw, M.; Williart, A. [Universidad Nacional de Educacion a Distancia, Dpto. Fisica de los Materiales, Madrid (Spain); Baguena, A. [Consejo de Seguridad Nuclear, Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)


    We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)


    Directory of Open Access Journals (Sweden)

    V. P. Agapov


    Full Text Available Abstract. Considered is the method of calculation of prestressed reinforced concrete farms taking into account physical nonlinearity. Prestress is modeled due to the thermal effect on the core crab. Rating formulae, allowing to define the temperature value necessary for the achieving the given prestress level are givenThe nonlinear calculation algorithm used by the authors is based on the earlier developed and implemented into the computer system PRINS method of physically nonlinear calculation of reinforced farms without prestress of the armature. As an example is considered the calculation of prestressed farm on two supports with polygonal contour of the top belt. Load is applied in the form of concentrated forces in the top belt units. For all cores is accepted the same cross section area and the same ratio of reinforcement. Thermal loading was carried out for one step and load was applied in parts equal the one tenth of the nominal value. Calculation results are analyzed and presented. 

  4. Assessing factors that influence deviations between measured and calculated reference evapotranspiration (United States)

    Rodny, Marek; Nolz, Reinhard


    Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and

  5. Efficient height measurement method of surveillance camera image. (United States)

    Lee, Joong; Lee, Eung-Dae; Tark, Hyun-Oh; Hwang, Jin-Woo; Yoon, Do-Young


    As surveillance cameras are increasingly installed, their films are often submitted as evidence of crime, but very scant detailed information such as features and clothes is obtained due to the limited camera performance. Height, however, is relatively not significantly influenced by the camera performance. This paper studied the height measurement method using images from a CCTV. The information on the height was obtained via photogrammetry, including the reference points in the photographed area and the calculation of the relationship between a 3D space and a 2D image through linear and nonlinear calibration. Using this correlation, this paper suggested the height measurement method, which projects a 3D virtual ruler onto the image. This method has been proven to offer more stable values within the range of data convergence than those of other existing methods.

  6. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements; Um metodo para determinar um indicador para calcular dose efetiva devida a inalacao de Radonio e seus descendentes utilizando medicoes in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Julio Jose da Silva


    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of {sup 210} Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measurements were performed in a whole body counter. With this technique, the exposed individuals become, in affect, their own samplers and dosimeters and the estimate of cumulative exposure is not affected by the variation of the atmospheric concentration of radon and its progeny in time and space. Forty individuals identified as living in homes with radon levels ranging from about 740 Bq/m{sup 3} to 150.000 Bq/m{sup 3} were measured. Also, additional 34 measurements were made on personnel from NYUMC/NIEM who live in a residential area surrounding the laboratory in which the levels of radon have been shown to be at below average values. To realize these measurements a methodology was developed to determine the subject's background, using a head phantom made with a cubic plastic container containing known amounts of potassium and calcium dissolved in four liters of water. The effective doses calculated from the in vivo measurements are compared to effective doses

  7. Videodensitometric Methods for Cardiac Output Measurements

    Directory of Open Access Journals (Sweden)

    Massimo Mischi


    Full Text Available Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  8. A method for measuring team skills. (United States)

    Annett, J; Cunningham, D; Mathias-Jones, P


    A method for identifying and measuring team skills, specifying team training objectives and the objective assessment of team performance is described. First, a theoretical model of team performance is outlined and then a version of Hierarchical Task Analysis specially adapted to analysing team tasks is described. The two are then combined into an event-related measurement scheme, which provides a set of objective criteria by which key team skills can be assessed. The method is illustrated by an example from a basic Anti-Submarine Warfare training exercise which forms part of the Principal Warfare Officer's course at the Royal Naval School of Maritime Operations. The potential of the method is discussed, including the opportunities it may provide for the standardization of team performance assessment and in the use of new technology in the partial automation of shore-based and ship-board team training.

  9. Bayesian methods for measures of agreement

    CERN Document Server

    Broemeling, Lyle D


    Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...

  10. High temperature spectral emissivity measurement using integral blackbody method (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter


    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  11. Accuracy verification and analysis of SEA method for calculating radiation noise pressure of submerged cylindrical shell

    Directory of Open Access Journals (Sweden)

    ZHANG Kai


    Full Text Available Statistical Energy Analysis(SEAis an effective method for solving high frequency structural vibration and acoustic radiation problems. When we use it to analyze submerged structures, it is necessary to consider the actions of fluid as'heavy fluid' relative to structures, which differs from when it is used in the air. The simple model of a submerged cylindrical shell is used to calculate at a higher frequency using FEM/BEM. The SEA and FEM method are then used to calculate the radiation sound pressure level, verifying the accuracy of the SEA prediction for submerged structures. The classified method of subsystems and the effect of the error of the internal loss factor on the accuracy of the results are explored. The calculated results of SEA and FEM/BEM are very different below 400 Hz, and basically the same above 400 Hz. The error caused by the division of different subsystems is about 5 dB. The error in the calculation results caused by the error of the internal loss factor is 2-3 dB. It is possible to use SEA to calculate the radiated noise of an underwater cylindrical shell when the modal density is high enough.For the cylindrical shell, dividing the subsystems along the circumference is not reliable at a low frequency, as it may lead to inaccurate calculation results. At a high frequency, it is more accurate to divide the subsystems along the circumference than the axle. For subsystems with high energy, the internal loss factor has a greater effect on the simulation results, so a more accurate way should be taken to determine the internal loss factor of subsystems with high energy.

  12. A comparison of several methods for the calculation of vibration mode shape derivatives (United States)

    Sutter, T. R.; Camarda, C. J.; Walsh, J. L.; Adelman, H. M.


    Four methods for the calculation of derivatives of vibration mode shapes (eigenvectors) with respect to design parameters are reviewed and compared. These methods (finite difference method, Nelson's method, modal method and a modified modal method) are implemented in a general-purpose commercial finite element program and applied to a cantilever beam and a stiffened cylinder with a cutout. A beam tip mass, a beam root height and specific dimensions of the cylinder model comprise the design variables. Data are presented showing the amount of central processor time used to compute the first four eigenvector derivatives for each example problem; errors and rapidity of convergence of the approximate derivative to the exact derivative are taken into account. Nelson's method proved to be most reliable and efficient.

  13. Effects of Contact Lens Wear on Biometry Measurements for Intraocular Lens Calculations. (United States)

    Meyer, Jay J; Kim, Michelle J; Kim, Terry


    To determine the effects of contact lens (CL) wear on biometry measurements for cataract surgery and whether a CL hiatus can reduce the prediction error of intraocular lens (IOL) calculations. Retrospective, interventional case series of eyes that received repeat biometry measurements for IOL calculations after discontinuing hard or soft CLs for at least 14 days. intersession change in axial length, average keratometry, astigmatism, and axis. change in recommended IOL power and toricity, postoperative refraction prediction error. Thirty-two eyes of 16 patients had a mean duration of CL wear (12 hard and 20 soft) of 39.5 years (range, 29-55 years) and mean CL hiatus duration of 25 days (range, 14-56 days). Mean absolute intersession change in axial length was 0.016 mm (range, 0-0.05 mm), average keratometry 0.31 D (range, 0.02-1.01 D), astigmatism 0.41 D (range, 0.01-1.10 D), and axis 6.3° (range, 0-28°). The IOL power predicting the lowest postoperative spherical equivalent changed for 17 of 32 eyes (by 0.5 D for 12 eyes and 1.0 D for five eyes). Recommended IOL toricity changed for nine of 14 eyes (by 0.75 D for six eyes and 1.50 D for three eyes). The median absolute prediction error of IOL calculations was 0.69 D (range, 0.19-2.93 D) before and 0.57 D (range, 0.01-2.82 D) after the CL hiatus (P=0.16). Contact lens wear may affect biometry measurements and subsequent IOL power and toricity selection. For some eyes, repeating biometry measurements after a CL hiatus may improve the accuracy of IOL calculations.

  14. Comparison of Measured and Calculated Coupling between a Waveguide and an RF Cavity Using CST Microwave Studio

    Energy Technology Data Exchange (ETDEWEB)

    J. Shi; H. Chen; S. Zheng; D. Li; R.A. Rimmer; H. Wang


    Accurate predications of RF coupling between an RF cavity and ports attached to it have been an important study subject for years for RF coupler and higher order modes (HOM) damping design. We report recent progress and a method on the RF coupling simulations between waveguide ports and RF cavities using CST Microwave Studio in time domain (Transit Solver). Comparisons of the measured and calculated couplings are presented. The simulated couplings and frequencies agree within {approx} 10% and {approx} 0.1% with the measurements, respectively. We have simulated couplings with external Qs ranging from {approx} 100 to {approx} 100,000, and confirmed with measurements. The method should also work well for higher Qs, and can be easily applied in RF power coupler designs and HOM damping for normal-conducting and superconducting cavities.

  15. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars


    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...... indicates that this leads to overestimation of the soil strength at low stress levels. The calculations are performed with the finite element method, and the plastic integration is carried out in principal stress space which simplifies the computations considerably....

  16. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  17. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations (United States)

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.


    We implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  18. Domain overlap matrices from plane-wave-based methods of electronic structure calculation (United States)

    Golub, Pavlo; Baranov, Alexey I.


    Plane waves are one of the most popular and efficient basis sets for electronic structure calculations of solids; however, their delocalized nature makes it difficult to employ for them classical orbital-based methods of chemical bonding analysis. The quantum chemical topology approach, introducing chemical concepts via partitioning of real space into chemically meaningful domains, has no difficulties with plane-wave-based basis sets. Many popular tools employed within this approach, for instance delocalization indices, need overlap integrals over these domains—the elements of the so called domain overlap matrices. This article reports an efficient algorithm for evaluation of domain overlap matrix elements for plane-wave-based calculations as well as evaluation of its implementation for one of the most popular projector augmented wave (PAW) methods on the small set of simple and complex solids. The stability of the obtained results with respect to PAW calculation parameters has been investigated, and the comparison of the results with the results from other calculation methods has also been made.

  19. [Method to Calculate the Yield Load of Bone Plate in Four-point Bending Test]. (United States)

    Jia, Xiaohang; Zhou, Jun; Ma, Jun; Wen, Yan


    This paper developed a calculation method to acquire the yield load P of bone plate during four-point bending test. This method is based on the displacement--force (δ-F) curve function f(M)(δ) obtained from the test, each slope of the curve was calculated using piecewise smooth function and the line segment in f(M)(δ) elastic deformation area was searched by setting the minimum slope T. Slope S was obtained through linear fit so as to build parallel displacement function f(L)(δ). Then, approximating intersection point of f(M)(δ) and f(L)(δ) was obtained through linear interpolation. Thus, yield load P was acquired. The method in the paper was loyal to YY/T 0342-2002 regulation and was liable to program calculation. The calculating process was nothing to do with whether the initial point during the test was preloaded or unloaded, and there was no need to correct the original point. In addition, T was set in an ideal fitting level guaranteed by the fitting coefficient of determination R2, and thus S was very close to the real value, and P was with a high accuracy.

  20. Calculation of RABBIT and Simulator Worth in the HFIR Hydraulic Tube and Comparison with Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Slater, CO


    To aid in the determinations of reactivity worths for target materials in a proposed High Flux Isotope Reactor (HFIR) target configuration containing two additional hydraulic tubes, the worths of cadmium rabbits within the current hydraulic tube were calculated using a reference model of the HFIR and the MCNP5 computer code. The worths were compared to measured worths for both static and ejection experiments. After accounting for uncertainties in the calculations and the measurements, excellent agreement between the two was obtained. Computational and measurement limitations indicate that accurate estimation of worth is only possible when the worth exceeds 10 cents. Results indicate that MCNP5 and the reactor model can be used to predict reactivity worths of various samples when the expected perturbations are greater than 10 cents. The level of agreement between calculation and experiment indicates that the accuracy of such predictions would be dependent solely on the quality of the nuclear data for the materials to be irradiated. Transients that are approximated by ''piecewise static'' computational models should likewise have an accuracy that is dependent solely on the quality of the nuclear data.


    Directory of Open Access Journals (Sweden)

    Božidar Liščić


    Full Text Available This paper explains the need for a database of cooling intensities for liquid quenchants, in order to predict the quench hardness, microstructure, stresses and distortion, when real engineering components of complex geometry are quenched. The existing laboratory procedures for cooling intensity evaluation, using small test specimens, and Lumped-Heat-Capacity Method for calculation of heat transfer coefficient, are presented. Temperature Gradient Method for heat transfer calculation in workshop conditions, when using the Liscic/Petrofer probe, has been elaborated. Critical heat flux densities and their relation to the initial heat flux density, is explained. Specific facilities for testing quenching intensity in workshop conditions, are shown. The two phase project of the International Federation for Heat Treatment and Surface Engineering (IFHTSE, as recently approved, is mentioned.

  2. Substituting EMC emission measurement by field and cable scan method using measured transfer function (United States)

    Rinas, D.; Jia, J.; Zeichner, A.; Frei, S.


    Today EMC emissions of automotive components are often measured in anechoic chambers by an antenna at fixed position according to CISPR 25 (ALSE-method). The antenna voltage often cannot sufficiently describe the behaviour of the measured electronic components and systems. Furthermore space requirements and costs are very high for the ALSE-method. Field- and cable-scan methods combined with near-field to far-field transformation techniques might be a good alternative. Residual reflections from the walls, the metallic floor, the measuring table, interaction of the antenna with the environment, and other factors affect the measurements. Thus, models which only regard the current distribution for near- and far field calculation cannot produce results equal to a chamber measurement. In this paper methods for computing transfer functions for the substitution of EMC antenna measurements with field- and cable scans in a specified calibration area are introduced. To consider influences of the environment, the environment is characterized in a first step and included with transfer functions in the calculation process for the equivalent ALSE-field.

  3. Calculation of MP2 and coupled-cluster molecular properties using the q-integral method. (United States)

    de Oliveira, H C B; Rangel, F C; Esteves, C S; Vieira, F M C; Mundim, K C


    The main purpose of this paper is to report results of quantum mechanical calculation of the H(2) system using the q-Integral method with correlation corrections to the SCF (Self Consistent Field) wave functions included through the Møller-Plesset second-order perturbation (MP(2)) and Coupled-Cluster (CC) theory. Using the q-Integral method, we evaluated potential energy curves, rovibrational spectroscopy constants, rovibrational spectra, interatomic equilibrium distance and longitudinal static hyper(polarizability). All calculations were carried out through the STO-3G, STO-6G, and double-zeta (DZV) atomic basis set. The q-Integral method was implemented in the source code of the general ab initio quantum chemistry package GAMESS.

  4. Conjugate-gradient optimization method for orbital-free density functional calculations. (United States)

    Jiang, Hong; Yang, Weitao


    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  5. VOFTools - A software package of calculation tools for volume of fluid methods using general convex grids (United States)

    López, J.; Hernández, J.; Gómez, P.; Faura, F.


    The VOFTools library includes efficient analytical and geometrical routines for (1) area/volume computation, (2) truncation operations that typically arise in VOF (volume of fluid) methods, (3) area/volume conservation enforcement (VCE) in PLIC (piecewise linear interface calculation) reconstruction and(4) computation of the distance from a given point to the reconstructed interface. The computation of a polyhedron volume uses an efficient formula based on a quadrilateral decomposition and a 2D projection of each polyhedron face. The analytical VCE method is based on coupling an interpolation procedure to bracket the solution with an improved final calculation step based on the above volume computation formula. Although the library was originally created to help develop highly accurate advection and reconstruction schemes in the context of VOF methods, it may have more general applications. To assess the performance of the supplied routines, different tests, which are provided in FORTRAN and C, were implemented for several 2D and 3D geometries.

  6. A steady-state target calculation method based on "point" model for integrating processes. (United States)

    Pang, Qiang; Zou, Tao; Zhang, Yanyan; Cong, Qiumei


    Aiming to eliminate the influences of model uncertainty on the steady-state target calculation for integrating processes, this paper presented an optimization method based on "point" model and a method determining whether or not there is a feasible solution of steady-state target. The optimization method resolves the steady-state optimization problem of integrating processes under the framework of two-stage structure, which builds a simple "point" model for the steady-state prediction, and compensates the error between "point" model and real process in each sampling interval. Simulation results illustrate that the outputs of integrating variables can be restricted within the constraints, and the calculation errors between actual outputs and optimal set-points are small, which indicate that the steady-state prediction model can predict the future outputs of integrating variables accurately. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Calculation method of multi-span tension stringing in transmission line (United States)

    Qin, Jian; Wan, Jiancheng; Feng, Liang; Peng, Fei; Qiao, Liang


    The process of multi-span tension stringing in transmission line is analysed based on elastic catenary equation. From the tower condition of transmission line, the conservation equations of span spacing and elevation difference are built for conductor, and the tension balance equations of conductor between different spans are got considering the rolling friction of the pulley. Added the external tension condition, the overall nonlinear equations of multi-span tension stringing are set up which can be solved by Newton iteration method. The iterative process is listed for the calculation of the conductor tension and sags in engineering problems. Compared the results with the numerical example, this method are proved the reliability. The calculation amount, efficiency and accuracy of this method can meet the needs of the practical engineering.

  8. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)


    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  9. Semi-analytical method for calculating aeroelastic effect of profiled rod flying at high velocity

    Directory of Open Access Journals (Sweden)

    Hui-jun Ning


    Full Text Available The key technique of a kinetic energy rod (KER warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method (CFD/FEM, respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.

  10. Proposed method to calculate FRMAC intervention levels for the assessment of radiologically contaminated food and comparison of the proposed method to the U.S. FDA's method to calculate derived intervention levels

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Terrence D.; Hunt, Brian D.


    This report reviews the method recommended by the U.S. Food and Drug Administration for calculating Derived Intervention Levels (DILs) and identifies potential improvements to the DIL calculation method to support more accurate ingestion pathway analyses and protective action decisions. Further, this report proposes an alternate method for use by the Federal Emergency Radiological Assessment Center (FRMAC) to calculate FRMAC Intervention Levels (FILs). The default approach of the FRMAC during an emergency response is to use the FDA recommended methods. However, FRMAC recommends implementing the FIL method because we believe it to be more technically accurate. FRMAC will only implement the FIL method when approved by the FDA representative on the Federal Advisory Team for Environment, Food, and Health.

  11. Calculation of new snow densities from sub-daily automated snow measurements (United States)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc


    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1

  12. Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations. (United States)

    Shi, Junhui; Ikäläinen, Suvi; Vaara, Juha; Romalis, Michael V


    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multipass optical cell to perform the first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier theoretical predictions. Detailed first-principles quantum mechanical NSOR calculations are found to be in agreement with the measurements.

  13. Observation of optical chemical shift by precision nuclear spin optical rotation measurements and calculations

    CERN Document Server

    Shi, Junhui; Vaara, Juha; Romalis, Michael V


    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multi-pass optical cell to perform first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier predictions. Detailed first principles quantum-mechanical NSOR calculations are found to be in good agreement with the measurements.

  14. Energy Labelling of Glazings and Windows in Denmark: Calculated and Measured Values

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Svend; Mogensen, Morten Møller


    a common and well-defined method to characterise the performance of glazings and windows on the Danish market has been recognised. This paper gives a short description of the Danish Energy Labelling and Rating system for glazings and windows, which was put into operation during 2000. Furthermore...... in three different programmes (FRAME, THERM and WinIso). The comparison indicates that all investigated programmes are qualified for calculating energy labelling data for glazings and windows...

  15. Methodes de calcul des forces aerodynamiques pour les etudes des interactions aeroservoelastiques (United States)

    Biskri, Djallel Eddine

    L'aeroservoelasticite est un domaine ou interagissent la structure flexible d'un avion, l'aerodynamique et la commande de vol. De son cote, la commande du vol considere l'avion comme une structure rigide et etudie l'influence du systeme de commande sur la dynamique de vol. Dans cette these, nous avons code trois nouvelles methodes d'approximation de forces aerodynamiques: Moindres carres corriges, Etat minimal corrige et Etats combines. Dans les deux premieres methodes, les erreurs d'approximation entre les forces aerodynamiques approximees par les methodes classiques et celles obtenues par les nouvelles methodes ont les memes formes analytiques que celles des forces aerodynamiques calculees par LS ou MS. Quant a la troisieme methode, celle-ci combine les formulations des forces approximees avec les methodes standards LS et MS. Les vitesses et frequences de battement et les temps d'executions calcules par les nouvelles methodes versus ceux calcules par les methodes classiques ont ete analyses.

  16. Differences in glenohumeral translations calculated with three methods: Comparison of relative positions and contact point. (United States)

    Matsuki, Keisuke; Kenmoku, Tomonori; Ochiai, Nobuyasu; Sugaya, Hiroyuki; Banks, Scott A


    Several published articles have reported 3-dimensional glenohumeral kinematics using model-image registration techniques. However, different methods to compute the translations were used in these articles. The purpose of this study was to compare glenohumeral translations calculated with three different methods. Fifteen healthy males with a mean age of 31 years (range, 27-36 years old) were enrolled in this study. Fluoroscopic images during scapular plane elevation were recorded at 30 frames per second for the right shoulder in each subject, and CT-derived models of the humerus and the scapula were matched with the silhouette of the bones in the fluoroscopic images using model-image registration techniques. Glenohumeral translations were computed with three methods: relative position of the origins of the humeral and scapular models, contact points of the two models, and relative positions based upon the calculated glenohumeral center of rotation (CoR). In the supero-inferior direction, translations calculated with the three methods were roughly parallel, with the maximum difference of 1.6mm (Ptranslations with the origins and CoR were parallel; however, translations computed with the origins and contact point describe arcs that differ by almost 2mm at low humeral elevation angles and converge at higher degrees of humeral elevation (Ptranslations calculated using three methods showed statistically significant differences that may be important when comparing detailed results of different studies. However, these relatively small differences are likely subclinical, so that all three methods can reasonably be used for description of glenohumeral translations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Material permeance measurement system and method (United States)

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN


    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  18. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    Directory of Open Access Journals (Sweden)

    Huang Can


    Full Text Available In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation (MTI is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.

  19. Measured and calculated optical property profiles in the mixed layer and free troposphere (United States)

    Rosen, James M.; Bodhaine, Barry A.; Boatman, Joe F.; Deluisi, John J.; Post, M. J.; Kim, Young; Schnell, Russell C.; Sheridan, Patrick J.; Garvey, Dennis M.


    Nearly simultaneous measurements of the physical and optical properties of mixed layer and free tropospheric aerosols near Boulder, Colorado, were made on several occasions using aircraft, balloon, and ground-based sensors. This effort (Front Range Lidar, Aircraft, and Balloon experiment (FRLAB)) was conducted with the purpose of obtaining a diverse, self-consistent data set that could be used for testing optical model calculations based on measured physical characteristics such as apparent size distribution, composition, and shape. It was found that even with the uncertainties involved, the model predictions are in good agreement with the measurements in the visible and near infrared wavelength regions. At CO2 lidar wavelengths there is considerably more uncertainty in both the calculated and measured values; however, within the estimated errors there appears to be satisfactory agreement except for the highest free tropospheric layer studied. The results also indicate that during FRLAB the aerosol in the boundary layer and free troposphere behaved as spherical particles for optical modeling purposes. The utility of the observations for determining the extinction-to-backscatter ratio relevant to aerosols in the boundary layer and free troposphere is described with typical measured values being in the 20 to 30 sr range.

  20. PREDICHAT: First order performance calculations of windturbine rotors using the method of the acceleration potential (United States)

    Vanbussel, G. J. W.


    A method is described for the calculation of aerodynamic loads on a horizontal axis wind turbine rotor. The method is based upon acceleration potential theory. An approximate solution of the boundary value problem has been obtained using a matched asymptotic expansion technique. Furthermore a numerical integration procedure has been applied for the integration of the pressure field gradient necessary for fulfillment of the final boundary condition. A partial delinearization of the method concerning the axial induction velocities turned out to be necessary. This is carried out in a numerical integration step.

  1. Heat production in growing pigs calculated according to the RQ and CN methods

    DEFF Research Database (Denmark)

    Christensen, K; Chwalibog, André; Henckel, S


    1. Heat production, calculated according to the respiratory quotient methods, HE(RQ), and the carbon nitrogen balance method, HE(CN), was compared using the results from a total of 326 balance trials with 56 castrated male pigs fed different dietary composition and variable feed levels during...... the difference. 6. In pigs receiving a cereal based diet, HE(RQ) may be expected to give 3-4% higher values than HE(CN), but in case easily available carbohydrates (glucose, sucrose) or high-fibre diets are provided, the differences may be larger. 7. Both methods were carried out with similar accuracy...

  2. Direct excess entropy calculation for a Lennard-Jones fluid by the integral equation method. (United States)

    Jakse, N; Charpentier, I


    The present work is devoted to the calculation of excess entropy by means of correlation functions, in the framework of integral equation theory. The tangent linear method is set up to get exact thermodynamic derivatives of the pair-correlation function, essential for the calculation of the physical quantities, as well as to carry out an optimization process for the achievement of thermodynamic consistency. The two-body entropy of the Lennard-Jones fluid is in very good agreement with the available molecular dynamics results, attesting the high degree of accuracy of the integral equation scheme. It is shown that an accurate prediction of the excess entropy and the resulting residual multiparticle entropy relies on the correct evaluation of the excess chemical potential, especially at high density. Two independent routes to calculate the latter are compared, and the consequences are discussed.

  3. Implementation of a method for calculating temperature-dependent resistivities in the KKR formalism (United States)

    Mahr, Carsten E.; Czerner, Michael; Heiliger, Christian


    We present a method to calculate the electron-phonon induced resistivity of metals in scattering-time approximation based on the nonequilibrium Green's function formalism. The general theory as well as its implementation in a density-functional theory based Korringa-Kohn-Rostoker code are described and subsequently verified by studying copper as a test system. We model the thermal expansion by fitting a Debye-Grüneisen curve to experimental data. Both the electronic and vibrational structures are discussed for different temperatures, and employing a Wannier interpolation of these quantities we evaluate the scattering time by integrating the electron linewidth on a triangulation of the Fermi surface. Based thereupon, the temperature-dependent resistivity is calculated and found to be in good agreement with experiment. We show that the effect of thermal expansion has to be considered in the whole calculation regime. Further, for low temperatures, an accurate sampling of the Fermi surface becomes important.


    Directory of Open Access Journals (Sweden)

    Danuta Owczarek


    Full Text Available The paper presents a method for estimating the uncertainty of optical coordinate measurement based on the use of information about the geometry and the size of measured object as well as information about the measurement system, i.e. maximum permissible error (MPE of the machine, selection of a sensor, and also the required measurement accuracy, the number of operators, measurement strategy and external conditions contained in the developed uncertainty database. Estimation of uncertainty is done with the use of uncertainties of measurements of basic geometry elements determined by methods available in the Laboratory of Coordinate Metrology at Cracow University of Technology (LCM CUT (multi-position, comparative and developed in the LCM CUT method dedicated for non-contact measurements and then with the use of them to determine the uncertainty of a given measured object. Research presented in this paper are aimed at developing a complete database containing all information needed to estimate the measurement uncertainty of various objects, even of a very complex geometry based on previously performed measurements.

  5. Difference in the Minimum Horizontal Stress Magnitudes Between Direct Measurements and Poroelastic Equation-Based Calculation (United States)

    Vo, U. D.; Chang, C.


    Horizontal stress profile with depth is needed for hydraulic fracture design, wellbore stability analysis, and sanding potential assessment. While vertical stress (Sv) can be calculated from overburden, horizontal stresses normally have to be measured. A conventional alternative is to use a linear poroelasticity equation derived based on the assumption of uniaxially strained basins, which gives minimum horizontal stress magnitude (Shmin) as a function of Sv, pore pressure and Poisson's ratio (ν). In order to check the reliability of the equation, we compare the calculated Shmin with measured values through e.g., leak-off tests (LOT). We compile Shmin and pore pressure data from 6 major petroleum fields worldwide (Cuu Long basin, offshore Vietnam; Champion field, offshore Brunei; Visund field, North Sea; Gippsland basin, offshore SE Australia; St. Lawrence Lowlands basin, East Canada; Popeye basin, Gulf of Mexico) for this comparison. For calculation of Shmin via the equation, we assume ν of 0.25 and Biot's constant of unity. The comparison shows that the calculated Shmin values generally underestimate the measured values by a range between 4% and as much as 29% depending on the regions. We attempt to explain qualitatively the gaps between the measured and the calculated Shmin (ΔShmin) in terms of tectonic stress. In Cuu Long, although tectonically active, ΔShmin is quite low (4%) throughout the 4.3 km depth investigated. In contrast, Visund and St. Lawrence Lowlands, although tectonically stable, show appreciable ΔShmin (average 9% and 22% respectively). These results imply that ΔShmin may not depend solely on tectonic stress. In Popeye where tectonics is active, ΔShmin is as high as 24%. Popeye is the only one among the fields investigated that exhibits high ΔShmin likely attributed to tectonic stress. The measured Shmin values in Champion and Gippsland are so scattered that any prediction on magnitudes might not be feasible. The wide variation of

  6. Beam Parameters Measurement Based On Tv Methods

    CERN Document Server

    Klimenkov, E; Milichenko, Yu; Voevodin, V


    The paper describes hardware and software used to control TV-cameras and to process TV-images of luminescent screens placed along the beam transfer lines. Industrial devices manually control the movements and focusing of the cameras. All devices are linked to PC via PCI interfaces with homemade drivers for Linux OS and provide both selection of camera and digitizing of video signal synchronized with beam. One part of software provides means to set initial parameters using PC consol. Thus an operator can choose contrast, brightness, some number of significant points on TV-image to calculate beam position and its size. Second part supports remote TV controls and data processing from Control Rooms of U-70 complex using set initial parameters. First experience and results of the method realization are discussed.

  7. Electric Field Quantitative Measurement System and Method (United States)

    Generazio, Edward R. (Inventor)


    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  8. Methods for calculation of compensation for expropriation of a foreign investment

    Directory of Open Access Journals (Sweden)

    Đundić Petar M.


    Full Text Available A legal expropriation of a foreign investment without exception includes an obligation of the host state to pay the investor an appropriate compensation for the taking. Bilateral treaties for protection and encouragement of investments which usually serve as a normative basis for arbitration of expropriation disputes contain provisions instructing contracting states to provide 'adequate', 'just' compensation or to pay the compensation in 'full' or 'genuine' value of the expropriated investment etc. However, the sole existence of the standard for payment of compensation is not by itself enough for establishing the precise sum of compensation in particular cases. This purpose is served by mathematical methods of calculation employed used in judicial and arbitral practice. The paper contains an overview of the most important methods for calculation in practice: the market value method, the discounted cash flow method and the book value method. It also identifies the differences between situations in which different methods are used and explains how the nature of an investment and circumstances of particular case affect the choice of a particular method by the arbitral tribunal.

  9. Solid-liquid coexistence in small systems: A statistical method to calculate melting temperatures (United States)

    Hong, Qi-Jun; van de Walle, Axel


    We propose an efficient and accurate scheme to calculate the melting point (MP) of materials. This method is based on the statistical analysis of small-size coexistence molecular dynamics simulations. It eliminates the risk of metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated MPs. The method converges to the exact result in the limit of large system size. An accuracy within 100 K in MP is usually achieved when simulation contains more than 100 atoms. Density functional theory examples of tantalum, high-pressure sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the MP is a design criterion.

  10. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method (United States)

    Yoshizawa, Terutaka; Hada, Masahiko


    From the matrix representation of the modified Dirac equation based on the restricted magnetically balanced gauge-including atomic orbital (RMB-GIAO) basis, previously one of the authors (Yoshizawa) and co-workers derived the two-component normalized elimination of the small component (2c-NESC) formulas for 2c relativistic calculations of nuclear magnetic resonance (NMR) shielding tensors. In the present study, at the Hartree-Fock (HF) level, we numerically confirm that for several molecules the RMB-GIAO-based 2c-NESC method provides gauge-origin independent NMR shielding values. Moreover, we investigate the accuracy of the 2c-NESC method by comparison with the 4c relativistic NMR calculations at the HF level. For noble gas dimers and Hg compounds, it is shown that the 2c-NESC method reproduces the 4c relativistic NMR shielding constants within errors of 0.12%-0.31% of the 4c relativistic values and yields chemical shifts sufficiently close to the 4c relativistic results. Also, we discuss the basis set convergence of NMR shielding constants calculated with the 2c-NESC and 4c relativistic methods.

  11. Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models. (United States)

    du Plessis, F C; Willemse, C A; Lötter, M G; Goedhals, L


    This paper shows the contribution that Monte Carlo methods make in regard to dose distribution calculations in CT based patient models and the role it plays as a gold standard to evaluate other dose calculation algorithms. The EGS4 based BEAM code was used to construct a generic 8 MV accelerator to obtain a series of x-ray field sources. These were used in the EGS4 based DOSXYZ code to generate beam data in a mathematical water phantom to set up a beam model in a commercial treatment planning system (TPS), CADPLAN V.2.7.9. Dose distributions were calculated with the Batho and ETAR inhomogeneity correction algorithms in head/sinus, lung, and prostate patient models for 2 x 2, 5 x 5, and 10 X 10 cm2 open x-ray beams. Corresponding dose distributions were calculated with DOSXYZ that were used as a benchmark. The dose comparisons are expressed in terms of 2D isodose distributions, percentage depth dose data, and dose difference volume histograms (DDVH's). Results indicated that the Batho and ETAR methods contained inaccuracies of 20%-70% in the maxillary sinus region in the head model. Large lung inhomogeneities irradiated with small fields gave rise to absorbed dose deviations of 10%-20%. It is shown for a 10 x 10 cm2 field that DOSXYZ models lateral scatter in lung that is not present in the Batho and ETAR methods. The ETAR and Batho methods are accurate within 3% in a prostate model. We showed how the performance of these inhomogeneity correction methods can be understood in realistic patient models using validated Monte Carlo codes such as BEAM and DOSXYZ.

  12. Comparison of Mercury Measurement Methods Using Two Active Filter Measurement Methods and a Tekran Speciation Unit (United States)

    Pierce, A.; Gustin, M. S.; Huang, J.; Heidecorn, K.


    Three active mercury (Hg) measurement methods were operated side by side at an urban site (University of Nevada, Reno College of Agriculture Greenhouse facility, elev. 1370 m) in Reno, and at a high elevation site (Peavine Peak, elev. 2515 m) adjacent to Reno from December 2013 to October 2014. A model 602 BetaPlus Teledyne Advanced Pollution Instrumentation (TAPI, San Diego, CA USA) particulate measurement system was used to collect particulate matter on a 47 mm diameter cation exchange membrane (CEM, PN# MSTGS3R Mustang S, Pall Corp. Port Washington, NY) at a rate of 16.7 lpm for 24 hours to four days. Particulate concentrations were calculated using beta attenuation across the filters (non-destructive to filter material); the CEM filters were then analyzed for total Hg on a Tekran Total Hg Analysis system (model 2600, Tekran Instruments Corp. Knoxville, TN, USA). Concurrently, samples were collected on an active Hg membrane system. The active Hg membrane system consisted of 3 CEM filters sampling at a rate of 1 lpm for one to two weeks. CEM filters were then analyzed on the Tekran 2600. A Tekran speciation unit (model 1130, 1135, 2537) was also in operation and ambient air samples were analyzed for gaseous elemental Hg (GEM), gaseous oxidized Hg (GOM), and particulate bound Hg (PBM). Both the 602 BetaPlus system and the active Hg membrane system should collect RM on the CEM filters. The active Hg membrane system most likely captures mainly GOM based on previous tests with the Teflon inlet setup that indicated there was high static electricity effective in removing particulate matter. Flow rate and length of measurement (24 hours vs. four days) affected the Hg concentrations on the 602 BetaPlus system. Based on these measurements we hypothesize that, due to the high flow rate, and therefore short retention time, the 602 BetaPlus only captured PBM. It is also possible that there was loss of Hg to inlet walls due to the longer inlet on the 602 BetaPlus system

  13. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    CERN Document Server

    Scaff, L A M


    Physical factors associated to total body irradiation using sup 6 sup 0 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this wo...

  14. Calculation of the Local Free Energy Landscape in the Restricted Region by the Modified Tomographic Method. (United States)

    Chen, Changjun


    The free energy landscape is the most important information in the study of the reaction mechanisms of the molecules. However, it is difficult to calculate. In a large collective variable space, a molecule must take a long time to obtain the sufficient sampling during the simulation. To save the calculation quantity, decreasing the sampling region and constructing the local free energy landscape is required in practice. However, the restricted region in the collective variable space may have an irregular shape. Simply restricting one or more collective variables of the molecule cannot satisfy the requirement. In this paper, we propose a modified tomographic method to perform the simulation. First, it divides the restricted region by some hyperplanes and connects the centers of hyperplanes together by a curve. Second, it forces the molecule to sample on the curve and the hyperplanes in the simulation and calculates the free energy data on them. Finally, all the free energy data are combined together to form the local free energy landscape. Without consideration of the area outside the restricted region, this free energy calculation can be more efficient. By this method, one can further optimize the path quickly in the collective variable space.

  15. Method of pectus excavatum measurement based on structured light technique (United States)

    Glinkowski, Wojciech; Sitnik, Robert; Witkowski, Marcin; Kocoń, Hanna; Bolewicki, Pawel; Górecki, Andrzej


    We present an automatic method for assessment of pectus excavatum severity based on an optical 3-D markerless shape measurement. A four-directional measurement system based on a structured light projection method is built to capture the shape of the body surface of the patients. The system setup is described and typical measurement parameters are given. The automated data analysis path is explained. Their main steps are: normalization of trunk model orientation, cutting the model into slices, analysis of each slice shape, selecting the proper slice for the assessment of pectus excavatum of the patient, and calculating its shape parameter. We develop a new shape parameter (I3ds) that shows high correlation with the computed tomography (CT) Haller index widely used for assessment of pectus excavatum. Clinical results and the evaluation of developed indexes are presented.

  16. Nano-Lazar: Read across Predictions for Nanoparticle Toxicities with Calculated and Measured Properties

    Directory of Open Access Journals (Sweden)

    Christoph Helma


    Full Text Available The lazar framework for read across predictions was expanded for the prediction of nanoparticle toxicities, and a new methodology for calculating nanoparticle descriptors from core and coating structures was implemented. Nano-lazar provides a flexible and reproducible framework for downloading data and ontologies from the open eNanoMapper infrastructure, developing and validating nanoparticle read across models, open-source code and a free graphical interface for nanoparticle read-across predictions. In this study we compare different nanoparticle descriptor sets and local regression algorithms. Sixty independent crossvalidation experiments were performed for the Net Cell Association endpoint of the Protein Corona dataset. The best RMSE and r2 results originated from models with protein corona descriptors and the weighted random forest algorithm, but their 95% prediction interval is significantly less accurate than for models with simpler descriptor sets (measured and calculated nanoparticle properties. The most accurate prediction intervals were obtained with measured nanoparticle properties (no statistical significant difference (p < 0.05 of RMSE and r2 values compared to protein corona descriptors. Calculated descriptors are interesting for cheap and fast high-throughput screening purposes. RMSE and prediction intervals of random forest models are comparable to protein corona models, but r2 values are significantly lower.

  17. Application of the Activity-Based Costing Method for Unit-Cost Calculation in a Hospital (United States)

    Javid, Mahdi; Hadian, Mohammad; Ghaderi, Hossein; Ghaffari, Shahram; Salehi, Masoud


    Background: Choosing an appropriate accounting system for hospital has always been a challenge for hospital managers. Traditional cost system (TCS) causes cost distortions in hospital. Activity-based costing (ABC) method is a new and more effective cost system. Objective: This study aimed to compare ABC with TCS method in calculating the unit cost of medical services and to assess its applicability in Kashani Hospital, Shahrekord City, Iran. Methods: This cross-sectional study was performed on accounting data of Kashani Hospital in 2013. Data on accounting reports of 2012 and other relevant sources at the end of 2012 were included. To apply ABC method, the hospital was divided into several cost centers and five cost categories were defined: wage, equipment, space, material, and overhead costs. Then activity centers were defined. ABC method was performed into two phases. First, the total costs of cost centers were assigned to activities by using related cost factors. Then the costs of activities were divided to cost objects by using cost drivers. After determining the cost of objects, the cost price of medical services was calculated and compared with those obtained from TCS. Results: The Kashani Hospital had 81 physicians, 306 nurses, and 328 beds with the mean occupancy rate of 67.4% during 2012. Unit cost of medical services, cost price of occupancy bed per day, and cost per outpatient service were calculated. The total unit costs by ABC and TCS were respectively 187.95 and 137.70 USD, showing 50.34 USD more unit cost by ABC method. ABC method represented more accurate information on the major cost components. Conclusion: By utilizing ABC, hospital managers have a valuable accounting system that provides a true insight into the organizational costs of their department. PMID:26234974

  18. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. (United States)

    Woods, Christopher J; Manby, Frederick R; Mulholland, Adrian J


    The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.

  19. Studies with group treatments required special power calculations, allocation methods, and statistical analyses. (United States)

    Faes, Miriam C; Reelick, Miriam F; Perry, Marieke; Olde Rikkert, Marcel G M; Borm, George F


    In some trials, the intervention is delivered to individuals in groups, for example, groups that exercise together. The group structure of such trials has to be taken into consideration in the analysis and has an impact on the power of the trial. Our aim was to provide optimal methods for the design and analysis of such trials. We described various treatment allocation methods and presented a new allocation algorithm: optimal batchwise minimization (OBM). We carried out a simulation study to evaluate the performance of unrestricted randomization, stratification, permuted block randomization, deterministic minimization, and OBM. Furthermore, we described appropriate analysis methods and derived a formula to calculate the study size. Stratification, deterministic minimization, and OBM had considerably less risk of imbalance than unrestricted randomization and permuted block randomization. Furthermore, OBM led to unpredictable treatment allocation. The sample size calculation and the analysis of the study must be based on a multilevel model that takes the group structure of the trial into account. Trials evaluating interventions that are carried out in subsequent groups require adapted treatment allocation, power calculation, and analysis methods. From the perspective of obtaining overall balance, we conclude that minimization is the method of choice. When the number of prognostic factors is low, stratification is an excellent alternative. OBM leads to better balance within the batches, but it is more complicated. It is probably most worthwhile in trials with many prognostic factors. From the perspective of predictability, a treatment allocation method, such as OBM, that allocates several subjects at the same time, is superior to other methods because it leads to the lowest possible predictability. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers (United States)

    Hopkins, Edward J


    A semiempirical method, in which potential theory is arbitrarily combined with an approximate viscous theory, for calculating the aerodynamic pitching moments for bodies of revolution is presented. The method can also be used for calculating the lift and drag forces. The calculated and experimental force and moment characteristics of 15 bodies of revolution are compared.

  1. High order aberrations calculation of a hexapole corrector using a differential algebra method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yongfeng, E-mail: [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao, Jingyi, E-mail: [School of Science, Chang’an University, Xi’an 710064 (China); Tang, Tiantong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)


    A differential algebraic (DA) method is proved as an unusual and effective tool in numerical analysis. It implements conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order of a practical hexapole corrector including round lenses and hexapole lenses. The program has been developed and tested as well. The electro-magnetic fields of arbitrary point are obtained by local analytic expressions, then field potentials are transformed into new forms which can be operated in the DA calculation. In this paper, the geometric and chromatic aberrations up to fifth order of a practical hexapole corrector system are calculated by the developed program.

  2. Calculations on nonlinear optical properties for large systems the elongation method

    CERN Document Server

    Gu, Feng Long; Springborg, Michael; Kirtman, Bernard


    For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.

  3. A new method for predicting the solar heat gain of complex fenestration systems: II, Detailed description of the matrix layer calculation

    Energy Technology Data Exchange (ETDEWEB)

    Klems, J.H.


    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. A preceding paper outlined the method and provided the physical derivation of the calculation. In this second of a series of related papers the detailed development of the matrix layer calculation is presented.

  4. Ion-optics calculations of the LLNL AMS system for biochemical 14C measurements (United States)

    Ognibene, T. J.; Brown, T. A.; Knezovich, J. P.; Roberts, M. L.; Southon, J. R.; Vogel, J. S.


    A dedicated AMS system for biochemical 14C measurements is being built at the Center for Accelerator Mass Spectrometry. The system is centered around a National Electrostatics Corporation Model 3SDH-1 1-MV Pelletron accelerator and is designed to accept two ion sources. The LLNL 64-sample Cs-sputter ion source with its zoom lens beam line is attached to one port of the electrostatic switching element. To insure efficient coupling of the source to the acceptance of the accelerator, ion-optics calculations of the low-energy injection beam line have been conducted; the results of which were used to determine the layout of the ion-optical components of the beam line. Beam tests of the low-energy injection line show that beam behavior was accurately predicted by the calculations.

  5. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2 (United States)

    Johnson, Kenneth L.; White, K. Preston, Jr.


    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  6. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations

    DEFF Research Database (Denmark)

    Kanno, I; Lassen, N A


    Two methods are described for calculation of regional cerebral blood flow from completed tomographic data of radioactive inert gas distribution in a slice of brain tissue. It is assumed that the tomographic picture gives the average inert gas concentration in each pixel over data collection perio...... are implemented using synthetic data of xenon-133 emission computed tomography and some of the difficulties likely to be encountered in practice are stressed....

  7. Analytical Method Used to Calculate Pile Foundations with the Widening Up on a Horizontal Static Impact (United States)

    Kupchikova, N. V.; Kurbatskiy, E. N.


    This paper presents a methodology for the analytical research solutions for the work pile foundations with surface broadening and inclined side faces in the ground array, based on the properties of Fourier transform of finite functions. The comparative analysis of the calculation results using the suggested method for prismatic piles, piles with surface broadening prismatic with precast piles and end walls with precast wedges on the surface is described.

  8. Spectrometric methods used in the calibration of radiodiagnostic measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, W. [Rijksuniversiteit Utrecht (Netherlands)


    Recently a set of parameters for checking the quality of radiation for use in diagnostic radiology was established at the calibration facility of Nederlands Meetinstituut (NMI). The establishment of the radiation quality required re-evaluation of the correction factors for the primary air-kerma standards. Free-air ionisation chambers require several correction factors to measure air-kerma according to its definition. These correction factors were calculated for the NMi free-air chamber by Monte Carlo simulations for monoenergetic photons in the energy range from 10 keV to 320 keV. The actual correction factors follow from weighting these mono-energetic correction factors with the air-kerma spectrum of the photon beam. This paper describes the determination of the photon spectra of the X-ray qualities used for the calibration of dosimetric instruments used in radiodiagnostics. The detector used for these measurements is a planar HPGe-detector, placed in the direct beam of the X-ray machine. To convert the measured pulse height spectrum to the actual photon spectrum corrections must be made for fluorescent photon escape, single and multiple compton scattering inside the detector, and detector efficiency. From the calculated photon spectra a number of parameters of the X-ray beam can be calculated. The calculated first and second half value layer in aluminum and copper are compared with the measured values of these parameters to validate the method of spectrum reconstruction. Moreover the spectrum measurements offer the possibility to calibrate the X-ray generator in terms of maximum high voltage. The maximum photon energy in the spectrum is used as a standard for calibration of kVp-meters.

  9. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements. (United States)

    Satory, P R


    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  10. Efficient methods for including quantum effects in Monte Carlo calculations of large systems: extension of the displaced points path integral method and other effective potential methods to calculate properties and distributions. (United States)

    Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G


    We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.

  11. Weather data for simplified energy calculation methods. Volume IV. United States: WYEC data

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.


    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities using Weather Year for Energy Calculations (WYEC) source weather data. Considerable overlap is present in cities (21) covered by both the TRY and WYEC data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.


    Directory of Open Access Journals (Sweden)

    Gabbasov Radek Fatykhovich


    Full Text Available The article considers the axisymmetric problem about the calculation of round plates with dead loading in a geometrically nonlinear system. To solve the problem some generalized equations of finite difference method (FMD are needed that allow to solve tasks within intergrable scope taking into account discontinuities of the required function, its first-order derivative and the right-hand side of the primitive differential equation. Resolvent differential equations of the question comprised fractionally the required function of the inflection and stresses are reduced to four differential equations, two of which are linear of the first-order and two are nonlinear of the second order. The obtained system of differential equations is solved numerically. The proposed method is shown with the example of calculation of a round plate; the given data are taken from work [1]. The calculation data with the minimum number of partitions are compared to the known solution of A.S. Vol’mir [1] and they indicate the possibility of using a numerical method for handling the problem in nonlinear statement.

  13. Improvement of Cost Calculation in Constructions – Application of the Standard Cost Method

    Directory of Open Access Journals (Sweden)

    Adela Breuer


    Full Text Available Grace to the analysis of several commercial companies effectively performed “on the field”, we could remark the necessity to change the method of cost calculation, our motivation being related to the simplification of calculations and the reduction of the labour volume, but especially the necessity to know in due time the deviations occurred as well as the causes having led to their apparition. The importance of knowing the deviations in due time results from the very basic characteristics of the constructions execution, i.e. the performance of works during several budgetary years, which leads to the modifications of prices and materials, the introduction of new technologies, and to the performance of open air activities, making the execution of constructions works be influenced by the atmospheric condition. But the most important aspect of knowing the deviations is the correct determination of expenses and their inscribing in the corresponding period, in view of determining the result of the budgetary year. Our proposal for the enhancement of the method of cost calculation in constructions is the application of the standard cost method in the variant “single standard cost”.

  14. Application of the Activity-Based Costing Method for Unit-Cost Calculation in a Hospital. (United States)

    Javid, Mahdi; Hadian, Mohammad; Ghaderi, Hossein; Ghaffari, Shahram; Salehi, Masoud


    Choosing an appropriate accounting system for hospital has always been a challenge for hospital managers. Traditional cost system (TCS) causes cost distortions in hospital. Activity-based costing (ABC) method is a new and more effective cost system. This study aimed to compare ABC with TCS method in calculating the unit cost of medical services and to assess its applicability in Kashani Hospital, Shahrekord City, Iran.‎ This cross-sectional study was performed on accounting data of Kashani Hospital in 2013. Data on accounting reports of 2012 and other relevant sources at the end of 2012 were included. To apply ABC method, the hospital was divided into several cost centers and five cost categories were defined: wage, equipment, space, material, and overhead costs. Then activity centers were defined. ABC method was performed into two phases. First, the total costs of cost centers were assigned to activities by using related cost factors. Then the costs of activities were divided to cost objects by using cost drivers. After determining the cost of objects, the cost price of medical services was calculated and compared with those obtained from TCS.‎ The Kashani Hospital had 81 physicians, 306 nurses, and 328 beds with the mean occupancy rate of 67.4% during 2012. Unit cost of medical services, cost price of occupancy bed per day, and cost per outpatient service were calculated. The total unit costs by ABC and TCS were respectively 187.95 and 137.70 USD, showing 50.34 USD more unit cost by ABC method. ABC method represented more accurate information on the major cost components. By utilizing ABC, hospital managers have a valuable accounting system that provides a true insight into the organizational costs of their department.

  15. Measurement and calculations of long-lived radionuclide activity forming in the fast neutron field in some ITER construction steels

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecki, W., E-mail: [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Jodłowski, P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow (Poland); Pytel, K.; Prokopowicz, R. [National Centre for Nuclear Research, ul. Sołtana 7, 05-400 Otwock-Świerk (Poland)


    Highlights: • Measurement and calculations of long-lived gamma-emitting radionuclide activity forming in the fission reactor fast neutron field were done, in some ITER construction steels. • The neutron flux density was measured by means of activation foil method and unfolding technique. • Activity calculations were done by means of FISPACT-II code using the activation libraries EAF-2010 and TALYS-2011. • The activity measurements were done by means of gamma-ray spectrometry. - Abstract: Measurement and calculations of long-lived gamma-emitting radionuclide activity forming in the fission reactor fast neutron field were done, for some ITER construction steels. The activation was conducted in fast neutron irradiation channel of the MARIA research fission reactor (Poland). The dimensions of steel samples were 10 mm × 10 mm × 1 mm and mass was approximately 0.8 g. The neutron flux density was measured by means of activation foil method and unfolding technique; fraction of neutrons above 1 keV was 95%. The activation lasted 242 h and cooling took 100 days; the mean neutron flux density was 2.9E12 n/(cm{sup 2} s) (neutrons above 500 keV are 53% of total) whereas total fluency 2.53E18 cm{sup −2}. The activity measurements were done by means of gamma-ray spectrometry. Activity calculations were done by means of FISPACT-II code using the activation libraries EAF-2010 and TENDL-2011 and experimentally determined neutron flux. Measured activity of long-lived gamma emitting radionuclides was, in average, about 6.3 MBq/g 100 days after activation; the dominant radionuclides were {sup 58}Co and {sup 54}Mn (about 81% and 14% of total activity respectively). The C/E ratio differs for particular radionuclides and is in the range 0.86–0.92 for {sup 51}Cr, 0.93–1.21 for {sup 54}Mn, 0.77–0.98 for {sup 57}Co, 0.91–1.21 for {sup 58}Co, 1.17–1.27 for {sup 59}Fe, and 1.75–2.44 for {sup 60}Co.

  16. Correlação entre o consumo de oxigênio obtido pelo método de Fick e pela calorimetria indireta no paciente grave Correlation between oxygen consumption calculated using Fick's method and measured with indirect calorimetry in critically ill patients

    Directory of Open Access Journals (Sweden)

    Flávio Marson


    Full Text Available OBJETIVO: Correlacionar o índice de consumo de oxigênio medido através da calorimetria indireta (VO2I DELTA às medidas calculadas pela equação reversa de Fick (VO2I FICK em pacientes graves, vítimas de trauma ou sepse. MÉTODOS: Analisados 14 pacientes vítimas de trauma (n=5 ou sepse (n=9, com média de idade de 39,4 ± 5,4 anos, sendo 10 homens e 4 mulheres, APACHE II de 21,3±1,8, ISS de 24,8±6, Sepsis Score de 19,6±2,3, com risco de óbito calculado pelo APACHE II de 41,9±7,1%, submetidos à ventilação mecânica e monitorização hemodinâmica invasiva com cateter de Swan-Ganz e realizadas, pelos dois métodos, 4 séries de medidas do VO2I (T1 a T4. RESULTADOS: Houve uma boa correlação entre os dois métodos (r = 0,77, para a média das quatro medidas seriadas. Não houve diferença estatisticamente significativa entre os dois métodos nos tempos T1 (VO2I DELTA = 138±28 e VO2I FICK = 159±38 mL.min-1.m-2, p = 0,10 e T3 (VO2I DELTA = 144±26 e VO2I FICK = 158±35 mL.min-1.m-2, p = 0,14. Houve diferença significativa nos tempos T2 (VO2I DELTA = 141±27 e VO2I FICK = 155±26 mL.min-1.m-2, p = 0,03 e T4 (VO2I DELTA = 145±24 e VO2I FICK = 162±26 mL.min-1.m-2, p = 0,01. CONCLUSÃO: A calorimetria indireta é um método não invasivo, isento de complicações, que pode ser usado para avaliação do consumo de oxigênio no paciente grave de forma tão eficaz quanto à equação reversa de Fick.OBJECTIVE: To compare the oxygen consumption index measured by using indirect calorimetry (VO2I Delta with a portable metabolic cart and calculated according to Fick's principle (VO2 I Fick in critically ill patients. METHODS: Fourteen patients (10 men and 4 women, mean age 39.4 ± 5.4 years were analyzed, 5 of them trauma victims and 9 sepsis victims. The following mean scores were obtained for these patients: APACHE II = 21.3±1.8, ISS = 24.8±6, and sepsis score = 19.6±2.3. The mortality risk (odds ratio, calculated from APACHE II, was 41

  17. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars


    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... the effect of increasing chamber enclosure time on SR flux rates calculated using a linear, an exponential and a revised Hutchinson and Mosier model (HMR). Soil respiration rates were measured with a closed chamber in combination with an infrared gas analyzer. During SR flux measurements the chamber...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture...

  18. Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method. (United States)

    Lin, Uei-Tyng; Chu, Chien-Hau


    Monte Carlo method was used to simulate the correction factors for electron loss and scattered photons for two improved cylindrical free-air ionization chambers (FACs) constructed at the Institute of Nuclear Energy Research (INER, Taiwan). The method is based on weighting correction factors for mono-energetic photons with X-ray spectra. The newly obtained correction factors for the medium-energy free-air chamber were compared with the current values, which were based on a least-squares fit to experimental data published in the NBS Handbook 64 [Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chambers. National Bureau Standards Handbook, No. 64. US Government Printing Office, Washington, DC, pp. 1-16; Chen, W.L., Su, S.H., Su, L.L., Hwang, W.S., 1999. Improved free-air ionization chamber for the measurement of X-rays. Metrologia 36, 19-24]. The comparison results showed the agreement between the Monte Carlo method and experimental data is within 0.22%. In addition, mono-energetic correction factors for the low-energy free-air chamber were calculated. Average correction factors were then derived for measured and theoretical X-ray spectra at 30-50 kVp. Although the measured and calculated spectra differ slightly, the resulting differences in the derived correction factors are less than 0.02%.

  19. Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method

    Energy Technology Data Exchange (ETDEWEB)

    Suescun-Diaz, Daniel [Surcolombiana Univ., Neiva (Colombia). Groupo de Fisica Teorica; Narvaez-Paredes, Mauricio [Javeriana Univ., Cali (Colombia). Groupo de Matematica y Estadistica Aplicada Pontificia; Lozano-Parada, Jamie H. [Univ. del Valle, Cali (Colombia). Dept. de Ingenieria


    In this paper, the generalisation of the 4th-order Adams-Bashforth-Moulton predictor-corrector method is proposed to numerically solve the point kinetic equations of the nuclear reactivity calculations without using the nuclear power history. Due to the nature of the point kinetic equations, different predictor modifiers are used in order improve the precision of the approximations obtained. The results obtained with the prediction formulas and generalised corrections improve the precision when compared with previous methods and are valid for various forms of nuclear power and different time steps.

  20. An improved method for calculating force distributions in moment-stiff timber connections

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Blond, Mette


    the slip modulus varies with the angle between the direction of the dowel forces and the fibres in question, as well as how the orthotropic stiffness behaviour of the wood material affects the direction and the size of the forces. It was assumed that the force distribution generated by the moment action......An improved method for calculating force distributions in moment-stiff metal dowel-type timber connections is presented, a method based on use of three-dimensional finite element simulations of timber connections subjected to moment action. The study that was carried out aimed at determining how...