A Green's function method for the calculation of ionization spectra
International Nuclear Information System (INIS)
Von Niessen, W.; Cederbaum, L.S.; Domcke, W.; Schirmer, J.
1980-01-01
According to Koopmans' approximation ionization energies are given as the negative of the orbital energies resulting from a SCF calculation. This approach neglects correlation and re-organization effects. For a closed shell molecule an ionization spectrum would as a consequence consist in general of n lines if there are 2n electrons. This is called Koopmans' hypothesis. Correlation and reorganization effects can be included e.g. by the Green's function method. Ionization energies and electron affinities appear as the poles of the one-particle Green's function and can be calculated by solving the Dyson equation with a diagrammatic perturbational expansion for the self-energy. This leads to more accurate values of the ionization energies, and to completely new physical effects. Two approximations are presented. One is adapted to the outer valence region where Koopmans' hypothesis holds. The other approximation called two-particle-hole Tamm-Dancoff Green's function approximation (TDA), also applies in the inner valence region, but it does not supply the same accuracy in the outer valence region as the Green's function method especially adapted to this energy range. The author demonstrates the usefulness of Green's functions in the calculation and interpretation of photoelectron spectra
Green's function calculation of the satellite spectrum of neon
International Nuclear Information System (INIS)
Kheifets, A.S.
1995-01-01
The single-hole Green's function with the lowest-order self-energy part has been used to calculate energies and spectroscopic factors of the neon ion ground and excited states which originated from the removal of the 2s and 2p valence electrons. The simplest two-hole-one-electron ion sates were included explicitly to the self-energy. More complex (m+l)-hole-m-electron states were treated implicitly by using the experimental energy of the two holes in the simplest ion states. The results of the calculation are found to be consistent with experimental satellite line positions and intensities obtained from recent photoionization and electron impact ionization measurements. 20 refs., 5 tabs
Neural network model for the efficient calculation of Green's functions in layered media
Soliman, E A; El-Gamal, M A; 10.1002/mmce.10066
2003-01-01
In this paper, neural networks are employed for fast and efficient calculation of Green's functions in a layered medium. Radial basis function networks (RBFNs) are effectively trained to estimate the coefficients and the exponents that represent a Green's function in the discrete complex image method (DCIM). Results show very good agreement with the DCIM, and the trained RBFNs are very fast compared with the corresponding DCIM. (23 refs).
International Nuclear Information System (INIS)
Rodrigues Junior, W.A.
A calculation of the electrical conductivity for Hubbard materials is presented which is valid when U/t >> 1 (U being the Coulomb repulsion and t the nearest neighbor hopping energy) for arbitrary electron concentration and temperature. The derivation emploies the single particle Green's functions with real and imaginary times instead of the usual two-particle real time Green's function. The result is compared with the experimental data available for some organic charge transfer salts [pt
Green's function Monte Carlo calculations of /sup 4/He
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.A.
1988-01-01
Green's Function Monte Carlo methods have been developed to study the ground state properties of light nuclei. These methods are shown to reproduce results of Faddeev calculations for A = 3, and are then used to calculate ground state energies, one- and two-body distribution functions, and the D-state probability for the alpha particle. Results are compared to variational Monte Carlo calculations for several nuclear interaction models. 31 refs.
Calculating the SnS(010) surface electronic structure using the green function method
Jahangirli, Z. A.
2011-08-01
The electronic structure of the (010) surface in a layered SnS semiconductor terminating with Sn and S atomic planes is calculated by the Green function method. The electronic structure of a perfect crystal is calculated according to the linear combination of atomic orbitals (LCAO) using Slater s-, p-, and d-orbitals. Defect-induced changes in the density of states and the origin and orbital composition of electronic states in the band gap are discussed.
National Research Council Canada - National Science Library
Kobayashi, Nobuhiko; Ozaki, Taisuke; Hirose, Kenji
2006-01-01
.... The electronic states are calculated using a numerical pseudo atomic orbital basis set in the frame work of the density functional theory, and the conductance is calculated using the Green's function method...
Smidstrup, Søren; Stradi, Daniele; Wellendorff, Jess; Khomyakov, Petr A.; Vej-Hansen, Ulrik G.; Lee, Maeng-Eun; Ghosh, Tushar; Jónsson, Elvar; Jónsson, Hannes; Stokbro, Kurt
2017-11-01
We present an efficient implementation of a surface Green's-function method for atomistic modeling of surfaces within the framework of density functional theory using a pseudopotential localized basis set approach. In this method, the system is described as a truly semi-infinite solid with a surface region coupled to an electron reservoir, thereby overcoming several fundamental drawbacks of the traditional slab approach. The versatility of the method is demonstrated with several applications to surface physics and chemistry problems that are inherently difficult to address properly with the slab method, including metal work function calculations, band alignment in thin-film semiconductor heterostructures, surface states in metals and topological insulators, and surfaces in external electrical fields. Results obtained with the surface Green's-function method are compared to experimental measurements and slab calculations to demonstrate the accuracy of the approach.
Pavlov, V. M.
2017-07-01
The problem of calculating complete synthetic seismograms from a point dipole with an arbitrary seismic moment tensor in a plane parallel medium composed of homogeneous elastic isotropic layers is considered. It is established that the solutions of the system of ordinary differential equations for the motion-stress vector have a reciprocity property, which allows obtaining a compact formula for the derivative of the motion vector with respect to the source depth. The reciprocity theorem for Green's functions with respect to the interchange of the source and receiver is obtained for a medium with cylindrical boundary. The differentiation of Green's functions with respect to the coordinates of the source leads to the same calculation formulas as the algorithm developed in the previous work (Pavlov, 2013). A new algorithm appears when the derivatives with respect to the horizontal coordinates of the source is replaced by the derivatives with respect to the horizontal coordinates of the receiver (with the minus sign). This algorithm is more transparent, compact, and economic than the previous one. It requires calculating the wavenumbers associated with Bessel function's roots of order 0 and order 1, whereas the previous algorithm additionally requires the second order roots.
Accurate calculation of Green functions on the d-dimensional hypercubic lattice
International Nuclear Information System (INIS)
Loh, Yen Lee
2011-01-01
We write the Green function of the d-dimensional hypercubic lattice in a piecewise form covering the entire real frequency axis. Each piece is a single integral involving modified Bessel functions of the first and second kinds. The smoothness of the integrand allows both real and imaginary parts of the Green function to be computed quickly and accurately for any dimension d and any real frequency, and the computational time scales only linearly with d.
Electron propagator and surface Green's function calculations in transport molecular junctions
Kletsov, Aleksey
A new theoretical approach to the calculation of electrical current through a molecular wire, based on ab initio electron propagator methodology, is proposed. The analytical expression for electric current is derived for an arbitrary number of terminal transport orbitals, which is given in terms of Dyson poles, Dyson pole strengths, overlap matrix elements, and expansion coefficients of atomic wavefunctions. The proposed approach is applied to calculations of the current-voltage characteristics of the transport molecular junction with a 1,4-benzene dithiol (BDT) molecule as a bridge. The obtained current-voltage characteristics exhibit negative differential resistance, that can be used in practical electronic devices. From the analysis of the output data, the origin of negative differential resistance in BDT molecular wire is explained. The observation of negative differential resistance in transport molecular devices based on a BDT molecule is predicted for certain Fermi energies. To discover the predicted effect, experimentalists should search for the appropriate Fermi energy by varying metal electrodes, coated by a gold monolayer. In addition, a novel computational method for non-recursive calculations of the surface Green's function matrices, using an infinite number of principal layers, is proposed. This method is employed to calculate the spectral function of the gold and aluminum surfaces. It is shown that the surface spectral function of the metal electrode dependence on applied voltage and this dependence can significantly change the electric current through a molecular wire. The new ab initio methods and computational results presented in this work allow for the prediction of novel devices with unusual properties that can be used in nanotechnology applications.
Gilmore, Keith; Geondzhian, Andrey; Kas, Josh
Much of the effort in many-body techniques for going beyond standard density functional theory seeks to improve the accuracy of quasiparticle energies, particularly for large or complex systems. A quantity that is sometimes overlooked is the quasiparticle spectral function. Accurately calculating satellite features due to boson excitations is essential for providing a meaningful interpretation of many experimental results, particularly for X-ray spectroscopies. Resonant inelastic x-ray scattering (RIXS) is a relatively new experimental probe of the coupling of electronic states to various excitations in a material such as plasmons, magnons and phonons. The localized nature of the core hole in X-ray spectroscopies allows one to use linked-cluster formulations, as in the seminal work of Nozieres, that express the electron Green's function as a cumulant expansion rather than via a Dyson equation. Kas et al. have recently used this approach for electron-plasmon coupling in X-ray photoemission and X-ray absorption. We perform analogous work for the case of coupling to phonons, with a particular focus on RIXS. RIXS is increasingly used to study electron-phonon coupling in unconventional superconductors and it is essential to improve our interpretation of these spectra. TiO2, for which high energy resolution RIXS data was recently reported, serves as our test case.
International Nuclear Information System (INIS)
Kozhakhmetov, S.K.
1996-01-01
Possibility of Green formalism use for calculation of photoabsorption of high-energy x-ray radiation is shown. Analytical expression for photoabsorption cross section is carried out. It does not contains wave functions in explicit form responding to finite states of photoelectron. 5 refs
Tanaka, Hiroshi
1998-01-01
A real-space scheme is developed to calculate matrix elements of the Green function from first principles for large disordered systems. The scheme is an extension of the particle source method, combined with the tight-binding linear muffin-tin orbitals and has the following advantages: (i) It is possible to evaluate both the diagonal and off-diagonal parts of the Green function and also their products with other quantum operators, (ii) it allows for an explicit control of the numerical accuracy and clear-cut physical interpretations of the results on the basis of the definition of the Green function, and (iii) the scheme is suitable for both vector and parallel processing and requires CPU time and memory size proportional only to the system size. The method is applied to the densities of states of bcc and amorphous Fe. The dc conductivity is also evaluated for the latter from the Kubo-Greenwood formula.
Harmonic oscillator Green's function
International Nuclear Information System (INIS)
Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.
2000-01-01
The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.
Three-dimensional free boundary calculations using a spectral Green's function method
International Nuclear Information System (INIS)
Hirshman, S.P.; van Rij, W.I.; Merkel, P.
1986-01-01
The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented
Energy Technology Data Exchange (ETDEWEB)
Ogura, M., E-mail: agura@phys.sci.osaka-u.ac.jp; Akai, H. [Osaka University, Department of Physics, Graduate School of Science (Japan)
2004-11-15
The electric field gradients (EFGs) of B, N, O and Na in TiO{sub 2} were calculated by the full potential Korringa-Kohn-Rostoker (KKR) Greens function method in the framework of the density functional theory. The agreement with the experiments was much improved from the previous calculations that were based on the muffin-tin potential model.
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
A hybrid method for the parallel computation of Green's functions
DEFF Research Database (Denmark)
Petersen, Dan Erik; Li, Song; Stokbro, Kurt
2009-01-01
Quantum transport models for nanodevices using the non-equilibrium Green's function method require the repeated calculation of the block tridiagonal part of the Green's and lesser Green's function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of t...
Green's functions in quantum physics
Economou, Eleftherios N
2006-01-01
The main part of this book is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound-level information. The bound-level treatment gives a clear physical understanding of "difficult" questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book.
Knippenberg, S; Deleuze, M S; Cleij, T J; François, J-P; Cederbaum, L S; Eland, J H D
2005-05-19
In continuation of a recent study of the electronic structure of norbornane [J. Chem. Phys., 2004, 121, 10525] by means of electron momentum spectroscopy (EMS), we present Green's Function calculations of the ionization spectrum of this compound at the ADC(3) level using basis sets of varying quality, along with accurate evaluations at the CCSD(T) level of the vertical (26.5 eV) and adiabatic (22.1 eV) double ionization thresholds under C(2v) symmetry. The obtained results are compared with newly recorded ultraviolet photoemission spectra (UPS), up to binding energies of 40 eV. The theoretical predictions are entirely consistent with experiment and indicate that, in a vertical depiction of ionization, shake-up states at binding energies larger than approximately 26.5 eV tend to decay via emission of a second electron in the continuum. A band of s-type symmetry that has been previously seen at approximately 25 eV in the electron impact ionization spectra of norbornane is entirely missing in the UPS measurements and theoretical ADC(3) spectra. With regard to these results and to the time scales characterizing electron-electron interactions in EMS (10(-17) s) as compared with that (10(-13) s) of photon-electron interactions in UPS, and considering the p-type symmetry of the electron momentum distributions for the nearest 1b(1) and 1b(2) orbitals, this additional band can certainly not be due to adiabatic double ionization processes starting from the ground electronic state of norbornane, or to exceptionally strong vibronic coupling interactions between cationic states derived from ionization of the latter orbitals. It is therefore tentatively ascribed to autoionization processes via electronically excited and possibly dissociating states.
Semiclassical initial value approximation for Green's function.
Kay, Kenneth G
2010-06-28
A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.
On Green's functions and their applications
International Nuclear Information System (INIS)
Cederbaum, L.S.
1990-01-01
The theory of Green's functions is briefly reviewed. It is discussed which properties of a quantum system and which physical processes can be described by Green's functions. A general approximation scheme to evaluate Green's functions and propagators is presented. Particular attention is paid to the one-particle Green's function and to the particle-particle propagator which is a relevant component of the two-particle Green's function. Several illustrative applications are presented and related to experiment
Molecular transport calculations with Wannier Functions
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method...
Green's function approach to neutron flux discontinuities
International Nuclear Information System (INIS)
Saad, E.A.; El-Wakil, S.A.
1980-01-01
The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)
The green's functions of superconductivity- A review | Imo | Global ...
African Journals Online (AJOL)
We present some basic Green's functions of superconductivity, making emphasis on their geneology and analytic properties. From calculations, we note that the temperature dependence of the Green's functions for fermionic (and bosonic) systems limits and defines the extent of their applications and results. Furthermore ...
Directory of Open Access Journals (Sweden)
Carou A.
2006-11-01
Full Text Available Le calcul de la résistance de vague d'une carène par éléments finis concentrés sur un ouvert borné nécessite la connaissance de la fonction de Green du problème à grande distance. Cette fonction est très difficile à calculer numériquement. On justifie dans ce travail une méthode asymptotique rapide, remplaçant avantageusement l'intégration numérique. Computing wave resistance -by finite elements concentrated on a bounded open set requires the prior knowledge of the Green function of the problem at a great distance. Computing this function is numerically very difficult. A fast asymptotic method is iustified in this article, and it can be used ta advantage as a replacemenf for numerical integration.
Molecular calculations with B functions
International Nuclear Information System (INIS)
Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.
2000-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules
Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.
2005-01-01
In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.
The Green functions in curved spacetime
International Nuclear Information System (INIS)
Buchbinder, I.L.; Kirillova, E.N.; Odinstov, S.D.
1987-01-01
The theory of a free scalar field with conformal coupling in curved spacetime with some special metrics is considered. The integral representations for the green function G-tilde in the form of integrals with Schwinger-De Witt kernel over contours in the complex plane of proper time are obtained. It is shown how the transitions from a unique Green function in Euclidean space to different Green functions in Minkowski space and vice versa can be carried out. (author)
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...
The Green's function method for critical heterogeneous slabs
International Nuclear Information System (INIS)
Kornreich, D.E.
1996-01-01
Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled
Mass corrections to Green functions in instanton vacuum model
International Nuclear Information System (INIS)
Esaibegyan, S.V.; Tamaryan, S.N.
1987-01-01
The first nonvanishing mass corrections to the effective Green functions are calculated in the model of instanton-based vacuum consisting of a superposition of instanton-antiinstanton fluctuations. The meson current correlators are calculated with account of these corrections; the mass spectrum of pseudoscalar octet as well as the value of the kaon axial constant are found. 7 refs
Green's functions potential fields on surfaces
Melnikov, Yuri A
2017-01-01
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
A hybrid method for the parallel computation of Green's functions
International Nuclear Information System (INIS)
Petersen, Dan Erik; Li Song; Stokbro, Kurt; Sorensen, Hans Henrik B.; Hansen, Per Christian; Skelboe, Stig; Darve, Eric
2009-01-01
Quantum transport models for nanodevices using the non-equilibrium Green's function method require the repeated calculation of the block tridiagonal part of the Green's and lesser Green's function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only require computing a small number of entries of the inverse matrix. Then, we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size.
Thermodynamic Green functions in theory of superconductivity
Directory of Open Access Journals (Sweden)
N.M.Plakida
2006-01-01
Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.
Multiconfigurational Green's function approaches in quantum chemistry
International Nuclear Information System (INIS)
Yeager, D.L.
1984-01-01
The author discusses multiconfigurational Green's function techniques and generalizations. In particular he is interested in developing and applying these techniques for isolated atoms and small molecules. Furthermore, he develops formalisms that are fairly clear, accurate, and capable of being applied to open-shell and highly-correlated systems as well as to closed-shell systems with little electronic correlation. The two kinds of Green's functions that this article discusses are the single-particle Green's function and the retarded two-time Green's function in the energy representation. The poles of the former give the ionization potentials and electron affinities while the poles of the latter give the excitation energies. The multiconfigurational approximations are known as the multiconfigurational electron propagator (MCEP) and the multiconfigurational time-dependent Hartree-Fock (MCTDHF) (also known as the multiconfigurational random phase approximation (MCRPA) or the multiconfigurational linear response), respectively. 44 references
Nonequilibrium Green's functions approach to inhomogeneous systems
Balzer, Karsten
2013-01-01
This book offers a self-contained introduction to non-equilibrium quantum particle dynamics for inhomogeneous systems, including a survey of recent breakthroughs pioneered by the authors and others. The approach is based on real-time Green's functions.
Worldline Green functions for multiloop diagrams
International Nuclear Information System (INIS)
Schmidt, M.G.; Heidelberg Univ.; Schubert, C.
1994-03-01
We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions. (orig.)
Green's functions in quantum physics. 3. ed.
International Nuclear Information System (INIS)
Economou, E.N.
2006-01-01
The new edition of a standard reference will be of interest to advanced students wishing to become familiar with the method of Green's functions for obtaining simple and general solutions to basic problems in quantum physics. The main part is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound level information. The bound-level treatment gives a clear physical understanding of ''difficult'' questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book. This third edition is 50% longer than the previous and offers end-of-chapter problems and solutions (40% are solved) and additional appendices to help it is to serve as an effective self-tutorial and self-sufficient reference. Throughout, it demonstrates the powerful and unifying formalism of Green's functions across many applications, including transport properties, carbon nanotubes, and photonics and photonic crystals. (orig.)
Transient Thermoelectric Solution Employing Green's Functions
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.
THE GREEN'S FUNCTIONS OF SUPERCONDUCTIVITY- A REVIEW
African Journals Online (AJOL)
users
2013-02-21
Feb 21, 2013 ... 2010). 73. M. I. Umo, Department of Physics, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria. ... Making use of the definition (2) we have … ... In the mean time if we ignore the phonon operators in (17) then we have in our hands the two-particles Green's function …
Gluon Green functions free of quantum fluctuations
Directory of Open Access Journals (Sweden)
A. Athenodorou
2016-09-01
Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.
Discrete state perturbation theory via Green's functions
International Nuclear Information System (INIS)
Rubinson, W.
1975-01-01
The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on
EVALUATING METRICS FOR GREEN CHEMISTRIES: INFORMATION AND CALCULATION NEEDS
Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Ob...
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Relativistic dynamics, Green function and pseudodifferential operators
Energy Technology Data Exchange (ETDEWEB)
Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2016-06-15
The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Many-Body Green Function of Degenerate Systems
International Nuclear Information System (INIS)
Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel
2009-01-01
A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.
Computing the real-time Green's Functions of large Hamiltonian matrices
Iitaka, Toshiaki
1998-01-01
A numerical method is developed for calculating the real time Green's functions of very large sparse Hamiltonian matrices, which exploits the numerical solution of the inhomogeneous time-dependent Schroedinger equation. The method has a clear-cut structure reflecting the most naive definition of the Green's functions, and is very suitable to parallel and vector supercomputers. The effectiveness of the method is illustrated by applying it to simple lattice models. An application of this method...
Calculation of Additional Lost Green Time at Closely Spaced Intersections
Directory of Open Access Journals (Sweden)
Zhen Zhang
2013-06-01
Full Text Available At closely spaced signalized intersections or interchanges, additional lost green time can occur at upstream intersections when there is a queue spillback. For an accurate estimation of capacities and delays at closely spaced intersections, it is necessary to account such additional lost time. The Highway Capacity Manual (HCM 2010 provides a model for the estimation of the additional lost time due to the presence of a downstream queue. However, case studies indicate that the HCM model does not provide a very accurate estimation when the distance to the downstream queue is short. In this paper, a new model is developed for the estimation of additional lost time considering queue discharge patterns and traffic flow patterns. Simulation results show that the proposed model provides a more accurate estimation of additional lost time compared with the HCM model when the distance to the downstream queue is limited.
Variational energy functionals of the Green function tested on molecules
Dahlen, NE; Von Barth, U; Dahlen, Nils Erik
2005-01-01
It was recently proposed to use variational functionals based on manybody perturbation theory for the calculation of the total energies of many-electron systems. The accuracy of such functionals depends on the degree of sophistication of the underlying perturbation expansions. The energy functionals
Work Function Calculation For Hafnium- Barium System
Directory of Open Access Journals (Sweden)
K.A. Tursunmetov
2015-08-01
Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.
Electromagnetic fields and Green functions in elliptical vacuum chambers
AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department
2017-01-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...
Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity
Dziatkiewicz, Grzegorz
2018-01-01
The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.
``Green's function'' approach & low-mode asymmetries
Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team
2017-10-01
Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.
The non-equilibrium Green's function method for nanoscale device simulation
Pourfath, Mahdi
2014-01-01
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...
An integral transform of Green's function, off-shell Jost solution and T ...
Indian Academy of Sciences (India)
integral transform of the Green's function for motion in Coulomb–Yamaguchi potential is derived via the r-space ... use in the calculation of the corresponding off-shell quantities without the explicit use of two-potential theorem and ..... (x), spherical Bessel function and gli(βli,r)s, the form factors of the sep- arable potential the ...
Nonequilibrium Green's functions in the study of heat transport of driven nanomechanical systems
Arrachea, L.; Rizzo, B.
2013-01-01
We review a recent theoretical development based on non-equilibrium Green's function formalism to study heat transport in nanomechanical devices modeled by phononic systems of coupled quantum oscillators driven by ac forces and connected to phononic reservoirs. We present the relevant equations to calculate the heat currents flowing along different regions of the setup, as well as the power developed by the time-dependent forces. We also present different strategies to evaluate the Green's fu...
Distributed Function Calculation over Noisy Networks
Directory of Open Access Journals (Sweden)
Zhidun Zeng
2016-01-01
Full Text Available Considering any connected network with unknown initial states for all nodes, the nearest-neighbor rule is utilized for each node to update its own state at every discrete-time step. Distributed function calculation problem is defined for one node to compute some function of the initial values of all the nodes based on its own observations. In this paper, taking into account uncertainties in the network and observations, an algorithm is proposed to compute and explicitly characterize the value of the function in question when the number of successive observations is large enough. While the number of successive observations is not large enough, we provide an approach to obtain the tightest possible bounds on such function by using linear programing optimization techniques. Simulations are provided to demonstrate the theoretical results.
International Nuclear Information System (INIS)
Tang Jian; Peng Muzhang; Cao Dongxing
1989-01-01
A new numerical method-nodal green's function method is used for solving heat conduction function. A heat conduction problem in cylindrical geometry with axial conduction is solved in this paper. The Kirchhoff transformation is used to deal with the problem with temperature dependent conductivity. Therefor, the calculation for the function is simplified. On the basis of the formulas developed, the code named NGMEFC is programmed. A sample problem which has been calculated by the code COBRA-IV is chosen as checking. A good agreement between both codes is achieved. The calculation shows that the calculation efficiency of the nodel green's function method is much higher than that of finite difference method
Coupled cluster approach to the single-particle Green's function
International Nuclear Information System (INIS)
Nooijen, M.; Snijders, J.G.
1992-01-01
Diagrammatic and coupled cluster techniques are used to develop an approach to the single-particle Green's function G which concentrates on G directly rather than first approximating the irreducible self-energy and then solving Dyson's equation. As a consequence the ionization and attachment parts of the Green's function satisfy completely decoupled sets of equations. The proposed coupled cluster Green's function method (CCGF) is intimately connected to both coupled cluster linear response theory (CCLRT) and the normal coupled cluster method (NCCM). These relations are discussed in detail
Green's functions in perturbative quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mandal, Bhabani Prasad [Banaras Hindu University, Department of Physics, Varanasi (India)
2015-07-15
We show that the Green's functions in a non-linear gauge in the theory of perturbative quantum gravity is expressed as a series in terms of those in linear gauges. This formulation also holds for operator Green's functions. We further derive the explicit relation between the Green's functions in the theory of perturbative quantum gravity in a pair of arbitrary gauges. This process involves some sort of modified FFBRST transformations which are derivable from infinitesimal field-dependent BRST transformations. (orig.)
Green's function and boundary elements of multifield materials
Qin, Qing-Hua
2007-01-01
Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.
Functionalized dicationic ionic liquids: Green and efficient ...
Indian Academy of Sciences (India)
and green catalysts in the synthesis of phthalate plasticizers through esterification of phthalic anhydride (PhA) with ethanol, n-propanol and n-butanol ... biodiesel through transesterification from cottonseed oil,23 and esterification of organic .... solved in methanol and sulfuric acid 98% (10.6mL,. 20 mmol) was poured slowly.
Non-perturbative Green functions in quantum gauge theories
International Nuclear Information System (INIS)
Shabanov, S.V.
1991-01-01
Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs
International Nuclear Information System (INIS)
Do, Van-Nam
2014-01-01
We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)
Electron Green's Function of Graphene in the Aharonov-Bohm Potential
International Nuclear Information System (INIS)
Slobodenyuk, A.O.
2011-01-01
The dynamics of electron excitations, which are described by the Dirac equation, in the Aharonov-Bohm field has been studied. The eigenfunctions and the spectrum of the Hamiltonian of a system have been used to construct the integral formula for the electron Green's function. Possible applications of the results obtained to numerically calculate the electronic properties of graphene have been discussed.
Order- N Green's Function Technique for Local Environment Effects in Alloys
DEFF Research Database (Denmark)
Abrikosov, I. A.; Niklasson, A. M. N.; Simak, S. I.
1996-01-01
We have developed a new approach to the calculations of ground state properties of large crystalline systems with arbitrary atomic configurations based on a Green's function technique in conjunction with a self-consistent effective medium for the underlying randomly occupied lattice. The locally...
Acoustic Green's function extraction in the ocean
Zang, Xiaoqin
The acoustic Green's function (GF) is the key to understanding the acoustic properties of ocean environments. With knowledge of the acoustic GF, the physics of sound propagation, such as dispersion, can be analyzed; underwater communication over thousands of miles can be understood; physical properties of the ocean, including ocean temperature, ocean current speed, as well as seafloor bathymetry, can be investigated. Experimental methods of acoustic GF extraction can be categorized as active methods and passive methods. Active methods are based on employment of man-made sound sources. These active methods require less computational complexity and time, but may cause harm to marine mammals. Passive methods cost much less and do not harm marine mammals, but require more theoretical and computational work. Both methods have advantages and disadvantages that should be carefully tailored to fit the need of each specific environment and application. In this dissertation, we study one passive method, the noise interferometry method, and one active method, the inverse filter processing method, to achieve acoustic GF extraction in the ocean. The passive method of noise interferometry makes use of ambient noise to extract an approximation to the acoustic GF. In an environment with a diffusive distribution of sound sources, sound waves that pass through two hydrophones at two locations carry the information of the acoustic GF between these two locations; by listening to the long-term ambient noise signals and cross-correlating the noise data recorded at two locations, the acoustic GF emerges from the noise cross-correlation function (NCF); a coherent stack of many realizations of NCFs yields a good approximation to the acoustic GF between these two locations, with all the deterministic structures clearly exhibited in the waveform. To test the performance of noise interferometry in different types of ocean environments, two field experiments were performed and ambient noise
Mateus, Margarida P. S.; Cabral, Benedito J. C.
2007-11-01
Theoretical calculations for the electron binding energies (EBEs) of several organic azides including hydrazoic acid, methyl azide, ethyl azide, 2-chloroethyl azide, 2-azidoethanol, azidoacetone, 2-azidoacetic acid, 3-azido-2-butanone, and 2-azidoethyl acetate are reported. EBEs were calculated with ab initio Green's function (GF) and density functional theory (DFT). Complete basis-set extrapolated coupled cluster calculations with single, double, and perturbative triple excitations [CCSD(T)] for the first ionization energy of azides are also reported. It is shown that EBEs from GF and DFT calculations are in better agreement with experiment than Hartree-Fock predictions.
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
International Nuclear Information System (INIS)
Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.
2014-01-01
In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function
Theory of Green functions of free Dirac fermions in graphene
International Nuclear Information System (INIS)
Nguyen, Van Hieu; Nguyen, Bich Ha; Dinh, Ngoc Dung
2016-01-01
This work is the beginning of our research on graphene quantum electrodynamics (GQED), based on the application of the methods of traditional quantum field theory to the study of the interacting system of quantized electromagnetic field and Dirac fermions in single-layer graphene. After a brief review of the known results concerning the lattice and electronic structures of single-layer graphene we perform the construction of the quantum fields of free Dirac fermions and the establishment of the corresponding Heisenberg quantum equations of these fields. We then elaborate the theory of Green functions of Dirac fermions in a free Dirac fermion gas at vanishing absolute temperature T = 0, the theory of Matsubara temperature Green functions and the Keldysh theory of non-equilibrium Green functions. (paper)
A passive inverse filter for Green's function retrieval.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe; Campillo, Michel
2012-01-01
Passive methods for the recovery of Green's functions from ambient noise require strong hypotheses, including isotropic distribution of the noise sources. Very often, this distribution is nonisotropic, which introduces bias in the Green's function reconstruction. To minimize this bias, a spatiotemporal inverse filter is proposed. The method is tested on a directive noise field computed from an experimental active seismic data set. The results indicate that the passive inverse filter allows the manipulation of the spatiotemporal degrees of freedom of a complex wave field, and it can efficiently compensate for the noise wavefield directivity. © 2012 Acoustical Society of America.
Green-function approach for scattering quantum walks
Energy Technology Data Exchange (ETDEWEB)
Andrade, F. M. [Departamento de Matematica e Estatistica, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Luz, M. G. E. da [Departamento de Fisica, Universidade Federal do Parana, C.P. 19044, 81531-980 Curitiba-PR (Brazil)
2011-10-15
In this work a Green-function approach for scattering quantum walks is developed. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression for arbitrary topologies and position-dependent quantum amplitudes. By introducing the step and path operators, it is shown how to extract any information about the system from the Green function. The method's relevant features are demonstrated by discussing in detail an example, a general diamond-shaped graph.
21 CFR 868.1880 - Pulmonary-function data calculator.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pulmonary-function data calculator. 868.1880 Section 868.1880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... calculator. (a) Identification. A pulmonary-function data calculator is a device used to calculate pulmonary...
Nonequilibrium Green's function method for quantum thermal transport
Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar
2014-12-01
This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.
Plant functional traits predict green roof ecosystem services.
Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke
2015-02-17
Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.
International Nuclear Information System (INIS)
Guslienko, Konstantin Y.; Slavin, Andrei N.
2011-01-01
We present derivation of the magnetostatic Green's functions used in calculations of spin-wave spectra of finite-size non-ellipsoidal (rectangular) magnetic elements. The elements (dots) are assumed to be single domain particles having uniform static magnetization. We consider the case of flat dots, when the in-plane dot size is much larger than the dot height (film thickness), and assume the uniform distribution of the variable magnetization along the dot height. The limiting cases of magnetic waveguides with rectangular cross-section and thin magnetic stripes are also considered. The developed method of tensorial Green's functions is used to solve the Maxwell equations in the magnetostatic limit, and to represent the Landau-Lifshitz equation of motion for the magnetization of a magnetic element in a closed integro-differential form. - Highlights: → The Green's functions method is used to solve the magnetostatic equations. → Explicit Green's functions are written for thin magnetic dots and stripes. → Spin-wave frequencies for finite rectangular magnetic elements are calculated.
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.
Functionalized dicationic ionic liquids: Green and efficient ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 8. Functionalized dicationic ... Regular Article Volume 128 Issue 8 August 2016 pp 1277-1284 ... Theinfluences of the reaction temperature, catalyst dosage, and molar ratio of phthalic anhydride to alcohol on the esterification reaction were investigated.
Microquake seismic interferometry with SVD-enhanced Green's function recovery
Melo, Gabriela; Malcolm, Alison E.
2011-01-01
The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?
Nonlinear hydrodynamics from flow of retarded Green's function
Banerjee, N.; Dutta, S.
2010-01-01
We study the radial flow of retarded Green's function of energy-momentum tensor and $R$-current of dual gauge theory in presence of generic higher derivative terms in bulk Lagrangian. These are first order non-linear Riccati equations. We solve these flow equations analytically and obtain second
Asymptotic Green's function in homogeneous anisotropic viscoelastic media
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2007-01-01
Roč. 463, č. 2086 (2007), s. 2689-2707 ISSN 1364-5021 Institutional research plan: CEZ:AV0Z30120515 Keywords : anisotropy * attenuation * Green's function * viscoelasticity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2007
Comments on dyadic Green's functions and induced currents
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1996-01-01
The article formulates the wave equation in regions with induced currents in the case of scattering by a perfect conductor. By using this formulation the ordinary solution using the dyadic Green's function for the problem is discussed. The region of validity of this solution is pointed out...
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
Electromagnetic fields and Green's functions in elliptical vacuum chambers
Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.
2017-10-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.
Applications of Green's functions in science and engineering
Greenberg, Michael D
2015-01-01
Concise and highly regarded, this treatment of Green's functions and their applications in science and engineering is geared toward undergraduate and graduate students with only a moderate background in ordinary differential equations and partial differential equations. The text also includes a wealth of information of a more general nature on boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. The two-part treatment begins with an overview of applications to ordinary differential equations. Topics include the adjoint operato
Teichert, Fabian; Zienert, Andreas; Schuster, Jörg; Schreiber, Michael
2017-04-01
We derive an improved version of the recursive Green's function formalism (RGF), which is a standard tool in the quantum transport theory. We consider the case of disordered quasi one-dimensional materials where the disorder is applied in form of randomly distributed realistic defects, leading to partly periodic Hamiltonian matrices. The algorithm accelerates the common RGF in the recursive decimation scheme, using the iteration steps of the renormalization decimation algorithm. This leads to a smaller effective system, which is treated using the common forward iteration scheme. The computational complexity scales linearly with the number of defects, instead of linearly with the total system length for the conventional approach. We show that the scaling of the calculation time of the Green's function depends on the defect density of a random test system. Furthermore, we discuss the calculation time and the memory requirement of the whole transport formalism applied to defective carbon nanotubes.
Efficient pseudospectral methods for density functional calculations
International Nuclear Information System (INIS)
Murphy, R. B.; Cao, Y.; Beachy, M. D.; Ringnalda, M. N.; Friesner, R. A.
2000-01-01
Novel improvements of the pseudospectral method for assembling the Coulomb operator are discussed. These improvements consist of a fast atom centered multipole method and a variation of the Head-Gordan J-engine analytic integral evaluation. The details of the methodology are discussed and performance evaluations presented for larger molecules within the context of DFT energy and gradient calculations. (c) 2000 American Institute of Physics
Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina
2016-05-01
Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Laplace transforms of the Hulthén Green's function and their application to potential scattering
Laha, U.; Ray, S.; Panda, S.; Bhoi, J.
2017-10-01
We derive closed-form representations for the single and double Laplace transforms of the Hulthén Green's function of the outgoing wave multiplied by the Yamaguchi potential and write them in the maximally reduced form. We use the expression for the double transform to compute the low-energy phase shifts for the elastic scattering in the systems α-nucleon, α-He3, and α-H3. The calculation results agree well with the experimental data.
Exact Green's function of the reversible ABCD reaction in two space dimensions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2013-01-01
We derive an exact expression for the Green's functions in the time domain of the reversible diffusion-influenced ABCD reaction $A+B\\leftrightarrow C+D$ in two space dimensions. Furthermore, we calculate the corresponding survival and reaction probabilities. The obtained expressions should prove useful for the study of reversible membrane-bound reactions in cell biology and can serve as a useful ingredient of enhanced stochastic particle-based simulation algorithms.
The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function
Miller, Steven A. E.
2013-01-01
An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.
Green`s function of Maxwell`s equations and corresponding implications for iterative methods
Energy Technology Data Exchange (ETDEWEB)
Singer, B.S. [Macquarie Univ., Sydney (Australia); Fainberg, E.B. [Inst. of Physics of the Earth, Moscow (Russian Federation)
1996-12-31
Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.
Green's function based density estimation
Energy Technology Data Exchange (ETDEWEB)
Kovesarki, Peter; Brock, Ian C.; Nuncio Quiroz, Adriana Elizabeth [Physikalisches Institut, Universitaet Bonn (Germany)
2012-07-01
A method was developed based on Green's function identities to estimate probability densities. This can be used for likelihood estimations and for binary classifications. It offers several advantages over neural networks, boosted decision trees and other, regression based classifiers. For example, it is less prone to overtraining, and it is much easier to combine several samples. Some capabilities are demonstrated using ATLAS data.
Three dimensional Green's function for ship motion at forward speed
Directory of Open Access Journals (Sweden)
Matiur Rahman
1990-01-01
Full Text Available The Green's function formulation for ship motion at forward speed contains double integrals with singularities in the path of integrations with respect to the wave number. In this study, the double integrals have been replaced by single integrals with the use of complex exponential integrals. It has been found that this analysis provides an efficient way of computing the wave resistance for three dimensional potential problem of ship motion with forward speed.
Green-function approach to transport phenomena in quantum pumps
Arrachea, Liliana
2005-09-01
We present a general treatment based on nonequilibrium Green functions to study transport phenomena in systems described by tight-binding Hamiltonians coupled to reservoirs and with one or more time-periodic potentials. We apply this treatment to the study of transport phenomena in a double barrier structure with one and two ac potentials. Among other properties, we discuss the origin of the sign of the net current.
Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization
Directory of Open Access Journals (Sweden)
Sanghamitra Sen
2015-05-01
Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.
Green polymer chemistry: enzyme catalysis for polymer functionalization.
Sen, Sanghamitra; Puskas, Judit E
2015-05-21
Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.
QCD Green's Functions and Phases of Strongly-Interacting Matter
Directory of Open Access Journals (Sweden)
Schaefer B.J.
2011-04-01
Full Text Available After presenting a brief summary of functional approaches to QCD at vanishing temperatures and densities the application of QCD Green's functions at non-vanishing temperature and vanishing density is discussed. It is pointed out in which way the infrared behavior of the gluon propagator reflects the (de-confinement transition. Numerical results for the quark propagator are given thereby verifying the relation between (de--confinement and dynamical chiral symmetry breaking (restoration. Last but not least some results of Dyson-Schwinger equations for the color-superconducting phase at large densities are shown.
Coulomb Green's function and image potential near a cylindrical diffuse interface
Xue, Changfeng; Huang, Qiongwei; Deng, Shaozhong
2015-12-01
In a preceding paper [Comput. Phys. Commun. 184 (1): 51-59, 2013], we revisited the problem of calculating Coulomb Green's function and image potential near a planar diffuse interface within which the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian direction in a transition layer between two dissimilar dielectric materials. In the present paper, we consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green's function in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical method for building Green's functions for any cylindrical diffuse interface models. The main idea of the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form rather than simply by a constant value as one would normally do. Next we describe how to efficiently compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model in overcoming the divergence of the image potential, to validate the numerical method in terms of its accuracy and convergence, and to demonstrate its capability for computing Green's functions for any cylindrical diffuse interface models.
Elementary function calculation programs for the central processor-6
International Nuclear Information System (INIS)
Dobrolyubov, L.V.; Ovcharenko, G.A.; Potapova, V.A.
1976-01-01
Subprograms of elementary functions calculations are given for the central processor (CP AS-6). A procedure is described to obtain calculated formulae which represent the elementary functions as a polynomial. Standard programs for random numbers are considered. All the programs described are based upon the algorithms of respective programs for BESM computer
International Nuclear Information System (INIS)
John, R.W.
1987-01-01
First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)
Nonequilibrium Green's functions in the study of heat transport of driven nanomechanical systems
Arrachea, Liliana; Rizzo, Bruno
2013-03-01
We review a recent theoretical development based on non-equilibrium Green's function formalism to study heat transport in nanomechanical devices modeled by phononic systems of coupled quantum oscillators driven by ac forces and connected to phononic reservoirs. We present the relevant equations to calculate the heat currents flowing along different regions of the setup, as well as the power developed by the time-dependent forces. We also present different strategies to evaluate the Green's functions exactly or approximately within the weak driving regime. We finally discuss the different mechanisms in which the ac driving forces deliver the energy. We show that, besides generating heat, the forces may operate exchanging energy as a quantum engine.
Topological classification of Chern-type insulators by means of the photonic Green function
Silveirinha, Mário G.
2018-03-01
The Chern topological numbers of a material system are traditionally written in terms of the Berry curvature which depends explicitly on the material band structure and on the Bloch eigenwaves. Here, we demonstrate that it is possible to calculate the gap Chern numbers of a photonic platform without having any detailed knowledge of its band structure, relying simply on the system photonic Green function. It is shown that the gap Chern number is given by an integral of the photonic Green function along a line of the complex frequency plane parallel to the imaginary axis. Our theory applies to arbitrary frequency dispersive fully three-dimensional photonic crystals, as well as to the case of electromagnetic continua with no intrinsic periodicity.
Tatli, Mehmet; Chun, Hye Jin; Camp, Charles H.; Li, Jingting; Cicerone, Marcus T.; Shih, Wei-Chuan; Laane, Jaan; Devarenne, Timothy P.
2017-11-01
Botryococcus braunii, a green colonial microalga, is a prodigious producer of liquid hydrocarbon oils that can be used as renewable feedstocks for producing combustion engine fuels. The B race of B. braunii mainly produces the triterpene hydrocarbons known as botryococcenes, which have over twenty known structures. Minor hydrocarbons in the B race include the triterpene methylsqualenes. Here we report an examination of the molecular structure for ten botryococcenes and five methylsqualenes using Raman spectroscopy and density functional theory (DFT) calculations in an effort to distinguish between these structurally similar molecules by spectroscopic approaches. The DFT calculations show that these molecules have between 243 and 271 vibrational frequencies. A comparison of the experimental Raman spectroscopy and DFT calculations indicates several spectral regions such as those for ν(Cdbnd C) stretching, CH2/CH3 bending, and ring bending can be used to distinguish between these molecules. In an extension of this analysis, a broadband coherent anti-Stokes Raman spectroscopy (BCARS) analysis was used to clearly distinguish between several botryococcenes isomers.
Benchmark density functional theory calculations for nanoscale conductance
DEFF Research Database (Denmark)
Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer
2008-01-01
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...... in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k(parallel to) points in the surface plane. For all systems we find...
International Nuclear Information System (INIS)
Zimmermann, Frank
1998-01-01
We compare different approximations to the point-charge Green function for the radial electric monopole field excited by an ultrarelativistic particle propagating through a resistive pipe, and study the applicability of these approximations for calculating the field of a bunch with finite length. It has been speculated that the exact form of the electric field could be important for simulations of the electron-cloud instability. In this paper, we show, however, that the usual approximation of the Green function by a delta function is adequate, except for extremely short bunch lengths
Inversion of GPS Data Using Spectral Decomposition of a Green Function
Jin, H.; Kato, T.; Miyazaki, S.; Hori, M.
2002-12-01
The Japanese Islands are located at the boundaries among Eurasia, Pacific, North America and Philippine Sea plates. Collision and subduction of these plates cause overall crustal deformation in the islands. Recent studies of geodetic inversion of dense GPS array data have shown that the distribution of inter-plate coupling is not homogeneous along the subducting plate boundaries. It is important to elucidate the distribution of rates of coupling along the boundaries for understanding subduction process and nature of slow slip episodes as well as for earthquake prediction studies. In the conventional inversion scheme, all physical processes involved (surface measurements due to fault dislocation, in this case) are represented by Green_fs function. Therefore, the nature of Green_fs function determined the ill-posedness of inverse problem. In order to solve this problem, Hori (2001) introduced a new approach of inversion, in which inversion operator (Green function as an operator) is determined without considering the method of measurement by introducing the spectral decomposition of Green function. The operator can be computed if Green_fs function and domains are given, no matter how actual measurements are conducted. Since inverse operator is obtained through numerical spectral decomposition of Green_fs function, it clarifies the mathematical reason of the ill-posedness of the inverse problem. Deformation function at surface can be estimated from measured data using least square method and then the deformation function is used for solving the inverse problem to predict slip function at the plate boundary using inverse operator. We have applied this new inversion method to the Japanese GPS data and estimated the distribution of back-slip (or coupling) on a subducting Philippine Sea plate. Before applying the method, we considered that the vertical component of GPS data is important in estimating distribution of coupling along the plate boundary. For this purpose
Single-site Green function of the Dirac equation for full-potential electron scattering
Energy Technology Data Exchange (ETDEWEB)
Kordt, Pascal
2012-05-30
I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)
Conceptual functional-to-form mapping for green design
Xu, Z. G.; Liu, W. M.; Shen, W. D.; Yang, D. Y.; Liu, T. T.
2017-10-01
Design for dis-assembly (DFD for short) is the key issue for green design automation. In this paper an assembly-level function-to-form mapping CAD system is reported for green design computing. The research work mainly includes: the assembly-level function definitions, product network model, two-step mapping mechanisms, dis-assembly sequencing based on graph theory, dis-assembly analysis etc. The function-to-form mapping is divided into two steps,i.e. mapping of function-to-behavior, called the first-step mapping, and the mapping of behavior-to-structure, called the second-step mapping. After the first step mapping, the three dimensional transmission chain (or 3D sketch) is established, and the product network model is created, on the basis of which the assembly/dis-assembly analysis and sequencing of the whole mechanism could be fulfilled. A mechanical hand is illustrated to verify the feasibility of the design methodologies.
Computational methods for the one-particle Green's function
International Nuclear Information System (INIS)
Niessen, W. von; Schirmer, J.; Cederbaum, L.S.
1984-01-01
A review is given of computational methods for the one-particle Green's function of finite electronic systems. Two distinct approximation schemes are considered which are based on the diagrammatic perturbation expansions of the Green's function G and of the self-energy part Σ related to G via the Dyson equation. The first scheme referred to as the extended two-particle hole Tamm-Dancoff approximation (extended 2ph-TDA) is derived as an infinite partial summation for Σ and G being complete through third-order in the electronic repulsion. The essential numerical problem is the diagonalization of a symmetric matrix defined in the space of a special class of ionic configurations. The structure of this matrix allows for an efficient two-step diagonalization procedure where a special diagonalization algorithm for matrices with an arrow-type structure is employed. The second approximation scheme discussed here is the outer-valence Green's function method (OVGF) based on a finite perturbation expansion of the self-energy part (it is exact to third order in the electronic repulsion and is supplemented by a geometrical approximation to higher orders). The OVGF is much simpler than the extended 2ph-TDA, since no matrices are to be diagonalized. The range of applicability of the OVGF is, however, restricted. For both approximation schemes spin-free formulations of the working equations are presented. Aspects of an optimal implementation in computer codes are discussed. The numerical performance of the methods is demonstrated by application to the ionization spectra and electron affinities of selected molecules. (orig.)
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
Green's function for reversible geminate reaction with volume reactivity.
Khokhlova, Svetlana S; Agmon, Noam
2012-11-14
The kinetics of a diffusing particle near a reversible trap may be described by an extension of the Feynman-Kac equation to the case of reversible binding, which can occur within a finite reaction sphere. We obtain the Green's function solution for the Laplace transform of this equation when the particle is initially either bound or unbound. We study the solution in the time-domain by either inverting the Laplace transform numerically or propagating the partial differential equation in the time-domain. We show that integrals of this solution over the reaction sphere agree with previously obtained solutions.
Geometrical optical transfer function: is it worth calculating?
Díaz, José A; Mahajan, Virendra N
2017-10-01
In this paper, we explore the merit of calculating the geometrical optical transfer function (GOTF) in optical design by comparing the time to calculate it with the time to calculate the diffraction optical transfer function (DOTF). We determine the DOTF by numerical integration of the pupil function autocorrelation (that reduces to an integration of a complex exponential of the aberration difference function), 2D digital autocorrelation of the pupil function, and the Fourier transform (FT) of the point-spread function (PSF); and we determine the GOTF by the FT of the geometrical PSF (that reduces to an integration over the pupil plane of a complex exponential that is a scalar product of the spatial frequency and transverse ray aberration vectors) and the FT of the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the transverse ray aberrations in the image plane for the GOTF. Numerical results for primary aberrations and some typical imaging systems show that the direct numerical integrations are slow, but the GOTF calculation by a FT of the spot diagram is two or even three times slower than the DOTF calculation by an FT of the PSF, depending on the aberration. We conclude that the calculation of GOTF is, at best, an approximation of the DOTF and only for large aberrations; GOTF does not offer any advantage in the optical design process, and hence negates its utility.
Dynamic Tsunami Data Assimilation (DTDA) Based on Green's Function: Theory and Application
Wang, Y.; Satake, K.; Gusman, A. R.; Maeda, T.
2017-12-01
Tsunami data assimilation estimates the tsunami arrival time and height at Points of Interest (PoIs) by assimilating tsunami data observed offshore into a numerical simulation, without the need of calculating initial sea surface height at the source (Maeda et al., 2015). The previous tsunami data assimilation has two main problems: one is that it requires quite large calculating time because the tsunami wavefield of the whole interested region is computed continuously; another is that it relies on dense observation network such as Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Japan or Cascadia Initiative (CI) in North America (Gusman et al., 2016), which is not practical for some area. Here we propose a new approach based on Green's function to speed up the tsunami data assimilation process and to solve the problem of sparse observation: Dynamic Tsunami Data Assimilation (DTDA). If the residual between the observed and calculated tsunami height is not zero, there will be an assimilation response around the station, usually a Gaussian-distributed sea surface displacement. The Green's function Gi,j is defined as the tsunami waveform at j-th grid caused by the propagation of assimilation response at i-th station. Hence, the forecasted waveforms at PoIs are calculated as the superposition of the Green's functions. In case of sparse observation, we could use the aircraft and satellite observations. The previous assimilation approach is not practical because it costs much time to assimilate moving observation, and to compute the tsunami wavefield of the interested region. In contrast, DTDA synthesizes the waveforms quickly as long as the Green's functions are calculated in advance. We apply our method to a hypothetic earthquake off the west coast of Sumatra Island similar to the 2004 Indian Ocean earthquake. Currently there is no dense observation network in that area, making it difficult for the previous assimilation approach. We used DTDA with
Calculation of Monte Carlo importance functions for use in nuclear-well logging calculations
International Nuclear Information System (INIS)
Soran, P.D.; McKeon, D.C.; Booth, T.E.
1989-07-01
Importance sampling is essential to the timely solution of Monte Carlo nuclear-logging computer simulations. Achieving minimum variance (maximum precision) of a response in minimum computation time is one criteria for the choice of an importance function. Various methods for calculating importance functions will be presented, new methods investigated, and comparisons with porosity and density tools will be shown. 5 refs., 1 tab
Quantum chemical calculations of using density functional theory ...
Indian Academy of Sciences (India)
K RACKESH JAWAHER
2018-02-15
Feb 15, 2018 ... Quantum chemical calculations of Cr2O3/SnO2 using density functional theory method ... Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. .... optical memory for emerging technologies in areas such as telecommunications ...
Kananenka, Alexei A; Phillips, Jordan J; Zgid, Dominika
2016-02-09
The Matsubara Green's function that is used to describe temperature-dependent behavior is expressed on a numerical grid. While such a grid usually has a couple of hundred points for low-energy model systems, for realistic systems with large basis sets the size of an accurate grid can be tens of thousands of points, constituting a severe computational and memory bottleneck. In this paper, we determine efficient imaginary time grids for the temperature-dependent Matsubara Green's function formalism that can be used for calculations on realistic systems. We show that, because of the use of an orthogonal polynomial transform, we can restrict the imaginary time grid to a few hundred points and reach micro-Hartree accuracy in the electronic energy evaluation. Moreover, we show that only a limited number of orthogonal polynomial expansion coefficients are necessary to preserve accuracy when working with a dual representation of the Green's function or self-energy and transforming between the imaginary time and frequency domain.
Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques
International Nuclear Information System (INIS)
Kantowski, R.; Milton, K.A.
1987-01-01
The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out
Generating bessel functions in mie scattering calculations using continued fractions.
Lentz, W J
1976-03-01
A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The continued fraction representations for both spherical Bessel functions and ratios of Bessel functions of consecutive order are presented.
The carcass wave functions in many particle variational calculations
International Nuclear Information System (INIS)
Zakharov, P.P.; Kolesnikov, N.N.; Tarasov, V.I.
1983-01-01
An improved procedure of many-particle variational calculations based on using ''carcass'' trial functions attaining maximum at a certain spatial particle configuration specified by the system of variational vectors is proposed. It is shown that on the example of concrete three - and four particle calculations that the suggested procedure is capable to ensure considerably better convergence of variational estimations and therefore in many cases turns to be more economical than analogous calculations with carcassless functions despite a certain complicated form of matrix elements
Off-Shell Green Functions: One-Loop with Growing Legs
International Nuclear Information System (INIS)
Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.
2008-01-01
One loop calculations in gauge theories in arbitrary gauge and dimensions become exceedingly hard with growing number of external off-shell legs. Let alone higher point functions, such a calculation for even the three point one-loop vertices for quantum electrodynamics (QED) and quantum chromodynamics (QCD) has been made available only recently. In this article, we discuss how Ward-Fradkin-Green-Takahashi identities (WFGTI) may provide a helpful tool in these computations. After providing a glimpse of our suggestion for the case of the 3-point vertex, we present our preliminary findings towards our similar efforts for the 4-point function. We restrict ourselves to the example of scalar quantum electrodynamics (SQED)
International Nuclear Information System (INIS)
Nguyen Bich Ha; Nguyen Van Hop
2009-01-01
The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.
Calculation of the Doppler broadening function using Fourier analysis
International Nuclear Information System (INIS)
Goncalves, Alessandro da Cruz
2010-01-01
An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function ψ(x,ζ) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for ψ(x,ζ), enables to obtain a simple analytic solution for the Doppler broadening function. (author)
Calculation of three proposals in the framework of the Green Tax Battle
International Nuclear Information System (INIS)
Schroten, A.
2011-09-01
In the Green Tax Battle a team of professors, a team of professional accountants and a team of social and environmental organizations compete with each other to present the most effective and innovative proposal for a further greening of the tax system in the Netherlands. The emphasis is on commuter traffic. [nl
Toolkit of Available EPA Green Infrastructure Modeling Software. National Stormwater Calculator
This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementat...
An improved version of the Green's function molecular dynamics method
Kong, Ling Ti; Denniston, Colin; Müser, Martin H.
2011-02-01
This work presents an improved version of the Green's function molecular dynamics method (Kong et al., 2009; Campañá and Müser, 2004 [1,2]), which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only atoms near the surface. In the previous implementation, the effective elastic coefficients measured at the Γ-point were altered to reduce finite size effects: their eigenvalues corresponding to the acoustic modes were set to zero. This scheme was found to work well for simple Bravais lattices as long as only atoms within the last layer were treated as Green's function atoms. However, it failed to function as expected in all other cases. It turns out that a violation of the acoustic sum rule for the effective elastic coefficients at Γ (Kong, 2010 [3]) was responsible for this behavior. In the new version, the acoustic sum rule is enforced by adopting an iterative procedure, which is found to be physically more meaningful than the previous one. In addition, the new algorithm allows one to treat lattices with bases and the Green's function slab is no longer confined to one layer. New version program summaryProgram title: FixGFC/FixGFMD v1.12 Catalogue identifier: AECW_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECW_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 206 436 No. of bytes in distributed program, including test data, etc.: 4 314 850 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Linux Has the code been vectorized or parallelized?: Yes. Code has been parallelized using MPI directives. RAM: Depends on the problem Classification: 7.7 External routines: LAMMPS ( http://lammps.sandia.gov/), MPI ( http
Blasone, Massimo; Jizba, Petr; Smaldone, Luca
2017-11-01
When one tries to take into account the nontrivial vacuum structure of quantum field theory, the standard functional-integral tools, such as generating functionals or transitional amplitudes, are often quite inadequate for such purposes. Here we propose a generalized generating functional for Green's functions which allows one to easily distinguish among a continuous set of vacua that are mutually connected via unitary canonical transformations. In order to keep our discussion as simple as possible, we limit ourselves to quantum mechanics where the generating functional of Green's functions is constructed by means of phase-space path integrals. The quantum-mechanical setting allows us to accentuate the main logical steps involved without embarking on technical complications such as renormalization or inequivalent representations that should otherwise be addressed in the full-fledged quantum field theory. We illustrate the inner workings of the generating functional obtained by discussing Green's functions among vacua that are mutually connected via translations and dilatations. Salient issues, including connection with quantum field theory, vacuum-to-vacuum transition amplitudes, and perturbation expansion in the vacuum parameter, are also briefly discussed.
Calculation of parton fragmentation functions from jet calculus: gluon applications
International Nuclear Information System (INIS)
Lassila, K.E.; Ng, A.
1985-01-01
A method is presented for calculation of general parton fragmentation functions based on jet calculus plus meson and baryon wave functions. Results for gluon fragmentation into mesons and baryons are discussed and related to recent information on upsilon decay into gluons. The expressions derived can be used directly in e + e - cross section predictions and will need to be folded in with baryon parton distribution functions when used in p-barp collisions. (author)
Allometric scaling of kidney function in green iguanas.
Maxwell, Lara K; Jacobson, Elliott R
2004-07-01
Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.
Quasiaverages, symmetry breaking and irreducible Green functions method
Directory of Open Access Journals (Sweden)
A.L.Kuzemsky
2010-01-01
Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.
Plant species and functional group combinations affect green roof ecosystem functions.
Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa
2010-03-12
Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green
Massively parallel sparse matrix function calculations with NTPoly
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
Evolutionary and functional diversity of green fluorescent proteins in cephalochordates.
Li, Guang; Zhang, Qiu-Jin; Zhong, Jing; Wang, Yi-Quan
2009-10-01
Green fluorescent protein (GFP) has been widely used as a molecular marker in modern biological research. Before the recent report of one GFP gene in Branchiostoma floridae, GFP family members were cloned only from other two groups of species: Cnidaria and Copepoda. Here we describe the complete GFP gene repertoire of B. floridae which includes 13 functional genes and 2 pseudogenes, representing the largest GFP family found so far. Coupling with nine other GFP sequences from another two species of genus Branchiostoma and the sequences from Cnidaria and Copepoda, we made a deep-level phylogenetic analysis for GFP genes in cephalochordates and found: 1) GFP genes have experienced a divergent evolution in cephalochordates; 2) all amphioxus GFP genes form four main clades on the tree which had diverged before the radiation of the last common ancestor of all extant cephalochordates; 3) GFP genes in amphioxus shared a common ancestor with that in Copepoda rather than being derived from horizontal gene transfer, which indicates that our ancestor was derived from a fluorescent organism and lost this ability after its separation from Cephalochordata, and also makes GFP a rare gene which has a rather unusual evolutionary path. In addition, we also provided evidence indicating that GFP genes have evolved divergent functions by specializing their expression profile, and different fluorescent spectra by changing their emission peaks. These findings spark two interesting issues: what are GFP in vivo functions in cephalochordates and why they are lost in other examined deuterostomes?
Pade approximants and the calculation of spectral functions of solids
International Nuclear Information System (INIS)
Grinstein, F.F.
1981-06-01
The computational approach of Chisholm, Genz and Pusterla for evaluating Feynman matrix elements in the physical region, is proposed for the calculation of spectral functions of solids. The method is based on the moment expansion of the functions, with a convenient choice of reference point, and its resummation with Pade approximants. The technique is tested in the calculation of the electron density of states for a one-dimensional system. In this case, the convergence of the method may be formally proved, while a numerical study shows its practical signification. (author)
Energy Technology Data Exchange (ETDEWEB)
Guasp, J.
1972-07-01
The Green Function of the thermalization problem is studied in the secondary model case through the spatial Fourier transform. A relation between singularities and eigenvalues allows the determination of the analyticity dominion. The eigenvalue spectrum has a purely discrete part, laying on an interval of the imaginary axis of the K complex plane (the Fourier parameter), and another part, purely continuous, laying in the reminder of the imaginary axis. A correspondence between discrete eigenvalues and exponential modes of the Green Function, extemal properties for the eigenvalues and some remarkable properties of the eigenfunctions are established. (Author) 32 refs.
Beam spread functions calculated using Feynman path integrals
Kilgo, Paul; Tessendorf, Jerry
2017-07-01
A method of solving the radiative transfer equation using Feynman path integrals (FPIs) is discussed. The FPI approach is a mathematical framework for computing multiple scattering in participating media. Its numerical behavior is not well known, and techniques are being developed to solve the FPI approach numerically. A missing numerical technique is detailed and used to calculate beam spread functions (BSFs), a commonly studied experimental property of many types of media. The calculations are compared against measured BSFs of sea ice. Analysis shows differently-shaped BSFs, and suggests the width parameter of the calculated BSF's Gaussian fit approaches a value in the limit of the number of path segments. A projection is attempted, but suggests a larger number of path segments would not increase the width of the calculated BSF. The trial suggests the approach is numerically stable, but requires further testing to ensure scientific accuracy.
Density functional theory calculations of charge transport properties ...
Indian Academy of Sciences (India)
ZIRAN CHEN
2017-08-04
Aug 4, 2017 ... Density functional theory calculations of charge transport properties of 'plate-like' coronene topological structures. ZIRAN CHENa, ZHANRONG HEa, YOUHUI XUa and WENHAO YUb,∗. aDepartment of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining,.
A comparison between nodal expansion method and nodal Green's function method - 038
International Nuclear Information System (INIS)
Wang, Deng-ying; Li Fu; Hu, Yong-ming; Guo, Jiong; Wei, Jin-Feng; Zhang, Jing-yu
2010-01-01
This paper presents a unified formulation of the Nodal Expansion Method (NEM) and Nodal Green's Function Method (NGFM) in Cartesian geometry although there is a significant difference between them. Both methods employ the same inner iterative scheme namely Row-Column iteration strategy to solve the interface current equation. It's generally believed that the NEM is somewhat faster than the NGFM. However, calculations of IAEA3D benchmark problem carried out by newly implemented NGFM and NEM show that not only the accuracy but also the performance of the NGFM are better than that of the NEM in Cartesian geometry. Both the NGFM and NEM are extended to solve neutron diffusion equation in cylindrical geometry. Since the traditional transverse integration fails to produce a 1-D transverse integrated equation in Θ-direction, a simple approach is introduced to obtain this equation in Θ-direction. The 1-D transverse integrated equations in r-direction are solved by the NEM using the special polynomials and by the NGFM using Green's function based on modified Bessel function respectively. The same iterative scheme employed for Cartesian geometry can be readily applied to the cylindrical geometry case. The Cylindrical Nodal Expansion Method (CNEM) and the Cylindrical Nodal Green's Function Method (CNGFM) codes are developed and applied to Dodd's r-z benchmark problem. The results show that both the CNEM and CNGFM are capable of very high performance and accuracy in cylindrical geometry. Meanwhile this paper demonstrates that nodal methods have prominent advantages over traditional finite difference method in both Cartesian geometry and cylindrical geometry. (authors)
Cleary, David A.
2014-01-01
The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.
Functional Use Change in Green Spaces: A Case Study of Kirklareli Province
Sat Gungor, Beyza; Culha Ozanguc, Kadiriye
2017-10-01
Green spaces which are one of the most important public spaces in urban design have an important role on qualified daily urban life. People escape from intense work pressure and traffic jam of metropoles to those urban green areas to take a breath even they cover a small size. In time, people’s expectations from green spaces as functional and quantitative needs are changing. This change occurs due to increasing population and as the character of the urban life. This study examines the functional use and quantitative change of urban green spaces of Kırklareli Province from past to present. Kırklareli is a border city to Bulgaria which is located in north-west part of Turkey and this gives a transitional and a multicultural character to the city. The population is about 67360. In the course of time; green space needs have increased by the increasing population. In addition to this, green spaces’ functional use change has been identified. According to the results of the study; from the aspect of the green space standards, Kırklareli found above standards with 17.5 m2 per capita, but on the other hand, sport and playground areas found insufficient. The Oldest and the newest city plans of Kırklareli (1940s and 2012s cadastral plans) have been compared and site surveys implemented as the methodology. In site survey, current green spaces’ functional uses as sport or playground are observed and determined and also current quantitative measure of the green spaces are verified. Urban green spaces in Kırklareli Province evaluated through considering world’s most populated urban green space standards and Turkey’s standards. This study utilizes to compose a substructure of the urban green space. Determined deficiencies and inadequacies of green spaces and functional needs in this study, can guide to further studies and implementations of Kırklareli Municipality.
Rapid calculation of partition functions and free energies of fluids.
Do, Hainam; Hirst, Jonathan D; Wheatley, Richard J
2011-11-07
The partition function (Q) is a central quantity in statistical mechanics. All the thermodynamic properties can be derived from it. Here we show how the partition function of fluids can be calculated directly from simulations; this allows us to obtain the Helmholtz free energy (F) via F = -k(B)T ln Q. In our approach, we divide the density of states, assigning half of the configurations found in a simulation to a high-energy partition and half to a low-energy partition. By recursively dividing the low-energy partition into halves, we map out the complete density of states for a continuous system. The result allows free energy to be calculated directly as a function of temperature. We illustrate our method in the context of the free energy of water.
Replacing leads by self-energies using non-equilibrium Green's functions
International Nuclear Information System (INIS)
Michael, Fredrick; Johnson, M.D.
2003-01-01
Open quantum systems consist of semi-infinite leads which transport electrons to and from the device of interest. We show here that within the non-equilibrium Green's function technique for continuum systems, the leads can be replaced by simple c-number self-energies. Our starting point is an approach for continuum systems developed by Feuchtwang. The reformulation developed here is simpler to understand and carry out than the somewhat unwieldly manipulations typical in the Feuchtwang method. The self-energies turn out to have a limited variability: the retarded self-energy Σ r depends on the arbitrary choice of internal boundary conditions, but the non-equilibrium self-energy or scattering function Σ which determines transport is invariant for a broad class of boundary conditions. Expressed in terms of these self-energies, continuum non-equilibrium transport calculations take a particularly simple form similar to that developed for discrete systems
An improved Green's function for ion beam transport.
Tweed, J; Wilson, J W; Tripathi, R K
2004-01-01
Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Green's function relativistic mean field theory for Λ hypernuclei
Ren, S.-H.; Sun, T.-T.; Zhang, W.
2017-05-01
The relativistic mean field theory with the Green's function method is extended to study Λ hypernuclei. Taking the hypernucleus Ca61Λ as an example, the single-particle resonant states for Λ hyperons are investigated by analyzing the density of states, and the corresponding energies and widths are given. Different behaviors are observed for the resonant states, i.e., the distributions of the very narrow 1 f5 /2 and 1 f7 /2 states are very similar to bound states while those of the wide 1 g7 /2 and 1 g9 /2 states are like scattering states. Besides, the impurity effect of Λ hyperons on the single-neutron resonant states is investigated. For most of the resonant states, both the energies and widths decrease with adding more Λ hyperons due to the attractive Λ N interaction. Finally, the energy level structure of Λ hyperons in the Ca hypernucleus isotopes with mass number A =53 -73 are studied; obvious shell structure and small spin-orbit splitting are found for the single-Λ spectrum.
An improved Green's function for ion beam transport
Tweed, J.; Wilson, J. W.; Tripathi, R. K.
2004-01-01
Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.
Soil-structure interaction analysis by Green function
International Nuclear Information System (INIS)
Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.
1985-01-01
Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)
Surface regulated arsenenes as Dirac materials: From density functional calculations
Energy Technology Data Exchange (ETDEWEB)
Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail: niannianyu@whut.edu.cn; Wang, Jiafu, E-mail: jasper@whut.edu.cn
2017-02-01
Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.
A J matrix engine for density functional theory calculations
International Nuclear Information System (INIS)
White, C.A.; Head-Gordon, M.
1996-01-01
We introduce a new method for the formation of the J matrix (Coulomb interaction matrix) within a basis of Cartesian Gaussian functions, as needed in density functional theory and Hartree endash Fock calculations. By summing the density matrix into the underlying Gaussian integral formulas, we have developed a J matrix open-quote open-quote engine close-quote close-quote which forms the exact J matrix without explicitly forming the full set of two electron integral intermediates. Several precomputable quantities have been identified, substantially reducing the number of floating point operations and memory accesses needed in a J matrix calculation. Initial timings indicate a speedup of greater than four times for the (pp parallel pp) class of integrals with speedups increasing to over ten times for (ff parallel ff) integrals. copyright 1996 American Institute of Physics
A method of calculating the Jost function for analytic potentials
International Nuclear Information System (INIS)
Rakityansky, S.A.; Amos, K.
1995-01-01
A combination of the variable-constant and complex coordinate rotation methods is used to solve the two-body Schroedinger equation. The equation is replaced by a system of linear first-order differential equations, which enables one to perform direct calculation of the Jost function for all complex momenta of physical interest including the spectral points corresponding to bound and resonance states. 16 refs., 2 tabs., 2 figs
Nonequilibrium Green function theory for excitation and transport in atoms and molecules
International Nuclear Information System (INIS)
Dahlen, Nils Erik; Stan, Adrian; Leeuwen, Robert van
2006-01-01
In this work we discuss the application of nonequilibrium Green functions theory to atomic and molecular systems with the aim to study charge and energy transport in these systems. We apply the Kadanoff-Baym equations to atoms and diatomic molecules initially in the ground state. The results obtained for the correlated initial states are used to analyze variational energy functionals of the Green function which are shown to perform very well. We further show an application of the Kadanoff-Baym equations to a molecule exposed to an external laser field. Finally we discuss the connection between nonequilibrium Green function theory and time-dependent density-functional theory with the aim to develop better density functionals in order to treat larger systems than those attainable with the nonequilibrium Green function method
Accurate analytical modeling of junctionless DG-MOSFET by green's function approach
Nandi, Ashutosh; Pandey, Nilesh
2017-11-01
An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Directory of Open Access Journals (Sweden)
Yohana Eflita
2018-01-01
Full Text Available Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Saeidian, Hamid; Sadighian, Hamed; Abdoli, Morteza; Sahandi, Morteza
2017-03-01
A green, and practically reliable method for the synthesis of novel 1,2,3‒triazole-based sulfonamides via copper (I)‒catalyzed azide‒alkyne [3 + 2] cycloaddition reaction was reported. The desired products were characterized by CHN analysis, FT-IR, 1H and 13C NMR, ESI-MS spectroscopy, single crystal X-ray diffraction and density functional theory (DFT) geometry optimization and molecular orbital calculations. Mild and green reaction conditions, atom-economic and high yields (61-91%) make this protocol an attractive option for the synthesis of 1,2,3‒triazoles bearing sulfonamide moiety. Geometrical structures, vibrational frequencies, 1H and 13C chemical shift values, Mulliken charge distribution and electrophilicity index (HOMO-LUMO analysis) of the characterized structure of 3f in the ground state have been calculated with the aid of DFT studies. The calculated chemical shifts (NMR) and vibrational frequencies (FT-IR) are in compliance with the experimental findings. The aim of the DFT study was to make a reasonable assignment of vibrational bands and chemical shifts.
Directory of Open Access Journals (Sweden)
Elena Grigoryeva
2011-02-01
Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.
Green's function approach to the Kondo effect in nanosized quantum corrals
Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.
2018-04-01
We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.
Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru
2016-06-01
In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.
An improved Green s function technique for ion beam transport
Tweed, J.; Wilson, J.; Tripathi, R.
Ion beam transport theory is of importance to space radiation in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In space radiation transport, the energy lost through atomic collisions is treated as averaged processes over the many events which occur over even relatively small dimensions of most materials and is referred to as the continuous slowing down approximation. It is reasoned that the few percent energy fluctuation in energy loss has little meaning for ions of broad energy spectra and especially in comparison to the many nuclear events for which uncertainties are still relatively large. In contrast, the laboratory testing of potential shielding materials uses nearly monoenergetic ion beams in which the interpretation of the interaction with shield materials requires a detailed description of the interaction process for comparison to detector responses. The development of a Green's function approach to ion transport facilitates the modeling of laboratory radiation environments and allows for the direct testing of transport approximations of material transmission properties. Using this approach radiation investigators at the NASA, Langley Research Center have established that simple solutions can be found for the HZE ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift and dispersion associated with nuclear events. Recently, we have found global solutions to energy/range straggling and derived a broader class of HZE ion solutions which with
Empirical Green's function analysis: Taking the next step
Hough, S.E.
1997-01-01
An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.
An efficient multi-scale Green's function reaction dynamics scheme
Sbailò, Luigi; Noé, Frank
2017-11-01
Molecular Dynamics-Green's Function Reaction Dynamics (MD-GFRD) is a multiscale simulation method for particle dynamics or particle-based reaction-diffusion dynamics that is suited for systems involving low particle densities. Particles in a low-density region are just diffusing and not interacting. In this case, one can avoid the costly integration of microscopic equations of motion, such as molecular dynamics (MD), and instead turn to an event-based scheme in which the times to the next particle interaction and the new particle positions at that time can be sampled. At high (local) concentrations, however, e.g., when particles are interacting in a nontrivial way, particle positions must still be updated with small time steps of the microscopic dynamical equations. The efficiency of a multi-scale simulation that uses these two schemes largely depends on the coupling between them and the decisions when to switch between the two scales. Here we present an efficient scheme for multi-scale MD-GFRD simulations. It has been shown that MD-GFRD schemes are more efficient than brute-force molecular dynamics simulations up to a molar concentration of 102 μM. In this paper, we show that the choice of the propagation domains has a relevant impact on the computational performance. Domains are constructed using a local optimization of their sizes and a minimal domain size is proposed. The algorithm is shown to be more efficient than brute-force Brownian dynamics simulations up to a molar concentration of 103 μM and is up to an order of magnitude more efficient compared with previous MD-GFRD schemes.
Directory of Open Access Journals (Sweden)
Cariou A.
2006-11-01
Full Text Available Cet article est le prolongement de deux publications dejà parues dans cette revue [I] [5]. On rappelle que le calcul de la résistance de vague d'une carène par éléments finis sur un ouvert borné nécessite la connaissance de la fonction de Green du problème à grande distance. Cette fonction est très difficile à calculer par une intégration numérique classique. Dans ce qui suit on rappelle donc les résultats et les méthodes des précédents articles et on achève la justification d'une méthode asymptotique pour le calcul de la fonction de Green. This article is the second of two already published in this journal. The wave resistance of a hull is calculated by finite elements on a bounded domain. For this, the Green function of the problem atgreat distance must be known. It is very difficult to calculate this function by a conventional numerical integration. This article reviews the results and methods of the preceding articles, and an asymptotic method for colculating the Green function ïs justified.
Current experience concerning Romanian green certificates market functioning
International Nuclear Information System (INIS)
Vladescu, Gherghina; Lupului, Luminita; Vasilevschi, Constantin; Ghinea, Smaranda
2006-01-01
The renewable energy sources are promoted by their beneficial use, namely: - diversification of energy sources for producing electric power; - reduction of pollution produced by fossil fuel burning; - reduction of gas releases producing the greenhouse effects, etc. Currently, most of the renewable energy sources cannot concur on electric power free market because of the high costs of implied investments. To ensure an efficient use of renewable energy sources in electricity production and to maintain the installations implied on the electric power market, it is necessary to implement a system able to produce an output greater than that obtained from electric energy selling. The Romanian Government chose to promote the electric energy production by renewable energy sources by using the green certificate trading system. This system ensures the progress in developing the technologies employed in electric energy production from renewable energy sources and, at the same time the costs implied by their promotion can be adjusted by market mechanisms what will reduce the effects upon the electric energy consumers. The paper presents the legislation frame existing in Romania for promoting the electric energy produced from renewable energy sources, the green certificate trading system applied in Romania, as well as, the role shared by the entities implied in operation and development of the system. In November 2005, a first transaction with green certificates on controlled green certificate market in Romania took place. Analyzed is the evolution of the green certificate market registered so far from its inception, as well as, the lessons learned so far from the experience acquired
Gutzwiller density functional theory for solid hydrogen calculations
Liu, Jun; Yao, Yongxin; Liu, Chen; Lu, Wencai; Wang, Cai-Zhuang; Ho, Kai-Ming
2014-03-01
We have recently proposed a Gutzwiller density functional theory (G-DFT) by innovatively replacing the noninteracting trial wavefunction in Kohn-Sham DFT with the Gutzwiller projected trial wavefunction to explicitly account for correlation effects, which renders a renormalized correlation matrix in the calculation as the key ingredient in our theory. Our approach does not require adjustable Coulomb interaction parameters, nor need of double counting terms present in LDA +U and LDA +DMFT. Our method has been demonstrated to work well in hydrogen and nitrogen molecule systems. In the presentation we will show its performance on the Hydrogen solid by specifically work out the total energy curves for different phases discussed in the literature, and compare them against the benchmark Quantum Monte Carlo (QMC) calculations.
On the Green function for the anisotropic simple cubic lattice
International Nuclear Information System (INIS)
Delves, R.T.; Joyce, G.S.
2001-01-01
The analytical properties of the lattice Green function G(α, w)=((1)/(π 3 ))∫ π 0 ∫ π 0 ∫ π 0 ((dθ 1 dθ 2 dθ 3 )/(w-cosθ 1 -cosθ 2 -αcosθ 3 ))are investigated, where w=u+iv is a complex variable in the (u, v) plane and α is a real parameter in the interval (0, ∞). In particular, it is shown that the function y G (α, z)≡wG(α, w), where z=1/w 2 , is a solution of a fourth-order linear differential equation of the type Σ(j=0)/4f j (α, z)D 4-j y=0,where f j (α, z) is a polynomial in the variables α and z and D≡d/dz. It is then proved that the solutions of this differential equation can all be expressed in terms of a product of two functions H 1 (α, z) and H 2 (α, z) which satisfy second-order linear differential equations of the normal type[D 2 +U + (α, z)]y=0,[D 2 +U - (α, z)]y=0,respectively, where U ± (α, z) are complicated algebraic functions of α and z. Next Schwarzian transformation theory is used to reduce both these second-order differential equations to the standard Gauss hypergeometric differential equation. From this result it is deduced that wG(α, w)=((2)/(√1-(2-α) 2 z+√1-(2+α) 2 z))[((2)/(π))K(k + )][((2)/(π))K(k - )],wherek 2 ± ≡ k 2 ± (α, z)=((1)/(2))-((1)/(2))[√1-(2-α) 2 z+√1-(2+α) 2 z] -3 [}1+(2-αz1-(2+α)√z+√1-(2-α)√ z1+(2+α)√z]{±16z+√1-α 2 z[√1+(2-α)z√1+(2+α)√z+√1-(2-α)√z√1-(2+α)] 2 }and K(k) denotes the complete elliptic integral of the first kind with a modulus k. This basic formula is valid for all values of w=u+iv which lie in the (u, v) plane, provided that a cut is made along the real axis from w=-2-α to w=2+α. In the remainder of the paper exact series expansions for G(α, w) are derived which are valid in a sufficiently small neighbourhood of the branch-point singularities at w=2+α, w=α, and w=vertical bar2-αvertical bar. In all cases it is shown that the real and imaginary parts of the coefficients in the analytic part of these expansions can be
Calculating Fragmentation Functions in Heavy Ion Physics Simulations
Hughes, Charles; Aukerman, Alex; Krobatsch, Thomas; Matyja, Adam; Nattrass, Christine; Neuhaus, James; Sorensen, Soren; Witt, William
2017-09-01
A hot dense liquid of quarks and gluons called a Quark Gluon Plasma (QGP) is formed in high energy nuclear collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. The high energy partons which scatter during these collisions can serve as probes for measuring QGP bulk properties. The details of how partons lose energy to the QGP medium as they traverse it can be used to constrain models of their energy loss. Specifically, measurements of fragmentation functions in the QGP medium can provide experimental constraints on theoretical parton energy loss mechanisms. However, the high background in heavy ion collisions limits the precision of these measurements. We investigate methods for measuring fragmentation functions in a simple model in order to assess their feasibility. We generate a data-driven heavy ion background based on measurements of charged hadron transverse momentum spectra, charged hadron azimuthal flow, and charged hadron rapidity spectra. We then calculate fragmentation functions in this heavy ion background and compare to calculations in proton-proton simulations. We present the current status of these studies.
Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco
2017-05-01
Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized
Calculation of hadronic part of photon structure function in QCD
International Nuclear Information System (INIS)
Gorskij, A.S.; Ioffe, B.L.; Oganesyan, A.G.; Khodzhamiryan, A.Yu.
1989-01-01
The photon structure function in QCD in the intermediate region of the Bjorken variable 0.2 2 /2pq, where q 2 is the hard photon virtuality, p is the soft photon momentum) is calculated. It is shown that without introduction of fitting parameters the experimental data can be described in the range 3GeV 2 ≤Q 2 2 /Q 2 =-q 2 /not taking account for the leading logarithmic corrections. It is demonstrated that the corrections proportional to μ ν 2 > to the hard photon scattering amplitude on the longitudinal soft photon and to the Callan-Gross relation vanish. 16 refs.; 6 figs
Density functional theory calculations of Rh-β-diketonato complexes.
Conradie, J
2015-01-28
Density functional theory (DFT) results on the geometry, energies and charges of selected Rh-β-diketonato reactants, products and transition states are discussed. Various DFT techniques are used to increase our understanding of the orientation of ligands coordinated to Rh, to identify the lowest energy geometry of possible geometrical isomers and to get a molecular orbital understanding of ground and transition states. Trends and relationships obtained between DFT calculated energies and charges, experimentally measured values and electronic parameters describing the electron donating power of groups and ligands, enable the design of ligands and complexes of specific reactivity.
Irreducible Greens' Functions method in the theory of highly correlated systems
International Nuclear Information System (INIS)
Kuzemsky, A.L.
1994-09-01
The self-consistent theory of the correlation effects in Highly Correlated Systems (HCS) is presented. The novel Irreducible Green's Function (IGF) method is discussed in detail for the Hubbard model and random Hubbard model. The interpolation solution for the quasiparticle spectrum, which is valid for both the atomic and band limit is obtained. The (IGF) method permits to calculate the quasiparticle spectra of many-particle systems with the complicated spectra and strong interaction in a very natural and compact way. The essence of the method deeply related to the notion of the Generalized Mean Fields (GMF), which determine the elastic scattering corrections. The inelastic scattering corrections leads to the damping of the quasiparticles and are the main topic of the present consideration. The calculation of the damping has been done in a self-consistent way for both limits. For the random Hubbard model the weak coupling case has been considered and the self-energy operator has been calculated using the combination of the IGF method and Coherent Potential Approximation (CPA). The other applications of the method to the s-f model, Anderson model, Heisenberg antiferromagnet, electron-phonon interaction models and quasiparticle tunneling are discussed briefly. (author). 79 refs
Green functions in a super self-dual Yang-Mills background
International Nuclear Information System (INIS)
McArthur, I.N.
1984-01-01
In euclidean supersymmetric theories of chiral superfields and vector superfields coupled to a super-self-dual Yang-Mills background, we define Green functions for the Laplace-type differential operators which are obtained from the quadratic parot the action. These Green functions are expressed in terms of the Green function on the space of right chiral superfields, and an explicit expression for the right chiral Green function in the fundamental representation of an SU(n) gauge group is presented using the supersymmetric version of the ADHM formalism. The superfield kernels associated with the Laplace-type operators are used to obtain the one-loop quantum corrections to the super-self-dual Yang-Mills action, and also to provide a superfield version of the super-index theorems for the components of chiral superfields in a self-dual background. (orig.)
Sum-over-histories representation for the causal Green function of free scalar field theory
International Nuclear Information System (INIS)
Rudolph, O.
1993-10-01
A set of Green functions G α (x-y), α element of [0, 2π], for free scalar field theory is introduced, varying between the Hadamard Green function Δ 1 (x-y) triple bond 0vertical stroke {φ(x), φ(y)}vertical stroke 0> and the causal Green function G π (x-y)=iΔ(x-y) triple bond [φ(x), φ(y)]. For every α element of [0, 2π] a path-integral representation for G α is obtained both in the configuration space and in the phase space of the classical relativistic particle. Especially setting α=π a sum-over-histories representation for the causal Green function is obtained. Furthermore using BRST theory an alternative path-integral representation for G α is presented. From these path integral representations the composition laws for the G α 's are derived using a modified path decomposition expansion. (orig.)
International Nuclear Information System (INIS)
Dorning, J.
1981-01-01
The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de
Development of multi-functional streetscape green infrastructure using a performance index approach
Czech Academy of Sciences Publication Activity Database
Tiwary, A.; Williams, L. D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, Carlo
2016-01-01
Roč. 208, jan (2016), s. 209-220 ISSN 0269-7491 Institutional support: RVO:67179843 Keywords : Green infrastructure * Multi-functional * Pollution * Performance index * Streetscape Subject RIV: EH - Ecology, Behaviour Impact factor: 5.099, year: 2016
An accurate solution of elastodynamic problems by numerical local Green's functions
Loureiro, F. S.; Silva, J. E. A.; Mansur, W. J.
2015-09-01
Green's function based methodologies for elastodynamics in both time and frequency domains, which can be either numerical or analytical, appear in many branches of physics and engineering. Thus, the development of exact expressions for Green's functions is of great importance. Unfortunately, such expressions are known only for relatively few kinds of geometry, medium and boundary conditions. In this way, due to the difficulty in finding exact Green's functions, specially in the time domain, the present paper presents a solution of the transient elastodynamic equations by a time-stepping technique based on the Explicit Green's Approach method written in terms of the Green's and Step response functions, both being computed numerically by the finite element method. The major feature is the computation of these functions separately by the central difference time integration scheme and locally owing to the principle of causality. More precisely, Green's functions are computed only at t = Δt adopting two time substeps while Step response functions are computed directly without substeps. The proposed time-stepping method shows to be quite accurate with distinct numerical properties not presented in the standard central difference scheme as addressed in the numerical example.
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2010-01-01
We study Green's functions of the generalized Sturm-Liouville problems that are related to each other by Darboux -equivalently, supersymmetrical - transformations. We establish an explicit relation between the corresponding Green's functions and derive a simple formula for their trace. The class of equations considered here includes the conventional Schroedinger equation and generalizations, such as for position-dependent mass and with linearly energy-dependent potential, as well as the stationary Fokker-Planck equation.
Directory of Open Access Journals (Sweden)
Roman Urban
2004-12-01
Full Text Available We consider the Green functions for second-order left-invariant differential operators on homogeneous manifolds of negative curvature, being a semi-direct product of a nilpotent Lie group $N$ and $A=mathbb{R}^+$. We obtain estimates for mixed derivatives of the Green functions both in the coercive and non-coercive case. The current paper completes the previous results obtained by the author in a series of papers [14,15,16,19].
Wehner, Jens; Baumeier, Björn
2017-04-11
A general approach to determine orientation and distance-dependent effective intermolecular exciton transfer integrals from many-body Green's functions theory is presented. On the basis of the GW approximation and the Bethe-Salpeter equation (BSE), a projection technique is employed to obtain the excitonic coupling by forming the expectation value of a supramolecular BSE Hamiltonian with electron-hole wave functions for excitations localized on two separated chromophores. Within this approach, accounting for the effects of coupling mediated by intermolecular charge transfer (CT) excitations is possible via perturbation theory or a reduction technique. Application to model configurations of pyrene dimers shows an accurate description of short-range exchange and long-range Coulomb interactions for the coupling of singlet and triplet excitons. Computational parameters, such as the choice of the exchange-correlation functional in the density-functional theory (DFT) calculations that underly the GW-BSE steps and the convergence with the number of included CT excitations, are scrutinized. Finally, an optimal strategy is derived for simulations of full large-scale morphologies by benchmarking various approximations using pairs of dicyanovinyl end-capped oligothiophenes (DCV5T), which are used as donor material in state-of-the-art organic solar cells.
DEFF Research Database (Denmark)
De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.
2008-01-01
Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnet...
Density functional calculations for atoms, molecules and clusters
International Nuclear Information System (INIS)
Gunnarsson, O.; Jones, R.O.
1980-01-01
The density functional formalism provides a framework for including exchange and correlation effects in the calculation of ground state properties of many-electron systems. The reduction of the problem to the solution of single-particle equations leads to important numerical advantages over other ab initio methods of incorporating correlation effects. The essential features of the scheme are outlined and results obtained for atomic and molecular systems are surveyed. The local spin density (LSD) approximation gives generally good results for systems where the bonding involves s and p electrons, but results are less satisfactory for d-bonded systems. Non-local modifications to the LSD approximation have been tested on atomic systems yielding much improved total energies. (Auth.)
Time-dependent density-functional calculation of nuclear response functions
Nakatsukasa, Takashi
2017-01-01
Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.
International Nuclear Information System (INIS)
Xiong Suming; Ni Guangzheng
2009-01-01
Green's functions play an important role in the analyses of electro-magneto-thermo-elastic composite. However, most works available on this topic are in case of identical temperature. Based on the compact 2D general solution of transversely isotropic electro-magneto-thermo-elastic composite, which is expressed in harmonic functions, and employing the trial-and-error method, the 2D Green's function for a steady point heat source in a semi-infinite electro-magneto-thermo-elastic plane is presented by five newly induced harmonic functions. Numerical results are given graphically by contours.
Green's function based finite element formulations for isotropic seepage analysis with free surface
Directory of Open Access Journals (Sweden)
Hui Wang
Full Text Available Abstract A solution procedure using the Green's function based finite element method (FEM is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method.
Calculations of Supersonic and Hypersonic Flows using Compressible Wall Functions
Huang, P. G.; Coakley, T. J.
1993-01-01
The present paper presents a numerical procedure to calculate supersonic and hypersonic flows using the compressible law of the wall. The turbulence models under consideration include the Launder-Reece-Rodi-Gibson Reynolds-stress model and the k-epsilon model. The models coupled with the proposed wall function technique have been tested in both separated and unseparated flows. The flows include (1) an insulated flat plate flow over a range of Mach numbers, (2) a Mach 5 flat plate flow with cold wall conditions, (3) a two dimensional supersonic compression corner flow, (4) a hypersonic flow over an axisymmetric flare, and (5) a hypersonic flow over a 2-D compression corner. Results indicate that the wall function technique gives improved predictions of skin friction and heat transfer in separated flows compared with models using wall dampers. Predictions of the extent of separation are not improved over the wall damper models except with the Reynolds-stress model for the supersonic compression corner flow case.
Li, X.; Torstensson, P. T.; Nielsen, J. C. O.
2017-12-01
Vertical dynamic vehicle-track interaction in the through route of a railway crossing is simulated in the time domain based on a Green's function approach for the track in combination with an implementation of Kalker's variational method to solve the non-Hertzian, and potentially multiple, wheel-rail contact. The track is described by a linear, three-dimensional and non-periodic finite element model of a railway turnout accounting for the variations in rail cross-sections and sleeper lengths, and including baseplates and resilient elements. To reduce calculation time due to the complexity of the track model, involving a large number of elements and degrees-of-freedom, a complex-valued modal superposition with a truncated mode set is applied before the impulse response functions are calculated at various positions along the crossing panel. The variation in three-dimensional contact geometry of the crossing and wheel is described by linear surface elements. In each time step of the contact detection algorithm, the lateral position of the wheelset centre is prescribed but the contact positions on wheel and rail are not, allowing for an accurate prediction of the wheel transition between wing rail and crossing rail. The method is demonstrated by calculating the wheel-rail impact load and contact stress distribution for a nominal S1002 wheel profile passing over a nominal crossing geometry. A parameter study is performed to determine the influence of vehicle speed, rail pad stiffness, lateral wheelset position and wheel profile on the impact load generated at the crossing. It is shown that the magnitude of the impact load is more influenced the wheel-rail contact geometry than by the selection of rail pad stiffness.
Song, Na; Hou, Xingshuang; Chen, Li; Cui, Siqi; Shi, Liyi; Ding, Peng
2017-05-31
It is urgent to fabricate a class of green plastics to substitute synthetic plastics with increasing awareness of sustainable development of an ecological environment and economy. In this work, a novel green plastic constructed from cellulose and functionalized graphene has been explored. The mechanical properties and thermal stability of the resultant cellulose/functionalized graphene composite plastics (CGPs) equal or even exceed those of synthetic plastics. Moreover, the in-plane thermal conductivity of CGPs can reach 9.0 W·m -1 ·K -1 with only 6 wt % functionalized graphene loading. These superior properties are attributed to the strong hydrogen-bonding interaction between cellulose and functionalized graphene, the uniform dispersion of functionalized graphene, and the alignment structure of CGPs. Given the promising synergistic performances and ecofriendly features of CGPs, we envisage that CGPs as novel green plastics could play important roles in thermal management devices.
Lang, Brian Hung-Hin; Wong, Carlos K H; Hung, Hing Tsun; Wong, Kai Pun; Mak, Ka Lun; Au, Kin Bun
2017-01-01
Because the fluorescent light intensity on an indocyanine green fluorescence angiography reflects the blood perfusion within a focused area, the fluorescent light intensity in the remaining in situ parathyroid glands may predict postoperative hypocalcemia risk after total thyroidectomy. Seventy patients underwent intraoperative indocyanine green fluorescence angiography after total thyroidectomy. Any parathyroid glands with a vascular pedicle was left in situ while any parathyroid glands without pedicle or inadvertently removed was autotransplanted. After total thyroidectomy, an intravenous 2.5 mg indocyanine green fluorescence angiography was given and real-time fluorescent images of the thyroid bed were recorded using the SPY imaging system (Novadaq, Ontario, Canada). The fluorescent light intensity of each indocyanine green fluorescence angiography as well as the average and greatest fluorescent light intensity in each patient were calculated. Postoperative hypocalcemia was defined as adjusted calcium 150% developed postoperative hypocalcemia while 9 (81.8%) patients with a greatest fluorescent light intensity ≤150% did. Similarly, no patients with an average fluorescent light intensity >109% developed PH while 9 (30%) with an average fluorescent light intensity ≤109% did. The greatest fluorescent light intensity was more predictive than day-0 postoperative hypocalcemia (P = .027) and % PTH drop day-0 to 1 (P parathyroid glands function and predicting postoperative hypocalcemia risk after total thyroidectomy. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
International Nuclear Information System (INIS)
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-01-01
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared
Johnson, Ronald C.; Mercier, Tracy
2011-01-01
The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.
Eigenfunctional representation of dyadic Green's functions in multilayered gyrotropic chiral media
International Nuclear Information System (INIS)
Qiu, C-W; Yao, H-Y; Li, L-W; Zouhdi, Said; Yeo, T-S
2007-01-01
Studying electromagnetic waves in complex media has been an important research topic due to its useful applications and scientific significance of its physical performance. Dyadic Green's functions (DGFs), as a mathematical kernel or a dielectric medium response, have long been a valuable tool in solving both source-free and source-incorporated electromagnetic boundary value problems for electromagnetic scattering, radiation and propagation phenomena. A complete eigenfunctional expansion of the dyadic Green's functions for an unbounded and a planar, arbitrary multilayered gyrotropic chiral media is formulated in terms of the vector wavefunctions. After a general representation of Green's dyadics is obtained, the scattering coefficients of Green's dyadics are determined from the boundary conditions at each interface and are expressed in a greatly compact form of recurrence matrices. In the formulation of Green's dyadics and their scattering coefficients, three cases are considered, i.e. the current source is immersed in (1) the first, (2) the intermediate, and (3) the last regions, respectively. Although the dyadic Green's functions for an unbounded gyroelectric medium has been reported in the literature, we here present not only unbounded but also multilayered DGFs for the gyrotropic chiral media. The explicit representation of the DGFs after reduction to the gyroelectric or isotropic case agrees well with those existing corresponding results
Beam brightness calculation for analytical and empirical distribution functions
International Nuclear Information System (INIS)
Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.
1992-01-01
The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution
Scattering of waves by a half-space of periodic scatterers using broadband Green's function.
Tan, Shurun; Tsang, Leung
2017-11-15
An efficient scatterer-free full-wave solution for plane wave scattering from a half-space of two-dimensional (2D) periodic scatterers is derived using broadband Green's function. The Green's function is constructed using band solutions of the infinite periodic structure, and it satisfies boundary conditions on all the scatterers. A low wavenumber extraction technique is applied to the Green's function to accelerate the convergence of the modal expansion. This facilitates the Green's function with low wavenumber extraction (BBGFL) to be evaluated over a broadband as the modal solutions are independent of wavenumber. Coupled surface integral equations (SIE) are constructed using the BBGFL and the free-space Green's function respectively for the two half-spaces with unknowns only on the interface. The method is distinct from the effective medium approach which represents the periodic scatters with an effective medium. This new approach provides accurate near-field solutions around the interface with localized field patterns useful for surface plasmon polaritons and topological edge states examinations.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Leitherer, S.; Jäger, C. M.; Krause, A.; Halik, M.; Clark, T.; Thoss, M.
2017-11-01
In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present a multiscale method based on a combination of molecular-dynamics simulations, electronic-structure calculations, and a transport theory that uses time-dependent nonequilibrium Green's functions. We apply the methodology to investigate charge transport in C60-containing self-assembled monolayers, which are used in organic field-effect transistors.
DEFF Research Database (Denmark)
Leitherer, Susanne; Jager, C. M.; Krause, A.
2017-01-01
In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present...... a multiscale method based on a combination of molecular-dynamics simulations, electronic-structure calculations, and a transport theory that uses time-dependent nonequilibrium Green's functions. We apply the methodology to investigate charge transport in C-60-containing self-assembled monolayers, which...
Effects of self-consistency in a Green's function description of saturation in nuclear matter
International Nuclear Information System (INIS)
Dewulf, Y.; Neck, D. van; Waroquier, M.
2002-01-01
The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy
Green tea effects on cognition, mood and human brain function: A systematic review.
Mancini, Edele; Beglinger, Christoph; Drewe, Jürgen; Zanchi, Davide; Lang, Undine E; Borgwardt, Stefan
2017-10-15
Green tea (Camellia sinensis) is a beverage consumed for thousands of years. Numerous claims about the benefits of its consumption were stated and investigated. As green tea is experiencing a surge in popularity in Western culture and as millions of people all over the world drink it every day, it is relevant to understand its effects on the human brain. To assess the current state of knowledge in the literature regarding the effects of green tea or green tea extracts, l-theanine and epigallocatechin gallate both components of green tea-on general neuropsychology, on the sub-category cognition and on brain functions in humans. We systematically searched on PubMed database and selected studies by predefined eligibility criteria. We then assessed their quality and extracted data. We structured our effort according to the PRISMA statement. We reviewed and assessed 21 studies, 4 of which were randomised controlled trials, 12 cross-over studies (both assessed with an adapted version of the DELPHI-list), 4 were cross-sectional studies and one was a cohort study (both assessed with an adapted version of the Newcastle-Ottawa assessment scale). The average study quality as appraised by means of the DELPHI-list was good (8.06/9); the studies evaluated with the Newcastle-Ottawa-scale were also good (6.7/9). The reviewed studies presented evidence that green tea influences psychopathological symptoms (e.g. reduction of anxiety), cognition (e.g. benefits in memory and attention) and brain function (e.g. activation of working memory seen in functional MRI). The effects of green tea cannot be attributed to a single constituent of the beverage. This is exemplified in the finding that beneficial green tea effects on cognition are observed under the combined influence of both caffeine and l-theanine, whereas separate administration of either substance was found to have a lesser impact. Copyright © 2017. Published by Elsevier GmbH.
Accurate prediction of defect properties in density functional supercell calculations
International Nuclear Information System (INIS)
Lany, Stephan; Zunger, Alex
2009-01-01
The theoretical description of defects and impurities in semiconductors is largely based on density functional theory (DFT) employing supercell models. The literature discussion of uncertainties that limit the predictivity of this approach has focused mostly on two issues: (1) finite-size effects, in particular for charged defects; (2) the band-gap problem in local or semi-local DFT approximations. We here describe how finite-size effects (1) in the formation energy of charged defects can be accurately corrected in a simple way, i.e. by potential alignment in conjunction with a scaling of the Madelung-like screened first order correction term. The factor involved with this scaling depends only on the dielectric constant and the shape of the supercell, and quite accurately accounts for the full third order correction according to Makov and Payne. We further discuss in some detail the background and justification for this correction method, and also address the effect of the ionic screening on the magnitude of the image charge energy. In regard to (2) the band-gap problem, we discuss the merits of non-local external potentials that are added to the DFT Hamiltonian and allow for an empirical band-gap correction without significantly increasing the computational demand over that of standard DFT calculations. In combination with LDA + U, these potentials are further instrumental for the prediction of polaronic defects with localized holes in anion-p orbitals, such as the metal-site acceptors in wide-gap oxide semiconductors
Analytical gradients for density functional calculations with approximate spin projection.
Saito, Toru; Thiel, Walter
2012-11-08
We have derived and implemented analytical gradients for broken-symmetry unrestricted density functional calculations (BS-UDFT) with removal of spin contamination by Yamaguchi's approximate spin projection method. Geometry optimizations with these analytical gradients (AGAP-opt) yield results consistent with those obtained with the previously available numerical gradients (NAP-opt). The AGAP-opt approach is found to be more precise, efficient, and robust than NAP-opt. It allows full geometry optimizations for large open-shell systems. We report results for three types of organic diradicals and for a binuclear vanadium(II) complex to demonstrate the merits of removing the spin contamination effects during geometry optimization (AGAP-opt vs BS-UDFT) and to illustrate the superior performance of the analytical gradients (AGAP-opt vs NAP-opt). The results for the vanadium(II) complex indicate that the AGAP-opt method is capable of handling pronounced spin contamination effects in large binuclear transition metal complexes with two magnetic centers.
DEFF Research Database (Denmark)
Stradi, Daniele; Martinez, Umberto; Blom, Anders
2016-01-01
an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I-Vbias curve simulations. We apply...
DEFF Research Database (Denmark)
Papior, Nick Rübner; Lorente, Nicolás; Frederiksen, Thomas
2017-01-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT–NEGF code handles devices with one or multiple electrodes (Ne≥1) with individual chemical potentials and electronic tem...
Finite medium Green's function solutions to nuclide transport in porous media
International Nuclear Information System (INIS)
Oston, S.G.
1979-01-01
Current analytical techniques for predicting the transport of nuclides in porous materials center on the Green's function approach - i.e., determining the response characteristics of a geologic pathway to an impulse function input. To data, the analyses all have set the boundary conditions needed to solve the 1-D transport equation as though each pathway were infinite in length. The purpose of this work is to critically examine the effect that this infinite pathway assumption has on Green's function models of nuclide transport in porous media. The work described herein has directly attacked the more difficult problem of obtaining suitable Green's functions for finite pathways whose dimensions, in fact, may not be much greater than the diffusion length. Two different finite media Green's functions describing the nuclide mass flux have been determined, depending on whether the pathway is terminated by a high or a low flow resistance at the outlet end. Pulse shapes and peak amplitudes have been computed for each Green's function over a wide range of geohydrologic parameters. These results have been compared to both infinite and semi-infinite medium solutions. It was found that predicted pulse shapes are quite sensitive to selection of a Green's function model for short pathways only. For long pathways all models tend toward a symmetric Gaussian flux-time history at the outlet. Thus, the results of our previous waste transport studies using the infinite pathway assumption are still generally valid because they always included at least one long pathway. It was also found that finite medium models offer some unique computational advantages for evaluating nuclide transport in a series of connecting pathways
Directory of Open Access Journals (Sweden)
Jiameng Wu
2018-01-01
Full Text Available The infinite depth free surface Green function (GF and its high order derivatives for diffraction and radiation of water waves are considered. Especially second order derivatives are essential requirements in high-order panel method. In this paper, concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, not only the GF and its first order derivatives but also second order derivatives are derived from four kinds of analytical series expansion and refined division of whole calculation domain. The approximations of special functions, particularly the hypergeometric function and the algorithmic applicability with different subdomains are implemented. As a result, the computation accuracy can reach 10-9 in whole domain compared with conventional methods based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent to that with the classical method.
Priya, Y. Sushma; Rao, K. Ramachandra; Chalapathi, P. V.; Satyavani, M.; Veeraiah, A.
2017-09-01
The vibrational and electronic properties of 2-coumaranone have been reported in the ground state using experimental techniques (FT-IR, FT-Raman, UV spectra and fluorescence microscopic imaging) and density functional theory (DFT) employing B3LYP correlation with the 6-31G(d, p) basis set. The theoretically reported optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yielded good concurrence between the experimental and calculated values. The assignments of the vibrational spectra were done with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field(SQMFF) methodology. The whole assignments of fundamental modes were based on the potential energy distribution (PED) matrix. The electric dipole moment and the first order hyperpolarizability of the 2-coumaranone have been computed using quantum mechanical calculations. NBO and HOMO, LUMO analyses have been carried out. UV spectrum of 2-coumaranone was recorded in the region 100-300 nm and compared with the theoretical UV spectrum using TD-DFT and SAC-CI methods by which a good agreement is observed. Fluorescence microscopic imaging study reflects that the compound fluoresces in the green-yellow region.
Hou, Peng-Fei; Chen, Bing-Jie; Zhang, Yang
2017-08-01
As a solid material between the crystal and the amorphous, the study on quasicrystals has become an important branch of condensed matter physics. Due to the special arrangement of atoms, quasicrystals own some desirable properties, such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrystals are expected to be applied to the coating surfaces for engines, solar cells, nuclear fuel containers and heat converters. However, when the quasicrystals are used as coating material, it is very hard to simulate the coupling fields by the finite elements numerical methods because of its thin thickness and extreme stress gradient. This is the main reason why the structure of quasicrystal coating cannot be calculated accurately and stably by various numerical platform. A general solution method which can be used to solve this contact problem for a 1D hexagonal quasicrystal coating perfectly bonded to a transversely isotropic semi-infinite substrate under the point force is presented in this paper. The solutions of the Green's function under the distributed load can be obtained through the superposition principle. The simulation results show that this method is correct and effective, which has high calculation accuracy and fast convergence speed. The phonon-phason coupling field and elastic field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution, and the complicated coupling field of quasicrystals in coating contact space is explicitly presented in terms of elementary functions. In addition, the relationship between the coating thickness or external force and the stress component is also obtained to solve practical problems in engineering applications. The solutions presented not only bear theoretical merits, but also can serve as benchmarks to clarify various approximate methods.
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations
2016-01-01
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations.
Directory of Open Access Journals (Sweden)
Aleksandr V Zhuravlev
2016-11-01
Full Text Available Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK and its derivatives, 3-hydroxyanthranilic acid (3HAA and xanthommatin (XAN, leads to the hyperproduction of reactive oxygen species (ROS which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE and ionization potential (IP for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA, several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O* and methyl peroxy radical (Met-OO* decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical.
Synthetic strong ground motions for engineering design utilizing empirical Green`s functions
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.
1996-04-11
We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.
Quantum chemical calculations of using density functional theory ...
Indian Academy of Sciences (India)
K RACKESH JAWAHER
2018-02-15
Feb 15, 2018 ... Abstract. Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. The theoretical parameters of the transparent conducting metal oxides were calculated using DFT/B3LYP/LANL2DZ method. The optimised bond parameters such as ...
Dynamics of A-Gc Homopolymer Crystal with Sodium Ions: Green Function Approach
Chern, Lih-Ling
Lattice dynamics theory has been applied to determine the vibrational modes for a single DNA molecule (deoxyribonucleic acid) with and without the counterions and the surrounding water molecules. The need to study the dynamics of DNA crystals come from several reasons. Firstly, the understanding of the dynamics of DNA molecules through experiment are mostly based upon the infra-red or Raman scattering spectrum. The spectra for the DNA molecules in solution are broadened due to the interactions between the DNA molecules with the molecules in the solution. The best experimental lines which reflect the characteristics of the DNA molecules are those for DNA crystals. This fact prompted us to study the dynamics of the DNA crystals. Secondly, the interactions between the double helices (interhelical interactions) are important in some areas of DNA dynamics. These interactions have been shown to play a major role in stabilizing the crystalline A or B conformation (1) and they are suspected to be a crucial element in conformation change of DNA molecules (2). In this thesis we use lattice dynamics to calculate the vibrational modes of a DNA crystal through use of the Green function method. It is hoped that the result of this study of the influence of the interhelical interactions on the dynamics of DNA will help us to understand more about the mechanism of the function of the DNA molecules. As a result, we concentrate on the biologically significant crystal modes with frequencies less than 100 wave numbers. The background and information is given in Chapters 1 and 2. The dynamics of an isolated DNA molecule is summarized to help to understand the dynamics of the DNA crystal that follows. In Chapter 3, the lattice dynamics of a perfect DNA molecule is studied in detail. Chapter 4 shows how the Green function method is applied to the study of a DNA crystal to reduce the dimension of the matrix to be normalized. Chapters 5 and 6 list the results and the conclusions. The DNA
The function of green belt Jatibarang as quality control for the environment of Semarang city
Murtini, Titien Woro; Harani, Arnis Rochma; Ernadia, Loretta
2017-06-01
The quality of the healthy environment in a neighborhood city is decreasing in number. According to the government regulation, Act No. 26 of 2007, a city should have 20% of green areas from the total area of the city. Now, Semarang only has 7.5% of green areas from the total city area. One of the efforts made by the Government of Semarang is the establishment of a greenbelt in Jatibarang area. It consists of several parts, namely, the reservoirs in the green belt area and also the plant zone in other sectors. The reservoir has a function as the controller of water resources sustainability where the crops serve as the balance for the combination. Thus, it is interesting to study how the interplay of these two functions in a green belt area. The primary data used in this study was obtained from the locus of research by direct observation, interview, and physical data collection. Based on the data collection, data was then processed and analyzed in accordance with the indicators that had been compiled based on theories of reservoirs, green belts, and the quality of the urban environment. Government regulations regarding with the greenbelt and tanks were also used as references in the discussion. The research found out that the presence of the reservoir and the plants in the green belt of Jatibarang can improve the function of the green belt optimally which is a real influence for the improvement of the environment quality, especially water. The Greenbelt was divided into four zones, namely the Arboretum, Argo - Forestry, Ecotourism, Buffer - Zone also made the region became a beautiful greenbelt that brought a positive influence to environmental quality.
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Simulation of the radiolysis of water using Green's functions of the diffusion equation
International Nuclear Information System (INIS)
Plante, I.; Cucinotta, F.A.
2015-01-01
Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by .OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks. (authors)
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation
Plante, Ianik; Wu, Honglu
2014-01-01
Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.
Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach
Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.
2017-12-01
We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.
A Green's function approach to giant-dipole systems
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-01-01
In this work we perform a Green’s function analysis of giant-dipole systems. First, we derive the Green’s functions of different magnetically field-dressed systems, in particular of electronically highly excited atomic species in crossed electric and magnetic fields—so-called giant-dipole states. We determine the dynamical polarizability of atomic giant-dipole states as well as the adiabatic potential energy surfaces of giant-dipole molecules in the framework of the Green’s function approach. Furthermore, we perform an comparative analysis of the latter to an exact diagonalization scheme and show the general divergence behavior of the widely applied Fermi-pseudopotential approach. Finally, we derive the giant-dipole’s regularized Green’s function representation.
Probability density functions for use when calculating standardised drought indices
Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie
2015-04-01
Time series of drought indices like the standardised precipitation index (SPI) and standardised flow index (SFI) require a statistical probability density function to be fitted to the observed (generally monthly) precipitation and river flow data. Once fitted, the quantiles are transformed to a Normal distribution with mean = 0 and standard deviation = 1. These transformed data are the SPI/SFI, which are widely used in drought studies, including for drought monitoring and early warning applications. Different distributions were fitted to rainfall and river flow data accumulated over 1, 3, 6 and 12 months for 121 catchments in the United Kingdom. These catchments represent a range of catchment characteristics in a mid-latitude climate. Both rainfall and river flow data have a lower bound at 0, as rains and flows cannot be negative. Their empirical distributions also tend to have positive skewness, and therefore the Gamma distribution has often been a natural and suitable choice for describing the data statistically. However, after transformation of the data to Normal distributions to obtain the SPIs and SFIs for the 121 catchments, the distributions are rejected in 11% and 19% of cases, respectively, by the Shapiro-Wilk test. Three-parameter distributions traditionally used in hydrological applications, such as the Pearson type 3 for rainfall and the Generalised Logistic and Generalised Extreme Value distributions for river flow, tend to make the transformed data fit better, with rejection rates of 5% or less. However, none of these three-parameter distributions have a lower bound at zero. This means that the lower tail of the fitted distribution may potentially go below zero, which would result in a lower limit to the calculated SPI and SFI values (as observations can never reach into this lower tail of the theoretical distribution). The Tweedie distribution can overcome the problems found when using either the Gamma or the above three-parameter distributions. The
21 CFR 868.1890 - Predictive pulmonary-function value calculator.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator is...
Leading effect of visual plant characteristics for functional uses of green spaces
Directory of Open Access Journals (Sweden)
Beyza Şat Güngör
2016-07-01
Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.
Bruni, S.; Llombart, N.; Neto, A.; Gerini, G.; Maci, S.
2004-01-01
A method is proposed for the analysis of arrays of linear printed antennas. After the formulation of pertinent set of integral equations, the appropriate equivalent currents of the Method of Moments are represented in terms of two sets of entire domain basis functions. These functions synthesize on
Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus.
Zhao, Liting; Pu, Lingling; Wei, Jingyu; Li, Jinghua; Wu, Jianquan; Xin, Zhonghao; Gao, Weina; Guo, Changjiang
2016-05-13
Propolis contains a variety of bioactive components and possesses many biological properties. This study was designed to evaluate potential effects of Brazilian green propolis on glucose metabolism and antioxidant function in patients with type 2 diabetes mellitus (T2DM). In the 18-week randomized controlled study, enrolled patients with T2DM were randomly assigned to Brazilian green propolis group (900 mg/day) (n = 32) and control group (n = 33). At the end of the study, no significant difference was found in serum glucose, glycosylated hemoglobin, insulin, aldose reductase or adiponectin between the two groups. However, serum GSH and total polyphenols were significantly increased, and serum carbonyls and lactate dehydrogenase activity were significantly reduced in the Brazilian green propolis group. Serum TNF-α was significantly decreased, whereas serum IL-1β and IL-6 were significantly increased in the Brazilian green propolis group. It is concluded that Brazilian green propolis is effective in improving antioxidant function in T2DM patients.
Directory of Open Access Journals (Sweden)
Juntao Xiong
2018-03-01
Full Text Available Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1 The RGB (red, green and blue. Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2 The improved Chan–Vese (C–V level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3 Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.
Xiong, Juntao; Liu, Zhen; Lin, Rui; Bu, Rongbin; He, Zhiliang; Yang, Zhengang; Liang, Cuixiao
2018-03-25
Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1) The RGB (red, green and blue). Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2) The improved Chan-Vese (C-V) level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3) Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.
Nonequilibrium Green function theory for excitation and transport in atoms and molecules
Dahlen, Nils Erik; Stan, Adrian; Bonitz, M; Filinov, A
2006-01-01
In this work we discuss the application of nonequilibrium Green functions theory to atomic and molecular systems with the aim to study charge and energy transport in these systems. We apply the Kadanoff-Baym equations to atoms and diatomic molecules initially in the ground state. The results
Zeros of the Green's function for the de la Vallée-Poussin problem
Pokornyĭ, Yu V.
2008-06-01
The Green's function for the de la Vallée-Poussin problem \\displaystyle Lx\\equiv x^{(n)}+p_1(t)x^{(n-1)}+\\dots+p_n(t)x=f, \\displaystyle x(a_i)=A_i^{(0)}, \\ \\ x'(a_i)=A_i^{(1)}, \\ \\ \\dots, \\ \\ x^{(\
Chang, T. W.; Ide, S.
2017-12-01
Slip inversion using empirical Green's function (EGF) method has its advantages of removing the complex path and site effect that is difficult to model theoretically. The method, which uses one "EGF event" that's smaller in magnitude for over 1.5 as the Green's function, is essentially an inversion highlighting the arrival time of the waveforms. In this study, inversions of very large earthquakes were conducted with far-field data, using non-negative-least-squares method, and taking EGF selection from Baltay et al. (2014). Objective way of screening station components is applied by evaluating the radiation pattern for the earthquakes of each stations. To better estimate model error due to the usage of empirical Green's function, which is also specific to station selection, bootstrapping is made on the station selection process, randomly selecting waveforms from P or SH components in various stations. This will give the average of inversion trials using different data components with different Green's Functions, resulting in a smoothed model with stable features of the individual results, without explicitly applying smoothing constraints. So far, the above method had been applied to the MW 8.8 2010 Maule, Chile, and the MW 9.0 2011 Tohoku-Oki, Japan earthquakes, both giving comparable slip pattern to previous studies, although slip is concentrated in very small regions with unreasonably large amount of slip. These results should be considered as an extreme case of concentrated slip, and further physical inference is necessary to understand the real rupture process.
Borel summability in the disorder parameter of the averaged Green's function for Gaussian disorder
International Nuclear Information System (INIS)
Constantinescu, F.; Kloeckner, K.; Scharffenberger, U.
1985-01-01
In this note we prove Borel summability in the disorder parameter of the averaged Green's function of tight binding models Hsub(v)=-Δ+V with Gaussian disorder. Using this, we can reconstruct the density of states rho(E)sub(γ) from the Borel sums. (orig./WL)
International Nuclear Information System (INIS)
Zaytsev, S A
2010-01-01
The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.
Calculation of the exponential function of linear idempotent operators
International Nuclear Information System (INIS)
Chavoya-Aceves, O.; Luna, H.M.
1989-01-01
We give a method to calculate the exponential EXP[A r ] where A is a linear operator which satisfies the reaction A n =I, n is an integer and I is the identity operator. The method is generalised to operators such that A n +1=A and is applied to obtain some Lorentz transformations which generalise the notion of 'boost'. (Author)
Kuchment, Peter
2012-06-21
Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
Generalized relations among N-dimensional Coulomb Green's functions using fractional derivatives
International Nuclear Information System (INIS)
Blinder, S.M.; Pollock, E.L.
1989-01-01
Hostler [J. Math. Phys. 11, 2966 (1970)] has shown that Coulomb Green's functions of different dimensionality N are related by G (N+2) =OG (N) , where O is a first-order derivative operator in the variables x and y. Thus all the even-dimensional functions are connected, as are analogously the odd-dimensional functions. It is shown that the operations of functional differentiation and integration can further connect the even- to the odd-dimensional functions, so that Hostler's relation can be extended to give G (N+1) =O 1/2 G (N)
DFT-based Green's function pathways model for prediction of bridge-mediated electronic coupling.
Berstis, Laura; Baldridge, Kim K
2015-12-14
A density functional theory-based Green's function pathway model is developed enabling further advancements towards the long-standing challenge of accurate yet inexpensive prediction of electron transfer rate. Electronic coupling predictions are demonstrated to within 0.1 eV of experiment for organic and biological systems of moderately large size, with modest computational expense. Benchmarking and comparisons are made across density functional type, basis set extent, and orbital localization scheme. The resulting framework is shown to be flexible and to offer quantitative prediction of both electronic coupling and tunneling pathways in covalently bound non-adiabatic donor-bridge-acceptor (D-B-A) systems. A new localized molecular orbital Green's function pathway method (LMO-GFM) adaptation enables intuitive understanding of electron tunneling in terms of through-bond and through-space interactions.
Analytic functions for calculating binary alloys of FCC metals ...
African Journals Online (AJOL)
The problem studied in this paper is that of obtaining appropriate electron density function and a pair potential function for an FCC metal within the EAM format. The approach adopted is to use the experimental dilute limit heats of solution of the binary alloys of FCC metals as input parameters into Johnson analytical model, ...
On calculation of zeta function of integral matrix
Czech Academy of Sciences Publication Activity Database
Janáček, Jiří
2009-01-01
Roč. 134, č. 1 (2009), s. 49-58 ISSN 0862-7959 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : Epstein zeta function * integral lattice * Riemann theta function Subject RIV: BA - General Mathematics
A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU
Energy Technology Data Exchange (ETDEWEB)
Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki, Helsinki (Finland)
2012-10-15
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Bespalova, K.; Somov, P. A.; Spivak, Yu M.
2017-11-01
Porous silicon nanopowders for target drug delivery were obtained by electrochemical anodic etching in a hydrofluoric acid solution using the monocrystalline silicon n-type conductivity. Porous silicon powders were obtained by sonification of porous silicon layers. The powders were functionalized by antibiotic Kanamycin and fluorophore Indocyanine Green by the passive adsorption method. The peculiarities of absorption spectra in 190-600 nm region were revealed for functionalized porous silicon powders dispersions in water.
International Nuclear Information System (INIS)
Kövesárki, P; Brock, I C; Quiroz, A E Nuncio
2012-01-01
This paper introduces a probability density estimator based on Green's function identities. A density model is constructed under the sole assumption that the probability density is differentiable. The method is implemented as a binary likelihood estimator for classification purposes, so issues such as mis-modeling and overtraining are also discussed. The identity behind the density estimator can be interpreted as a real-valued, non-scalar kernel method which is able to reconstruct differentiable density functions.
Monte Carlo calculations of nuclei
Energy Technology Data Exchange (ETDEWEB)
Pieper, S.C. [Argonne National Lab., IL (United States). Physics Div.
1997-10-01
Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.
Self-Consistent Green Function Method in Nuclear Matter
Directory of Open Access Journals (Sweden)
Khaled S. A. Hassaneen
2013-01-01
Full Text Available Symmetric nuclear matter is studied within the Brueckner-Hartree-Fock (BHF approach and is extending to the self-consistent Green’s function (SCGF approach. Both approximations are based on realistic nucleon-nucleon interaction; that is, CD-Bonn potential is chosen. The single-particle energy and the equation of state (EOS are studied. The Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove theorem. In comparison to the BHF approach, the binding energy is reduced and the EOS is stiffer. Both the SCGF and BHF approaches do not reproduce the correct saturation point. A simple contact interaction should be added to SCGF and BHF approaches to reproduce the empirical saturation point.
TRIPOLI-4 green's functions and MCNP5 importance to estimate ex-core detector response on a N4 PWR
International Nuclear Information System (INIS)
Trakas, C.; Petit, O
2010-01-01
Monitoring power reactors for the critical and sub-critical states relies on the importance of neutron assemblies or fuel rods, relatively to the parameters of interest. These parameters can be the reactor power or its variation, the maximum expected fluence on the vessel, the signal of ex-core detectors in a sub-critical core, the neutron and gamma energy deposited outside the core, etc. In general, the neutron importance can be obtained using direct Monte Carlo calculations. Thus, with successive transport calculations of neutrons or gamma, we obtain the contribution of each part to the signal of interest. It can also be obtained by adjoint calculations using SN deterministic codes. Both methods are currently used by AREVA. Here we present a study for neutron importance of a new and computationally very efficient method, proposed by the TRIPOLI-4 Monte Carlo transport code and we compare results to a MCNP5 importance calculation. The neutron importance is provided by the TRIPOLI-4-Green's functions option. The results show an excellent agreement between the two methodologies applied with the codes. Importance calculated by MCNP5 and TRIPOLI-4 for 10 B tallies have discrepancies less than 1% for the first row of fuel assemblies and 6% for the 2nd and 3rd row. Similar results were obtained for fast neutrons. (author)
Linked-cluster expansion for the Green's function of the infinite-U Hubbard model.
Khatami, Ehsan; Perepelitsky, Edward; Rigol, Marcos; Shastry, B Sriram
2014-06-01
We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the order of, the hopping amplitude. We also discuss several different approaches for obtaining the spectral functions through analytic continuation of the imaginary frequency Green's function, and show results for the system near half filling. We benchmark our results for the equation of state against those obtained from a numerical linked-cluster expansion carried out to the eleventh order.
21 CFR 868.1900 - Diagnostic pulmonary-function interpretation calculator.
2010-04-01
... calculator. 868.1900 Section 868.1900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Diagnostic pulmonary-function interpretation calculator. (a) Identification. A diagnostic pulmonary-function interpretation calculator is a device that interprets pulmonary study data to determine clinical significance of...
Density Functional Calculations of Solid State Heats of Formation
National Research Council Canada - National Science Library
Politzer, Peter
1999-01-01
It is now feasible to compute quite accurate gas phase heats of formation for relatively small molecules by means of ab initio or density functional techniques and one of several possible approaches...
Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete
Directory of Open Access Journals (Sweden)
Md Azree Othuman Mydin
2012-09-01
Full Text Available In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and methods of production, a wide range of densities (400 – 1600 kg/m 3 of foamcrete can be produced thus providing flexibility for application such as structural elements, partition, insulating materials and filling grades. Foamcrete has so far been applied primarily as a filler material in civil engineering works. However, its good thermal and acoustic performance indicates its strong potential as a material in building construction. The focus of this paper is to classify literature on foamcrete in terms of its mechanical, thermal and functional properties.
Chiu, Y. T.; Hilton, H. H.
1977-01-01
Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.
Green tea: a novel functional food for the oral health of older adults.
Gaur, Sumit; Agnihotri, Rupali
2014-04-01
Functional foods are foods with positive health effects that extend beyond their nutritional value. They affect the function of the body and help in the management of specific health conditions. Green tea, a time-honoured Chinese herb, might be regarded as a functional food because of its inherent anti-oxidant, anti-inflammatory, antimicrobial and antimutagenic properties. They are attributed to its reservoir of polyphenols, particularly the catechin, epigallocatechin-3-gallate. Owing to these beneficial actions, this traditional beverage was used in the management of chronic systemic diseases including cancer. Recently, it has been emphasized that the host immuno-inflammatory reactions destroy the oral tissues to a greater extent than the microbial activity alone. Green tea with its wide spectrum of activities could be a healthy alternative for controlling these damaging reactions seen in oral diseases, specifically, chronic periodontitis, dental caries and oral cancer, which are a common occurrence in the elderly population. © 2013 Japan Geriatrics Society.
Optimum Design of Multi-Function Robot Arm Gripper for Varying Shape Green Product
Directory of Open Access Journals (Sweden)
Razali Zol Bahri
2016-01-01
Full Text Available The project focuses on thorough experimentally studies of the optimum design of Multi-function Robot Arm Gripper for varying shape green product. The purpose of this project is to design a few of robot arm gripper for multi-functionally grip a green product with varying shape. The main character of the gripper is that it can automated adjust its finger to suit with the shape of the product. An optimum design of multi-function robot arm gripper is verified through experimental study. The expected result is a series of analytical results on the proposal of gripper design and material that will be selected for the gripper. The analysis of the gripper design proposal by using ANSYS and CATIA software is described in detail in this paper.
Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.
Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens
2017-09-04
We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproducibility in density functional theory calculations of solids
DEFF Research Database (Denmark)
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn
2016-01-01
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We...
Phytochrome from Green Plants: Properties and biological Function
Energy Technology Data Exchange (ETDEWEB)
Quail, Peter H.
2014-07-25
Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and
“Green Pack” in Function of Green Marketing as a Form of Social Responsibility in Serbia
Directory of Open Access Journals (Sweden)
Saša Raletić
2013-06-01
Full Text Available Green marketing is defined as a partnership of all interested stakeholders to sustainable development. This form of marketing is a relatively new form of social responsibility in Serbia and as such it is subject of this paper. The necessity of integration of green marketing in a social responsible behavior is justified by the fact that purely commercial marketing business ignores the possible conflict between short-term desires and long-term benefits of market entities and society, with regard to global environmental problems. The laws are the lower limits of business and the community social responsibility, which includes green marketing, a higher level. Whereas the National Assembly of the Republic of Serbia in May 2009 adopted 16 laws on environmental protection, that is called the “Green Package”. Laws were passed with the aim of regulating the business and social responsibility and green marketing and development. The aim of this analysis is the “Green Package” as a basis for application of green marketing in Serbia. The work will result in efficiencies that are realized by applying the law of “green package” and point to existing gaps.
Challenging Density Functional Theory Calculations with Hemes and Porphyrins
Directory of Open Access Journals (Sweden)
Sam P. de Visser
2016-04-01
Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom
Baseden, Kyle A.; Tye, Jesse W.
2014-01-01
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
Energy Technology Data Exchange (ETDEWEB)
Masuda-Jindo, K. [Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hung, Vu Van [Hanoi National Pedagogic University, km8 Hanoi-Sontay Highway, Hanoi (Viet Nam); Menon, M. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)
2005-04-01
The electronic and mechanical properties of the nanoscale materials are studied by using an ab initio molecular dynamics (TBMD) method and temperature dependent lattice Green's function method. The core structures of dislocations in semiconductor crystallites composed of {proportional_to}1000 atoms are calculated using the ab initio TB molecular dynamics method and compared with those in the corresponding bulk semiconductors. The core structures of both 30 and 90 partial dislocations in Si crystallites are found to be similar to those of the bulk Si crystals, but excess energies of the dislocations are of considerably smaller in the small semiconductor crystallites. We also investigate the mechanical (dislocation) properties of carbon related nanoscale materials, graphen in comparison with CNT, by using the temperature dependent Lattice Green's function method and we will show that the thermodynamic and mechanical properties of the nanoscale materials are quite different from those of the corresponding bulk materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Time dependent density functional calculation of plasmon response in clusters
Wang, Feng; Zhang, Feng-Shou; Eric, Suraud
2003-02-01
We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.
Density functional theory calculations of charge transport properties ...
Indian Academy of Sciences (India)
In this paper, we used density functional theory (DFT) at the M06-2X/6−31+G(d) level to compute the charge transport rates of nine coronene topological structures. The results show that the energy gap of these nine coronene derivatives is in the range 2.90–3.30 eV, falling into the organic semiconductor category. The size ...
mTransport: Two-point-correlation function calculator
Dias, Mafalda; Frazer, Jonathan; Seery, David
2017-10-01
mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.
Piyanzina, Irina; Minisini, Benoit; Tayurskii, Dmitrii; Bardeau, Jean-François
2015-02-01
Density functional theory (DFT) calculations have been used to investigate the structural properties, dipole moments, polarizabilities, Gibbs energies, hardness, electronegativity, HOMO/LUMO energies, and chemical potentials of trans and cis configurations of eight para-substituted azobenzene derivatives. All properties have been obtained using the B3LYP functional and 6-31++G(d,p) basis set. The planar structures have been obtained for all optimized trans configurations. The energy difference between trans and cis configurations for considered derivatives was found to be between 64.2-73.1 kJ/mole. It has been obtained that the p-aminodiazo-benzene (ADAB) has the difference in the dipole moments between trans and cis forms higher than for trans and cis azobenzene.
The Impact of Working in a Green Certified Building on Cognitive Function and Health.
MacNaughton, Piers; Satish, Usha; Laurent, Jose Guillermo Cedeno; Flanigan, Skye; Vallarino, Jose; Coull, Brent; Spengler, John D; Allen, Joseph G
2017-03-01
Thirty years of public health research have demonstrated that improved indoor environmental quality is associated with better health outcomes. Recent research has demonstrated an impact of the indoor environment on cognitive function. We recruited 109 participants from 10 high-performing buildings (i.e. buildings surpassing the ASHRAE Standard 62.1-2010 ventilation requirement and with low total volatile organic compound concentrations) in five U.S. cities. In each city, buildings were matched by week of assessment, tenant, type of worker and work functions. A key distinction between the matched buildings was whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green certified buildings scored 26.4% (95% CI: [12.8%, 39.7%]) higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those in non-certified buildings. These outcomes may be partially explained by IEQ factors, including thermal conditions and lighting, but the findings suggest that the benefits of green certification standards go beyond measureable IEQ factors. We describe a holistic "buildingomics" approach for examining the complexity of factors in a building that influence human health.
METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS
Directory of Open Access Journals (Sweden)
E. V. Dikareva
2015-01-01
Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.
International Nuclear Information System (INIS)
Nazareth, J. L.
1979-01-01
1 - Description of problem or function: OCOPTR and DRVOCR are computer programs designed to find minima of non-linear differentiable functions f: R n →R with n dimensional domains. OCOPTR requires that the user only provide function values (i.e. it is a derivative-free routine). DRVOCR requires the user to supply both function and gradient information. 2 - Method of solution: OCOPTR and DRVOCR use the variable metric (or quasi-Newton) method of Davidon (1975). For OCOPTR, the derivatives are estimated by finite differences along a suitable set of linearly independent directions. For DRVOCR, the derivatives are user- supplied. Some features of the codes are the storage of the approximation to the inverse Hessian matrix in lower trapezoidal factored form and the use of an optimally-conditioned updating method. Linear equality constraints are permitted subject to the initial Hessian factor being chosen correctly. 3 - Restrictions on the complexity of the problem: The functions to which the routine is applied are assumed to be differentiable. The routine also requires (n 2 /2) + 0(n) storage locations where n is the problem dimension
Quantum field theory in the presence of a medium: Green's function expansions
Energy Technology Data Exchange (ETDEWEB)
Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-12-15
Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.
Antisites in III-V semiconductors: Density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Chroneos, A., E-mail: alex.chroneos@open.ac.uk [Engineering and Innovation, The Open University, Milton Keynes MK7 6AA (United Kingdom); Tahini, H. A. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Schwingenschlögl, U., E-mail: udo.schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Grimes, R. W., E-mail: r.grimes@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
Antisites in III-V semiconductors: Density functional theory calculations
Chroneos, A.
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III=Al, Ga, and In and V=P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies. © 2014 AIP Publishing LLC.
International Nuclear Information System (INIS)
Kramer, T; Heller, E J; Parrott, R E
2008-01-01
Time-dependent quantum mechanics provides an intuitive picture of particle propagation in external fields. Semiclassical methods link the classical trajectories of particles with their quantum mechanical propagation. Many analytical results and a variety of numerical methods have been developed to solve the time-dependent Schroedinger equation. The time-dependent methods work for nearly arbitrarily shaped potentials, including sources and sinks via complex-valued potentials. Many quantities are measured at fixed energy, which is seemingly not well suited for a time-dependent formulation. Very few methods exist to obtain the energy-dependent Green function for complicated potentials without resorting to ensemble averages or using certain lead-in arrangements. Here, we demonstrate in detail a time-dependent approach, which can accurately and effectively construct the energy-dependent Green function for very general potentials. The applications of the method are numerous, including chemical, mesoscopic, and atomic physics
Thermal-wave fields in solid wedges using the Green function method: Theory and experiment
Tai, Rui; Zhang, Jie; Wang, Chinhua; Mandelis, Andreas
2013-04-01
In this work, we establish a theoretical model for a cylindrical rod of radius R with opening angle θ illuminated by a modulated incident beam. The model uses the Green function method in cylindrical coordinates. An analytical expression for the Green function and thermal-wave field in such a solid is presented. The theory is validated in the limit of reducing the arbitrary wedge geometrical structure to simpler geometries. For acute angle wedges, it is shown that the thermal-wave field near the edge exhibits confinement behavior and increased amplitude compared to a flat (reference) solid with θ = π. For obtuse angle wedges, it is shown that the opposite is true and relaxation of confinement occurs leading to lower amplitude thermal-wave fields. The theory provides a basis for quantitative thermophysical characterization of wedge-shaped objects and it is tested using an AISI 304 steel wedge and photothermal radiometry detection.
Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect
Energy Technology Data Exchange (ETDEWEB)
Zhang, Liangliang [College of Engineering, China Agricultural University, Beijing 100083 (China); Sinomatech Wind Power Blade Co., Ltd, Beijing 100092 (China); Wu, Di [College of Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wenshuai [College of Science, China Agricultural University, Beijing 100083 (China); Yang, Lianzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Ricoeur, Andreas; Wang, Zhibin [Institute of Mechanics, University of Kassel, 34125 Kassel (Germany); Gao, Yang, E-mail: gaoyangg@gmail.com [College of Science, China Agricultural University, Beijing 100083 (China)
2016-09-16
Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. - Highlights: • Green's functions of 1D piezoelectric quasicrystal bi-material are studied. • The coupled fields subjected to line forces or line dislocations are obtained. • Mechanical behavior under the effect of different material constants is researched.
Method of projectors and the construction of Green's function of the wave equation
International Nuclear Information System (INIS)
Vshivtsev, A.S.; Peregudov, D.V.; Tatarintsev, A.V.
1995-01-01
In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green's function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green's function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present)
Bashardanesh, Zahedeh; Lötstedt, Per
2018-03-01
In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.
A nonlinear analytic function expansion nodal method for transient calculations
Energy Technology Data Exchange (ETDEWEB)
Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)
Wavelets as basis functions in electronic structure calculations
International Nuclear Information System (INIS)
Chauvin, C.
2005-11-01
This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)
Marshall, J; Molloy, R; Moss, G W; Howe, J R; Hughes, T E
1995-02-01
Two methods are described for using the jellyfish green fluorescent protein (GFP) as a reporter gene for ion channel expression. GFP fluorescence can be used to identify the transfected cells, and to estimate the relative levels of ion channel expression, in cotransfection experiments. A GFP-NMDAR1 chimera can be constructed that produces a functional, fluorescent receptor subunit. These methods should facilitate studies of ion channel expression, localization, and processing.
A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids
Directory of Open Access Journals (Sweden)
Mouslim Messali
2016-09-01
Full Text Available A facile preparation of a series of 17 new functionalized picolinium-based ionic liquids under “green chemistry” conditions is described. For the first time, target ionic liquids were prepared using standard methodology and under microwave irradiation in short duration of time with quantitative yields. Their structures were characterized by FT-IR, 1H NMR, 13C NMR, 11B, 19F, 31P and mass spectra.
A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids
Messali, Mouslim
2016-01-01
A facile preparation of a series of 17 new functionalized picolinium-based ionic liquids under “green chemistry” conditions is described. For the first time, target ionic liquids were prepared using standard methodology and under microwave irradiation in short duration of time with quantitative yields. Their structures were characterized by FT-IR, 1H NMR, 13C NMR, 11B, 19F, 31P and mass spectra.
Rapid finite-fault inversions in Southern California using Cybershake Green's functions
Thio, H. K.; Polet, J.
2017-12-01
We have developed a system for rapid finite fault inversion for intermediate and large Southern California earthquakes using local, regional and teleseismic seismic waveforms as well as geodetic data. For modeling the local seismic data, we use 3D Green's functions from the Cybershake project, which were made available to us courtesy of the Southern California Earthquake Center (SCEC). The use of 3D Green's functions allows us to extend the inversion to higher frequency waveform data and smaller magnitude earthquakes, in addition to achieving improved solutions in general. The ultimate aim of this work is to develop the ability to provide high quality finite fault models within a few hours after any damaging earthquake in Southern California, so that they may be used as input to various post-earthquake assessment tools such as ShakeMap, as well as by the scientific community and other interested parties. Additionally, a systematic determination of finite fault models has value as a resource for scientific studies on detailed earthquake processes, such as rupture dynamics and scaling relations. We are using an established least-squares finite fault inversion method that has been applied extensively both on large as well as smaller regional earthquakes, in conjunction with the 3D Green's functions, where available, as well as 1D Green's functions for areas for which the Cybershake library has not yet been developed. We are carrying out validation and calibration of this system using significant earthquakes that have occurred in the region over the last two decades, spanning a range of locations and magnitudes (5.4 and higher).
The infinite medium Green's function for neutron transport in plane geometry 40 years later
International Nuclear Information System (INIS)
Ganapol, B.D.
1993-01-01
In 1953, the first of what was supposed to be two volumes on neutron transport theory was published. The monograph, entitled open-quotes Introduction to the Theory of Neutron Diffusionclose quotes by Case et al., appeared as a Los Alamos National Laboratory report and was to be followed by a second volume, which never appeared as intended because of the death of Placzek. Instead, Case and Zweifel collaborated on the now classic work entitled Linear Transport Theory 2 in which the underlying mathematical theory of linear transport was presented. The initial monograph, however, represented the coming of age of neutron transport theory, which had its roots in radiative transfer and kinetic theory. In addition, it provided the first benchmark results along with the mathematical development for several fundamental neutron transport problems. In particular, one-dimensional infinite medium Green's functions for the monoenergetic transport equation in plane and spherical geometries were considered complete with numerical results to be used as standards to guide code development for applications. Unfortunately, because of the limited computational resources of the day, some numerical results were incorrect. Also, only conventional mathematics and numerical methods were used because the transport theorists of the day were just becoming acquainted with more modern mathematical approaches. In this paper, Green's function solution is revisited in light of modern numerical benchmarking methods with an emphasis on evaluation rather than theoretical results. The primary motivation for considering the Green's function at this time is its emerging use in solving finite and heterogeneous media transport problems
Global high-frequency source imaging accounting for complexity in Green's functions
Lambert, V.; Zhan, Z.
2017-12-01
The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.
International Nuclear Information System (INIS)
Dominguez, D. S.; Barros, R. C.
2007-01-01
A new spectral nodal method is developed for the solution of one-speed discrete ordinates (SN) problems with isotropic scattering in X, Y-geometry. In this method, the spectral Green's function (SGF) scheme, originally developed for solving SN problems in slab geometry with no spatial truncation error, is generalized to solve the one-dimensional transverse-integrated SN nodal equations wherein we consider linear polynomial approximation for the transverse leakage terms. To solve the resulting SGF-linear nodal (SGF-LN) equations we implement the full-node inversion (FNI) iterative scheme, which uses the best available estimates for the node-entering quantities to evaluate the node angular quantities in all the exiting directions as the equations are swept across the system. We give numerical results that illustrate the accuracy of the SGF-LN method for coarse-mesh calculations. (authors)
Lagrange polynomial interpolation method applied in the calculation of the J({xi},{beta}) function
Energy Technology Data Exchange (ETDEWEB)
Fraga, Vinicius Munhoz; Palma, Daniel Artur Pinheiro [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis, RJ (Brazil)]. E-mails: munhoz.vf@gmail.com; dpalma@cefeteq.br; Martinez, Aquilino Senra [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE) (COPPE). Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br
2008-07-01
The explicit dependence of the Doppler broadening function creates difficulties in the obtaining an analytical expression for J function . The objective of this paper is to present a method for the quick and accurate calculation of J function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed, of a semi-analytical nature, uses the Lagrange polynomial interpolation method and the Frobenius formulation in the calculation of Doppler broadening function . The results have proven satisfactory from the standpoint of accuracy and processing time. (author)
Lagrange polynomial interpolation method applied in the calculation of the J(ξ,β) function
International Nuclear Information System (INIS)
Fraga, Vinicius Munhoz; Palma, Daniel Artur Pinheiro; Martinez, Aquilino Senra
2008-01-01
The explicit dependence of the Doppler broadening function creates difficulties in the obtaining an analytical expression for J function . The objective of this paper is to present a method for the quick and accurate calculation of J function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed, of a semi-analytical nature, uses the Lagrange polynomial interpolation method and the Frobenius formulation in the calculation of Doppler broadening function . The results have proven satisfactory from the standpoint of accuracy and processing time. (author)
Does Type Matter: Evaluating the Effectiveness of Four-Function and Graphing Calculators
Bouck, Emily
2010-01-01
Calculators are a controversial, yet widely used tool in mathematics education for all students and especially for students with disabilities. However, little research has explored calculators and students with disabilities. This paper explored the influence of calculator type (four-function and graphing) on the mathematical performance of…
Xu, Fuming; Wang, Bin; Wei, Yadong; Wang, Jian
2013-10-01
Orbital-free density functional theory (OFDFT) replaces the wavefunction in the kinetic energy by an explicit energy functional and thereby speeds up significantly the calculation of ground state properties of the solid state systems. So far, the application of OFDFT has been centered on closed systems and less attention is paid on the transport properties in open systems. In this paper, we use OFDFT and combine it with non-equilibrium Green's function to simulate equilibrium electronic transport properties in silicon nanostructures from first principles. In particular, we study ac transport properties of a silicon atomic junction consisting of a silicon atomic chain and two monoatomic leads. We have calculated the dynamic conductance of this atomic junction as a function of ac frequency with one to four silicon atoms in the central scattering region. Although the system is transmissive with dc conductance around 4 to 5 e2/h, capacitive-like behavior was found in the finite frequency regime. Our analysis shows that, up to 0.1 THz, this behavior can be characterized by a classic RC circuit consisting of two resistors and a capacitor. One resistor gives rise to dc resistance and the other one accounts for the charge relaxation resistance with magnitude around 0.2 h/e2 when the silicon chain contains two atoms. It was found that the capacitance is around 5 aF for the same system.
Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang
2015-04-21
Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.
Bond centred functions in relativistic and non-relativistic calculations for diatomics
International Nuclear Information System (INIS)
Matito, Eduard; Kobus, Jacek; Styszynski, Jacek
2006-01-01
In this paper, we discuss the performance of molecular basis sets consisting of atomic centred (AC) functions augmented with bond centred (BC) functions in relativistic and non-relativistic calculations carried out at the Hartree-Fock and several correlated levels of approximation. While usually non-correlated calculations employing BC functions can be performed at a lower computational cost as compared with those making use of energy optimized AC basis sets, the correlated calculations are always more accurate and less expensive with the latter. It is demonstrated that both correlated or non-correlated calculations always benefit from the addition of a few BC functions with a moderate increase of computational effort. The performance of basis sets containing even-tempered BC functions is also studied and their usage is advocated in case of relativistic calculations
Green's-function approach to the atmospheric albedo neutron-transport problem. Master's thesis
Energy Technology Data Exchange (ETDEWEB)
Culp, D.R.
1991-03-01
This study investigated the reflection of neutron radiation off of the earth's upper atmosphere, with the goal of generating a quick-running computer algorithm to estimate the albedo free field flux at any point above the atmosphere. This thesis involved analytic development in the construction of the algorithm and employed Monte Carlo simulation for generating the energy and angle distributions of the reflected radiation. The Green's function approach to modeling the neutron transport process involved approximating each energy bin of the source spectrum as a Dirac pulse in energy and summing the contribution from each source bin. The computer program integrates over the surface of the atmosphere and uses the Monte Carlo data to calculate the albedo flux at any specified time and location. Run time was maximum of six minutes for a flux calculation, but a gain on the order of one thousand should be achieved on mainframe computer systems. The albedo flux from an instantaneous point source raises quickly to a maximum and then falls off over time. Albedo fluxes as much as 10(-16) (neutrons/square cm sec/source neutron) were calculated. The accuracy of the algorithm is greatly affected by the fineness of the energy bins involved.
Phonon-eigenspectrum-based formulation of the atomistic Green's function method
Sadasivam, Sridhar; Waghmare, Umesh V.; Fisher, Timothy S.
2017-11-01
While the atomistic Green's function (AGF) method has the potential to compute spectrally resolved phonon transport across interfaces, most prior formulations of the AGF method provide only the total phonon transmission function that includes contributions from all phonon branches or channels. In this work, we present a formulation of the conventional AGF technique in terms of phonon eigenspectra that provides a natural decomposition of the total transmission function into contributions from various phonon modes. The method involves the use of Dyson and Lippmann-Schwinger equations to determine surface Green's functions from the phonon eigenspectrum of the bulk, and establishes a direct connection between the transmission function and the bulk phonon spectra of the materials forming the interface. We elucidate our formulation of the AGF technique through its application to a microscopic picture of phonon mode conversion at Si-Ge interfaces with atomic intermixing. Intermixing of atoms near the interface is shown to increase the phase space available for phonon mode conversion and to enhance thermal interface conductance at moderate levels of atomic mixing. The eigenspectrum-based AGF method should be useful in determination of microscopic mechanisms of phonon scattering and identification of the specific modes that dominate thermal transport across an interface.
International Nuclear Information System (INIS)
Bros, J.
1980-01-01
In this lecture, we present some of the ideas of a global consistent approach to the analytic and monodromic structure of Green's functions and scattering amplitudes of elementary particles on the basis of general quantum field theory. (orig.)
Morgenstern Horing, Norman J
2017-01-01
This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...
Miyake, Kazumasa; Tsuruta, Atsushi
2015-01-01
On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function.
Anomalies in Ward identities revisited. Explicit calculation of the three point functions
International Nuclear Information System (INIS)
Dalmolin, Fabricio Tronco
2007-01-01
others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique
International Nuclear Information System (INIS)
Son, In Ho; An, Deuk Man
2012-01-01
In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory
DEFF Research Database (Denmark)
Rindorf, Lars Henning; Mortensen, Asger
2006-01-01
profile of the grating. Numerically, the method scales as O(N) where N is the number of points used to discretize the grating along the propagation axis. We consider optical fiber gratings although the method applies to all one-dimensional (1D) optical waveguide gratings including high-index contrast...... the problems of coupling of counterpropagating waves (Bragg gratings) and co-propagating waves (long-period gratings). In both cases the method applies for gratings with arbitrary dielectric modulation, including all kinds of chirp and apodization and possibly also imperfections in the dielectric modulation...
Baeza, Isabel; De Castro, Nuria M; Arranz, Lorena; De la Fuente, Mónica
2010-12-01
In previous work we have observed that ovariectomy in rodents, a good model of mimicking human ovarian hormone loss, causes premature aging of the immune system. The prooxidative and inflammatory state that underlies the aging process is the base of that premature immunosenescence. It has been found that nutritional interventions with polyphenolic antioxidants constitute a good alternative to rejuvenate age-affected immune functions. In this study, we administered a diet supplemented with polyphenols (coming from soybean isoflavones and green tea) to sham-operated and ovariectomized mature mice for 15 weeks, until they reached a very old age. We have studied the effect of this supplementation on a broad range of parameters of immune function (in macrophages and lymphocytes) and oxidative stress (enzymatic and nonenzymatic antioxidant defences, oxidant compounds, and lipid peroxidation damage) in peritoneal leukocytes. The results showed that ovariectomy accelerates the age-related impairment of immune functions in very old mice as well as the oxidative and proinflammatory imbalance, and that the administration of soybean isoflavones and green tea improve the immune and redox state in these animals. Because the immune system is a good marker of health and a predictor of longevity, we suggest that an adequate nutritional treatment with polyphenols could be a highly recommended tool to fight against the detrimental effects of the lack of female sex hormones, through an improvement of the immune cell functions and redox state.
GreenPhylDB v2.0: comparative and functional genomics in plants.
Rouard, Mathieu; Guignon, Valentin; Aluome, Christelle; Laporte, Marie-Angélique; Droc, Gaëtan; Walde, Christian; Zmasek, Christian M; Périn, Christophe; Conte, Matthieu G
2011-01-01
GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.
Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.
Kottke, Tilman; Oldemeyer, Sabine; Wenzel, Sandra; Zou, Yong; Mittag, Maria
2017-10-01
Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state. Copyright © 2017 Elsevier GmbH. All rights reserved.
International Nuclear Information System (INIS)
Thiess, Alexander R.
2011-01-01
In this thesis we present the development of the self-consistent, full-potential Korringa-Kohn-Rostoker (KKR) Green function method KKRnano for calculating the electronic properties, magnetic interactions, and total energy including all electrons on the basis of the density functional theory (DFT) on high-end massively parallelized high-performance computers for supercells containing thousands of atoms without sacrifice of accuracy. KKRnano was used for the following two applications. The first application is centered in the field of dilute magnetic semiconductors. In this field a new promising material combination was identified: gadolinium doped gallium nitride which shows ferromagnetic ordering of colossal magnetic moments above room temperature. It quickly turned out that additional extrinsic defects are inducing the striking properties. However, the question which kind of extrinsic defects are present in experimental samples is still unresolved. In order to shed light on this open question, we perform extensive studies of the most promising candidates: interstitial nitrogen and oxygen, as well as gallium vacancies. By analyzing the pairwise magnetic coupling among defects it is shown that nitrogen and oxygen interstitials cannot support thermally stable ferromagnetic order. Gallium vacancies, on the other hand, facilitate an important coupling mechanism. The vacancies are found to induce large magnetic moments on all surrounding nitrogen sites, which then couple ferromagnetically both among themselves and with the gadolinium dopants. Based on a statistical evaluation it can be concluded that already small concentrations of gallium vacancies can lead to a distinct long-range ferromagnetic ordering. Beyond this important finding we present further indications, from which we infer that gallium vacancies likely cause the striking ferromagnetic coupling of colossal magnetic moments in GaN:Gd. The second application deals with the phase-change material germanium
Energy Technology Data Exchange (ETDEWEB)
Thiess, Alexander R.
2011-12-19
In this thesis we present the development of the self-consistent, full-potential Korringa-Kohn-Rostoker (KKR) Green function method KKRnano for calculating the electronic properties, magnetic interactions, and total energy including all electrons on the basis of the density functional theory (DFT) on high-end massively parallelized high-performance computers for supercells containing thousands of atoms without sacrifice of accuracy. KKRnano was used for the following two applications. The first application is centered in the field of dilute magnetic semiconductors. In this field a new promising material combination was identified: gadolinium doped gallium nitride which shows ferromagnetic ordering of colossal magnetic moments above room temperature. It quickly turned out that additional extrinsic defects are inducing the striking properties. However, the question which kind of extrinsic defects are present in experimental samples is still unresolved. In order to shed light on this open question, we perform extensive studies of the most promising candidates: interstitial nitrogen and oxygen, as well as gallium vacancies. By analyzing the pairwise magnetic coupling among defects it is shown that nitrogen and oxygen interstitials cannot support thermally stable ferromagnetic order. Gallium vacancies, on the other hand, facilitate an important coupling mechanism. The vacancies are found to induce large magnetic moments on all surrounding nitrogen sites, which then couple ferromagnetically both among themselves and with the gadolinium dopants. Based on a statistical evaluation it can be concluded that already small concentrations of gallium vacancies can lead to a distinct long-range ferromagnetic ordering. Beyond this important finding we present further indications, from which we infer that gallium vacancies likely cause the striking ferromagnetic coupling of colossal magnetic moments in GaN:Gd. The second application deals with the phase-change material germanium
A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation
Plante, Ianik; Wu, Honglu
2014-01-01
Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the
A faster procedure for the calculation of the J({xi}, {beta}) function
Energy Technology Data Exchange (ETDEWEB)
Pinheiro Palma, Daniel Artur [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, 28630-050 Rio de Janeiro, RJ (Brazil); COPPE/UFRJ - Programa de Engenharia Nuclear, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: dpalma@cefeteq.br; Senra Martinez, Aquilino [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, 28630-050 Rio de Janeiro, RJ (Brazil); COPPE/UFRJ - Programa de Engenharia Nuclear, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: aquilino@lmp.ufrj.br
2009-10-15
One of the biggest difficulties in obtaining an analytical expression for the J({xi}, {beta}) function is its explicit dependence on the Doppler broadening function {psi}(x,{xi}). The objective of this paper is to present a method for the fast and accurate calculation for the J({xi}, {beta}) function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed uses an analytical formulation for the calculation of {psi}(x, {xi}) and a representation in series for error functions with complex argument. The results were satisfactory from the accuracy and processing time standpoint and are an option to other calculation methods found in the literature.
A faster procedure for the calculation of the J(ξ, β) function
International Nuclear Information System (INIS)
Pinheiro Palma, Daniel Artur; Senra Martinez, Aquilino
2009-01-01
One of the biggest difficulties in obtaining an analytical expression for the J(ξ, β) function is its explicit dependence on the Doppler broadening function ψ(x,ξ). The objective of this paper is to present a method for the fast and accurate calculation for the J(ξ, β) function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed uses an analytical formulation for the calculation of ψ(x, ξ) and a representation in series for error functions with complex argument. The results were satisfactory from the accuracy and processing time standpoint and are an option to other calculation methods found in the literature.
Green's function for motion in Coulomb-modified separable nonlocal potentials
Energy Technology Data Exchange (ETDEWEB)
Talukdar, B.; Laha, U.; Sasakawa, T.
1986-08-01
A closed form expression is derived for the outgoing wave radial Green's function G-script/sup (+)//sub l-italic/ (r-italic,r-italic') for motion in the Coulomb plus rank one separable nonlocal potential with form factor v-italic/sub l-italic/(r-italic) = 2/sup -//sup l-italic/ x (l-italicexclamation)/sup -1/ r-italic/sup l-italic/e-italic/sup -//sup ..beta..//sup >//sup l-italic/r-italic$. Some possible applications of the result are discussed.
An efficient and green sonochemical synthesis of some new eco-friendly functionalized ionic liquids
Directory of Open Access Journals (Sweden)
Mouslim Messali
2014-01-01
Full Text Available Considerable stress to replace a lot of volatile organic compounds which were used as solvents in synthetic organic chemistry has been done for many chemical industries. A suitable solution for these problems is found by using the ionic liquids as a clean medium of working and avoiding the solvent effect. The present work describes a facile and green ultrasound-assisted procedure as an environmentally friendly alternative to traditional methods for the preparation of a series of 26 new functionalized imidazolium-based ionic liquids. Their structures were characterized by FT-IR, 1H, 13C, 11B, 19F, 31P NMR and mass spectra.
Analysis of the phonon surface specific heat using Green function techniques
International Nuclear Information System (INIS)
Silva Carrico, A. da; Albuquerque, E.L. de
1981-01-01
Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt
Analysis of the phonon surface specific heat using Green function techniques
International Nuclear Information System (INIS)
Carrico, A.S.; Albuquerque, E.L.
1980-01-01
Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt
A Green's function method for high charge and energy ion transport
Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.
1996-01-01
A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.
Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?
Energy Technology Data Exchange (ETDEWEB)
Matyas, A; Jirauschek, C [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , TU Muenchen, D-80333 Muenchen (Germany); Kubis, T [Walter Schottky Institute, TU Muenchen, D-85748 Garching (Germany); Lugli, P, E-mail: alparmat@mytum.d [Institute of Nanoelectronics, TU Muenchen, D-80333 Muenchen (Germany)
2009-11-15
We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We develop a nonlocal-response generalization to the Green's function surface-integral method (GSIM), also known as the boundary-element method. This numerically efficient method can accurately describe the linear hydrodynamic nonlocal response of arbitrarily shaped plasmonic nanowires in arbitrary...... and the longitudinal wave number become smaller, or when the effective background permittivity or the mode inhomogeneity increase. The inhomogeneity can be expressed in terms of an effective angular momentum of the surface-plasmon mode. We compare local and nonlocal response of freestanding nanowires, and of nanowires...
International Nuclear Information System (INIS)
Stoltz, G; Lazzeri, M; Mauri, F
2009-01-01
We present a study of the phononic thermal conductivity of isotopically disordered carbon nanotubes. In particular, the behaviour of the thermal conductivity as a function of the system length is investigated, using Green's function techniques to compute the transmission across the system. The method is implemented using linear scaling algorithms, which allow us to reach systems of lengths up to L = 2.5 μm (with up to 200 000 atoms). As for 1D systems, it is observed that the conductivity diverges with the system size L. We also observe a dramatic decrease of the thermal conductance for systems of experimental sizes (roughly 80% at room temperature for L = 2.5 μm), when a large fraction of isotopic disorder is introduced. The results obtained with Green's function techniques are compared to results obtained with a Boltzmann description of thermal transport. There is a good agreement between both approaches for systems of experimental sizes, even in the presence of Anderson localization. This is particularly interesting since the computation of the transmission using Boltzmann's equation is much less computationally expensive, so that larger systems may be studied with this method.
About sign-constancy of Green's functions for impulsive second order delay equations
Directory of Open Access Journals (Sweden)
Alexander Domoshnitsky
2014-01-01
Full Text Available We consider the following second order differential equation with delay \\[\\begin{cases} (Lx(t\\equiv{x''(t+\\sum_{j=1}^p {b_{j}(tx(t-\\theta_{j}(t}}=f(t, \\quad t\\in[0,\\omega],\\\\ x(t_j=\\gamma_{j}x(t_j-0, x'(t_j=\\delta_{j}x'(t_j-0, \\quad j=1,2,\\ldots,r. \\end{cases}\\] In this paper we find necessary and sufficient conditions of positivity of Green's functions for this impulsive equation coupled with one or two-point boundary conditions in the form of theorems about differential inequalities. By choosing the test function in these theorems, we obtain simple sufficient conditions. For example, the inequality \\(\\sum_{i=1}^p{b_i(t\\left(\\frac{1}{4}+r\\right}\\lt \\frac{2}{\\omega^2}\\ is a basic one, implying negativity of Green's function of two-point problem for this impulsive equation in the case \\(0\\lt \\gamma_i\\leq{1}\\, \\(0\\lt \\delta_i\\leq{1}\\ for \\(i=1,\\ldots ,p\\.
Origin of the tail in Green's functions in odd-dimensional space-times
Dai, De-Chang; Stojkovic, Dejan
2013-10-01
It is well known that the scalar field Green's function in odd dimensions has a tail, i.e. a non-zero support inside the light cone, which in turn implies that the Huygens' principle is violated. However, the reason behind this behavior is still not quite clear. In this paper we shed more light on the physical origin of the tail by regularizing the term which is usually ignored in the literature since it vanishes due to the action of the delta function. With this extra term the Green's function does not satisfy the source-free wave equation (in the region outside of the source). We show that this term corresponds to a charge imprinted on the light-cone shell. Unlike the vector field charge, a moving scalar field charge is not Lorentz invariant and is contracted by a factor. If a scalar charge is moving at the speed of light, it appears to be zero in the static (with respect to the original physical charge) observer's frame. However, the field it sources is not entirely on the light cone. Thus, it is likely that this hidden charge sources the mysterious tail in odd dimensions.
A Functional Approach to Compiling a Specialized English–Slovene Dictionary of Green Energy Terms
Directory of Open Access Journals (Sweden)
Laura Mrhar
2013-05-01
Full Text Available The functional approach to lexicography argues that dictionaries must provide their users with concrete types of information, presented in a manner that suits their needs. To achieve this, the process of compiling specialized dictionaries must be improved. This paper examines the revision of a specialized English–Slovene Dictionary of Green Energy Terms, with particular emphasis on the functional approach to building specialized dictionaries. As the potential users of the unrevised dictionary differ from those of the revised version, this paper aims to show how the profile of the intended user affects the structure of the actual dictionary entry, as well as the dictionary’s main functions. The main objective of the paper is therefore to put forward a sound theoretical foundation for the improved construction of LSP dictionaries, so that they will truly serve as a helpful tool in solving those problems that normally occur in LSP communication.
Calculation of neutron importance function in fissionable assemblies using Monte Carlo method
International Nuclear Information System (INIS)
Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.
2007-01-01
The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor
ORBITALES. A program for the calculation of wave functions with an analytical central potential
International Nuclear Information System (INIS)
Yunta Carretero; Rodriguez Mayquez, E.
1974-01-01
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs
2007-03-01
oxidation of uranium oxides in molten salts and in the solid state to forum alkali metal uranates, and their composition and properties,” Journal of...AFIT/DS/ENP/07-01 A MULTIREFERENCE DENSITY FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS DISSERTATION Eric V. Beck...FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS DISSERTATION Presented to the Faculty of the School of Engineering
Recombination yield of geminate radical pairs in low magnetic fields - A Green's function method
International Nuclear Information System (INIS)
Doktorov, A.B.; Hansen, M.J.; Pedersen, J. Boiden
2006-01-01
An analytic expression for the recombination yield of a geminate radical pair with a single spin one half nuclei is derived. The expression is valid for any field strength of the static magnetic field. It is assumed that the spin mixing is caused solely by the hyperfine interaction of the nuclear spin and the difference in Zeeman energies of the two radical partners, that the recombination occurs at the distance of closest approach, and that there is a locally strong dephasing at contact. This is a special result of a new general approach where a Green's function technique is used to recast the stochastic Liouville equation into a low dimensional matrix equation that is particularly convenient for locally strong dephasing systems. The equation is expressed in terms of special values (determined by the magnetic parameters) of the Green's function for the relative motion of the radicals and it is therefore valid for any motional model, e.g. diffusion, one and two site models. The applicability of the strong dephasing approximation is illustrated by comparison with numerical exact results
Michelini, Fabienne; Crépieux, Adeline; Beltako, Katawoura
2017-05-04
We discuss some thermodynamic aspects of energy conversion in electronic nanosystems able to convert light energy into electrical or/and thermal energy using the non-equilibrium Green's function formalism. In a first part, we derive the photon energy and particle currents inside a nanosystem interacting with light and in contact with two electron reservoirs at different temperatures. Energy conservation is verified, and radiation laws are discussed from electron non-equilibrium Green's functions. We further use the photon currents to formulate the rate of entropy production for steady-state nanosystems, and we recast this rate in terms of efficiency for specific photovoltaic-thermoelectric nanodevices. In a second part, a quantum dot based nanojunction is closely examined using a two-level model. We show analytically that the rate of entropy production is always positive, but we find numerically that it can reach negative values when the derived particule and energy currents are empirically modified as it is usually done for modeling realistic photovoltaic systems.
Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake
Mendoza, C.; Hartzell, S.
2009-01-01
We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.
Adaptive Mesh Refinement for the Immersed Boundary Lattice Green's Function method
Mengaldo, Gianmarco; Colonius, Tim
2017-11-01
The immersed boundary lattice Green's function (IBLGF) method, recently developed by Liska and Colonius, is a recent scalable numerical framework to solve incompressible flows on unbounded domains. It uses an immersed boundary method, based on a 2nd -order mimetic finite volume scheme that is used in conjunction with an adaptive block refinement approach, achieved via lattice Green's functions, whose scope is to limit the computational domain to vortical regions that dominate the flow evolution - e.g. regions in proximity to the immersed body surface and in its wake. The method, as it stands, is competitive for low Reynolds number flows, as the staggered Cartesian mesh employed cannot be stretched or refined locally. In this talk we address this issue by presenting the development of adaptive mesh refinement (AMR) capabilities in the IBLFG method. As we shall see, this new feature and the adaptive block refinement already present in the code help overcoming the limitation of simulating high Reynolds number flows, issue that is endemic to the vast majority of immersed boundary-based methods. Supported by ONR-N00014-16-1-2734.
Representation theorems and Green's function retrieval for scattering in acoustic media.
Vasconcelos, Ivan; Snieder, Roel; Douma, Huub
2009-09-01
Reciprocity theorems for perturbed acoustic media are provided in the form of convolution- and correlation-type theorems. These reciprocity relations are particularly useful in the general treatment of both forward and inverse-scattering problems. Using Green's functions to describe perturbed and unperturbed waves in two distinct wave states, representation theorems for scattered waves are derived from the reciprocity relations. While the convolution-type theorems can be manipulated to obtain scattering integrals that are analogous to the Lippmann-Schwinger equation, the correlation-type theorems can be used to retrieve the scattering response of the medium by cross correlations. Unlike previous formulations of Green's function retrieval, the extraction of scattered-wave responses by cross correlations does not require energy equipartitioning. Allowing for uneven energy radiation brings experimental advantages to the retrieval of fields scattered by remote lossless and/or attenuative scatterers. These concepts are illustrated with a number of examples, including analytic solutions to a one-dimensional scattering problem, and a numerical example in the context of seismic waves recorded on the ocean bottom.
Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach
International Nuclear Information System (INIS)
Liu Guibin; Liu Banggui
2009-01-01
We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T N and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T N and determine our temperature-dependent average spin from zero temperature to T N in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T N = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T N , and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.
International Nuclear Information System (INIS)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So
2017-01-01
Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.
ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals
International Nuclear Information System (INIS)
Vogel, J.E.
1983-01-01
1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x
An efficient method for hybrid density functional calculation with spin-orbit coupling
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
Gomes, A.S.P.; Jacob, C.R.; Visscher, L.
2008-01-01
We present a simple and efficient embedding scheme for the wave-function based calculation of the energies of local excitations in large systems. By introducing an embedding potential obtained from density-functional theory (DFT) it is possible to describe the effect of an environment on local
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Rafael de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Vaidya, Arvind Narayan [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2001-12-01
Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics. (author)
Audebert, Chloe; Vignon-Clementel, Irene E
2018-03-30
The indocyanine green (ICG) clearance, presented as plasma disappearance rate is, presently, a reliable method to estimate the hepatic "function". However, this technique is not instantaneously available and thus cannot been used intra-operatively (during liver surgery). Near-infrared spectroscopy enables to assess hepatic ICG concentration over time in the liver tissue. This article proposes to extract more information from the liver intensity dynamics by interpreting it through a dedicated pharmacokinetics model. In order to account for the different exchanges between the liver tissues, the proposed model includes three compartments for the liver model (sinusoids, hepatocytes and bile canaliculi). The model output dependency to parameters is studied with sensitivity analysis and solving an inverse problem on synthetic data. The estimation of model parameters is then performed with in-vivo measurements in rabbits (El-Desoky et al. 1999). Parameters for different liver states are estimated, and their link with liver function is investigated. A non-linear (Michaelis-Menten type) excretion rate from the hepatocytes to the bile canaliculi was necessary to reproduce the measurements for different liver conditions. In case of bile duct ligation, the model suggests that this rate is reduced, and that the ICG is stored in the hepatocytes. Moreover, the level of ICG remains high in the blood following the ligation of the bile duct. The percentage of retention of indocyanine green in blood, which is a common test for hepatic function estimation, is also investigated with the model. The impact of bile duct ligation and reduced liver inflow on the percentage of ICG retention in blood is studied. The estimation of the pharmacokinetics model parameters may lead to an evaluation of different liver functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Polinger, V., E-mail: polinv@uw.edu [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States); Garcia-Fernandez, P. [Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avenida de los Castros s/n, E-39005 Santander (Spain); Bersuker, I.B. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712-0165 (United States)
2015-01-15
The local origin of dipolar distortions in ABO{sub 3} perovskite crystals is reexamined by means of a novel approach, the Green's function method augmented by DFT computations. The ferroelectric distortions are shown to be induced by the pseudo Jahn–Teller effect (PJTE). The latter involves vibronic hybridization (admixture) of the ground state to same-spin opposite-parity excited electronic bands. Similar to numerous molecular calculations, the PJT approach provides a deeper insight into the nature of chemical bonding in the octahedral cluster [BO{sub 6}] and, in particular, reveals the local origin of its polar instability. This allows predicting directly which transition ions can create ferroelectricity. In particular, the necessary conditions are established when an ABO{sub 3} perovskite crystal with an electronic d{sup n} configuration of the complex ion [BO{sub 6}] can possess both proper ferroelectric and magnetic properties. Distinguished from the variety of cluster approaches to local properties, the Green's function method includes the influence of the local vibronic-coupling perturbation on the whole crystal via the inter-cell interaction responsible for creation of electronic and vibrational bands. Calculated Green's functions combined with the corresponding numeric estimates for the nine electronic bands, their density of states, and the local adiabatic potential energy surface (APES) confirm the eight-minimum form of this surface and feasibility of the PJT origin of the polar instability in BaTiO{sub 3}. We show also that multicenter long-range dipole–dipole interactions critically depend on the PJTE largely determining the magnitude of the local dipoles. DFT calculations for the bulk crystal and its clusters confirm that the dipolar distortions are of local origin, but become possible only when their influence on (relaxation of) the whole lattice is taken into account. The results are shown to be in full qualitative and
Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.
2018-01-01
Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Optical rotation calculated with time-dependent density functional theory: the OR45 benchmark.
Srebro, Monika; Govind, Niranjan; de Jong, Wibe A; Autschbach, Jochen
2011-10-13
Time-dependent density functional theory (TDDFT) computations are performed for 42 organic molecules and three transition metal complexes, with experimental molar optical rotations ranging from 2 to 2 × 10(4) deg cm(2) dmol(-1). The performances of the global hybrid functionals B3LYP, PBE0, and BHLYP, and of the range-separated functionals CAM-B3LYP and LC-PBE0 (the latter being fully long-range corrected), are investigated. The performance of different basis sets is studied. When compared to liquid-phase experimental data, the range-separated functionals do, on average, not perform better than B3LYP and PBE0. Median relative deviations between calculations and experiment range from 25 to 29%. A basis set recently proposed for optical rotation calculations (LPol-ds) on average does not give improved results compared to aug-cc-pVDZ in TDDFT calculations with B3LYP. Individual cases are discussed in some detail, among them norbornenone for which the LC-PBE0 functional produced an optical rotation that is close to available data from coupled-cluster calculations, but significantly smaller in magnitude than the liquid-phase experimental value. Range-separated functionals and BHLYP perform well for helicenes and helicene derivatives. Metal complexes pose a challenge to first-principles calculations of optical rotation.
A Direct Calculation of First-Order Wave Function of Helium
International Nuclear Information System (INIS)
Ndinya, Boniface Otieno; Omolo, Joseph Akeyo
2010-01-01
We develop a simple analytic calculation for the first order wave function of helium in a model in which nuclear charge screening is caused by repulsive coulomb interaction. The perturbation term, first-order correlation energy, and first-order wave function are divided into two components, one component associated with the repulsive coulomb interaction and the other proportional to magnetic shielding. The resulting first-order wave functions are applied to calculate second-order energies within the model. We find that the second-order energies are independent of the nuclear charge screening constant in the unperturbed Hamiltonian with a central coulomb potential. (general)
Density-functional calculation of van der Waals forces for free-electron-like surfaces
DEFF Research Database (Denmark)
Hult, E.; Hyldgaard, P.; Rossmeisl, Jan
2001-01-01
A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi
2018-03-01
Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.
Baishya, Prasanta; Maji, Tarun K
2016-09-20
Starch based wood nanocomposites (WSNC) were prepared successfully from starch and soft wood with multi-walled carbon nanotube (MWCNT) as nano reinforcing agent through a completely green path. The most important part of this scheme was the use of water as the solvent. In this technique, starch was grafted with methylmethacrylate (MMA) and MWCNT was functionalised with hydroxyl groups (f-MWCNT). Dimethyloldihydroxyethyleneurea (DMDHEU) was used as a cross-linker to prepare the green material from methylmethacrylate grafted starch (MMA-g-starch), soft wood flour and functionalised MWCNT. The functionalization of MWCNT was confirmed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Raman analysis. Different properties of the WSNC were investigated by varying the concentration of f-MWCNT. The prepared nanocomposites exhibited outstanding thermal stability, mechanical properties and water resistance capacity compared to untreated wood composites. The flammability of the wood composites decreased up to 30% with just addition of 0.50phr f-MWCNT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.
ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan
2015-08-01
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Humanin: a novel functional molecule for the green synthesis of graphene.
Gurunathan, Sangiliyandi; Han, JaeWoong; Kim, Jin Hoi
2013-11-01
The synthesis of graphene nanosheets from graphene oxide is an interesting area of nanobiotechnology because graphene-based nanomaterials have potential applications in the biomedical field. In this study, we developed a green, rapid, and simple method for the synthesis of graphene from graphene oxide, which uses the mitochondrial polypeptide humanin as a reducing agent. Graphene was prepared via one-step reduction of graphene oxide under mild conditions in an aqueous solution, and the resulting substance was characterized using a range of analytical procedures. UV-vis absorption spectroscopy confirmed the reduction of graphene oxide to graphene. Fourier transform infrared spectroscopy was used to study the changes in the surface functionalities, and X-ray diffraction was used to investigate the crystal structure of graphene. High resolution scanning electron microscopy and atomic force microscopy were also employed to investigate the morphologies of the synthesized grapheme, and Raman spectroscopy was used to evaluate its single- and multi-layer properties. The results described here suggest that the potent reducing agent humanin may be used as a substitute for hydrazine during graphene synthesis, thereby providing a safe, biocompatible and green method for the efficient deoxygenation of graphene oxide that can be used for large-scale production and biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface Functionalization of “Rajshahi Silk” Using Green Silver Nanoparticles
Directory of Open Access Journals (Sweden)
Sakil Mahmud
2017-09-01
Full Text Available In this study, a novel functionalization approach has been addressed by using sodium alginate (Na-Alg assisted green silver nanoparticles (AgNPs on traditional “Rajshahi silk” fabric via an exhaustive method. The synthesized nanoparticles and coated silk fabrics were characterized by different techniques, including ultraviolet–visible spectroscopy (UV–vis spectra, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and Fourier transform infrared spectroscopy (FT-IR, which demonstrated that AgNPs with an average size of 6–10 nm were consistently deposited in the fabric surface under optimized conditions (i.e., pH 4, temperature 40 °C, and time 40 min. The silk fabrics treated with AgNPs showed improved colorimetric values and color fastness properties. Moreover, the UV-protection ability and antibacterial activity, as well as other physical properties—including tensile properties, the crease recovery angle, bending behavior, the yellowness index, and wettability (surface contact angle of the AgNPs-coated silk were distinctly augmented. Therefore, green AgNPs-coated traditional silk with multifunctional properties has high potential in the textile industry.
Development of multi-functional streetscape green infrastructure using a performance index approach
International Nuclear Information System (INIS)
Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C.
2016-01-01
This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. - Highlights: • A performance evaluation framework for streetscape vegetation is presented. • Seven traits, relevant to street vegetation, are included in a performance index (PI). • The PI approach is applied to quantify and rank fifteen street vegetation species. • Medium size trees and evergreen shrubs are found more favourable for streetscapes. • The PI offers a metric for developing sustainable streetscape green infrastructure. - A performance index is developed and applied to fifteen vegetation species indicating greater preference to medium size trees and evergreen shrubs for streetscaping.
Sárközi, Kitti; Papp, András; Horváth, Edina; Máté, Zsuzsanna; Hermesz, Edit; Kozma, Gábor; Zomborszki, Zoltán Péter; Kálomista, Ildikó; Galbács, Gábor; Szabó, Andrea
2017-04-01
Inhalation of manganese-containing metal fumes at workplaces can cause central nervous damage including a Parkinson-like syndrome. Oxidative stress is likely to be involved in the pathomechanism, due to the presence of nano-sized metal oxide particles with high biological and chemical activity. Oxidative damage of the nervous system could be prevented or ameliorated by properly applied antioxidants, preferably natural ones such as green tea, a popular drink. The aim of this work was to see if orally applied green tea brew could diminish the functional neurotoxicity of manganese dioxide nanoparticles introduced into the airways of rats. Young adult male Wistar rats were treated intratracheally for 6 weeks with a suspension of synthetic MnO 2 nanoparticles (4 mg/kg body weight), and received green tea brew (1 g leaves 200 mL -1 water) as drinking fluid. Reduced body weight gain, indicating general toxicity of the nanoparticles, was not influenced by green tea. However, in rats receiving green tea the nervous system effects - changes in the spontaneous and evoked cortical activity and peripheral nerve action potential - were diminished. The use of green tea as a neuroprotective functional drink seems to be a viable approach. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hayashida, T.; Yoshimi, M.; Komatsu, M.; Takenaka, H.
2017-12-01
Continuous long-term observations of ambient noise (microseisms) were performed from August 2014 to February 2017 in the Beppu-Bay area, Oita prefecture, to investigate S-wave velocity structure of deep sedimentary basin (Hayashida et al., 2015SSJ; Yoshimi and Hayashida, 2017WCEE). The observation array consists of 12 broadband stations with an average spacing of 12 km. We applied the seismic interferometry technique to the ambient noise data and derived nine-component ambient noise cross-correlation functions (Z-R, Z-T, Z-Z, R-R, R-T, R-Z, T-R, T-T, and T-Z components) between 66 pairs of stations (distance of 6.4 km to 65.2 km). We assumed the stacked cross-correlation functions as "observed Green's functions" between two stations and estimated group velocities of Rayleigh and Love waves in the frequency between 0.2 and 0.5 Hz (Hayashida et al., 2017AGU-JpGU). Theoretical Green's functions for all stations pairs were also calculated using the finite difference method (HOT-FDM, Nakamura et al., 2012BSSA), with an existing three-dimensional basin structure model (J-SHIS V2) with land and seafloor topography and a seawater layer (Okunaka et al., 2016JpGU) and a newly constructed basin structure model of the target area (Yoshimi et al., 2017AGU). The comparisons between observed and simulated Green's functions generally show good agreements in the frequency range between 0.2 and 0.5 Hz. On the other hand, both observed and simulated Green's functions for some station pairs whose traverse lines run across the deeper part of the sedimentary basin (> 2000 m) show prominent later phases that might be generated and propagated inside the basin. This indicates that the understanding of the phase generation and propagation processes can be a key factor to validate the basin structure model and we investigated the characteristics of the later phases, such as its particle motions and arrival times, using observed and simulated Green's functions in detail. Acknowledgements
International Nuclear Information System (INIS)
Zhu Zhenghe; Luo Deli; Feng Kaiming
2013-01-01
The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)
Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco
2017-01-01
Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs – rooftops covered with vegetation – can contribute mitigate the loss of urban green spaces by
Bruni, S.; Llombart Juan, N.; Neto, A.; Gerini, G.; Maci, S.
2004-01-01
A general algorithm for the analysis of microstrip coupled leaky wave slot antennas was discussed. The method was based on the construction of physically appealing entire domain Methods of Moments (MoM) basis function that allowed a consistent reduction of the number of unknowns and of total
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Density-functional calculations for rare-earth atoms and ions
Energy Technology Data Exchange (ETDEWEB)
Forstreuter, J.; Steinbeck, L.; Richter, M.; Eschrig, H. [Technische Universitaet Dresden, MPG-Arbeitsgruppe Elektronensysteme, D-01062 Dresden (Germany)
1997-04-01
Relativistic local-spin-density (RLSD) and self-interaction-corrected (SIC) RLSD calculations were performed for the whole series of the rare-earth elements. Ionization potentials and radial expectation values with 4f wave functions were calculated. Improvement on nearly all quantities is found for SIC calculations. Comparison with other calculational methods shows that for a description of rare-earth elements SIC-RLSD competes well in accuracy with all of them, including the most accurate quantum-chemical approach. This is important since the SIC calculation has the advantage of being suited for a description of localized f states in solids with a comparatively moderate effort. {copyright} {ital 1997} {ital The American Physical Society}
Liu, Yuan; Ning, Chuangang
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li(-), C(-), O(-), F(-), CH(-), OH(-), NH2 (-), O2 (-), and S2 (-) show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
Green function treatment of electronic transport in narrow rough semiconductor conduction channels
International Nuclear Information System (INIS)
Martin, Pierre N; Ravaioli, Umberto
2009-01-01
We explore the effect of geometrical fluctuations on the electronic transport in rough Si nanowire (NW) thermoelectric devices of diameter D < 10 nm. At this scale, the quantum nature of transport is accounted in the computation of energy dependent transmission coefficients through a recursive green function algorithm. The rough 3D NW geometry is used as a direct input to simulations through the roughness height Δ and autocovariance length L. Using a non parabolic band structure, the channel conductance above 0.1 eV is drastically reduced in such NW with high D/Δ ratio. In addition, the roughness induced resistivity is only increased by 6% on the first energy level of 10 nm Si channels with Δ = 7.7 A, showing possible application for high thermoelectric figures of merit ZT.
International Nuclear Information System (INIS)
Setrajcic, Jovan P; Ilic, Dusan I; Markoski, Branko; Setrajcic, Ana J; Vucenovic, Sinisa M; Mirjanic, Dragoljub Lj; Skipina, Blanka; Pelemis, Svetlana
2009-01-01
Interest in the study of the exciton subsystem in crystalline structures (in this case nanostructures, i.e. thin films) occurred because dielectric, optical, photoelectric and other properties of materials can be explained by means of it. The basic question to be solved concerning theoretical research into the spatially strongly bounded structures is the inability to apply the standard mathematical tools: differential equations and Fourier analysis. In this paper, it is shown how the Green function method can also be efficiently applied to crystalline samples so constrained that quantum size effects play a significant role on them. For the purpose of exemplification of this method's application, we shall consider a molecular crystal of simple cubic structure: spatially unbounded (bulk) and strongly bounded alongside one direction (ultrathin film).
Reeder, Philippa J; Huang, Yao-Ming; Dordick, Jonathan S; Bystroff, Christopher
2010-12-28
The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement. While circular and noncircular permutations have been observed in protein structures that are not related by sequence homology, to date no one has attempted to rationally design and construct a protein with a sequence that is noncircularly permuted while conserving three-dimensional structure. Herein, we show that green fluorescent protein can be rewired, still functionally fold, and exhibit wild-type fluorescence excitation and emission spectra.
Green functions and dimensional reduction of quantum fields on product manifolds
Haba, Z.
2008-04-01
We discuss Euclidean Green functions on product manifolds {\\cal P}={\\cal N}\\times {\\cal M} . We show that if {\\cal M} is compact and {\\cal N} is not compact then the Euclidean field on {\\cal P} can be approximated by its zero mode which is a Euclidean field on {\\cal N} . We estimate the remainder of this approximation. We show that for large distances on {\\cal N} the remainder is small. If {\\cal P}=R^{D-1}\\times S^{\\beta} , where Sβ is a circle of radius β, then the result reduces to the well-known approximation of the D-dimensional finite temperature quantum field theory by (D - 1)-dimensional one in the high-temperature limit. Analytic continuation of Euclidean fields is discussed briefly.
Energy Technology Data Exchange (ETDEWEB)
Moon, H., E-mail: haksu.moon@gmail.com [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States); Donderici, B., E-mail: burkay.donderici@halliburton.com [Sensor Physics & Technology, Halliburton Energy Services, Houston, TX 77032 (United States); Teixeira, F.L., E-mail: teixeira@ece.osu.edu [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States)
2016-11-15
We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.
Moon, H.; Donderici, B.; Teixeira, F. L.
2016-11-01
We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.
International Nuclear Information System (INIS)
Yang, W.; Wu, H.; Cao, L.
2012-01-01
More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)
Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems.
Schönle, Andreas; Hell, Stefan W
2002-10-01
The optical transfer function (OTF) is used in describing imaging systems in the Fourier domain. So far the calculation of the OTF of a large-aperture imaging system has been difficult because the vectorial nature of light breaks the cylindrical symmetry of the pupil function. We derive a simple line integral solution for calculating the vectorial three-dimensional OTF. We further extend this approach to imaging through a planar interface of two media with mismatched refractive indices. In general, our formalism allows for calculation of the Fourier transform of any product of two arbitrary vector components of the electromagnetic field. Arbitrary phase or amplitude modifications of the pupil function can be taken into account.
International Nuclear Information System (INIS)
Harbola, U.; Mukamel, S.
2008-01-01
Nonequilibrium Green's functions provide a powerful tool for computing the dynamical response and particle exchange statistics of coupled quantum systems. We formulate the theory in terms of the density matrix in Liouville space and introduce superoperator algebra that greatly simplifies the derivation and the physical interpretation of all quantities. Expressions for various observables are derived directly in real time in terms of superoperator nonequilibrium Green's functions (SNGF), rather than the artificial time-loop required in Schwinger's Hilbert-space formulation. Applications for computing interaction energies, charge densities, average currents, current induced fluorescence, electroluminescence and current fluctuation (electron counting) statistics are discussed
A note on the relative efficiency of methods for computing the transient free-surface Green function
DEFF Research Database (Denmark)
Bingham, Harry B.
2016-01-01
) with a fixed time step size. The two papers mentioned above proposed alternative numerical methods which are claimed to be more efficient. In this note we consider the relative efficiency of these four methods on a representative test case, and conclude that the standard method is the most efficient......A number of papers have appeared recently on computing the time-domain, free-surface Green function. Two papers in particular, Chuang et al. (2007) and Li et al. (2015) considered the method developed by Clement (1998) who showed that this Green function is the solution to a fourth-order Ordinary...
Energy Technology Data Exchange (ETDEWEB)
Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying
2015-10-15
Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.
Green polymer chemistry: The role of Candida antarctica lipase B in polymer functionalization
Castano Gil, Yenni Marcela
The synthesis of functional polymers with well-defined structure, end-group fidelity and physico-chemical properties useful for biomedical applications has proven challenging. Chemo-enzymatic methods are an alternative strategy to increase the diversity of functional groups in polymeric materials. Specifically, enzyme-catalyzed polymer functionalization carried out under solventless conditions is a great advancement in the design of green processes for biomedical applications, where the toxicity of solvents and catalyst residues need to be considered. Enzymes offer several distinct advantages, including high efficiency, catalyst recyclability, and mild reaction conditions. This reseach aimed to precisely functionalized polymers using two methods: enzyme-catalyzed functionalization via polymerization and chemo-enzymatic functionalization of pre-made polymers for drug delivery. In the first method, well-defined poly(caprolactone)s were generated using alkyne-based initiating systems catalyzed by CALB. Propargyl alcohol and 4-dibenzocyclooctynol (DIBO) were shown to efficiently initiate the ring opening polymerization of epsilon-caprolactone under metal free conditions and yielded polymers with Mn ~4 to 24 KDa and relatively narrow molecular mass distribution. In the second methodology, we present quantitative enzyme-catalyzed transesterification of vinyl esters and ethyl esters with poly(ethylene glycol)s (PEG)s that will serve as building blocks for dendrimer synthesis, followed by introducing a new process for the exclusive gamma-conjugation of folic acid. Specifically, fluorescein-acrylate was enzymatically conjugated with PEG. Additionally, halo-ester functionalized PEGs were successfully prepared by the transesterification of alkyl halo-esters with PEGs. 1H and 13C NMR spectroscopy, SEC and MALDI-ToF mass spectrometry confirmed the structure and purity of the products.
From green architecture to architectural green
DEFF Research Database (Denmark)
Earon, Ofri
2011-01-01
of green architecture. The paper argues that this greenification of facades is insufficient. The green is only a skin cladding the exterior envelope without having a spatial significance. Through the paper it is proposed to flip the order of words from green architecture to architectural green....... Architectural green could signify green architecture with inclusive interrelations between green and space, built and unbuilt, inside and outside. The aim of the term is to reflect a new focus in green architecture – its architectural performance. Ecological issues are not underestimated or ignored, but so far...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One...
Calculations of the stellar structure of so-called degenerate stars using a new pressure function
International Nuclear Information System (INIS)
Steuerwald, J.; Wulff, H.
1977-07-01
Masses and radii of degenerate stars were calculated using a pressure function which significantly deviates from the usual one based on the Fermi energy of free electrons. Assuming only a central number density ranging from 10 30 cm -3 to 10 36 cm -3 , the calculations yield masses between those of Jupiter and the sun. The masses were found to be a function of the composition of the elements. The maximum masses and the cosmic abundance of the elements are correlated. The radii come close to those of pulsars at high central densities, while at low densities they are equal to those of white dwarves. (orig.) [de
Binding energy and momentum distribution of nuclear matter using Green's function methods
International Nuclear Information System (INIS)
Ramos, A.; Dickhoff, W.H.; Polls, A.
1991-01-01
The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v 2 central interaction which is derived from Reid's soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei
Binding energy and momentum distribution of nuclear matter using Green's function methods
International Nuclear Information System (INIS)
Ramos, A.; Dickhoff, W.H.; Polls, A.
1990-07-01
The influence of hole-hole (hh) propagation in addition to the conventional particle-particle (pp) propagation on the energy per particle and the momentum distribution is investigated for two central interactions (v 2 and v 2 l=0 ) which are derived from Reid's soft core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (sp) spectrum. Calculation of the energy from a self-consistently determined sp spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution based on a Goldstone diagram expansion is introduced which allows the inclusion of hh contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing pp and hh propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including pp and hh terms on the same footing) to the kinetic and potential energy in which the sp energy is given by the quasi-article energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the pp and hh ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a non-relativistic level which is consistent with the observed depletion of sp orbitals in finite nuclei. (Author) (51 refs., 3 tabs., 15 figs)
Calculating the n-point correlation function with general and efficient python code
Genier, Fred; Bellis, Matthew
2018-01-01
There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.
Abass, A.; Zilk, M.; Nanz, S.; Fasold, S.; Ehrhardt, S.; Pertsch, T.; Rockstuhl, C.
2017-11-01
We present an efficient Green's function based analytical method for forward but particularly also for the inverse modeling of light scattering by quasi-periodic and aperiodic surface nanostructures. In the forward modeling, good agreement over an important texture amplitude range is achieved between the developed formalism and exact rigorous calculations on the one hand and angle resolved light scattering measurements of complex quasi-periodic SiO2-Au nanopatterned interfaces on the other hand. Exploiting our formalism, we demonstrate for the first time how the inverse problem of quasi-periodic surface textures for a desired multiresonant absorption response can be expressed in terms of coupled systems of multivariate polynomial equations of the height profile's Fourier amplitudes. A good estimate of the required surface profile can thus be obtained in a computationally cheap manner via solving the multivariate polynomial equations. In principle, the inverse modeling formalism introduced here can be implemented in conjunction with any scattering model that provides expressions of the coupling coefficients between different modes in terms of the surface texture height profile.
International Nuclear Information System (INIS)
Won, Byung Hee; Kim, Kyung O; Kim, Jong Kyung; Kim, Soon Young
2012-01-01
The Core Protection Calculator System (CPCS) is an automated device which is adopted to inspect the safety parameters such as Departure from Nuclear Boiling Ratio (DNBR) and Local Power Density (LPD) during normal operation. One function of the CPCS is to predict the axial power distributions using function sets in cubic spline method. Another function of that is to impose penalty when the estimated distribution by the spline method disagrees with embedded data in CPCS (i.e., over 8%). In conventional CPCS, restricted function sets are used to synthesize axial power shape, whereby it occasionally can draw a disagreement between synthesized data and the embedded data. For this reason, the study on improvement for power distributions synthesis in CPCS has been conducted in many countries. In this study, many function sets (more than 18,000 types) differing from the conventional ones were evaluated in each power shape. Matlab code was used for calculating/arranging the numerous cases of function sets. Their synthesis performance was also evaluated through error between conventional data and consequences calculated by new function sets
Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.
2015-11-01
The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas
Biao, Linhai; Tan, Shengnan; Meng, Qinghuan; Gao, Jing; Zhang, Xuewei; Liu, Zhiguo; Fu, Yujie
2018-01-01
Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution. PMID:29361727
Directory of Open Access Journals (Sweden)
Linhai Biao
2018-01-01
Full Text Available Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution.
DEFF Research Database (Denmark)
Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs
2015-01-01
, Nano Lett., 14, 1016 (2014) [6] J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B, 85, 235149 (2012) Figure 1: Calculated enthalpies of reaction from CO2 to CH3OH (x axis) and HCOOH (y axis). Functional variations.......e. the electrocatalytic reduction of CO2 and metal-air batteries. In theoretical studies of electrocatalytic CO2 reduction, calculated DFT-level enthalpies of reaction for CO2reduction to various products are significantly different from experimental values[1-3]. In theoretical studies of metal-air battery reactions...... through first principle methods. Ensembles generated using a Bayesian error estimation functional, in this case the BEEF-vdW functional[6], are used for the error identification. The ensembles, which consist of perturbations of the main van der Waals density functional, can be generated at low...
Scharnagl, C; Raupp-Kossmann, R; Fischer, S F
1999-10-01
We performed a theoretical study to elucidate the coupling between protonation states and orientation of protein dipoles and buried water molecules in green fluorescent protein, a versatile biosensor for protein targeting. It is shown that the ionization equilibria of the wild-type green fluorescent protein-fluorophore and the internal proton-binding site E222 are mutually interdependent. Two acid-base transitions of the fluorophore occur in the presence of neutral (physiologic pH) and ionized (pH > 12) E222, respectively. In the pH-range from approximately 8 to approximately 11 ionized and neutral sites are present in constant ratio, linked by internal proton transfer. The results indicate that modulation of the internal proton sharing by structural fluctuations or chemical variations of aligning residues T203 and S65 cause drastic changes of the neutral/anionic ratio-despite similar physiologic fluorophore pK(a) s. Moreover, we find that dipolar heterogeneities in the internal hydrogen-bond network lead to distributed driving forces for excited-state proton transfer. A molecular model for the unrelaxed surrounding after deprotonation is discussed in relation to pathways providing fast ground-state recovery or slow stabilization of the anion. The calculated total free energy for excited-state deprotonation ( approximately 19 k(B)T) and ground-state reprotonation ( approximately 2 k(B)T) is in accordance with absorption and emission data (
Powell, Sarah R; Fuchs, Lynn S
2014-08-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2 nd - grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M
2014-12-15
In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Function and dynamics of aptamers: A case study on the malachite green aptamer
Energy Technology Data Exchange (ETDEWEB)
Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)
2008-01-01
Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH^{-} is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD
Metal Insulator Transition of Cr doped V2O3 calculated by hybrid density functional
Guo, Yuzheng; Clark, Stewart J.; Robertson, John
2013-01-01
The electronic structure of vanadium sesquioxide in its different phases has been calculated using the screened exchange (sX) hybrid functional. The hybrid functional reproduces the electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. A fully relaxed supercell model of Cr-doped V2O3 has a polaronic distortion around the substitutional Cr atoms and this local strain drives the...
Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.
2018-03-01
The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.
Calculating the knowledge-based similarity of functional groups using crystallographic data
Watson, Paul; Willett, Peter; Gillet, Valerie J.; Verdonk, Marcel L.
2001-09-01
A knowledge-based method for calculating the similarity of functional groups is described and validated. The method is based on experimental information derived from small molecule crystal structures. These data are used in the form of scatterplots that show the likelihood of a non-bonded interaction being formed between functional group A (the `central group') and functional group B (the `contact group' or `probe'). The scatterplots are converted into three-dimensional maps that show the propensity of the probe at different positions around the central group. Here we describe how to calculate the similarity of a pair of central groups based on these maps. The similarity method is validated using bioisosteric functional group pairs identified in the Bioster database and Relibase. The Bioster database is a critical compilation of thousands of bioisosteric molecule pairs, including drugs, enzyme inhibitors and agrochemicals. Relibase is an object-oriented database containing structural data about protein-ligand interactions. The distributions of the similarities of the bioisosteric functional group pairs are compared with similarities for all the possible pairs in IsoStar, and are found to be significantly different. Enrichment factors are also calculated showing the similarity method is statistically significantly better than random in predicting bioisosteric functional group pairs.
Giesbertz, Klaas J H
2016-08-03
One of the major computational bottlenecks in one-body reduced density matrix (1RDM) functional theory is the evaluation of approximate 1RDM functionals and their derivatives. The reason is that more advanced approximate functionals are almost exclusively defined in the natural orbital basis, so a 4-index transformation of the two-electron integrals appears to be unavoidable. I will show that this is not the case and that so-called separable functionals can be evaluated much more efficiently, i.e. only at cubic cost in the basis size. Since most approximate functionals are actually separable, this new algorithm is an important development to make 1RDM functional theory calculations feasible for large electronic systems.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
Doorman, L.M.; Drijvers, P.H.M.; Gravemeijer, K.P.E.; Boon, P.B.J.; Reed, H.
2012-01-01
The concept of function is a central but difficult topic in secondary school mathematics curricula, which encompasses a transition from an operational to a structural view. The question in this paper is how the use of computer tools may foster this transition. With domain-specific pedagogical
Semi-classical calculation of the spin-isospin response functions
International Nuclear Information System (INIS)
Chanfray, G.
1987-03-01
We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Calculation of excitation functions of the 54, 56, 57, 58 Fe (p, n ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 4. Calculation of ... The excitation functions have been compared with experimental nuclear data. ... Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces.
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
DEFF Research Database (Denmark)
Tripkovic, Vladimir; Skulason, Egill; Siahrostami, Samira
2010-01-01
We study the oxygen reduction reaction (ORR) mechanism on a Pt(1 1 1) surface using density functional theory calculations We find that at low overpotentials the surface is covered with a half dissociated water layer We estimate the barrier for proton transfer to this surface and the barrier...
Method of calculation of electron states in large molecules using one-center functions of fragments
Gribov, L. A.
2016-12-01
A method of calculation of electron states in large molecules is proposed on the basis of the linear combinations of one-center functions of fragments with their interactions subsequently taken into account. It is shown that the computing procedure can be implemented similarly to the conventional one using LCAO.
Work functions of self-assembled monolayers on metal surfaces by first-principles calculations
Rusu, P.C.; Brocks, G.
2006-01-01
Using first-principles calculations we show that the work function of noble metals can be decreased or increased by up to 2 eV upon the adsorption of self-assembled monolayers of organic molecules. We identify the contributions to these changes for several (fluorinated) thiolate molecules adsorbed
Fritsch, Daniel; Morgan, Benjamin J.; Walsh, Aron
2017-01-01
The development of new exchange-correlation functionals within density functional theory means that increasingly accurate information is accessible at moderate computational cost. Recently, a newly developed self-consistent hybrid functional has been proposed (Skone et al., Phys. Rev. B 89:195112, 2014), which allows for a reliable and accurate calculation of material properties using a fully ab initio procedure. Here, we apply this new functional to wurtzite ZnO, rutile SnO2, and rocksalt MgO. We present calculated structural, electronic, and optical properties, which we compare to results obtained with the PBE and PBE0 functionals. For all semiconductors considered here, the self-consistent hybrid approach gives improved agreement with experimental structural data relative to the PBE0 hybrid functional for a moderate increase in computational cost, while avoiding the empiricism common to conventional hybrid functionals. The electronic properties are improved for ZnO and MgO, whereas for SnO2 the PBE0 hybrid functional gives the best agreement with experimental data.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2016-01-01
Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Lambot, S.; Slob, E.C.; Vereecken, H.
2007-01-01
We propose an efficient integration path for the fast evaluation of the three?dimensional spatial?domain Green's function for electromagnetic wave propagation in layered media for the particular case of zero?offset, source?receiver proximal ground?penetrating radar (GPR) applications. The
Schwenzfeier, A.
2013-01-01
In this thesis, the mild isolation of an algae soluble protein isolate (ASPI) and the characterisation of its techno-functional properties are described. The ASPI was isolated from the green microalgae Tetraselmis sp. by beadmilling and subsequent anion exchange adsorption. The isolate obtained
Motamarri, Phani; Gavini, Vikram
2018-04-01
We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
International Nuclear Information System (INIS)
Yang Yingkui; Qiu Shengqiang; He Chengen; He Wenjie; Yu Linjuan; Xie Xiaolin
2010-01-01
Multiwalled carbon nanotubes (MWNTs) have been successfully functionalized by free radical addition of 4,4'-azobis(4-cyanopentanol) in aqueous media to generate the terminal-hydroxyl-modified MWNTs (MWNT-OH), followed by surface-initiated in situ ring-opening polymerization of ε-caprolactone in 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF 4 ) to obtain poly(ε-caprolactone)-grafted MWNTs (MWNT-g-PCL). Spectroscopic methods in conjunction with electron microscopy clearly revealed that hairy PCL chains were chemically attached to the surface of MWNTs to form core-shell nanostructures with the latter as core and the former as shell. With increasing polymerization time from 2 to 8 h, the amount of the grafted-PCL synthesized in BmimBF 4 varies from 30.6 to 62.7 wt%, which is clearly higher than that (41.5 wt%) obtained in 1,2-dichlorobenzene under comparable conditions (8 h). The proposed methodology here uses water and room temperature ionic liquids (RTILs) as the reaction media and promises a green chemical process for functionalizing nanotubes.
Thermal one- and two-graviton Green's functions in the temporal gauge
International Nuclear Information System (INIS)
Brandt, F.T.; Cuadros-Melgar, B.; Machado, F.R.
2003-01-01
The thermal one- and two-graviton Green's functions are computed using a temporal gauge. In order to handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the imaginary-time formalism. For temperatures T high compared with the external momentum, we obtain the leading T 4 as well as the subleading T 2 and log(T) contributions to the graviton self-energy. The gauge fixing independence of the leading T 4 terms as well as the Ward identity relating the self-energy with the one-point function are explicitly verified. We also verify the 't Hooft identities for the subleading T 2 terms and show that the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature graviton self-energy. We explicitly compute the extra terms generated by the prescription poles and verify that they do not change the behavior of the leading and sub-leading contributions from the hard thermal loop region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced by the subleading T 2 contributions
Exact interacting Green's function for the Anderson impurity at high bias voltages
Oguri, Akira; Sakano, Rui
2013-10-01
We describe some exact high-energy properties of a single Anderson impurity connected to two noninteracting leads in a nonequilibrium steady state. In the limit of high bias voltages, and also in the high-temperature limit at thermal equilibrium, the model can be mapped onto an effective non-Hermitian Hamiltonian consisting of two sites, which correspond to the original impurity and its image that is defined in a doubled Hilbert space referred to as Liouville-Fock space. For this, we provide a heuristic derivation using a path-integral representation of the Keldysh contour and the thermal field theory, in which the time evolution along the backward contour is replicated by extra degrees of freedom corresponding to the image. We find that the effective Hamiltonian can also be expressed in terms of charges and currents. From this, it can be deduced that the dynamic susceptibilities for the charges and the current fluctuations become independent of the Coulomb repulsion U in the high bias limit. Furthermore, the equations of motion for the Green's function and two other higher-order correlation functions constitute a closed system. The exact solution obtained from the three coupled equations extends the atomic-limit solution such that the self-energy correctly captures the imaginary part caused by the relaxation processes at high energies. The spectral weights of the upper and lower Hubbard levels depend sensitively on the asymmetry in the tunneling couplings to the left and right leads.
Gomes, André Severo Pereira; Jacob, Christoph R; Visscher, Lucas
2008-09-21
We present a simple and efficient embedding scheme for the wave-function based calculation of the energies of local excitations in large systems. By introducing an embedding potential obtained from density-functional theory (DFT) it is possible to describe the effect of an environment on local excitations of an embedded system in wave-function theory (WFT) calculations of the excitation energies. We outline the implementation of such a WFT-in-DFT embedding procedure employing the ADF, Dalton and DIRAC codes, where the embedded subsystem is treated with coupled cluster methods. We then evaluate this procedure in the calculation of the solvatochromic shift of acetone in water and of the f-f spectrum of NpO22+ embedded in a Cs2UO2Cl4 crystal and find that our scheme does effectively incorporate the environment effect in both cases. A particularly interesting finding is that with our embedding scheme we can model the equatorial Cl- ligands in NpO2Cl42- quite accurately, compared to a fully wavefunction-based calculation, and this opens up the possibility of modeling the interaction of different ligands to actinyl species with relatively high accuracy but at a much reduced computational cost.
International Nuclear Information System (INIS)
Hashida, Masahiro; Yamauchi, Syuichi; Wu, Jing-Long
2001-01-01
Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)
International Nuclear Information System (INIS)
Davies, K.T.R.; Davies, R.W.; White, G.D.
1990-01-01
A famous theorem by Poincare and Bertrand formally describes how to interchange the order of integration in a double integral involving two principal-value factors. This theorem has important applications in many-body physics, particularly in the evaluation of response functions (or ''loop integrals'') at either zero or finite temperatures. Of special interest is the loop containing an integration with respect to the energy of two causal propagators. It is shown that such a response function with two boson or two fermion lines behaves statistically like a boson, while the response function containing a boson and a fermion behaves like a fermion. Examples are given of typical loop integrals occurring in the solution of Dyson's equations for nuclear matter in the presence of delta, nucleon, and pion interactions. A ''form factor'' that is essential for the convergence of the nucleon--pion loop integral is chosen to have little effect on the analogous nucleon--delta loop integral. The Poincare--Bertrand (PB) theorem is then generalized to multiple integrals and higher-order poles. From the generalization of the theorem to triple integrals, it is shown that causality is rigorously maintained, at zero temperature, for convolutions with respect to the time of products of Green's functions and thus for Dyson's equations. Also, for finite temperature, the three-propagator loop integral satisfies the statistics appropriate for the loop as a whole, in direct analogy with the result for the two-propagator loop. The intimate connection between the PB theorem and analyticity (or causality) is clearly demonstrated. Although this work considers explicitly only nuclear physics examples, the results are relevant to other fields where many-body theory is used
Skone, Jonathan; Govoni, Marco; Galli, Giulia
Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.
Validation of 3D volumetric-based renal function prediction calculator for nephron sparing surgery.
Corradi, Renato; Kabra, Aashish; Suarez, Melissa; Oppenheimer, Jacob; Okhunov, Zhamshid; White, Hugh; Nougaret, Stephanie; Vargas, Hebert A; Landman, Jaime; Coleman, Jonathan; Liss, Michael A
2017-04-01
To evaluate a recently published volume-based renal function prediction calculator intended to be used in small renal mass surgical counseling. Retrospective data collection included three-dimensional calculation of renal mass and parenchyma of patients who have undergone extirpative therapy. The predicted glomerular filtration rate (GFR) was calculated using the online calculator. The predicted GFR was compared with the actual 6-month GFR. The Pearson correlation coefficient, paired t test and root-mean-square error (RMSE) are utilized for statistical analysis. After institutional review board approval, three institutions provided data for analysis. After patients with renal mass size >300 cc, renal size >400 cc or preoperative CKD ≥stage 3 had been excluded, we retrospectively analyzed data from 136 patients. The median mass volume was 22.2 cc (IQR 7-49). In multiple linear regression analysis, the most significant variables predicting postoperative GFR were partial versus radical nephrectomy and preoperative GFR with an overall R 2 of .68 (F = 26.13, P calculator effectively predicts GFR and could potentially be used to help urologists and patients discuss renal function prior to extirpative renal surgery.
Han, Jeong-Hwan; Oda, Takuji
2018-04-01
The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.
Jiao, Li-Guang; Ho, Yew Kam
2014-05-01
The screened Coulomb potential (SCP) has been extensively used in atomic physics, nuclear physics, quantum chemistry and plasma physics. However, an accurate calculation for atomic resonances under SCP is still a challenging task for various methods. Within the complex-scaling computational scheme, we have developed a method utilizing the modified Bessel functions to calculate doubly-excited resonances in two-electron atomic systems with configuration interaction-type basis. To test the validity of our method, we have calculated S- and P-wave resonance states of the helium atom with various screening strengths, and have found good agreement with earlier calculations using different methods. Our present method can be applied to calculate high-lying resonances associated with high excitation thresholds of the He+ ion, and with high-angular-momentum states. The derivation and calculation details of our present investigation together with new results of high-angular-momentum states will be presented at the meeting. Supported by NSC of Taiwan.
Greening in sunflower butter cookies as a function of egg replacers and baking temperature.
Rogers, Amanda; Hahn, Lan; Pham, Vu; Were, Lilian
2018-04-01
Chlorogenic acid (CGA) binding to proteins in alkaline conditions results in the production of green trihydroxy benzacradine (TBA) derivatives. The formation of TBA derivatives could decrease product quality due to the potential losses in soluble protein and antioxidants and the production of an undesirable green color. To determine how cookie formulation affected the formation of TBA derivatives in sunflower butter cookies, two egg replacers (chia and banana) and two baking temperatures (162.8 and 190.6 °C) were used. Moisture, greening intensity, CGA content and antioxidant capacity were measured. Cookies made with egg and baked at 162.8 °C had the highest moisture, internal greening intensity, and TBA derivative formation, in addition to lower CGA content and antioxidant capacity. Cookies made with banana baked at 190.6 °C produced the opposite outcome with 35, 4, and 23% less internal greening, moisture, and TBA derivatives, respectively, and 90 and 76% higher CGA and antioxidant capacity. Internal greening was positively correlated with moisture and adduct concentration, and negatively correlated with spread factor and CGA content. Moisture had a significant impact on greening, which indicates that baking temperature and cookie dough formulation can be modified to produce a less green cookie with more unreacted antioxidants and protein.
Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as for...
Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations
Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi
2017-07-01
The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.
Density functional calculations of elastic properties of portlandite, Ca(OH)(2)
DEFF Research Database (Denmark)
Laugesen, Jakob Lund
2005-01-01
The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...... elasticity, applying a least-square method. Young's modulus and bulk modulus are calculated from the stiffness matrix. The results are compared with the Brillouin zone spectroscopy results of F. Holuj et al. [F. Holuj, M. Drozdowski, M. Czajkowski, Brillouin spectrum of Ca(OH)(2), Solid State Commun., 56 (12...
Green's functions for infinite bi-material planes of cubic quasicrystals with imperfect interface
Energy Technology Data Exchange (ETDEWEB)
Gao Yang, E-mail: gaoyangg@gmail.co [Institute of Mechanics, University of Kassel, Kassel D-34125 (Germany); Ricoeur, Andreas [Institute of Mechanics, University of Kassel, Kassel D-34125 (Germany)
2010-09-20
The problem of an infinite plane which is composed of two half-planes with different cubic quasicrystal materials subjected to line phonon and phason forces is investigated. By virtue of the general solution of cubic quasicrystals, a series of displacement functions is adopted to obtain Green's functions in the closed form. For the bonding along the bi-material interface three different models account for different coupling conditions.
Giron, Maria D.; Salto, Rafael
2011-01-01
Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…
International Nuclear Information System (INIS)
Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.
1994-01-01
Green's function technique is the heart of the on- line fatigue monitoring methodology. The plant transients are converted to stress and temperature response using this technique. To implement this methodology in a nuclear power plant, Green's functions are to be generated in advance. For structures of complex geometries, Green's functions are to be stored in a data base to convert on-line, the plant data to temperature/stress response, using a personal computer. End fitting, end shield, pressurizer, steam generator tube sheet are few such components of PHWR where fatigue monitoring is needed. In the present paper, Green's functions are generated for end fitting of a 235 MWe Indian PHWR using finite element method. End fitting has been analysed using both 3-D and 2-D (axisymmetric) finite element models. Temperature and stress Green's functions are generated at few critical locations using the code ABAQUS. (author). 10 refs., 11 figs
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C
2009-04-24
We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.
Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics
Directory of Open Access Journals (Sweden)
Raffaella Boggia
2016-10-01
Full Text Available The aim of this study was to investigate the potential of retrieving polyphenolic antioxidants directly from wet pomegranate marcs: the fresh by-products obtained after pomegranate juice processing. These by-products mainly consist of internal membranes (endocarp and aril residues. Even if they are still edible, they are usually discharged during juice production and, thus, they represent a great challenge in an eco-sustainable industrial context. Green technologies, such as ultrasound assisted extraction (UAE and microwave assisted extraction (MAE, have been employed to convert these organic residues into recycled products with high added value. UAE and MAE were used both in parallel and in series in order to make a comparison and to ensure exhaustive extractions, respectively. Water, as an environmentally friendly extraction solvent, has been employed. The results were compared with those ones coming from a conventional extraction. The most promising extract, in terms of total polyphenol yield and radical scavenging activity, has been tested both as a potential natural additive and as a functional ingredient after its incorporation in a real food model and in a real cosmetic matrix, respectively. This study represents a proposal to the agro-alimentary sector given the general need of environmental “responsible care”.
Directory of Open Access Journals (Sweden)
Aruna Jyothi Kora
2012-01-01
Full Text Available A simple and ecofriendly procedure have been devised for the green synthesis of silver nanoparticles using the aqueous extract of gum tragacanth (Astragalus gummifer, a renewable, nontoxic natural phyto-exudate. The water soluble components in the gum act as reductants and stabilizers. The generated nanoparticles were analyzed using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and Raman spectroscopy. The role of gum concentration and reaction time on the synthesis of nanoparticles was studied. By regulating the reaction conditions, spherical nanoparticles of 13.1±1.0 nm size were produced. Also, the possible functional groups involved in reduction and capping of nanoparticles has been elucidated. The antibacterial activity of the fabricated nanoparticles was tested on model Gram-negative and Gram-positive bacterial strains with well-diffusion method. These nanoparticles exhibited considerable antibacterial activity on both the Gram classes of bacteria, implying their potential biomedical applications.
Development of multi-functional streetscape green infrastructure using a performance index approach.
Tiwary, A; Williams, I D; Heidrich, O; Namdeo, A; Bandaru, V; Calfapietra, C
2016-01-01
This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments - Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functions and mechanisms of green tea catechins in regulating bone remodeling.
Shen, Chwan-Li; Kwun, In-Sook; Wang, Shu; Mo, Huanbiao; Chen, Lixia; Jenkins, Marjorie; Brackee, Gordon; Chen, Chung-Hwan; Chyu, Ming-Chien
2013-12-01
Osteoporosis is caused by an imbalance in bone remodeling, a process involving bone-building osteoblasts and bone-resorptive osteoclasts. Excessive reactive oxygen species and inflammatory responses have been shown to stimulate differentiation and function of osteoclasts while inducing osteoblast apoptosis and suppressing osteoblastic proliferation and differentiation via extracellular signal-regulated kinases (ERK), ERK-dependent nuclear factor-κB and Wnt/β-catenin signaling pathways. The anti-oxidant and anti-inflammatory green tea catechins (GTC) have been shown to promote osteoblastogenesis, suppress osteoclastogenesis and stimulate the differentiation of mesenchymal stem cells into osteoblasts rather than adipocytes by modulating the signaling pathways. This paper reviews the pharmacokinetics and metabolism of GTC, their bone-protective activities evidenced in in vitro and in vivo studies, and the limited clinical studies supporting these preclinical findings. In light of the physical, economical, and social burdens due to osteoporosis, easily accessible and affordable preventive measures such as GTC deserves further clinical studies prior to its clinical application.
Transport phenomena in helical edge state interferometers: A Green's function approach
Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael
2013-10-01
We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.
Calculation of metallic and insulating phases of V2O3 by hybrid density functionals
Guo, Yuzheng; Clark, Stewart J.; Robertson, John
2014-02-01
The electronic structure of vanadium sesquioxide V2O3 in its different phases has been calculated using the screened exchange hybrid density functional. The hybrid functional accurately reproduces the experimental electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. We find that a fully relaxed supercell model of the Cr-doped PI phase based on the corundum structure has a monoclinic-like local strain around the substitutional Cr atoms. This is found to drive the PI-PM transition, consistent with a Peierls-Mott transition. The PI phase has a calculated band gap of 0.15 eV, in good agreement with experiment.
Using Density Functional Theory (DFT) for the Calculation of Atomization Energies
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.
International Nuclear Information System (INIS)
Bowen, A.W.
1994-01-01
Using model data sets for the Brass orientation, the importance of scatter width, angular accuracy and grain size and volume fraction on the sensitivity of the calculated Orientation Distribution Functions have been determined in order to highlight some of the practical considerations needed in the processing of experimental data from individual grain orientation measurements determined by the Electron Back-Scattered Diffraction technique. It is suggested that the most appropriate scatter width can be calculated from the maximum function height versus scatter width curve in order to accommodate variations in texture sharpness. The sensitivity of the ODF to careful sample preparation, mounting and pattern analysis, in order to keep errors in angular accuracy to 1 or less is demonstrated, as is the imperative need to correct for the size of grains, and their volume fractions. (orig.)
International Nuclear Information System (INIS)
Sun, Shih-Jye; Lin, Ken-Huang; Li, Jia-Yun; Ju, Shin-Pon
2014-01-01
The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.
Niu, Jun; Ren, Yi; Liu, Qing Huo
2017-10-02
In this work, we propose a numerical solver combining the spectral element - boundary integral (SEBI) method with the periodic layered medium dyadic Green's function. The periodic layered medium dyadic Green's function is formulated under matrix representation. The surface integral equations (SIEs) are then implemented as the radiation boundary condition to truncate the top and bottom computation domain. After describing the interior computation domain with the vector wave equations, and treating the lateral boundaries with Bloch periodic boundary conditions, the whole computation domains are discretized with mixed-order Gauss- Lobatto-Legendre basis functions in the SEBI method. This method avoids the discretization of the top and bottom layered media, so it can be much more efficient than conventional methods. Numerical results validate the proposed solver with fast convergence throughout the whole computation domain and good performance for typical multiscale nano-optical applications.
Loureiro, F. S.; Mansur, Webe Joao
2009-09-01
This paper is concerned with the formulation and numerical implementation of a new class of time integration schemes applied to linear heat conduction problems. The temperature field at any time level is calculated in terms of the numerical Green’s function matrix of the model problem by considering an analytical time integral equation. After spatial discretization by the finite element method, the Green’s function matrix which transfers solution from t to t + Δ t is explicitly computed in nodal coordinates using efficient implicit and explicit Runge-Kutta methods. It is shown that the stability and the accuracy of the proposed method are highly improved when a sub-step procedure is used to calculate recursively the Green’s function matrix at the end of the first time step. As a result, with a suitable choice of the number of sub-steps, large time steps can be used without degenerating the numerical solution. Finally, the effectiveness of the present methodology is demonstrated by analyzing two numerical examples.
Density-functional calculations of the surface tension of liquid Al and Na
Stroud, D.; Grimson, M. J.
1984-01-01
Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.
Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations
DEFF Research Database (Denmark)
Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2006-01-01
We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We i...... of the transmission function for the Pt-CO-Pt contact, and show that the conductance is largely determined by the local d band at the Pt apex atoms....
Barr, Jordan A.; Lin, Fang-Yin; Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2018-02-01
High-throughput density functional theory calculations are conducted to search through 1572 A B O3 compounds to find a potential replacement material for lead zirconate titanate (PZT) that exhibits the same excellent piezoelectric properties as PZT and lacks both its use of the toxic element lead (Pb) and the formation of secondary alloy phases with platinum (Pt) electrodes. The first screening criterion employed a search through the Materials Project database to find A -B combinations that do not form ternary compounds with Pt. The second screening criterion aimed to eliminate potential candidates through first-principles calculations of their electronic structure, in which compounds with a band gap of 0.25 eV or higher were retained. Third, thermodynamic stability calculations were used to compare the candidates in a Pt environment to compounds already calculated to be stable within the Materials Project. Formation energies below or equal to 100 meV/atom were considered to be thermodynamically stable. The fourth screening criterion employed lattice misfit to identify those candidate perovskites that have low misfit with the Pt electrode and high misfit of potential secondary phases that can be formed when Pt alloys with the different A and B components. To aid in the final analysis, dynamic stability calculations were used to determine those perovskites that have dynamic instabilities that favor the ferroelectric distortion. Analysis of the data finds three perovskites warranting further investigation: CsNb O3 , RbNb O3 , and CsTa O3 .
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuan [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
Symbolic calculation of auxiliary functions for molecular integrals over Slater orbitals
International Nuclear Information System (INIS)
Barnett, M.P.
2000-01-01
Symbolic calculation is applied to the evaluation of molecular integrals over Slater orbitals (STOs). A recurrence scheme is developed for some new auxiliary functions that facilitate this work. Closed expressions are developed independently for use in spot checks. A table of formulas for the individual functions has been constructed and made available on-line. Applications are discussed. The derivations and tabulations were performed mechanically in runs that produced both the original typeset account of this study and more detailed documentation without manual transcription
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.
2002-01-01
For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...
Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution
Elizalde, Emilio
2012-07-01
A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.
Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations
DEFF Research Database (Denmark)
Christensen, Rune; Hummelshøj, Jens S.; Hansen, Heine Anton
2015-01-01
Density functional theory calculations can be used to gain valuable insight into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen batteries. Here, the ability of a range of different exchange-correlation functionals to reproduce experimental enthalpies of formation...... for different types of alkali and alkaline earth metal oxide species has been examined. Most examined functionals result in significant overestimation of the stability of superoxide species compared to peroxides and monoxides, which can result in erroneous prediction of reaction pathways. We show that if metal...... chlorides are used as reference structures instead of metals, the systematic errors are significantly reduced and functional variations decreased. Using a metal chloride reference, where the metal atoms are in the same oxidation state as in the oxide species, will provide a computationally inexpensive...
Directory of Open Access Journals (Sweden)
La Roche, P.
2010-03-01
Full Text Available The first step to reduce greenhouse gas emissions from buildings is to be able to count them. If this counting is integrated in the design process the impact of architectural design strategies can be evaluated more easily and a building with reduced emissions can be developed. Fifty greenhouse gas calculators and energy modeling software were compared in the main areas in which buildings are responsible for carbon emissions: operation, water, construction, waste and transportation to and from the building. These tools had to be free and easy to use so that they could be used by everybody in the initial phases of the architectural design process, while providing sufficient precision to provide useful input to the designer. The effect of modifying the envelope insulation, the quality of the windows, the efficiency of the heating and cooling systems, and integrating direct gain and night ventilation, on operation emissions was evaluated with two energy modeling tools: HEED and Design Builder. Results demonstrated that implementing appropriate design strategies significantly reduced emissions from operation in all climates. An easy to implement protocol that combines several tools for GHG counting in buildings is provided at the end.
El primer paso para reducir las emisiones de gases invernadero generadas por las edificaciones es el poder calcularlas adecuadamente. Si esta actividad se integra al proceso de diseño arquitectónico; entonces el impacto de las estrategias de diseño se puede evaluar más fácilmente; resultando un edificio con menores emisiones. Cincuenta herramientas de cálculo de emisiones y programas de modelaje se compararon en las áreas en las cuales los edificios son responsables de las emisiones de gases invernadero: operación; agua; construcción; basura; y transporte desde y hasta el edificio. Las herramientas comparadas debían ser fáciles de utilizar; pero con suficiente precisión para proveer información de
Electronic and optical properties of spinel zinc ferrite: ab initio hybrid functional calculations
Fritsch, Daniel
2018-03-01
Spinel ferrites in general show a rich interplay of structural, electronic, and magnetic properties. Here, we particularly focus on zinc ferrite (ZFO), which has been observed experimentally to crystallise in the cubic normal spinel structure. However, its magnetic ground state is still under dispute. In addition, some unusual magnetic properties in ZFO thin films or nanostructures have been explained by a possible partial cation inversion and a different magnetic interaction between the two cation sublattices of the spinel structure compared to the crystalline bulk material. Here, density functional theory has been applied to investigate the influence of different inversion degrees and magnetic couplings among the cation sublattices on the structural, electronic, magnetic, and optical properties. Effects of exchange and correlation have been modelled using the generalised gradient approximation (GGA) together with the Hubbard ‘+U’ parameter, and the more elaborate hybrid functional PBE0. While the GGA+U calculations yield an antiferromagnetically coupled normal spinel structure as the ground state, in the PBE0 calculations the ferromagnetically coupled normal spinel is energetically slightly favoured, and the hybrid functional calculations perform much better with respect to structural, electronic and optical properties.
Schweda, K
2002-01-01
The analysis of (e,e'n) experiments at the Darmstadt superconducting electron linear accelerator S-DALINAC required the calculation of neutron response functions for the NE213 liquid scintillation detectors used. In an open geometry, these response functions can be obtained using the Monte Carlo codes NRESP7 and NEFF7. However, for more complex geometries, an extended version of the Monte Carlo code MCNP exists. This extended version of the MCNP code was improved upon by adding individual light-output functions for charged particles. In addition, more than one volume can be defined as a scintillator, thus allowing the simultaneous calculation of the response for multiple detector setups. With the implementation of sup 1 sup 2 C(n,n'3 alpha) reactions, all relevant reactions for neutron energies E sub n <20 MeV are now taken into consideration. The results of these calculations were compared to experimental data using monoenergetic neutrons in an open geometry and a sup 2 sup 5 sup 2 Cf neutron source in th...
Relationship between Feshbach's and Green's function theories of the nucleon-nucleus mean field
International Nuclear Information System (INIS)
Capuzzi, F.; Mahaux, C.
1995-01-01
We clarify the relationship and difference between theories of the optical-model potential which had previously been developed in the framework of Feshbach's projection operator approach to nuclear reactions and of Green's function theory, respectively. For definiteness, we consider the nucleon-nucleus system but all results can readily be adapted to the atomic case. The effects of antisymmetrization are properly taken into account. It is shown that one can develop along closely parallel lines the theories of open-quotes holeclose quotes and open-quotes particleclose quotes mean fields. The open-quotes holeclose quotes one-body Hamiltonians describe the single-particle properties of the system formed when one nucleon is taken away from the target ground state, for instance in knockout of pickup processes. The particle one-body Hamiltonians are associated with the system formed when one nucleon is elastically scattered from the ground state, or is added to it by means of stripping reactions. An infinite number of particle, as well as of hole, Hamiltonians are constructed which all yield exactly the same single-particle wave functions. Many open-quotes equivalentclose quotes one-body Hamiltonians can coexist because these operators have a complicated structure: they are nonlocal, complex, and energy-dependent. They do not have the same analytic properties in the complex energy plane. Their real and imaginary parts fulfill dispersion relations which may be different. It is shown that hole and particle Hamiltonians can also be constructed by decomposing any vector of the Hilbert space into two parts which are not orthogonal to one another, in contrast to Feshbach's original theory; one interest of this procedure is that the construction and properties of the corresponding hole Hamiltonian can be justified in a mathematically rigorous way. We exhibit the relationship between the hole and particle Hamiltonians and the open-quotes mass operator.close quotes
Directory of Open Access Journals (Sweden)
Jorunn I B Bos
2010-11-01
Full Text Available Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid, based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we
Current breakthroughs in green nanotechnology are capable to transform many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Noteworthy, successful use of metal nanoparticles and 10 nano...
Periodic density functional theory calculations of bulk and the (010 surface of goethite
Directory of Open Access Journals (Sweden)
Sparks Donald L
2008-05-01
Full Text Available Abstract Background Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT calculations were performed on the mineral goethite and its (010 surface, using the Vienna Ab Initio Simulation Package (VASP. Results Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H2O layer and solvated (three H2O layers (010 surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H2O showed a significantly lower potential energy for the former. Conclusion Surface Fe-O and (FeO-H bond lengths are reported that may be useful in surface complexation models (SCM of the goethite (010 surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H2O layers above the surface, indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces.
Yedukondalu, N.; Vaitheeswaran, G.
2014-06-01
Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (Rbar{3}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and Rbar{3} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.
Directory of Open Access Journals (Sweden)
Thewodros K. Geberemariam
2016-12-01
Full Text Available Drainage system infrastructures in most urbanized cities have reached or exceeded their design life cycle and are characterized by running with inadequate capacity. These highly degraded infrastructures are already overwhelmed and continued to impose a significant challenge to the quality of water and ecological systems. With predicted urban growth and climate change the situation is only going to get worse. As a result, municipalities are increasingly considering the concept of retrofitting existing stormwater drainage systems with green infrastructure practices as the first and an important step to reduce stormwater runoff volume and pollutant load inputs into combined sewer systems (CSO and wastewater facilities. Green infrastructure practices include an open green space that can absorb stormwater runoff, ranging from small-scale naturally existing pocket of lands, right-of-way bioswales, and trees planted along the sidewalk as well as large-scale public parks. Despite the growing municipalities’ interest to retrofit existing stormwater drainage systems with green infrastructure, few studies and relevant information are available on their performance and cost-effectiveness. Therefore, this paper aims to help professionals learn about and become familiar with green infrastructure, decrease implementation barriers, and provide guidance for monitoring green infrastructure using the combination of survey questionnaires, meta-narrative and systematic literature review techniques.
Mangopa Malik, Andy Anton
2017-12-01
Urban green open space is one of the assets that provide substantial benefits to the urban community. One important function of urban green open space is a function of ecology. This study will provide initial explanation on the various studies related to the ecological function of urban green open space. The study of urban space management approach related to ecological function will explain the extent of the role of stakeholders in the urban areas that will further strengthen the importance of the existence of green open space, especially in city of Depok. With so many problems related to the supply and use of green open space in the city of Depok. This approach was originally applied by the private sector and many applications made a great contribution, so it began to be used by the government in managing public assets there. This study will use descriptive method, at the beginning of the study will explain the existence of the reality of urban green open space as part of the urban space by viewing it from theoretical overview of space, function and role of the various problems that occur in it. The results of this study indicate there are six problems in the management of green open spaces in city of Depok. Using the stages in asset management will provide space for participation of existing stakeholders in the management of green open spaces in city of Depok.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
International Nuclear Information System (INIS)
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-01-01
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments
Density functional theory and evolution algorithm calculations of elastic properties of AlON
Energy Technology Data Exchange (ETDEWEB)
Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-01-14
Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.
Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Malkina, Olga L; Malkin, Vladimir G
2013-12-27
A four-component relativistic method for the calculation of NMR shielding constants of paramagnetic doublet systems has been developed and implemented in the ReSpect program package. The method uses a Kramer unrestricted noncollinear formulation of density functional theory (DFT), providing the best DFT framework for property calculations of open-shell species. The evaluation of paramagnetic nuclear magnetic resonance (pNMR) tensors reduces to the calculation of electronic g tensors, hyperfine coupling tensors, and NMR shielding tensors. For all properties, modern four-component formulations were adopted. The use of both restricted kinetically and magnetically balanced basis sets along with gauge-including atomic orbitals ensures rapid basis-set convergence. These approaches are exact in the framework of the Dirac-Coulomb Hamiltonian, thus providing useful reference data for more approximate methods. Benchmark calculations on Ru(III) complexes demonstrate good performance of the method in reproducing experimental data and also its applicability to chemically relevant medium-sized systems. Decomposition of the temperature-dependent part of the pNMR tensor into the traditional contact and pseudocontact terms is proposed.
Radial basis function networks applied to DNBR calculation in digital core protection systems
International Nuclear Information System (INIS)
Lee, Gyu-Cheon; Heung Chang, Soon
2003-01-01
The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety
Rose, Laura
2017-01-01
Specific root length (SRL) and root tissue density (RTD) are ecologically functional traits which are calculated from root length or volume and root dry weight. Both can be converted into each other using the root diameter assuming roots are cylindrical. The calculation of volume from length or length from volume is, however, problematic because samples of roots do usually not have a constant diameter. Ignorance of the diameter heterogeneity leads to an overestimation of length and an underestimation of volume if standard formulas are used. Here I show for two datasets that SRL and RTD are overestimated on average 67% for the two analyzed datasets, but up to 150%, if calculated from each other. I further highlight that the volume values for the total sample as provided by the commonly used software WinRHIZO TM should only be used for objects with constant diameter. I recommend to use volume values provided for each diameter class of a sample if WinRHIZO TM is used. If manual methods, like the line-intersect method, are used, roots should be separated into diameter classes before length measurements if the volume is calculated from length. Trait to trait conversions for whole samples are not recommended.
Durbin, P. A.
1983-01-01
It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.
Vidal Fortuny, J; Belfontali, V; Sadowski, S M; Karenovics, W; Guigard, S; Triponez, F
2016-04-01
Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. © 2016 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd.
Arrachea, Liliana
2008-01-01
We generalize the representation of the real time Green's functions introduced by Langreth and Nordlander [Phys. Rev. B 43 2541 (1991)] and Meir and Wingreen [Phys. Rev. Lett. 68 2512 (1992)] in stationary quantum transport in order to study problems with hybrid structures containing normal (N) and superconducting (S) pieces. We illustrate the treatment in a S-N junction under a stationary bias and investigate in detail the behavior of the equilibrium currents in a normal ring threaded by a m...
Directory of Open Access Journals (Sweden)
Luu Huu Van
2018-03-01
Full Text Available Green supplier evaluation and selection plays a crucial role in the green supply chain management of any organization to reduce the purchasing cost of materials and increase the flexibility and quality of products. An interval neutrosophic set (INS—which is a generalization of fuzzy sets, intuitionistic fuzzy sets (IFS and neutrosophic sets (NS—can better handle the incomplete, indeterminate and inconsistent information than the other sets. This paper proposes a new integrated Quality Function Deployment (QFD in support of the green supplier evaluation and selection process. In the proposed approach, INS is used to assess the relative importance of the characteristics that the purchased product should have (internal variables “WHATs” in order to satisfy the company’s needs, the relevant supplier assessment criteria (external variables “HOWs”, the “HOWs”-“WHATs” correlation scores, the resulting weights of the “HOWs” and the impact of each potential supplier. The normalized weighted rating is then defined and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS method is developed to obtain a final ranking of green suppliers. A case study is applied to demonstrate the efficiency and computational procedure of the proposed method.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
International Nuclear Information System (INIS)
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-01-01
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP
A massively-parallel electronic-structure calculations based on real-space density functional theory
International Nuclear Information System (INIS)
Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro
2010-01-01
Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.
Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes
Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong
2018-04-01
Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.
International Nuclear Information System (INIS)
Phillips, Jordan J.; Zgid, Dominika
2014-01-01
We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H 32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism
International Nuclear Information System (INIS)
Hofmann, W.; Steinhaeusler, F.; Pohl, E.
1979-01-01
The deposition and retention models and the anatomical and physiological data as proposed by the ICRP Task Groups on Lung Dynamics and Reference Man are valid only for adult dosimetry. However, the change of the growing organism causes an age-dependent variation of the radiation burden to the respiratory tract. Therefore, age-dependent functions of anatomical and physiological parameters were defined. For this purpose data were either interpolated from literature or calculated from theoretical modeling. With these functions and defined aerosol composition, age-dependent deposition probabilities in the single regions of the respiratory tract were determined. For the demonstration of lung dosimetry as a function of age the naturally occurring radon daughters were used as an example. By applying typical mean nuclide concentrations found in the atmosphere of an urban environment and defined age-dependent daily life patterns, the annual inhaled amount of radioactivity was computed. With the above data, dose calculations for the single ICRP lung model compartments were performed. This revealed that the inhaled dose in both the tracheobronchial and pulmonary regions showed a strong dependence on age; a pronounced maximum value was reached at the age of about 6 yr for radon and thoron decay products. (author)
International Nuclear Information System (INIS)
Dominguez, Dany S.; Barros, Ricardo C.
2007-01-01
A new spectral nodal method is developed for the solution of one-speed discrete ordinates (S N ) problems with isotropic scattering in X, Y geometry. In this method, the spectral Green's function (SGF) scheme, originally developed for solving S N problems in slab-geometry with no spatial truncation error, is generalized to solve the one-dimensional transverse-integrated S N linear-nodal equations with linear polynomial approximation for the transverse leakage terms. The resulting SGF-linear-nodal (SGF-LN) equations are solved with the full-node inversion (FNI) iterative scheme, which uses the best available estimates for the node-entering quantities to evaluate the node angular quantities in all the exiting directions as the equations are swept across the system. We give numerical results that illustrate the accuracy of the SGF-LN method for coarse-mesh calculations
Standard hydrogen electrode and potential of zero charge in density functional calculations
DEFF Research Database (Denmark)
Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill
2011-01-01
Methods to explicitly account for half-cell electrode potentials have recently appeared within the framework of density functional theory. The potential of the electrode relative to the standard hydrogen electrode is typically determined by subtracting the experimental value of the absolute...... possess in order for its computed ASHEP to closely match the experimental benchmark. We capture and quantify these three effects by calculating trends in the ASHEP and PZC on eight close-packed transition metals, considering the four most simple and representative water models. Finally, it is also...
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...
DEFF Research Database (Denmark)
Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten
2010-01-01
Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively...... charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...
Black, Jay R.; Kavner, Abby; Schauble, Edwin A.
2011-02-01
The goal of this study is to determine reduced partition function ratios for a variety of species of zinc, both as a metal and in aqueous solutions in order to calculate equilibrium stable isotope partitioning. We present calculations of the magnitude of Zn stable-isotope fractionation ( 66,67,68Zn/ 64Zn) between aqueous species and metallic zinc using measured vibrational spectra (fit from neutron scattering studies of metallic zinc) and a variety of electronic structure models. The results show that the reduced metal, Zn(0), will be light in equilibrium with oxidized Zn(II) aqueous species, with the best estimates for the Zn(II)-Zn(0) fractionation between hexaquo species and metallic zinc being Δ 66/64Zn aq-metal ˜ 1.6‰ at 25 °C, and Δ 66/64Zn aq-metal ˜ 0.8‰ between the tetrachloro zinc complex and metallic zinc at 25 °C using B3LYP/aug-cc-pVDZ level of theory and basis set. To examine the behavior of zinc in various aqueous solution chemistries, models for Zn(II) complex speciation were used to determine which species are thermodynamically favorable and abundant under a variety of different conditions relevant to natural waters, experimental and industrial solutions. The optimal molecular geometries for [Zn(H 2O) 6] 2+, [Zn(H 2O) 6]·SO 4, [ZnCl 4] 2- and [Zn(H 2O) 3(C 3H 5O(COO) 3)] - complexes in various states of solvation, protonation and coordination were calculated at various levels of electronic structure theory and basis set size. Isotopic reduced partition function ratios were calculated from frequency analyses of these optimized structures. Increasing the basis set size typically led to a decrease in the calculated reduced partition function ratios of ˜0.5‰ with values approaching a plateau using the aug-cc-pVDZ basis set or larger. The widest range of species were studied at the B3LYP/LAN2DZ/6-31G ∗ level of theory and basis-set size for comparison. Aqueous zinc complexes where oxygen is bound to the metal center tended to have the
Aarts, Ronald M; Janssen, Augustus J E M
2016-12-01
The Struve functions H n (z), n=0, 1, ... are approximated in a simple, accurate form that is valid for all z≥0. The authors previously treated the case n = 1 that arises in impedance calculations for the rigid-piston circular radiator mounted in an infinite planar baffle [Aarts and Janssen, J. Acoust. Soc. Am. 113, 2635-2637 (2003)]. The more general Struve functions occur when other acoustical quantities and/or non-rigid pistons are considered. The key step in the paper just cited is to express H 1 (z) as (2/π)-J 0 (z)+(2/π) I(z), where J 0 is the Bessel function of order zero and the first kind and I(z) is the Fourier cosine transform of [(1-t)/(1+t)] 1/2 , 0≤t≤1. The square-root function is optimally approximated by a linear function ĉt+d̂, 0≤t≤1, and the resulting approximated Fourier integral is readily computed explicitly in terms of sin z/z and (1-cos z)/z 2 . The same approach has been used by Maurel, Pagneux, Barra, and Lund [Phys. Rev. B 75, 224112 (2007)] to approximate H 0 (z) for all z≥0. In the present paper, the square-root function is optimally approximated by a piecewise linear function consisting of two linear functions supported by [0,t̂ 0 ] and [t̂ 0 ,1] with t̂ 0 the optimal take-over point. It is shown that the optimal two-piece linear function is actually continuous at the take-over point, causing a reduction of the additional complexity in the resulting approximations of H 0 and H 1 . Furthermore, this allows analytic computation of the optimal two-piece linear function. By using the two-piece instead of the one-piece linear approximation, the root mean square approximation error is reduced by roughly a factor of 3 while the maximum approximation error is reduced by a factor of 4.5 for H 0 and of 2.6 for H 1 . Recursion relations satisfied by Struve functions, initialized with the approximations of H 0 and H 1 , yield approximations for higher order Struve functions.
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Dick, Andrew J.; Phan, Quan M.; Foley, Jason R.; Spanos, Pol D.
2012-02-01
In this paper, a formula derived from the wavelet dilation equation is presented as a means to calculate scaling function coefficient values for arbitrary waveforms. The performance of this formula is assessed by analyzing the scaling functions of multiple Daubechies wavelets. With the goal of developing new discrete wavelet families that possess the characteristics of a specific system, the formula is applied to analytical and experimental response data. The relationship between the number of coefficients and their ability to successfully capture the features of the signal is studied. Further, a technique is developed for determining the requisite number of coefficients when applying the formula. This formula may serve as the foundation for the development of new families of discrete wavelets which can be based on the nominal characteristics of a given system for use in signal processing and model discretization applications.
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.
2002-01-01
For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...
Real-space Kerker method for self-consistent calculation using non-orthogonal basis functions
International Nuclear Information System (INIS)
Shiihara, Yoshinori; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2008-01-01
We have proposed the real-space Kerker method for fast self-consistent-field calculations in real-space approaches using non-orthogonal basis functions. In large-scale systems with many atoms, the Kerker method is a very efficient way to prevent charge sloshing, which induces numerical instability during the self-consistent iterations. We construct the Kerker preconditioning matrix with non-orthogonal basis functions and the preconditioning is performed by solving linear equations. The proposed real-space Kerker method is identical to the method in reciprocal space, with the following two advantages: (i) the method is suitable for massively parallel computation since it does not use the fast Fourier transform. (ii) The preconditioning is performed in an acceptable computational time since time-consuming integration, including the exponential kernel, need not be performed, unlike the method used by Manninen et al (1975 Phys. Rev. B 12 4012)
Cauble, Galen D.; Wayne, David T.
2017-09-01
The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.
Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M
2017-08-01
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.
Square Diaphragm CMUT Capacitance Calculation Using a New Deflection Shape Function
Directory of Open Access Journals (Sweden)
Md Mosaddequr Rahman
2011-01-01
Full Text Available A new highly accurate closed-form capacitance calculation model has been developed to calculate the capacitance of capacitive micromachined ultrasonic transducers (CMUTs built with square diaphragms. The model has been developed by using a two-dimensional polynomial function that more accurately predicts the deflection curve of a square diaphragm deformed under the influence of a uniform external pressure and also takes account of the fringing field capacitances. The model has been verified by comparing the model-predicted deflection profiles and capacitance values with experimental results published elsewhere and finite element analysis (FEA carried out by the authors for different material properties, geometric specifications, and loading conditions. New model-calculated capacitance values are found to be in excellent agreement with published experimental results with a maximum deviation of 1.7%, and a maximum deviation of 1.5% has been observed when compared with FEA results. The model can help in improving the accuracy of the design methodology of CMUT devices and other MEMS-based capacitive type sensors built with square diaphragms.
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
International Nuclear Information System (INIS)
Guo, Y.; Whitehead, M.A.
1988-01-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, and Bogdanovic's Fermi-hole parameters [Phys. Rev. A 14, 1 (1976)], and Vosko, Wilk, and Nusair's correlation correction [Can. J. Phys. 58, 1200 (1980)], are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered
International Nuclear Information System (INIS)
Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin
2017-01-01
Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic
Energy Technology Data Exchange (ETDEWEB)
Dimakis, Nicholas, E-mail: nicholas.dimakis@utrgv.edu [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Vargas, Sarah; Saenz, Justin [Robert Vela High School, Edinburg, TX (United States)
2017-08-15
Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic
Energy Technology Data Exchange (ETDEWEB)
Chauvin, C
2005-11-15
This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
Ishizaki, Akihito; Tanimura, Yoshitaka
2008-05-01
Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.
A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations
Energy Technology Data Exchange (ETDEWEB)
Fang, Dong [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States); Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States); Duke, Robert E.; Andrés Cisneros, G., E-mail: andres@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)
2015-07-28
A new method to account for long range electrostatic contributions is proposed and implemented for quantum mechanics/molecular mechanics long range electrostatic correction (QM/MM-LREC) calculations. This method involves the use of the minimum image convention under periodic boundary conditions and a new smoothing function for energies and forces at the cutoff boundary for the Coulomb interactions. Compared to conventional QM/MM calculations without long-range electrostatic corrections, the new method effectively includes effects on the MM environment in the primary image from its replicas in the neighborhood. QM/MM-LREC offers three useful features including the avoidance of calculations in reciprocal space (k-space), with the concomitant avoidance of having to reproduce (analytically or approximately) the QM charge density in k-space, and the straightforward availability of analytical Hessians. The new method is tested and compared with results from smooth particle mesh Ewald (PME) for three systems including a box of neat water, a double proton transfer reaction, and the geometry optimization of the critical point structures for the rate limiting step of the DNA dealkylase AlkB. As with other smoothing or shifting functions, relatively large cutoffs are necessary to achieve comparable accuracy with PME. For the double-proton transfer reaction, the use of a 22 Å cutoff shows a close reaction energy profile and geometries of stationary structures with QM/MM-LREC compared to conventional QM/MM with no truncation. Geometry optimization of stationary structures for the hydrogen abstraction step by AlkB shows some differences between QM/MM-LREC and the conventional QM/MM. These differences underscore the necessity of the inclusion of the long-range electrostatic contribution.
Polarization Analysis of Ambient Seismic Noise Green's Functions for Monitoring Glacial State
Fry, B.; Horgan, H. J.; Levy, R. H.; Bertler, N. A. N.
2017-12-01
Analysis of continuously recorded background seismic noise has emerged as a powerful technique to monitor changes within the Earth. In a process analogous to Einstein's 'Brownian motion', seismic energy enters the Earth through a variety of mechanisms and then is dissipated through scattering processes or through a semi-random distribution of sources. Eventually, in stratified media, some of this energy assembles itself in coherent packets and propagates as seismic surface waves. Through careful analysis of these waves as recorded by two seismic stations over a short period of time, we can reconstruct Empirical Green's Functions (EGF). EGF are sensitive to the material through which the waves are travelling between the two stations. They can thus provide 4D estimates of material properties such as seismic velocity and anisotropy. We specifically analyze both the bulk velocity and the complex phase of these EGF to look for subtle changes in velocity with direction of propagation as well as the nature of particle polarization and ellipticity. These characteristics can then be used as a proxy for contemporaneous stress and strain or 'inherited' strain. Similar approaches have proven successful in mapping stresses and strain in the crust, on plate interface faults, volcanoes, and on glaciers and the Greenland ice sheet. We will present results from applying this approach to continuous broadband data recorded on the West Antarctic Ice Sheet through the Polenet project. Our results suggest that we can reconstruct EGF at least between frequencies of 300mHz and 50mHz for time periods, providing information about the contemporary state of ice and underlying lithosphere on a seasonal or annual basis. Our primary goals are determining glacial state by linking wave propagation to material fabric on micro (crystal orientation) and macro (strain marker) scales and well as rebound processes in the lithosphere during glacial loading and unloading. We will present our current
Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis
Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...
Fungi of the greening Arctic : compositional and functional shifts in response to climatic changes
Semenova, T.A.
2016-01-01
The rate of climate warming in the Arctic nearly doubles warming in the temperate regions. In the arctic tundra, this warming has already altered vegetation, with strong declines in lichens and mosses and expansion of shrubs. This process called “the greening of the Arctic” has important
Hu, Wei; Lin, Lin; Yang, Chao
2017-11-14
The commutator direct inversion of the iterative subspace (commutator DIIS or C-DIIS) method developed by Pulay is an efficient and the most widely used scheme in quantum chemistry to accelerate the convergence of self-consistent field (SCF) iterations in Hartree-Fock theory and Kohn-Sham density functional theory. The C-DIIS method requires the explicit storage of the density matrix, the Fock matrix, and the commutator matrix. Hence, the method can only be used for systems with a relatively small basis set, such as the Gaussian basis set. We develop a new method that enables the C-DIIS method to be efficiently employed in electronic structure calculations with a large basis set such as planewaves for the first time. The key ingredient is the projection of both the density matrix and the commutator matrix to an auxiliary matrix called the gauge-fixing matrix. The resulting projected commutator-DIIS method (PC-DIIS) only operates on matrices of the same dimension as that consists of Kohn-Sham orbitals. The cost of the method is comparable to that of standard charge mixing schemes used in large basis set calculations. The PC-DIIS method is gauge-invariant, which guarantees that its performance is invariant with respect to any unitary transformation of the Kohn-Sham orbitals. We demonstrate that the PC-DIIS method can be viewed as an extension of an iterative eigensolver for nonlinear problems. We use the PC-DIIS method for accelerating Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, and demonstrate its superior performance compared to the commonly used nested two-level SCF iteration procedure. Furthermore, we demonstrate that in the context of ab initio molecular dynamics (MD) simulation with hybrid functionals one can extrapolate the gauge-fixing matrix to achieve the goal of extrapolating the entire density matrix implicitly along the MD trajectory. Numerical results indicate that the new method significantly reduces
Position space Green's function and its application to a non-muffin tin band theory
International Nuclear Information System (INIS)
Brown, R.G.
1982-01-01
A new way of applying the non-spherically symmetric phase functional method of Williams and Van Morgan to the band structure problem is derived that results in a generalized (non-muffin tin) multiple scattering band theory that is variationally stationary and exact in the single-electron, local potential Schroedinger theory. The phase functional basis derived arises from considering integral equation solutions to differential equations of the Schroedinger or inhomogeneous Helmholtz type. It is shown to be conditionally complete on any spherical domain. It is applied to the ordinary scattering problem and the general multiple scattering problem, where it is shown that any multiple scattering theory that is muffin tin approximated can probably have the approximation removed. The so-called near field correction that is believed to destroy the separability of KKR-like band theories or multiple scattering problems where the bounding spheres of nearest neighbor domains overlap is shown to be generally absorbed in a convergent fashion into the usual sum over structure constants in the theory. The extension of this theory to a full self-consistent-field calculation is briefly discussed, but the actual derivations are deferred until various numerical tests in progress are completed
DEFF Research Database (Denmark)
Aldén, M.; Abrikosov, I. A.; Johansson, B.
1994-01-01
of the frozen-core and atomic-sphere approximation but, in addition, includes the dipole contribution to the intersphere potential. Within the concept of complete screening, we identify the surface core-level binding-energy shift with the surface segregation energy of a core-ionized atom and use the Green......'s-function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the 4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain good agreement with experiment, whereas the calculations typically underestimate the measured shift obtained from...... a polycrystalline surface. Comparison is made with independent theoretical data for the surface core-level eigenvalue shift, and the much debated role of the so-called initial-and final-state contributions to the SCLS is discussed....
Tang, Shaobin; Cao, Zexing
2011-01-28
The interactions of nitrogen oxides NO(x) (x = 1,2,3) and N(2)O(4) with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO(2) and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH⋅⋅⋅O (N) between -OH and nitrogen oxides and new weak covalent bonds C⋅⋅⋅N and C⋅⋅⋅O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO(2) and NO(3) with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N(2)O(4) adsorptions on GO. The calculated results show good agreement with experimental observations.
Evaluation of Monte Carlo Codes Regarding the Calculated Detector Response Function in NDP Method
Energy Technology Data Exchange (ETDEWEB)
Tuan, Hoang Sy Minh; Sun, Gwang Min; Park, Byung Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
The basis of the NDP is the irradiation of a sample with a thermal or cold neutron beam and the subsequent release of charged particles due to neutron-induced exoergic charged particle reactions. Neutrons interact with the nuclei of elements and release mono-energetic charged particles, e.g. alpha particles or protons, and recoil atoms. Depth profile of the analyzed element can be obtained by making a linear transformation of the measured energy spectrum by using the stopping power of the sample material. A few micrometer of the material can be analyzed nondestructively, and on the order of 10nm depth resolution can be obtained depending on the material type with NDP method. In the NDP method, the one first steps of the analytical process is a channel-energy calibration. This calibration is normally made with the experimental measurement of NIST Standard Reference Material sample (SRM-93a). In this study, some Monte Carlo (MC) codes were tried to calculate the Si detector response function when this detector accounted the energy charges particles emitting from an analytical sample. In addition, these MC codes were also tried to calculate the depth distributions of some light elements ({sup 10}B, {sup 3}He, {sup 6}Li, etc.) in SRM-93a and SRM-2137 samples. These calculated profiles were compared with the experimental profiles and SIMS profiles. In this study, some popular MC neutron transport codes are tried and tested to calculate the detector response function in the NDP method. The simulations were modeled based on the real CN-NDP system which is a part of Cold Neutron Activation Station (CONAS) at HANARO (KAERI). The MC simulations are very successful at predicting the alpha peaks in the measured energy spectrum. The net area difference between the measured and predicted alpha peaks are less than 1%. A possible explanation might be bad cross section data set usage in the MC codes for the transport of low energetic lithium atoms inside the silicon substrate.
Lu, Deyu; Li, Yan; Rocca, Dario; Viet Nguyen, H.; Gygi, Francois; Galli, Giulia
2010-03-01
A recently developed technique to diagonalize iteratively dielectric matrices [1], is used to carry out efficient, ab-initio calculations of dispersion interactions, and excited state properties of nanostructures. In particular, we present results for the binding energies of weakly bonded molecular crystals [2], obtained at the EXX/RPA level of theory, and for absorption spectra of semiconducting clusters, obtained by an iterative solution of the Bethe-Salpeter equations [3]. We show that the ability to obtain the eigenmodes of dielectric matrices from Density Functional perturbation theory, without computing single particle excited states, greatly improves the efficiency of both EXX/RPA and many body perturbation theory [3,4] calculations and opens the way to large scale computations. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B , 78, 113303, 2008; and H. Wilson, D. Lu, F. Gygi and G. Galli, Phys. Rev. B, 79, 245106, 2009. [2] D. Lu, Y. Li, D. Rocca and G. Galli, Phys. Rev. Lett, 102, 206411, 2009; and Y. Li, D. Lu, V. Nguyen and G. Galli, J. Phys. Chem. C (submitted) [3] D. Rocca, D. Lu and G. Galli, submitted. [4] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett. 100, 147601, 2008. Work was funded by DOE/Scidac DE-FC02-06ER25794 and DOE/BES DE-FG02-06ER46262.
DGDFT: A massively parallel method for large scale density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
DGDFT: A massively parallel method for large scale density functional theory calculations
International Nuclear Information System (INIS)
Hu, Wei; Yang, Chao; Lin, Lin
2015-01-01
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10 −4 Hartree/atom in terms of the error of energy and 6.2 × 10 −4 Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail
Directory of Open Access Journals (Sweden)
Hasibur Rehman
Full Text Available Our previous studies showed that an extract from Camellia sinenesis (green tea, which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA. Since polyphenols are stimulators of mitochondrial biogenesis (MB, this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1% starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks. CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS protein ATP synthase-β (AS-β by 42%, mitochondrial DNA (mtDNA-encoded OXPHOS protein NADH dehydrogenase-3 (ND3 by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV, an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam, the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate Cs
CSIR Research Space (South Africa)
Van Wyk, Llewellyn V
2014-10-01
Full Text Available , and coal, with a concomitant release of greenhouse gases. Green infrastructure seeks to perform those functions in a manner that, at the very least, minimises its impact on the natural environment and, at best, enhances the quality of the natural...
Calculating the Ionization Constant of Functional Groups of Carboxyl Ion Exchangers
Meychik, N. R.; Stepanov, S. I.; Nikolaeva, Yu. I.
2018-02-01
The potentiometric titration of a weakly basic carboxyl cation exchanger, obtained via alkaline hydrolysis of an acrylonitrile copolymer with divinyl benzene (degree of crosslinking, 12%) in a wide range of variation in a solution of pH (2-12) and NaCl (concentration 0.01, 0.1, 0.5, 1 M), is considered. The maximum ion-exchange capacity of the ion exchanger for Na+ is determined (10.10 ± 0.088 mmol/g of the dry mass) and found to be independent of the solution's ionic strength. It is established that in the investigated range of NaCl concentrations and pH, the acid-base balance is adequately described by Gregor's equation. The parameters of this equation are calculated as a function of the NaCl concentration: p K a = 8.13 ± 0.04, n = 1.50 ± 0.02 for 0.01 M; p K a = 6.56 ± 0.04, n = 2.60 ± 0.07 for 0.1 M; and p K a = 5.66 ± 0.6, n = 2.62 ± 0.06 for 0.5 and 1 M. It is shown that to describe the acid-base balance correctly within the proposed model we must estimate the adequacy of the experimental and calculated values of the ion exchanger's capacity at each pH value according to the calculated parameters of Gregor's equation.
Lipovsek, S; Devetak, D; Strus, J; Pabst, M A
2003-10-01
The femoral chordotonal organ (FCO) and the subgenual organ (SGO) of the green lacewing Chrysoperla carnea were examined by conventional light and confocal laser scanning microscopy in order to search for neuroactive substances which are used for neurotransmission in sensory cells of these organs. Antibodies against serotonin, histamine and choline acetyltransferase were tested immunohistochemically. In the FCO, antiserum against serotonin strongly labelled cell bodies and axons of about 16 sensory cells. In the proximal scoloparium all 12 sensory cells showed immunoreaction with antiserotonin. In the distal scoloparium only four of 40 sensory cells were immunoreactive. These results suggest that different neuroactive substances are employed as neurotransmitters in the FCO of the green lacewing and that the proximal scoloparium and the distal scoloparium are functionally differentiated. Contrary to the FCO in the locust, acetylcholine was not found as a neurotransmitter in the FCO of the green lacewing. Additionally, histamine showed a negative result in the sensory cells of the FCO. Other neuroactive substances seem to be used as transmitters in the SGO because none of the tested antibodies showed positive reaction.
Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi
2003-06-01
Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.
Yu, Yingzhe; Sun, Xuanyu; Zhang, Minhua
2017-10-01
The mechanism of carbon deposition in acetic acid/palladium system is of great research significance in the catalytic field. In order to illustrate the plausible carbon formation routes, a systematic survey on the stepwise decomposition from adsorbed acetic acid to atomic carbon on Pd(100) was conducted via density functional theory calculations. A complex reaction network including Osbnd H bond scission reaction and various Csbnd H and Csbnd C bond scission reactions was built and the relevant structural and energetic properties were calculated. The results show that Osbnd H bond breaking is very possible for CH3COOH, that Csbnd C bond breaking is always more favorable than Csbnd H bond breaking for CHxCOO (x = 1-3), and the dehydrogenation of CHx (x = 1-3) is more likely to proceed than most of other reactions. The most possible pathway for the formation of carbon monomer was proposed based on the analysis of the reaction network and it features the decarbonation of CH3COO to CH3 as the rate-limiting step.
Jacob, D; Palacios, J J
2011-01-28
We study the performance of two different electrode models in quantum transport calculations based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires or nanowires. A detailed account of implementation details in both the cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that the parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional electrodes for large enough cross-sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox ALACANT and are publicly available.
Peica, N.; Lehene, C.; Leopold, N.; Schlücker, S.; Kiefer, W.
2007-03-01
Monosodium glutamate (MSG), a common flavor enhancer, is detected in aqueous solutions by Raman and surface-enhanced Raman (SERS) spectroscopies at the micromolar level. The presence of different species, such as protonated and unprotonated MSG, is demonstrated by concentration and pH dependent Raman and SERS experiments. In particular, the symmetric bending modes of the amino group and the stretching modes of the carboxy moiety are employed as marker bands. The protonation of the NH 2 group at acidic pH values, for example, is detected in the Raman spectra. From the measured SERS spectra, a strong chemical interaction of MSG with the colloidal particles is deduced and a geometry of MSG adsorbed on the silver surface is proposed. In order to assign the observed Raman bands, calculations employing density functional theory (DFT) were performed. The calculated geometries, harmonic vibrational wavenumbers and Raman scattering activities for both MSG forms are in good agreement with experimental data. The set of theoretical data enables a complete vibrational assignment of the experimentally detected Raman spectra and the differentiation between the anhydrous and monohydrate forms of MSG.
Identifying Tm-C82 isomers with density functional theory calculations
International Nuclear Information System (INIS)
Zheng Limin; He Hongqing; Yang Minghui; Zeng Qun; Yang Mingli
2010-01-01
Density functional theory calculations have been performed to study the geometrical and electronic properties of endohedral metallofullerene Tm-C 82 isomers. Three energetically favorable isomers (with C s , C 2 and C 2v symmetry, respectively) are identified which are consistent with the nuclear magnetic resonance (NMR) observations. The simulated ultraviolet photoelectron spectra (UPS) based on the three structures agree well with the measurements. Particularly, the parent cage of the experimentally observed Tm-C 82 isomer with C s symmetry is newly assigned, which matches the experiments better than early assignments. In addition, strong interaction between an endohedral Tm atom and the C 82 cage is discussed and is thought to be responsible for the dramatic change in the relative stability of C 82 isomers when Tm is encapsulated.