WorldWideScience

Sample records for calculating near-field pressures

  1. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2011-01-01

    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law is prese......When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law...

  2. Calculated Electric Near Fields of Navy Shipboard HF Antennas, Electric Near Fields of Trussed-Whip, Twin-Whip, Discone-Cage, and Bottom-Fed Fan Antennas

    Science.gov (United States)

    1978-03-16

    LEYE T z 0 0Z0z Technical Document 168 CALCULATED ELECTRIC NEAR FIELDS OF NAVY SHIPBOARD HF ANTENNAS Electric near fields of trussed-whip, twin...O TGP RO O E E1,4 T________________ 5. TYPE OF, REPORT I PERI O C VERED LIlTED -TRIC S OF 4 VY &IPBOARD Final-July 1977 to January 1978L’=NA ~ tic I L

  3. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density....... Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since...

  4. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    Near-field acoustic holography (NAH) is a powerful sound source identification technique that makes it possible to reconstruct and extract all the information of the sound field radiated by a source in a very efficient manner, readily providing a complete representation of the acoustic field under...... examination. This is crucial in many areas of acoustics where such a thorough insight into the sound radiated by a source can be essential. This study examines novel acoustic array technology in near-field acoustic holography and sound source identification. The study focuses on three aspects, namely the use...... of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...

  5. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has...... on particle velocity input data than when it is based on measurements of sound pressure data, and this is confirmed by a simulation study and by experimental results. A method that combines pressure- and particle velocity-based reconstructions in order to distinguish between contributions to the sound field...

  6. Mie calculation of electromagnetic near-field for a multilayered sphere

    Science.gov (United States)

    Ladutenko, Konstantin; Pal, Umapada; Rivera, Antonio; Peña-Rodríguez, Ovidio

    2017-05-01

    We have developed an algorithm to calculate electric and magnetic fields inside and around a multilayered sphere. The algorithm includes explicit expressions for Mie expansion coefficients inside the sphere and calculation of the vector spherical harmonics in terms of the Riccati-Bessel functions and their logarithmic derivatives. This novel approach has been implemented in the new version of our program scattnlay. Scattnlay 2.0 will be the first publicly available (at GitHub, https://github.com/ovidiopr/scattnlay) program, based on the Mie theory, which can calculate near-fields for the general case of a multilayer sphere. Several tests were designed to verify that the results obtained with our code match literature results and those obtained through similar programs (limited to core-shell structures) or full-wave 3D simulations. These tests demonstrate that the implementation is effective, yielding accurate values of electric and magnetic fields for a wide range of size parameters, number of layers, and refractive indices.

  7. Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field.

    Science.gov (United States)

    Barton, John P; Wolff, Nicholas L; Zhang, Haifeng; Tarawneh, Constantine

    2003-03-01

    A general spheroidal coordinate separation-of-variables solution is developed for the determination of the acoustic pressure distribution near the surface of a rigid spheroid for a monofrequency incident acoustic field of arbitrary character. Calculations are presented, for both the prolate and oblate geometries, demonstrating the effects of incident field orientation and character (plane-wave, spherical wave, cylindrical wave, and focused beam) on the resultant acoustic pressure distribution.

  8. Near-field and high-resolution cylindrical noise source location method based on vector sound pressure array

    Directory of Open Access Journals (Sweden)

    ZUO Xiang

    2017-08-01

    Full Text Available The existing underwater noise source near-field location method usually assumes that the measurement plane is flat, which increases the difficulty of applying the underwater noise target test for cylindrical distribution. Simultaneously, the conventional near-field focused beam has a lower spatial resolution when used to locate an underwater noise source with cylindrical distribution. Moreover, the near-field underwater noise source location method based on the sound pressure array has a left and right side fuzzy problem. In order to solve these problems, by establishing the near-field measurement model of the noise source with cylindrical distribution as the measurement surface, and combining the unilateral directivity of the vector hydrophone and the high resolution characteristics of the MUSIC algorithm, a near-field and high resolution location method is proposed for cylindrical distribution based on vector sound pressure, and a computer simulation is carried out. The results show that the method can use a smaller array aperture to locate the underwater noise source, enabling it to be used to locate and recognize the noise sources of complex and large-scale cylindrical systems.

  9. Direct analysis of dispersive wave fields from near-field pressure measurements

    NARCIS (Netherlands)

    Horchens, L.

    2011-01-01

    Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic

  10. Near-field Pressure Distributions to Enhance Sounds Transmission into Multi-layer Materials

    Science.gov (United States)

    2013-12-01

    monopole produces a pressure distribution on the panel, and the resulting vibration is measured using the laser vibrometer ...one side to produce an opaque surface for improved laser vibrometer focusing and measurement. Vibration properties for the plate were measured by...distance. The increase in stando↵ causes a reduction in evanescent energy. sition system from the laser vibrometer . This actuactor-transducer

  11. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions.

    Science.gov (United States)

    Chatterjee, I; Gandhi, O P; Hagmann, M J; Riazi, A

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed.

  12. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    Science.gov (United States)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  13. Calculations of near-field emissions in frequency-domain into time-dependent data with arbitrary wave form transient perturbations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-09-01

    Full Text Available This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM near-field (NF radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t. The method proposed is based on the fast Fourier transform (FFT. The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f and the given frequency data H0(f, the convolution of the two inputs data and then, the determination of the time-domain emissions H(t. The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t from the frequency-dependent x- and y- longitudinal components Hx(f and Hy(f is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs.

  14. A line array based near field imaging technique for characterising acoustical properties of elongated targets

    NARCIS (Netherlands)

    Driessen, F.P.G.

    1995-01-01

    With near field imaging techniques the acoustical pressure waves at distances other than the recorded can be calculated. Normally, acquisition on a two dimensional plane is necessary and extrapolation is performed by a Rayleigh integral. A near field single line instead of two dimensional plane

  15. Calculation of minimum miscibility pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Orr, F.M. [Department of Petroleum Engineering, Stanford University, Mitchell Bldg., Room 360, 94305-2220 Stanford, CA (United States)

    2000-09-01

    A method is described and tested for calculation of minimum miscibility pressure (MMP) that makes use of an analytical theory for one-dimensional, dispersion-free flow of multicomponent mixtures. The theory shows that in a displacement of an oil by a gas with n{sub c} components, the behavior of the displacement is controlled by a sequence of n{sub c}-1 key tie lines. Besides, the tie lines that extend through the initial oil and injection gas compositions, there are n{sub c}-3 tie lines, known as crossover tie lines, that can be found from a set of conditions that require the extensions of the appropriate tie lines to intersect each other. The MMP is calculated as the pressure at which one of the key tie lines becomes a tie line of zero length that is tangent to the critical locus. The numerical approach for solving the tie line intersection equations is described; slim tube test and compositional simulation data reported in the literature are used to show that the proposed approach can be used to calculate MMP accurately for displacements with an arbitrary number of components present.

  16. Securing Near Field Communication

    OpenAIRE

    Kortvedt, Henning Siitonen

    2009-01-01

    Near Field Communication (NFC) specifies a standard for a wireless communication protocol enabling data transfer by keeping two devices close together, about 10 cm maximum. NFC is designed for integration with mobile phones, which can communicate with other NFC phones (peer-to-peer) or read information on tags and cards (reader). An NFC device can also be put in card emulation mode, to offer compatibility with other contactless smart card standards. This enables NFC devices to replace traditi...

  17. Near field communications handbook

    CERN Document Server

    Ahson, Syed A; Furht, Borko

    2011-01-01

    Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of

  18. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  19. Report of near field group

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  20. Terahertz near-field microspectroscopy

    NARCIS (Netherlands)

    Knab, J.R.; Adam, A.J.L.; Chakkittakandy, R.; Planken, P.C.M.

    2010-01-01

    Using near-field, terahertz time-domain spectroscopy (THz-TDS), we investigate how the addition of a dielectric material into a subwavelength-diameter, cylindrical waveguide affects its transmission properties. The THz electric near-field is imaged with deep subwavelength resolution as it emerges

  1. DECOVALEX-THMC Project. Task A. Influence of near field coupled THM phenomena on the performance of a spent fuel repository. Report of Task A1: Preliminary scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son (ed.) [Canadian Nuclear Safety Commission (Canada); Lanru Jing (ed.) [Royal Institute of Technology, Stockholm (Sweden); Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Chijimatzu, Masakazu [Hazama Corporation (Japan); Jussila, Petri [Helsinki Univ. of Technology, Helsinki (Finland); Rutqvist, Jonny [Lawrence Berkeley National Laboratory CA (United States)

    2007-02-15

    The DECOVALEX-THMC project is an ongoing international co-operative project that was stared in 2004 to support the development of mathematical models of coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes in geological media for siting potential nuclear fuel waste repositories. The general objective is to characterise and evaluate the coupled THMC processes in the near field and far field of a geological repository and to assess their impact on performance assessment: - during the three phases of repository development: excavation phase, operation phase and post-closure phase; - for three different rocks types: crystalline, argillaceous and tuff; - with specific focus on the issues of: Excavation Damaged Zone (EDZ), permanent property changes of rock masses, and glaciation and permafrost phenomena. The project involves a large number of research teams supported by radioactive waste management agencies or governmental regulatory bodies in Canada, China, Finland, France, Germany, Japan, Sweden and USA, who conducted advanced studies and numerical modelling of coupled THMC processes under five tasks. This report presents the definition of the first phase, Task A-1, of the Task A of the project. The task is a working example of how interaction between THMC modelling and SA analysis could be performed. Starting with the technical definition of the Task A, the report presents the results of preliminary THM calculations with a purpose of an initial appreciation of the phenomena and material properties that must be better understood in subsequent phases. Many simplifications and assumptions were introduced and the results should be considered under these assumptions. Based on the evaluation of the multiple teams' results, a few points of concern were identified that may guide the successive phases of Task A studies: 1. The predicted maximum total stress in the MX-80 bentonite could slightly exceed the 15 MPa design pressure for the

  2. Tearing mode stability calculations with pressure flattening

    CERN Document Server

    Ham, C J; Cowley, S C; Hastie, R J; Hender, T C; Liu, Y Q

    2013-01-01

    Calculations of tearing mode stability in tokamaks split conveniently into an external region, where marginally stable ideal MHD is applicable, and a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter. Pressure and current perturbations localized around the rational surface alter the stability of tearing modes. Equations governing the changes in the external solution and - are derived for arbitrary perturbations in axisymmetric toroidal geometry. The relationship of - with and without pressure flattening is obtained analytically for four pressure flattening functions. Resistive MHD codes do not contain the appropriate layer physics and therefore cannot predict stability directly. They can, however, be used to calculate -. Existing methods (Ham et al. 2012 Plasma Phys. Control. Fusion 54 025009) for extracting - from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface ...

  3. Enthalpy Calculation for Pressurized Oxy- coal Combustion

    OpenAIRE

    Weihong Wu; Jingli Huang

    2012-01-01

    Oxy-fuel combustion is recognizing one of the most promising available technologies that zero emission accomplishment may be in the offing. With coal burned under the pressure of 6MPa and oxygen-enriched conditions, the high temperature and high pressure gaseous combustion product is composed of 95% CO2 and water-vapor, with the rest of O2, N2 and so on. However, once lauded as classic approach of resolving fuel gas enthalpy calculation pertaining to ideal gas at atmospheric pressure was rest...

  4. Near field optics and nanoscopy

    CERN Document Server

    Fillard, J P

    1996-01-01

    This book contains the most recent information on optical nanoscopy. Far-Field and Near-Field properties on e.m. waves are presented which illustrate how optical images can be obtained from sub-micron objects. Scanning Probe techniques and computer processing are covered here. An explanation is given on how propagating photons or evanescent waves can behave over distances shorter than the wavelength, taking into account the presence of small objects. Quantum tunneling of photons is explained comparatively with the electron mechanism. Technical details are given on photon tunneling microscopes.

  5. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field....... The obtained experimental results for different polymer coating thicknesses and nanostructure geometries are in good agreement with theoretical calculations of the near field distribution for corresponding enhancement mechanisms. The developed method and its tunable experimental parameters show...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  6. Calculation of plantar pressure time integral, an alternative approach.

    Science.gov (United States)

    Melai, Tom; IJzerman, T Herman; Schaper, Nicolaas C; de Lange, Ton L H; Willems, Paul J B; Meijer, Kenneth; Lieverse, Aloysius G; Savelberg, Hans H C M

    2011-07-01

    In plantar pressure measurement, both peak pressure and pressure time integral are used as variables to assess plantar loading. However, pressure time integral shows a high concordance with peak pressure. Many researchers and clinicians use Novel software (Novel GmbH Inc., Munich, Germany) that calculates this variable as the summation of the products of peak pressure and duration per time sample, which is not a genuine integral of pressure over time. Therefore, an alternative calculation method was introduced. The aim of this study was to explore the relevance of this alternative method, in different populations. Plantar pressure variables were measured in 76 people with diabetic polyneuropathy, 33 diabetic controls without polyneuropathy and 19 healthy subjects. Peak pressure and pressure time integral were obtained using Novel software. The quotient of the genuine force time integral over contact area was obtained as the alternative pressure time integral calculation. This new alternative method correlated less with peak pressure than the pressure time integral as calculated by Novel. The two methods differed significantly and these differences varied between the foot sole areas and between groups. The largest differences were found under the metatarsal heads in the group with diabetic polyneuropathy. From a theoretical perspective, the alternative approach provides a more valid calculation of the pressure time integral. In addition, this study showed that the alternative calculation is of added value, along peak pressure calculation, to interpret adapted plantar pressures patterns in particular in patients at risk for foot ulceration. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Direct modeling of near field thermal radiation in a metamaterial.

    Science.gov (United States)

    Lu, Dawei; Das, Ananda; Park, Wounjhang

    2017-05-29

    The study of near field thermal radiation is gaining renewed interest thanks in part to their great potential in energy harvesting applications. It is well known that plasmonic or polaritonic materials exhibit strongly enhanced fields near the surface, but it is not trivial to quantitatively predict their impact on thermal radiation intensity in the near field. In this paper, we present a case study for a metamaterial that supports a surface plasmon mode in the terahertz region and consequently exhibits strongly enhanced near field thermal radiation at the plasmon resonance frequency. We implemented a finite-difference time-domain method that thermally excites the metamaterial with randomly fluctuating dipoles according to the fluctuation-dissipation theorem. The calculated thermal radiation from the metamaterial was then compared with the case of optical excitation by the plane wave incident on the metamaterial surface. The optical excitation couples only to the mode that satisfies the momentum matching condition while thermal excitation is not bound by it. As a result, the near field thermal radiation exhibits substantial differences compared to the optically excited surface plasmon modes. Under thermal excitation, the near field intensity at 1 µm away from metal surface of the metamaterial reaches a maximum enhancement of 43 fold over the far field at the frequency of the Brillouin zone boundary mode while the near field intensity under optical excitation reaches a maximum enhancement of 24 fold at the frequency of the Brillouin zone center mode. In addition, the peak near field intensity under thermal excitation shows a 4-fold enhancement over blackbody radiation with linear polarization radiation in the far field. The ability to precisely predict the local field intensity under thermal excitation is critical to the development of advanced energy devices that take advantage of this near field enhancement and could lead to the development of new generation of

  8. Electromagnetic measurements in the near field

    CERN Document Server

    Bienkowski, Pawel

    2012-01-01

    This book is devoted to the specific problems of electromagnetic field (EMF) measurements in the near field and to the analysis of the main factors which impede accuracy in these measurements. It focuses on careful and accurate design of systems to measure in the near field based on a thorough understanding of the fundamental engineering principles and on an analysis of the likely system errors. Beginning with a short introduction to electromagnetic fields with an emphasis on the near field, it them presents methods of EMF measurements in near field conditions. It details the factors limiting

  9. Pressure Vessel Calculations for VVER-440 Reactors

    Science.gov (United States)

    Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.

    2003-06-01

    Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.

  10. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  11. Near Field Communication: Introduction and Implications

    Science.gov (United States)

    McHugh, Sheli; Yarmey, Kristen

    2012-01-01

    Near field communication is an emerging technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. Though primarily associated with mobile payment, near field communication has many different potential commercial applications, ranging from marketing to nutrition,…

  12. Near field acoustic holography with particle velocity transducers

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Liu, Yang

    2005-01-01

    Near field acoustic holography is usually based on measurement of the pressure. This paper describes an investigation of an alternative technique that involves measuring the normal component of the acoustic particle velocity. A simulation study shows that there is no appreciable difference between...... by an experimental investigation made with a p-u sound intensity probe produced by Microflown....

  13. Spherical wave rotation in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.

    1991-01-01

    The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...

  14. [The developement of the near-field scan optical microscope and near-field spectroscopy].

    Science.gov (United States)

    Li, B; Zhang, S

    1997-08-01

    This paper introduces the basic principles and techniques of the near-field microscope and the status of recent development in the near-field spectroscopy. We also discuss problems facing the analysis of the results of the near-field spectra.

  15. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  16. The Survey on Near Field Communication

    National Research Council Canada - National Science Library

    Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem

    2015-01-01

    Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others...

  17. Evaluation of seismic stability of near field

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Wataru; Takaji, Kazuhiko; Sugino, Hiroyuki [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Mori, Koji [Computer Software Development Co., Ltd, Environmental Engineering Group, Tokyo (Japan)

    1999-11-01

    For the buffer material of geological disposal of high-level radioactive waste (HLW) in Japan, it is considered to use a compacted bentonite or a compacted sand-mixture bentonite that is one kind of clay. The buffer material is expected to maintain long-term mechanical stability, to hold the waste in designated place, and to avoid the effects on the radionuclides migration. It is considered that the cyclic load due to seismic activities affects long-term mechanical stability in Japan, where many earthquakes have been occurring. In this report, aseismic mechanical stability of engineered barrier of HLW is studied by dynamic analysis based on equation of vibration, mainly in the view point of mechanical stability of the buffer. The analytical computer code that has been developed by JNC in cooperative project with National Research Institute for Earth Science and Disaster Prevention Science and Technology Agency is used in this study. Seismic wave at the disposal depth in the assumed geological environment is established by multiple reflection theory analysis, and then seismic wave at the disposal depth is used for the aseismic mechanical stability analysis. For the aseismic mechanical stability, total stress analyses (single-phase system) with the target field of near field are conducted to evaluate the shear failure of the buffer, the displacement of overpack, and vibrational behavior of the engineered barrier, and then effective stress analyses (two-phase system) with the target field of the engineered barrier are conducted to evaluate excursion in the pore water pressure within the buffer (i. e. liquefaction), concerning the non-linear dynamic properties of the buffer material. From the results, the following conclusions are obtained. (1) From the results of the total stress analyses, it is confirmed that the buffer must not reach a shear failure condition from the stresses caused by an earthquake and the overpack must not move significantly due to the inertial

  18. Methodological problems in pressure profile calculations for lipid bilayers

    DEFF Research Database (Denmark)

    Sonne, Jacob; Hansen, Flemming Yssing; Peters, Günther H.J.

    2005-01-01

    From molecular dynamics simulations of a dipalmitoyl-phosphatidyl-choline (DPPC) lipid bilayer in the liquid crystalline phase, pressure profiles through the bilayer are calculated by different methods. These profiles allow us to address two central and unresolved problems in pressure profile...... calculations: The first problem is that the pressure profile is not uniquely defined since the expression for the local pressure involves an arbitrary choice of an integration contour. We have investigated two different choices leading to the Irving-Kirkwood (IK) and Harasima (H) expressions for the local...... pressure tensor. For these choices we find that the pressure profile is almost independent of the contour used, which indicates that the local pressure is well defined for a DPPC bilayer in the liquid crystalline phase. This may not be the case for other systems and we therefore suggest that both the IK...

  19. Capturing range of a near-field optical trap

    Science.gov (United States)

    Zaman, Mohammad Asif; Padhy, Punnag; Hesselink, Lambertus

    2017-10-01

    A study on the spatial characteristics of a near-field optical trap is presented. For analysis, a plasmonic near-field trap consisting of a C-shaped engraving is considered. Numerical simulations are performed to calculate the optical force exerted on a spherical nanoparticle by the trap. A Brownian dynamics model is used to simulate a large number of independent trajectories of a nanoparticle submerged in the optical force field. Statistical analysis is performed on the trajectory data to calculate the trapping probability at different points in space. The points with equal trapping probabilities are enclosed in a surface to visualize the influence domain of the trap. The metric capturing range is defined and calculated from the spatial extent of such surfaces. The possible applications of the defined metric are discussed. Some design examples from the literature are also analyzed and are found to be consistent with the proposed analysis.

  20. Modeling of Near-Field Blast Performance

    Science.gov (United States)

    2013-11-01

    Army Research Laboratory Modeling of Near-Field Blast Performance by Barrie E. Homan , Matthew M. Biss, and Kevin L. McNesby ARL-TR-6711 November 2013...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-TR-6711 November 2013 Modeling of Near-Field Blast Performance Barrie E. Homan , Matthew M. Biss, and... Homan Matthew M. Biss Kevin L. McNesby U.S. Army Research Laboratory ATTN: RDRL-WMP-G Aberdeen Proving Ground, MD 21005-5066 Two hydrocode packages

  1. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  2. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  3. Near-field/altered-zone models report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E. L., LLNL

    1998-03-01

    nonlithophysal and lower lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF

  4. Near-field electromagnetic theory for thin solar cells.

    Science.gov (United States)

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  5. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... characterization....

  6. Computational lens for the near field

    DEFF Research Database (Denmark)

    Carney, P. Scott; Franzin, Richard A.; Bozhevolnyi, Sergey I.

    2004-01-01

    A method is presented to reconstruct the structure of a scattering object from data acquired with a photon scanning tunneling microscope . The data may be understood to form a Gabor type near-field hologram and are obtained at a distance from the sample where the field is defocused and normally...

  7. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Sadhana; Volume 40; Issue 3. Near field characteristics of buoyant helium plumes. Kuchimanchi K Bharadwaj Debopam Das Pavan K Sharma. Section I – Fluid Mechanics and Fluid Power (FMFP) Volume 40 Issue 3 May 2015 pp 757- ...

  8. Pressure algorithm for elliptic flow calculations with the PDF method

    Science.gov (United States)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  9. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... input quantity for NAH, and the advantage of using the normal component of the particle velocity rather than the sound pressure as the input of conventional spatial Fourier transform based NAH and as the input of the statistically optimized variant of NAH has recently been demonstrated. This paper......, PNAH based on particle velocity measurements can give better results than the pressure-based PNAH with a reduced number of iterations. A simulation study, as well as an experiment carried out with a pressure-velocity sound intensity probe, demonstrates these findings....

  10. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... enhancements on and around the gold nanostructures. At the positions of the enhancements, the ablation threshold of the polymer coating is significantly lowered creating subdiffractional topographic modifications on the surface which are quantified via scanning electron microscopy and atomic force microscopy....... The obtained experimental results for different polymer coating thicknesses and nanostructure geometries are in good agreement with theoretical calculations of the near field distribution for corresponding enhancement mechanisms. The developed method and its tunable experimental parameters show...

  11. Near-field effects of asteroid impacts in deep water

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  12. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  13. Global Approach for Calculation of Minimum Miscibility Pressure

    DEFF Research Database (Denmark)

    Jessen, Kristian; Michelsen, Michael Locht; Stenby, Erling Halfdan

    1998-01-01

    An algorithm has been developed for calculation of minimum miscibility pressure (MMP) for the displacement of oil by multicomponent gas injection. The algorithm is based on the key tie line identification approach initially addressed by Wang and Orr [Y. Wang and F.M. Orr Jr., Analytical calculation...... of minimum miscibility pressure, Fluid Phase Equilibria, 139 (1997) 101-124]. In this work a new global approach is introduced. A number of deficiencies of the sequential approach have been eliminated resulting in a robust and highly efficient algorithm. The time consumption for calculation of the MMP...... in multicomponent displacement processes has been reduced significantly and can now be performed within a few seconds on a PC for a 15-component gas mixture. The algorithm is hence particularly suitable for gas enrichment studies or other case studies where a large number of MMP calculations is required. Predicted...

  14. Calculation of minimum miscibility pressure using fast slimtube simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2012-01-01

    Minimum misciblility pressure (MMP) is a critical parameter in designing a miscible gas injection process. It is expected that 100% displacement efficiency on the microscopic scale can be achieved provided the injection pressure is above MMP. Two approaches are usually employed for equation...... of state (EoS) based MMP calculation. The slimtube simulation approach is a numerical simulation of the physical slimtube experiment, which is commonly accepted as the most reliable experimental method for MMP determination. This approach carries out slimtube simulation runs at a series of pressures...... and determines the MMP from the recovery-pressure curve, just as in the experiment. The global approach, which is based on the method of characteristics analysis of 1D gas injection, finds the MMP by locating the pressure where a key tie-line becomes critical. Although the global approach is faster, the slimtube...

  15. Wind turbine sound pressure level calculations at dwellings.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Leroux, Tony; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise propagation method. Both methods yielded statistically equivalent results. The A- and C-weighted results were highly correlated over the 1238 dwellings (Pearson's linear correlation coefficient r > 0.8). Calculated wind turbine SPLs were compared to ambient SPLs from other sources, estimated using guidance documents from the United States and Alberta, Canada.

  16. On the calculation of disjoining pressure isotherms for nonaqueous films.

    Science.gov (United States)

    Correa, Rafael; Saramago, Benilde

    2004-02-15

    A review of the methods of London and Hamaker and of Lifshitz for calculating disjoining pressure isotherms of nonaqueous liquid films is presented. The disjoining pressure isotherms for films of n-octane and of three triglycerides (tributyrin, tricaprylin, and triolein) on glass were calculated using both methods. The disjoining pressure isotherms for films on silanized glass were calculated using only the London-Hamaker approach. The refractive indices and static dielectric constants, necessary for the calculations, were measured. The silanized glass was considered to be the original glass covered by a layer with the same characteristic frequency as the underlying glass and a smaller limiting value of the dielectric constant epsilon(0). The limiting dielectric constant epsilon(0) and the thickness of the surface layer were taken as adjustable parameters. The disjoining pressure isotherms indicate that all films are stable on glass. In contrast, the stability of the films formed on silanized glass was found to depend mainly on the value of epsilon(0) and, less strongly, on the thickness of the surface layer. The stability of the films decreased with the decrease of epsilon(0) and, for each value of epsilon(0), was maximal for the thinnest surface layer.

  17. Effective Algorithm for Calculation of Minimum Miscibility Pressure

    DEFF Research Database (Denmark)

    Jessen, Kristian; Michelsen, Michael Locht; Stenby, Erling Halfdan

    1998-01-01

    This paper describes a new algorithm developed for calculation of the minimum miscibility pressure (MMP) for the displacement of oil by a multicomponent injection gas. The algorithm is based on the key tie line identification approach initially studied by Wang and Orr . A new global formulation i...

  18. Nano-plasmonic near field phase matching of attosecond pulses.

    Science.gov (United States)

    Shaaran, Tahir; Nicolas, Rana; Iwan, Bianca; Kovacev, Milutin; Merdji, Hamed

    2017-07-25

    Nano-structures excited by light can enhance locally the electric field when tuned to plasmonic resonances. This phenomenon can be used to boost non-linear processes such as harmonic generation in crystals or in gases, Raman excitation, and four wave mixing. Here we present a theoretical investigation of the near-field phase matching of attosecond pulses emitted by high-order harmonic generation (HHG) of an atom immersed in a multi-cycle femtosecond infrared laser field and a spatially inhomogeneous plasmonic field. We demonstrate that the spatial inhomogeneity factor of the plasmonic field strongly affects the electron trajectory and recombination time which can be used to control the attosecond emission. For further insight into the plasmonic field effect, we monitor the phase of each quantum path as a function of the inhomogeneity strength. Moreover, we investigate the attosecond emission as a function of near-field phase matching effects. This is achieved by calculating the coherent field superposition of attosecond pulses emitted from various intensities or field inhomogeneities. Finally, far-field and near-field phase matching effects are combined to modulate the harmonic spectral phase towards the emission of a single attosecond pulse.

  19. Near field acoustic holography with microphones on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno-Pescador, Guillermo; Fernandez Grande, Efren

    2011-01-01

    Spherical near field acoustic holography (spherical NAH) is a technique that makes it possible to reconstruct the sound field inside and just outside a spherical surface on which the sound pressure is measured with an array of microphones. This is potentially very useful for source identification....... The sphere can be acoustically transparent or it can be rigid. A rigid sphere is somewhat more practical than an open sphere. However, spherical NAH based on a rigid sphere is only valid if it can be assumed that the sphere has a negligible influence on the incident sound field, and this is not necessarily...

  20. Lift-Off Acoustics Prediction of Clustered Rocket Engines in the Near Field

    Science.gov (United States)

    Vu, Bruce; Plotkin, Ken

    2010-01-01

    This slide presentation presents a method of predicting acoustics during lift-off of the clustered rocket engines in the near field. Included is a definition of the near field, and the use of deflectors and shielding. There is discussion about the use of PAD, a software system designed to calculate the acoustic levels from the lift of of clustered rocket enginee, including updates to extend the calculation to directivity, water suppression, and clustered nozzles.

  1. Numerical Analysis of Dynamic Response of Corrugated Core Sandwich Panels Subjected to Near-Field Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Pan Zhang

    2014-01-01

    Full Text Available Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.

  2. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area......; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH......). The purpose is to examine whether one should use a correction similar to the well-known ‘Waterhouse correction’ when the incident sound power is deduced from the sound pressure in the source room....

  3. Near Field Communication: Technology and Market Trends

    Directory of Open Access Journals (Sweden)

    Gabriella Arcese

    2014-09-01

    Full Text Available Among the different hi-tech content domains, the telecommunications industry is one of the most relevant, in particular for the Italian economy. Moreover, Near Field Communication (NFC represents an example of innovative production and a technological introduction in the telecommunications context. It has a threefold function: card emulator, peer-to-peer communication and digital content access, and it could be pervasively integrated in many different domains, especially in the mobile payment one. The increasing attention on NFC technology from the academic community has improved an analysis on the changes and the development perspective about mobile payments. It has considered the work done by the GSMA (Global System for Mobile Communications Association and the NFC Forum in recent years. This study starts from an analysis of the scientific contributions to Near Field Communication and how the main researches on this topic were conceived. Our focus is on the diffusion rates, the adoption rates and the technology life cycle. After that, we analyze the technical-economical elements of NFC. Finally, this work presents the state of art of the improvements to this technology with a deeper focus on NFC technologies applied to the tourism industry. In this way, we have done a case analysis that shows some of the NFC existent applications linked to each stage of the tourism value chain.

  4. Near Field Environment Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  5. A subdivision algorithm for phase equilibrium calculations at high pressures

    Directory of Open Access Journals (Sweden)

    M. L. Corazza

    2007-12-01

    Full Text Available Phase equilibrium calculations at high pressures have been a continuous challenge for scientists and engineers. Traditionally, this task has been performed by solving a system of nonlinear algebraic equations originating from isofugacity equations. The reliability and accuracy of the solutions are strongly dependent on the initial guess, especially due to the fact that the phase equilibrium problems frequently have multiple roots. This work is focused on the application of a subdivision algorithm for thermodynamic calculations at high pressures. The subdivision algorithm consists in the application of successive subdivisions at a given initial interval (rectangle of variables and a systematic test to verify the existence of roots in each subinterval. If the interval checked passes in the test, then it is retained; otherwise it is discharged. The algorithm was applied for vapor-liquid, solid-fluid and solid-vapor-liquid equilibrium as well as for phase stability calculations for binary and multicomponent systems. The results show that the proposed algorithm was capable of finding all roots of all high-pressure thermodynamic problems investigated, independent of the initial guess used.

  6. Lateral pressure profile in lipid membranes with curvature: Analytical calculation

    Science.gov (United States)

    Drozdova, A. A.; Mukhin, S. I.

    2017-08-01

    An analytical expression is obtained for the lateral pressure profile in the hydrophobic part of a lipid bilayer of finite curvature. Calculations are carried out within a microscopic model of a lipid bilayer, according to which the energy of a lipid chain represents the energy of a flexible string of finite thickness and the interaction between lipid chains is considered as a steric (entropic) repulsion. This microscopic model allows one to obtain an expression for the distribution of lateral pressure in membranes with given curvature if one considers the bending of a membrane as a small deviation from a flat conformation and applies perturbation theory in the small parameter L 0 J, where L 0 is the hydrophobic thickness of a monolayer and J is the mean curvature of the lipid bilayer. The resulting pressure profile depends on the microscopic parameters of the lipid chain: the bending modulus of the lipid chain, incompressible area per lipid chain, and the thickness of a flat monolayer. The coefficient of entropic repulsion between lipids is calculated self-consistently. The analytical results obtained for the lateral pressure distribution are in qualitative agreement with molecular dynamic simulations.

  7. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  8. Nanoscale Heat Transfer Due to Near Field Radiation and Nanofluidic Flows

    Science.gov (United States)

    2015-07-21

    AFRL-OSR-VA-TR-2015-0205 Nanoscale heat transfer due to near field radiation and nanofluidic flows Peter Taborek UNIVERSITY OF CALIFORNIA IRVINE...TITLE AND SUBTITLE Nanoscale heat transfer due to near field radiation and nanofluidic flows 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0065...ballistic to hydrodynamic flow in the smallest pipes ever investigated. Because of the vacuum conditions at the low pressure end of our nanopipes

  9. Biological Applications of Near-field Optical Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.

    1996-01-01

    Presents several biological applications of near field optical microscopy, in combination with force microscopy. Aperture near field scanning optical microscopy (NSOM) with fluorescence detection gives (bio)chemical specificity and orientational information, in addition to the simultaneously

  10. The Survey on Near Field Communication

    Directory of Open Access Journals (Sweden)

    Vedat Coskun

    2015-06-01

    Full Text Available Near Field Communication (NFC is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.

  11. The Survey on Near Field Communication.

    Science.gov (United States)

    Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem

    2015-06-05

    Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.

  12. The Survey on Near Field Communication

    Science.gov (United States)

    Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem

    2015-01-01

    Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem. PMID:26057043

  13. External Luminescence and Photon Recycling in Near-Field Thermophotovoltaics

    Science.gov (United States)

    DeSutter, John; Vaillon, Rodolphe; Francoeur, Mathieu

    2017-07-01

    The importance of considering near-field effects on photon recycling and spontaneous emission in a thermophotovoltaic device is investigated. Fluctuational electrodynamics is used to calculate external luminescence from a photovoltaic cell as a function of emitter type, vacuum gap thickness between the emitter and cell, and cell thickness. The observed changes in external luminescence suggest strong modifications of photon recycling caused by the presence of the emitter. Photon recycling for propagating modes is affected by reflection at the vacuum-emitter interface and is substantially decreased by the leakage towards the emitter through the tunneling of frustrated modes. In addition, spontaneous emission by the cell can be strongly enhanced by the presence of an emitter supporting surface-polariton modes. It follows that using a radiative recombination model with a spatially uniform radiative lifetime, even corrected by a photon-recycling factor, is inappropriate. Applying the principles of detailed balance and accounting for nonradiative recombination mechanisms, the impact of external luminescence enhancement in the near field on thermophotovoltaic performance is investigated. It is shown that unlike isolated cells, the external luminescence efficiency is not solely dependent on cell quality but significantly increases as the vacuum gap thickness decreases below 400 nm for the case of an intrinsic silicon emitter. In turn, the open-circuit voltage and power density benefit from this enhanced external luminescence toward the emitter. This benefit is larger as cell quality, characterized by the contribution of nonradiative recombination, decreases.

  14. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  15. Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)

    2015-12-31

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.

  16. Optimization and maximum potential of optical antennae in near-field enhancement.

    Science.gov (United States)

    Chen, PingPing; Liu, Ju; Wang, Li; Jin, Kuijuan; Yin, Yan; Li, ZhiYuan

    2015-06-20

    We investigate four types of gold nanoantennae (the monopole, the dipole, the cone-shaped, and the cone-bowtie antenna), under a fixed working wavelength. The finite-difference time-domain (FDTD) simulations show that the near-field enhancement values do not increase monotonously when the antennae sizes decrease, and optimization conditions vary with the antenna shapes. We also propose a distributed dipole ring model to analytically calculate the near field. The size condition for the strongest enhancement is the compromising result of the total radiated energy and the near-field distribution factor. Assuming the cone-bowtie antenna is the best for high enhancement, the maximum potential in near-field enhancement is 2×10(5) for a linear signal or 4×10(10) for typical nonlinear signals.

  17. Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Weidong Shi

    2014-02-01

    Full Text Available In order to study the internal flow in centrifugal pump when cavitation occurs, numerical calculation of the unsteady flow field in the WP7 automobile centrifugal pump is conducted based on the Navier-Stokes equations with the RNG k – ε turbulence model and Zwart-Gerber-Belamri cavitation model. The distributions of bubble volume fraction and pressure pulsation laws in the pump are analyzed when cavitation occurs. The conclusions are as follows: the bubble volume fraction is larger on the suction side of impeller blade near the inlet edge, which is consistent with the low-pressure region distribution. Bubble volume is determined by the growth rate and collapse rate of every bubble in the bubble group. The cavitation degree changes over time with the impeller rotation and the bubble growth and collapse coexist in the impeller flow channels. The main pulsation results from the cyclic and static coupling between the impeller and the tongue, while the fluctuating amplitude is increased by the cavitation.

  18. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  19. Near field heat transfer between random composite materials. Applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Eva Yazmin; Esquivel-Sirvent, Raul [Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Fisica

    2017-05-01

    We present a theoretical study of the limits and bounds of using effective medium approximations in the calculation of the near field radiative heat transfer between a composite system made of Au nanoparticles in a SiC host and an homogeneous SiC slab. The effective dielectric function of the composite slab is calculated using three different approximations: Maxwell-Garnett, Bruggeman, and Looyenga's. In addition, we considered an empirical fit to the effective dielectric function by Grundquist and Hunderi. We show that the calculated value of the heat flux in the near field is dependent on the model, and the difference in the effective dielectric function is larger around the plasmonic response of the Au nanoparticles. This, in turn, accounts for the difference in the near field radiative heat flux. For all values of filling fractions, the Looyenga approximation gives a lower bound for the heat flux.

  20. Viscoacoustic model for near-field ultrasonic levitation

    Science.gov (United States)

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  1. Transmitter Architectures Based on Near-Field Direct Antenna Modulation

    OpenAIRE

    Babakhani, Aydin; Rutledge, David B.; Hajimiri, Ali

    2008-01-01

    A near-field direct antenna modulation (NFDAM) technique is introduced, where the radiated far-field signal is modulated by time-varying changes in the antenna near-field electromagnetic (EM) boundary conditions. This enables the transmitter to send data in a direction-dependent fashion producing a secure communication link. Near-field direct antenna modulation (NFDAM) can be performed by using either switches or varactors. Two fully-integrated proof-of-concept NFDAM transmitters operating at...

  2. Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media.

    Science.gov (United States)

    Harrison, R K; Ben-Yakar, Adela

    2015-08-01

    Here we investigate the effects of absorbing media on plasmon-enhanced near-field optical energy deposition. We find that increasing absorption by the medium results in increased particle scattering at the expense of particle absorption, and that much of this increased particle scattering is absorbed by the medium close to the particle surface. We present an analytical method for evaluating the spatial distribution of near-field enhanced absorption surrounding plasmonic metal nanospheres in absorbing media using a new point-by-point method. We propose criteria to define relevant near-field boundaries and calculate the properties of the local absorption enhancement, which redistributes absorption to the near-field and decays asymptotically as a function of the distance from the particle to background levels. Using this method, we performed a large-scale parametric study to understand the effect of particle size and wavelength on the near-field absorption for gold nanoparticles in aqueous media and silicon, and identified conditions that are relevant to enhanced local infrared absorption in silicon. The presented approach provides insight into the local energy transfer around plasmonic nanoparticles for predicting near-field effects for advanced concepts in optical sensing, thin-film solar cells, nonlinear imaging, and photochemical applications.

  3. Detection of reflector surface from near field phase measurements

    Science.gov (United States)

    Ida, Nathan

    1991-01-01

    The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.

  4. Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-10-01

    Full Text Available Many factors influence the near-field visualization of plasmonic structures that are based on perforated elliptical slits. Here, characterization errors are experimentally analyzed in detail from both fabrication and measurement points of view. Some issues such as geometrical parameter, probe–sample surface interaction, misalignment, stigmation, and internal stress, have influence on the final near-field probing results. In comparison to the theoretical ideal case of near-field probing of the structures, numerical calculation is carried out on the basis of a finite-difference and time-domain (FDTD algorithm so as to support the error analyses. The analyses performed on the basis of both theoretical calculation and experimental probing can provide a helpful reference for the researchers probing their plasmonic structures and nanophotonic devices.

  5. Perturbation of near-field scan from connected cables

    DEFF Research Database (Denmark)

    Sørensen, Morten; Franek, Ondrej; Pedersen, Gert Frølund

    2012-01-01

    The perturbation of near-fields scan from connected cables are investigated and how to handle the cables is discussed. A connected cable induced small but theoretical detectable changes in the near-field. This change can be seen in Huygens’ box simulations (equivalent source currents on a box) at...

  6. Near field computation of the extinction of electromagnetic waves in multiparticle systems

    Directory of Open Access Journals (Sweden)

    J. Schaefer

    2011-09-01

    Full Text Available In this contribution extinction of electromagnetic waves inside a medium consisting of cylindrical absorbing particles is considered. Near fields are calculated using a numerical solution of Maxwell’s equations and compared to results given by Lambert- Beer’s law.

  7. A semi-analytical model of a near-field optical trapping potential well

    Science.gov (United States)

    Zaman, Mohammad Asif; Padhy, Punnag; Hesselink, Lambertus

    2017-10-01

    A semi-analytical model is proposed to describe the force generated by a near-field optical trap. The model contains fitting parameters that can be adjusted to resemble a reference force-field. The model parameters for a plasmonic near-field trap consisting of a C-shaped engraving are determined using least squares regression. The reference values required for the regression analysis are calculated using the Maxwell stress tensor method. The speed and accuracy of the proposed model are compared with the conventional method. The model is found to be significantly faster with an acceptable level of accuracy.

  8. Phase imaging and detection in pseudo-heterodyne scattering scanning near-field optical microscopy measurements.

    Science.gov (United States)

    Moreno, Camilo; Alda, Javier; Kinzel, Edward; Boreman, Glenn

    2017-02-01

    When considering the pseudo-heterodyne mode for detection of the modulus and phase of the near field from scattering scanning near-field optical microscopy (s-SNOM) measurements, processing only the modulus of the signal may produce an undesired constraint in the accessible values of the phase of the near field. A two-dimensional analysis of the signal provided by the data acquisition system makes it possible to obtain phase maps over the whole [0, 2π) range. This requires post-processing of the data to select the best coordinate system in which to represent the data along the direction of maximum variance. The analysis also provides a quantitative parameter describing how much of the total variance is included within the component selected for calculation of the modulus and phase of the near field. The dependence of the pseudo-heterodyne phase on the mean position of the reference mirror is analyzed, and the evolution of the global phase is extracted from the s-SNOM data. The results obtained from this technique compared well with the expected maps of the near-field phase obtained from simulations.

  9. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.

    1999-01-01

    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern....... Near-field optical images exhibit spatially localized (within 150-250 nm) intensity enhancement (by up to 20 times) in the form of round bright spots, whose positions and brightness are found to be sensitive to the light wavelength, polarization and angle of incidence. The observed phenomenon...

  10. Transfer functions in collection scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Vohnsen, Brian; Bozhevolnaya, Elena A.

    1999-01-01

    are considered with respect to the relation between near-field optical images and the corresponding intensity distributions. Our conclusions are supported with numerical simulations and experimental results obtained by using a photon scanning tunneling microscope with an uncoated fiber tip.......It is generally accepted that, if in collection near-field optical microscopy the probe-sample coupling can be disregarded, a fiber probe can be considered as a detector of the near-field intensity whose size can be accounted for via an intensity transfer function. We show that, in general...

  11. LED beam shaping lens based on the near-field illumination.

    Science.gov (United States)

    Joo, Jae Young; Kang, Chang Seog; Park, Soon Sub; Lee, Sun-Kyu

    2009-12-21

    This paper presents a novel method in near-field beam shaping based on the precise optical modeling of a gallium nitride light-emitting diode (GaN LED). A Monte Carlo ray tracing simulation has been utilized to calculate the spatial photon distribution near the LED's top. By analyzing the ray data in near-field, the miniaturized lens profile is created and machined with aspherical surfaces and total internal reflection (TIR) Fresnel facets. The prototype lens reduce the viewing angle of the LED from 150 degrees to 17.5 degrees at full width half maximum (FWHM) while increasing the peak luminous intensity 10 times. The array of proposed lens with CSP LEDs exhibits feasibility of ultra thin uniform illumination in near-field.

  12. Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy

    Science.gov (United States)

    Wang, Haomin; Wang, Le; Jakob, Devon S.; Xu, Xiaoji G.

    2017-05-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) enables mapping of nanoscale field distributions in two dimensions. However, the standard s-SNOM technique lacks direct resolving ability along the vertical direction, therefore unable to provide full three-dimensional near-field responses. Here, we develop a reconstruction technique that enables s-SNOM to collect a three-dimensional response cube of near-field interaction. The technique also allows a new operational mode of s-SNOM based on the characteristic decay range of near-field interactions. As a demonstration, the bound near-field at the sides of a polaritonic boron nitride nanotube is revealed through the collection of the near-field response cube. The graphene boundary and discontinuities are revealed by the near-field decay range mapping. The reconstruction s-SNOM technique extends the capability of s-SNOM and is generally applicable for a wide range of nanoscale characterizations that are suitable for s-SNOM, such as characterizations of plasmonic and polaritonic nanostructures.

  13. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  14. Terahertz diffraction enhanced transparency probed in the near field

    NARCIS (Netherlands)

    Halpin, A.; van Hoof, N.; Bhattacharya, A.; Mennes, C.; J. Gomez Rivas,

    2017-01-01

    Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark

  15. Near field communication: getting in touch with mobile users.

    Science.gov (United States)

    Hoy, Matthew B

    2013-01-01

    Near field communication is a method for sending and receiving small amounts of data across very short distances wirelessly. This technology is already available in a number of mobile devices and has many possible uses, including electronic payment, access control, and information exchange. This article will explain the basic principles of near field communication, discuss some of the ways it can be used in libraries, and explore some possible concerns with the technology. A list of resources for additional information is also included.

  16. Optical Near-Field Recording Science and Technology

    CERN Document Server

    Tominaga, Junji

    2005-01-01

    This textbook is written for all those wishing to understand the concepts behind modern optical recording. It also paves the way towards the future science and technology beyond the optical diffraction limit. The important keyword here is "near-field optics," a regime whose promising characteristics will open the door to a new information optics. This unique book will be useful for all graduate students, scientists and engineers seeking to advance our understanding of optical near-field recording.

  17. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  18. Video rate near-field scanning optical microscopy

    Science.gov (United States)

    Bukofsky, S. J.; Grober, R. D.

    1997-11-01

    The enhanced transmission efficiency of chemically etched near-field optical fiber probes makes it possible to greatly increase the scanning speed of near-field optical microscopes. This increase in system bandwidth allows sub-diffraction limit imaging of samples at video rates. We demonstrate image acquisition at 10 frames/s, rate-limited by mechanical resonances in our scanner. It is demonstrated that the optical signal to noise ratio is large enough for megahertz single pixel acquisition rates.

  19. Electromagnetic time reversal focusing of near field waves in metamaterials

    Science.gov (United States)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  20. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  1. Calculation of minimum miscibility pressure using fast slimtube simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2012-01-01

    Minimum misciblility pressure (MMP) is a critical parameter in designing a miscible gas injection process. It is expected that 100% displacement efficiency on the microscopic scale can be achieved provided the injection pressure is above MMP. Two approaches are usually employed for equation of st...... is poroposed to reduce the number of slimtube simulations needed. In addition, it is also discussed how to parallelize slimtube simulations for modem computers with multiple CPU cores to further chop the computation time. Copyright 2012, Society of Petroleum Engineers....

  2. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  3. Near Field Communication-based telemonitoring with integrated ECG recordings.

    Science.gov (United States)

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  4. Calculations of quasi-particle spectra of semiconductors under pressure

    DEFF Research Database (Denmark)

    Christensen, Niels Egede; Svane, Axel; Cardona, M.

    2011-01-01

    Different approximations in calculations of electronic quasiparticle states in semiconductors are compared and evaluated with respect to their validity in predictions of optical properties. The quasi-particle self-consistent GW (QSGW) approach yields values of the band gaps which are close...

  5. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  6. Near-field thermodynamics: Useful work, efficiency, and energy harvesting

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín; Lapas, Luciano C.; Miguel Rubi, J.

    2014-03-01

    We show that the maximum work that can be obtained from the thermal radiation emitted between two planar sources in the near-field regime is much larger than that corresponding to the blackbody limit. This quantity, as well as an upper bound, for the efficiency of the process is computed from the formulation of thermodynamics in the near-field regime. The case when the difference of temperatures of the hot source and the environment is small, relevant for energy harvesting, is studied in detail. We also show that thermal radiation energy conversion can be more efficient in the near-field regime. These results open new possibilities for the design of energy converters that can be used to harvest energy from sources of moderate temperature at the nanoscale.

  7. Near-Field Cross Section Imaging of Wideband Millimeter Wave

    Directory of Open Access Journals (Sweden)

    Kan Yingzhi

    2016-01-01

    Full Text Available Near-field millimeter wave imaging has been a hot topic recent years for its importance applications in the area of anti-terrorism. The penetrating characteristic of millimeter wave is of significant importance to security, such as the concealed weapons detection, ground-penetrating radar imaging, through-barrier imaging and so on. Cross section imaging is a basic aspect for near-field millimeter wave imaging, which includes antenna array distribution and wideband signal processing. This paper utilizes back projection method in space area to realize ultra-band nearfield cross section imaging. We induce two dimensional direction integral formulas to obtain the reconstruction image of the near-field imaging area, and the simulation results validate the effectiveness of this imaging algorithm.

  8. Near-field thermal radiation between homogeneous dual uniaxial electromagnetic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Yung; Basu, Soumyadipta; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-06-07

    Recently, near-field thermal radiation has attracted much attention in several fields since it can exceed the Planck blackbody limit through the coupling of evanescent waves. In this work, near-field radiative heat transfer between two semi-infinite dual uniaxial electromagnetic metamaterials with two different material property sets is theoretically analyzed. The near-field radiative heat transfer is calculated using fluctuational electrodynamics incorporated with anisotropic wave optics. The underlying mechanisms, namely, magnetic hyperbolic mode, magnetic surface polariton, electrical hyperbolic mode, and electrical surface polariton, between two homogeneous dual uniaxial electromagnetic metamaterials are investigated by examining the transmission coefficient and the spectral heat flux. The effect of vacuum gap distance is also studied, which shows that the enhancement at smaller vacuum gap is mainly due to hyperbolic mode and surface plasmon polariton modes. In addition, the results show that the contribution of s-polarized waves is significant and should not be excluded due to the strong magnetic response regardless of vacuum gap distances. The fundamental understanding and insights obtained here will facilitate the finding and application of novel materials for near-field thermal radiation.

  9. Far-Field Super-resolution Detection of Plasmonic Near-Fields.

    Science.gov (United States)

    Boutelle, Robert Charles; Neuhauser, Daniel; Weiss, Shimon

    2016-08-23

    We demonstrate a far-field single molecule super-resolution method that maps plasmonic near-fields. The method is largely invariant to fluorescence quenching (arising from probe proximity to a metal), has reduced point-spread-function distortion compared to fluorescent dyes (arising from strong coupling to nanoscopic metallic features), and has a large dynamic range (of 2 orders of magnitude) allowing mapping of plasmonic field-enhancements regions. The method takes advantage of the sensitivity of quantum dot (QD) stochastic blinking to plasmonic near-fields. The modulation of the blinking characteristics thus provides an indirect measure of the local field strength. Since QD blinking can be monitored in the far-field, the method can measure localized plasmonic near-fields at high throughput using a simple far-field optical setup. Using this method, propagation lengths and penetration depths were mapped-out for silver nanowires of different diameters and for different dielectric environments, with a spatial accuracy of ∼15 nm. We initially use sparse sampling to ensure single molecule localization for accurate characterization of the plasmonic near-field with plans to increase density of emitters in further studies. The measured propagation lengths and penetration depths values agree well with Maxwell finite-difference time-domain calculations and with published literature values. This method offers advantages such as low cost, high throughput, and superresolved mapping of localized plasmonic fields at high sensitivity and fidelity.

  10. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  11. Near-field environment/processes working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, W.M. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the near-field environment to geologic repositories for high-level nuclear waste. The near-field environment may be affected by thermal perturbations from the waste, and by disturbances caused by the introduction of exotic materials during construction of the repository. This group also discussed the application of modelling of performance-related processes.

  12. Near-field interaction of twisted split-ring resonators

    CERN Document Server

    Powell, David A; Shadrivov, Ilya V; Kivshar, Yuri S

    2011-01-01

    We present experimental, numerical and analytical results for the study of near-field interaction of twisted split-ring resonators, the basic elements of the so-called stereometamaterials. In contrast to previous results, we observe a crossing point in the dispersion curves where the symmetric and antisymmetric modes become degenerate. We introduce a model to describe the interplay between magnetic and electric near-field interactions and demonstrate how this model describes the crossing of the dispersion curves, initially considering lossless identical resonators. Finally, we apply the theory of Morse critical points to demonstrate the competition between losses and fabrication errors in determining whether or not symmetric and antisymmetric modes cross.

  13. Near field communication recent developments and library implications

    CERN Document Server

    McHugh, Sheli

    2014-01-01

    Near Field Communication is a radio frequency technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. This report on the progress of Near Field Communication reviews the features and functionality of the technology and summarizes the broad spectrum of its current and anticipated applications. We explore the development of NFC technology in recent years, introduce the major stakeholders in the NFC ecosystem, and project its movement toward mainstream adoption. Several examples of early implementation of NFC

  14. Metamaterial tuning by manipulation of near-field interaction

    CERN Document Server

    Powell, David A; Gorkunov, Maxim; Shadrivov, Ilya V; Kivshar, Yuri S

    2009-01-01

    We analyze the near-field interaction between the resonant sub-wavelength elements of a metamaterial. We show that by adjusting the lattice configuration it becomes possible to manipulate this near-field interaction, and thus tune the magnetic response of a lattice of split-ring resonators. By studying the case of a pair of split-ring resonators, we are able to show the coupling mechanisms at work and how they influence the response of the complete metamaterial structure. We use the results of this analysis to explain experimentally observed tuning of microwave metamaterial arrays.

  15. Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions.

    Science.gov (United States)

    Chatterjee, I; Hagmann, M J; Gandhi, O P

    1980-01-01

    The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.

  16. A new method to reduce truncation errors in partial spherical near-field measurements

    DEFF Research Database (Denmark)

    Cano-Facila, F J; Pivnenko, Sergey

    2011-01-01

    angular sector as well as a truncation error is present in the calculated far-field pattern within this sector. The method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward......A new and effective method for reduction of truncation errors in partial spherical near-field (SNF) measurements is proposed. The method is useful when measuring electrically large antennas, where the measurement time with the classical SNF technique is prohibitively long and an acquisition over...... hemisphere. To verify the effectiveness of the method, several examples are presented using both simulated and measured truncated near-field data....

  17. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  18. Low-noise Instrumentation for Near-field Microwave Microscopy

    Science.gov (United States)

    Chisum, Jonathan David

    This thesis addresses circuits and systems optimized for the unique requirements of near-field microwave microscopy (NFMM). A suite of qualification measurements is conducted for the systematic characterization of the NFMM measurement system. Finally, modeling methods and quantitative analysis are performed for the interpretation of resulting measurements. An NFMM measurement typically suffers from small signal in the presence of seemingly overwhelming white and 1/f noise. As such, it requires instrumentation that provides signal enhancement, noise reduction, and long-term stability. This thesis describes the design and characterization of probe circuits and probe tips which enable sensitive and high-resolution NFMM with enhanced signals. The space efficient probe circuit is designed for ease of integration and eventual MMIC implementation. The scanning Lock-in Vector Near-field Probe (LVNP) instrument is designed for the readout of the near-field probe circuit. Selection of measurement topology for the purpose of noise reduction/mitigation is described. The LVNP is characterized with respect to noise, stability, and maximum signal sensitivity. In summary, this thesis details the design of a complete system for near-field microwave microscopy including probe tip, probe circuit, and instrument design. Performance limitations are quantified throughout the thesis in the hope of promoting a systematic approach to NFMM instrumentation, and quantitative data analysis techniques are proposed.

  19. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths...

  20. Acceleration of near-field scattering from an inhomogeneous ...

    Indian Academy of Sciences (India)

    The back scattering of near-field from a spherical shell, is independent of radial inhomogeneity of wave velocity. Inhomogeneity with smoothly perturbed wave velocity does not back-scatter any acceleration. Accelerations are computed numerically for scattering from a part of inhomogeneous spherical shell.

  1. An apertureless near-field microscope for fluorescence imaging

    OpenAIRE

    Yang, T. J.; Lessard, Guillaume A.; Quake, Stephen R.

    2000-01-01

    We describe an apertureless near field microscope for imaging fluorescent samples. Optical contrast is generated by exploiting fluorescent quenching near a metallized atomic force microscope tip. This microscope has been used to image fluorescent latex beads with subdiffraction limit resolution. The use of fluorescence allows us to prove that the contrast mechanism is indeed spectroscopic in origin.

  2. THz near-field Faraday imaging in hybrid metamaterials

    NARCIS (Netherlands)

    Kumar, N.; Strikwerda, A.C.; Fan, K.; Zhang, X.; Averitt, R.D.; Planken, P.C.M.; Adam, A.J.L.

    2012-01-01

    We report on direct measurements of the magnetic near-field of metamaterial split ring resonators at terahertz frequencies using a magnetic field sensitive material. Specifically, planar split ring resonators are fabricated on a single magneto-optically active terbium gallium garnet crystal.

  3. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  4. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  5. Terahertz diffraction enhanced transparency probed in the near field

    Science.gov (United States)

    Halpin, Alexei; van Hoof, Niels; Bhattacharya, Arkabrata; Mennes, Christiaan; Gomez Rivas, Jaime

    2017-08-01

    Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency.

  6. Near-field acoustic imaging based on Laplacian sparsity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Daudet, Laurent

    2016-01-01

    We present a sound source identification method for near-field acoustic imaging of extended sources. The methodology is based on a wave superposition method (or equivalent source method) that promotes solutions with sparse higher order spatial derivatives. Instead of promoting direct sparsity...

  7. Use of Near Field Communication in emergency Rescue situations

    DEFF Research Database (Denmark)

    Kramp, Gunnar

    2006-01-01

    Near Field Communication (NFC) where the placement of two devices in close proximity of each other makes it possible for two devices to exhange and share information, opens up for a variety of transparent and intuitive interaction possibilities. However, as we have identified in the palcom project...

  8. Grid generated turbulence in the near-field

    Science.gov (United States)

    Salazar, Ricardo; Isaza, Juan; Warhaft, Zellman

    2014-11-01

    Using a conventional bi-planar turbulence-generating grid, we confirm the recent findings (Valente & Vassilicos, Phys. Rev. Lett. 108, 214503 (2012)) that show there is a turbulence decay region close to the generating grid that departs from the ``classical'' turbulence decay (Comte-Bellot & Corrsin, J. Fluid Mech. 25, 657 (1966)). In this ``near field'' region, the turbulence energy decays more rapidly than in the far field and it exhibits unusual scaling properties. Based on the velocity decay laws, we show that for our conventional grid, the near field extends from x/M ~ 6 to x/M ~ 12 where x is the downstream distance from the grid and M is the mesh size. However, other statistics (velocity derivatives and length scales ratios) indicate that the extent of the initial period depends on the grid mesh Reynolds number, RM, extending further for higher values of RM. In the near field the turbulence approaches isotropy both at the large and small scales but there still is inhomogeneity in the derivative statistics. The derivative skewness also departs from values observed at comparable Reynolds numbers in the far field decay region, and in other turbulent flows at comparable Reynolds numbers. We do not believe that the near field scaling violates Kolmogorov phenomenology, which applies to systems that are not affected by proximity to initial and boundary conditions. These conditions are not met close to the grid.

  9. Calculating Pressure-Driven Current Near Magnetic Islands for 3D MHD Equilibria

    Science.gov (United States)

    Radhakrishnan, Dhanush; Reiman, Allan

    2016-10-01

    In general, 3D MHD equilibria in toroidal plasmas do not result in nested pressure surfaces. Instead, islands and chaotic regions appear in the equilibrium. Near small magnetic islands, the pressure varies within the flux surfaces, which has a significant effect on the pressure-driven current, introducing singularities. Previously, the MHD equilibrium current near a magnetic island was calculated, including the effect of ``stellarator symmetry,'' wherein the singular components of the pressure-driven current vanish [A. H. Reiman, Phys. Plasmas 23, 072502 (2016)]. Here we first solve for pressure in a cylindrical plasma from the heat diffusion equation, after adding a helical perturbation. We then numerically calculate the corresponding Pfirsch-Schluter current. At the small island limit, we compare the pressure-driven current with the previously calculated solution, and far from the island, we recover the solution for nested flux surfaces. Lastly, we compute the current for a toroidal plasma for symmetric and non-symmetric geometries.

  10. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    Science.gov (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  11. Estimation of Near-Field and Far-Field Dilutions for Site Selection of Effluent Outfall in a Coastal Region - A Case Study

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, V.S.

    location for discharge of the effluents into the sea by using near-field and far-field models. Near-field dilutions were calculated using a buoyant jet model, whereas far-field dilutions were estimated using a two-dimensional numerical model. As a case...

  12. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  13. Antenna diagnostics for power flow in extreme near-field of a standard gain horn

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Breinbjerg, Olav

    2016-01-01

    -diffracted fields in the horn aperture. An analytical model based on the Geometrical Theory of Diffraction is established, and it is demonstrated that this model qualitatively as well as quantitatively predicts the measurement results for the power flow. A full-wave analysis is carried out and the simulation......The plane wave spectrum of an aperture antenna can be calculated from a complex measurement of the radiated near- or far-field and it facilitates antenna diagnostics for the extreme near-field of the antenna. While antenna diagnostics often concerns the magnitude of the co-polar field, the plane...... wave spectrum actually allows for determination of both magnitude and phase of all three components of the electric as well as the magnetic field - and thus also the Poynting vector. In this work we focus on the Poynting vector and thus the power flow in the extreme near-field; as an example we employ...

  14. Percolation of optical excitation mediated by near-field interactions

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Takahashi, Taiki; Aono, Masashi; Akahane, Kouichi; D'Acunto, Mario; Hori, Hirokazu; Thylén, Lars; Katori, Makoto; Ohtsu, Motoichi

    2017-04-01

    Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we theoretically and numerically discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distances when the light localization is strong. Furthermore, such a character is maximized at a particular size of environments. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.

  15. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near-field...... of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... configuration, numerical simulations of detection efficiency based on the eigenmode expansion technique are carried out for different tip apex angles. The detection roll-off for high spatial frequencies observed in the experiment and obtained during the simulations is fitted using a simple expression...

  16. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  17. Calculation of Intracellular Pressure of Red Blood Cells at Jaundice According to Atomic Force Microscopy Data

    OpenAIRE

    Yu.S. Nagornov; I.V. Zhilyaev

    2016-01-01

    The present work is devoted to the analysis of three-dimensional data of atomic force microscopy for research of the morphology of red blood cells. In this paper we built a biomechanical model of the erythrocyte, which allowed calculating the intracellular pressure of erythrocyte based on data of atomic force microscopy. As a result, we obtained the dependence intracellular pressure on the morphology of red blood cell. We have proposed a method of estimating of intracellular pressure of eryth...

  18. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  19. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    aerial vehicle PEC perfect electrical conductor PO physical optics RF radio frequency SBR shooting and bouncing ray TE transverse electric TEM...analysis of near-field focusing for WPT, specifically in [2]. The WPT method was introduced in the 1960s for vehicle propulsion , and researchers from...Development of a Wireless Power Transmission System for a Micro Air Vehicle (MAV),” M.S. thesis, Dept. Elec. & Comp. Eng., Naval Postgraduate School

  20. Superluminal behavior in the near field of crossing microwave beams

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, Anedio; Mugnai, Daniela

    2004-03-01

    Superluminal processes in wave propagation have been demonstrated in several cases, but whether this behavior can be extended to the signal velocity is still a debatable question. In this Letter, we present new experimental results on microwave propagation in open space, which show anomalous behavior in the near field range. We discuss their interpretation by considering a variety of mechanisms, including standard theories, as well as less canonical ones. This new experiment provides further opportunities to discuss this intriguing and debated topic.

  1. Epidermal electronics with advanced capabilities in near-field communication.

    Science.gov (United States)

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Near-field heat transfer between multilayer hyperbolic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik; Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Univ. Sherbrooke, PQ (Canada). Dept. of Mechanical Engineering

    2017-05-01

    We review the near-field radiative heat flux between hyperbolic materials focusing on multilayer hyperbolic meta-materials. We discuss the formation of the hyperbolic bands, the impact of ordering of the multilayer slabs, as well as the impact of the first single layer on the heat transfer. Furthermore, we compare the contribution of surface modes to that of hyperbolic modes. Finally, we also compare the exact results with predictions from effective medium theory.

  3. Engineering Near-Field Transport of Energy using Nanostructured Materials

    Science.gov (United States)

    2015-12-12

    with embedded thermocouples for near-field radiation studies and micro-devices for measuring thermal transport in nanoscale gaps in both sphere- plane ...and plane - plane configurations. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that...amplitude that is proportional to the thermal resistance of the suspension beams. Contacting the suspended calorimeter with the tip of a SThM probe

  4. Near-field acoustic imaging based on Laplacian sparsity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Daudet, Laurent

    2016-01-01

    We present a sound source identification method for near-field acoustic imaging of extended sources. The methodology is based on a wave superposition method (or equivalent source method) that promotes solutions with sparse higher order spatial derivatives. Instead of promoting direct sparsity......, and the validity of the wave extrapolation used for the reconstruction is examined. It is shown that this methodology can overcome conventional limits of spatial sampling, and is therefore valid for wide-band acoustic imaging of extended sources....

  5. Near field mapping of coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Vignolini, S; Wiersma, D S; Gurioli, M [LENS, Univof Florence, 50019 Sesto Fiorentino (Italy); Intonti, F; Zani, M; Riboli, F [CNISM, 50019 Sesto Fiorentino (Italy); Balet, L; Li, L H [Inst of Photonics and Nanotechnology, CNR, 00156 Roma (Italy); Francardi, M; Gerardino, A [COBRA, Eindhoven Univ of Technology, 5600 MB Eindhoven (Netherlands); Fiore, A, E-mail: gurioli@lensunifii

    2010-02-01

    We make use of near-field microscopy to image the coupling between two adjacent photonic crystal microcavities A special design of the photonic structures is adopted with selective coupling between different modes having orthogonal spatial extensions Spatial delocalization of coupled-cavity optical modes is found whenever the frequency matching condition is fulfilled On the contrary, in case of large detuning, the modes are localized in each microcavity

  6. Dynamic measurement of near-field radiative heat transfer

    OpenAIRE

    Lang, S.; G. Sharma; Molesky, S.; Kränzien, P. U.; Jalas, T.; Z. Jacob; Petrov, A. Yu.; Eich, M.

    2017-01-01

    Super-Planckian near-field radiative heat transfer allows effective heat transfer between a hot and a cold body to increase beyond the limits long known for black bodies. Until present, experimental techniques to measure the radiative heat flow relied on steady-state systems. Here, we present a dynamic measurement approach based on the transient plane source technique, which extracts thermal properties from a temperature transient caused by a step input power function. Using this versatile me...

  7. Theory of Spatial Coherence in Near-Field Raman Scattering

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Cançado

    2014-09-01

    Full Text Available A theoretical study describing the coherence properties of near-field Raman scattering in two- and one-dimensional systems is presented. The model is applied to the Raman modes of pristine graphene and graphene edges. Our analysis is based on the tip-enhanced Raman scheme, in which a sharp metal tip located near the sample surface acts as a broadband optical antenna that transfers the information contained in the spatially correlated (but nonpropagating near field to the far field. The dependence of the scattered signal on the tip-sample separation is explored, and the theory predicts that the signal enhancement depends on the particular symmetry of a vibrational mode. The model can be applied to extract the correlation length L_{c} of optical phonons from experimentally recorded near-field Raman measurements. The coherence properties of optical phonons have been broadly explored in the time and frequency domains, and the spatially resolved approach presented here provides a complementary methodology for the study of local material properties at the nanoscale.

  8. Gold nanocone near-field scanning optical microscopy probes.

    Science.gov (United States)

    Fleischer, Monika; Weber-Bargioni, Alexander; Altoe, M Virginia P; Schwartzberg, Adam M; Schuck, P James; Cabrini, Stefano; Kern, Dieter P

    2011-04-26

    Near-field scanning optical microscopy enables the simultaneous topographical and subdiffraction limited optical imaging of surfaces. A process is presented for the implementation of single individually engineered gold cones at the tips of atomic force microscopy cantilevers. These cantilevers act as novel high-performance optical near-field probes. In the fabrication, thin-film metallization, electron beam induced deposition of etch masks, and Ar ion milling are combined. The cone constitutes a well-defined highly efficient optical antenna with a tip radius on the order of 10 nm and an adjustable plasmon resonance frequency. The sharp tip enables high resolution topographical imaging. By controllably varying the cone size, the resonance frequency can be adapted to the application of choice. Structural properties of these sharp-tipped probes are presented together with topographical images recorded with a cone probe. The antenna functionality is demonstrated by gathering the near-field enhanced Raman signature of individual carbon nanotubes with a gold cone scanning probe.

  9. Photoreceiver array with near-field resolution capability

    Science.gov (United States)

    Seshadri, Bharath; Tang, Jianjing; Chyr, Irving; Steckl, Andrew J.; Beyette, Fred R., Jr.

    2000-11-01

    It has been suggested that ultrahigh density optical storage systems could be realized by storing data in patterns with spatial coordinates below the far-field resolution limit. While the ability to write data on these fine dimensions has been shown, the ability to read data with sub-lambda resolution has proven problematic. This is especially true for memory systems that require page oriented memory access. We present a novel near-field detector array technology that is expected to satisfy the requirement of these next generation optical memory systems. Based on CMOS photoreceiver arrays and a silicon based aperture array, our device's technology is implemented using standard fabrication processes to yield a planar, near-field photoreceiver array technology. While the photoreceiver technology is an important component of our device technology, the aperture array is the fundamental component designed to enable data detection with near-field resolution. Using micro-machining technology pioneered for Micro Electro-Mechanical Systems (MEMS), fabrication of our aperture arrays depends on KOH etching of the Si planes. Focused Ion Beam milling is used to realize the apertures in a thin gold film deposited on a silicon dioxide layer. We present a detailed description of both the photoreceiver circuit and the aperture array fabrication method. Independent characterization of both the photoreceiver circuit and the aperture array is also included.

  10. Exergy in near-field electromagnetic heat transfer

    Science.gov (United States)

    Iizuka, Hideo; Fan, Shanhui

    2017-09-01

    The maximum amount of usable work extractable from a given radiative heat flow defines the exergy. It was recently noted that the exergy in near-field radiative heat transfer can exceed that in the far-field. Here, we derive a closed form formula of exergy in the near-field heat transfer between two parallel surfaces. This formula reveals that, for a given resonant frequency, the maximum exergy depends critically on the resonant linewidth, and there exists an optimal choice of the linewidth that maximizes the exergy. Guided by the analytical result, we show numerically that with a proper choice of doping concentration, the heat flow between two properly designed SiC-coated heavily doped silicon regions can possess exergy that is significantly higher compared to the heat flow between two SiC regions where the heat flow is carried out by phonon-polaritons. Our work indicates significant opportunities for either controlling material properties or enhancing the fundamental potential for near-field heat transfer in thermal energy conversion through the approach of meta-material engineering.

  11. The search for source discriminants in the near field

    Science.gov (United States)

    Synolakis, C. E.; Okal, E. A.; Hoffman, I.

    2003-04-01

    We use numerical simulations in the near field to explore the effect of numerous earthquake source parameters on observable properties of tsunami run-up amplitudes in the near field. These include parameters such as earthquake geometry (source depth, strike, dip, slip angles), size (seismic moment), location (distance from shore and centroid depth), as well as beach geometry (water depth and beach slope). We focus both on maximum run-up and on the distribution of computed run-up along the beach, which leads to two dimensionless parameters, namely (i) the ratio of maximum run-up to the amount of slip on the fault; and (ii) the aspect ratio of a bell curve fitted to the lateral distribution of run-up. We find that the first parameter remains of order 1, while the second remains smaller that the maximum strain released during the earthquake, itself an invariant. By contrast, in the case of landslide sources, the aspect ratio of the lateral distribution of run-up along the beach can be 1 to 2 orders of magnitude greater, suggesting its use as a potential discriminant in the near field. This methodology is applied to a number of field datasets, including Nicaragua (1992), Peru (2001), Papua New Guinea (1998; 2002) and Aleutian (1946). It clearly identifies both the 1946 Aleutian and 1998 PNG events as requiring generation by a landslide (as opposed to the 2002 PNG event). When compared to far-field results, it suggests that the 1946 event involved both a large slow earthquake and a coeval landslide.

  12. Two innovative pore pressure calculation methods for shallow deep-water formations

    Science.gov (United States)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  13. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  14. Simulation study of 'perfect lens' for near-field nanolithography

    Science.gov (United States)

    Guo, Xiaowei; Dong, Qiming; Liu, Yong

    2011-09-01

    The near-field perfect lens (NFPL) in imaging chrome gratings is investigated by using finite difference time domain (FDTD) method. The surface plasmon focused effect in and beneath the NFPL layer is demonstrated. The effects of the grating parameters and NFPL permittivity on image fidelity are explored. It is found that the excitation of surface plasmons results in frequency-increased images at large duty cycles and small imaginary part of NFPL permittivities. It is also shown that maximum intensity distributions on image plane occur at some specified pitches and duty cycles. The physics mechanisms are presented to explain these phenomena.

  15. Dynamic measurement of near-field radiative heat transfer.

    Science.gov (United States)

    Lang, S; Sharma, G; Molesky, S; Kränzien, P U; Jalas, T; Jacob, Z; Petrov, A Yu; Eich, M

    2017-10-24

    Super-Planckian near-field radiative heat transfer allows effective heat transfer between a hot and a cold body to increase beyond the limits long known for black bodies. Until present, experimental techniques to measure the radiative heat flow relied on steady-state systems. Here, we present a dynamic measurement approach based on the transient plane source technique, which extracts thermal properties from a temperature transient caused by a step input power function. Using this versatile method, that requires only single sided contact, we measure enhanced radiative conduction up to 16 times higher than the blackbody limit on centimeter sized glass samples without any specialized sample preparation or nanofabrication.

  16. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  17. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.

    2015-01-01

    Newton method is employed to solve the governing equations of the vapor-liquid equilibria coupled with the capillary pressure equation. For a stable and automatic construction of the phase envelope sensitivity analysis is used in each step. The developed algorithm can reliably generate not just...... mixtures in the presence of capillary pressure. The algorithm uses a rigorous equation of state (EoS) model, such as the Soave-Redlich-Kwong EoS, for phase equilibrium, and the Young-Lapace equation for the capillary pressure. The interfacial tension is calculated using a parachor based model. A full...... the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...

  18. Cryogenic apparatus for study of near-field heat transfer.

    Science.gov (United States)

    Kralik, T; Hanzelka, P; Musilova, V; Srnka, A; Zobac, M

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10(0) to 10(3) μm. The heat transferred from the hot (10 - 100 K) to the cold sample (∼5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ∼2 nW∕cm(2) and ∼30 μW∕cm(2) is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  19. Unidirectional wireless power transfer using near-field plates

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-05-14

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.

  20. Near field ice detection using infrared based optical imaging technology

    Science.gov (United States)

    Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas

    2018-02-01

    If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.

  1. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    Science.gov (United States)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  2. Near-field Moiré effect mediated by surface plasmon polariton excitation.

    Science.gov (United States)

    Liu, Zhaowei; Durant, Stéphane; Lee, Hyesog; Xiong, Yi; Pikus, Yuri; Sun, Cheng; Zhang, Xiang

    2007-03-15

    We have demonstrated a surface plasmon polariton mediated optical Moiré effect by inserting a silver slab between two subwavelength gratings. Enhancement of the evanescent fields by the surface plasmon excitations on the silver slab leads to a remarkable contrast improvement in the Moiré fringes from two subwavelength gratings. Numerical calculations, which agree very well with the experimental observation of evanescent-wave Moiré fringes, elucidate the crucial role of the surface plasmon polaritons. The near-field Moiré effect has potential applications to extend the existing Moiré techniques to subwavelength characterization of nanostructures.

  3. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ambastha, A.K.; Gudmundsson, J.S.

    1986-01-21

    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  4. Effect of hydrostatic pressure on structural and electronic properties of TGS crystals (first-principle calculations

    Directory of Open Access Journals (Sweden)

    B.Andriyevsky

    2007-01-01

    Full Text Available First principle calculations of the effect of hydrostatic pressure on the structural and electronic parameters of TGS crystals have been carried out within the framework of density functional theory using the CASTEP code. The volume dependence of total electronic energy E(V of the crystal unit cell satisfies the third-order Birch-Murnaghan isothermal equation of state. For the pressure range of -5...5 GPa, the bulk modulus was found to be equal to K=45 ± 5 GPa. The relative pressure changes of the unit cell parameters were found to be linear in the range of -5...5 GPa. Crossing of the pressure dependencies of enthalpy corresponding to the ferroelectric and non-ferroelectric phases at P=7.7 GPa testifies to the probable pressure induced phase transition in TGS crystal.

  5. Modeling of Coastal Effluent Transport: an Approach to Linking of Far-field and Near-field Models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2008-09-01

    One of the challenges in effluent transport modeling in coastal tidal environments is the proper calculation of initial dilution in connection with the far-field transport model. In this study, an approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulate the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuca. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. In the present study, the hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. This study demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the far-field modeled dilution ratio and effluent concentration in the effluent discharge model grid cell match the concentration calculated by the near-field plume model.

  6. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  7. Estimated Pulse Wave Velocity Calculated from Age and Mean Arterial Blood Pressure

    DEFF Research Database (Denmark)

    Greve, S. V.; Laurent, Stéphane; Olsen, M. H.

    2016-01-01

    In a recently published paper, Greve et al [J Hypertens 2016;34:1279-1289] investigate whether the estimated carotid-femoral pulse wave velocity (ePWV), calculated using an equation derived from the relationship between carotid-femoral pulse wave velocity (cfPWV), age, and blood pressure, predicts...

  8. Eavesdropping near-field contactless payments: a quantitative analysis

    Directory of Open Access Journals (Sweden)

    Thomas P. Diakos

    2013-10-01

    Full Text Available This paper presents an assessment of how successful an eavesdropping attack on a contactless payment transaction can be in terms of bit and frame error rates, using an easily concealable antenna and low-cost electronics. Potential success of an eavesdropping attack largely depends on the correct recovery of the data frames used in the ISO 14443 standard. A near-field communication inductive loop antenna was used to emulate an ISO 14443 transmission. For eavesdropping, an identical inductive loop antenna as well as a shopping trolley modified to act like an antenna were used. The authors present and analyse frame error rates obtained with the authors equipment over a range of distances, up to 100 cm, well above the official maximum operating distance depending on the magnetic field strength.

  9. Utilization of Near Field Communication Technology for Loyalty Management

    Directory of Open Access Journals (Sweden)

    Ferina Ferdianti

    2013-09-01

    Full Text Available Near Field Communication (NFC is one of wireless technology developed at this time. We can use a mobile phone to do many transactions with NFC. Mobile developments have created to provide convenience for users in all aspects. However, at this time the function of NFC just limited for payment and micropayment. Beside it, there are assets that support to increase sales with attention of loyality management system. In this system, discounts or prizes are given based on data mining for every transaction costumers. Loyalty management has three concept, those are Frequency, Recency and Quantity. The goals are minimizing the cost, making purchase process faster, and managing data obtained through the NFC technology more simple. The result of this paper is the procedure to use data mining of NFC for loyalty management and system design using Unified Modeling Language approach.

  10. Near-field hyperspectral quantum probing of multimodal plasmonic resonators

    Science.gov (United States)

    Cuche, A.; Berthel, M.; Kumar, U.; Colas des Francs, G.; Huant, S.; Dujardin, E.; Girard, C.; Drezet, A.

    2017-03-01

    Quantum systems, excited by an external source of photons, display a photodynamics that is ruled by a subtle balance between radiative or nonradiative energy channels when interacting with metallic nanostructures. We apply and generalize this concept to achieve a quantum probing of multimodal plasmonic resonators by collecting and filtering the broad emission spectra generated by a nanodiamond (ND) hosting a small set of nitrogen-vacancy (NV) color centers attached at the apex of an optical tip. Spatially and spectrally resolved information on the photonic local density of states (ph-LDOS) can be recorded with this technique in the immediate vicinity of plasmonic resonators, paving the way for a complete near-field optical characterization of any kind of nanoresonators in the single photon regime.

  11. Tip-enhanced near-field optical microscopy.

    Science.gov (United States)

    Hartschuh, Achim

    2008-01-01

    Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials, including quantum structures and biological surfaces. An optical technique is reviewed that relies on the enhanced electric fields in the proximity of a sharp, laser-irradiated metal tip. These fields are utilized for spatially confined probing of various optical signals, thus allowing for a detailed sample characterization far below the diffraction limit. In addition, tip-enhanced fields also provide the sensitivity crucial for the detection of nanoscale volumes. After outlining the principles of near-field optics, the mechanisms contributing to local field enhancement and how it can be used to enhance optical signals are discussed. Different experimental methods are presented and several recent examples of Raman and fluorescence microscopy with 10 nm spatial resolution of single molecules are reviewed.

  12. Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    Science.gov (United States)

    Gouinaud, Laure; Katz, Ira; Martin, Andrew; Hazebroucq, Jean; Texereau, Joëlle; Caillibotte, Georges

    2015-01-01

    A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of gas density and viscosity variations for this age group. The results indicate that there are significant pressure losses in infant extrathoracic airways due to inertial effects leading to much higher pressures to drive nominal flows in the infant airway model than for an adult airway model. For example, the pressure drop through the nasopharynx model of the infant is much greater than that for the nasopharynx model of the adult; that is, for the adult-versus-child the pressure differences are 0.08 cm H2O versus 0.4 cm H2O, 0.16 cm H2O versus 1.9 cm H2O and 0.4 cm H2O versus 7.7 cm H2O, breathing helium-oxygen (78/22%), nitrogen-oxygen (78/22%) and xenon-oxygen (60/40%), respectively. Within the healthy lung, viscous losses are of the same order for the three gas mixtures, so the differences in pressure distribution are relatively small.

  13. Particle resuspension in the Columbia River plume near field

    Science.gov (United States)

    Spahn, Emily Y.; Horner-Devine, Alexander R.; Nash, Jonathan D.; Jay, David A.; Kilcher, Levi

    2009-02-01

    Measurements of suspended sediment concentration, velocity, salinity, and turbulent microscale shear in the near-field region of the Columbia River plume are used to investigate the mechanisms of sediment resuspension and entrainment into the plume. An east-west transect was occupied during spring and neap tide periods in August 2005 and May 2006, corresponding to low and high river discharge conditions, respectively. During the high-discharge period the plume is decoupled from the bottom, and fine sediment resuspended from the bottom does not leave the benthic boundary layer. The primary modes of sediment transport associated with the plume are advection of sediment from the estuary and removal of sediment from the plume by gravitational settling and turbulent mixing. In contrast, the plume is much less stratified during low-discharge conditions, and large resuspension events are observed that entrained sediment through the water column and into the plume. Our measurements indicate that two factors control the magnitude and timing of sediment resuspension and entrainment: the supply of fine sediment on the seabed and the relative influence of tidal turbulence compared with buoyancy input from the river. The latter is quantified in terms of the estuary Richardson number RiE. The magnitude of vertical turbulent sediment flux is correlated with RiE during the low-flow period when there is a sufficient supply of bottom sediment in the near-field region. Such sediment resuspension may be an important mechanism for the delivery of bioavailable micronutrients to the plume during the summer.

  14. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Science.gov (United States)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  15. Field experiment of T-H-M process in the near field

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Tomoo; Chijimatsu, Masakazu; Sugita, Yutaka [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Amemiya, Kiyoshi; Moro, Yoshiji

    1999-03-01

    A test pit for thermal-hydro-mechanical (T-H-M) experiments was excavated by the shot boring method at the bottom of a drift excavated at Kamaishi in situ field in 1994. The test pit has the diameter of 1.7 m and the depth of 6.0 m. A heating system was installed in the center of the pit and buffer material composed of granulated bentonite was compacted around the heater. Duration of the heating test was 280 days and the heater was controlled to be 100degC at the surface during the time. A number of sensors were installed to monitor the temperature and pore pressure distribution in both buffer and rock mass, the water content distribution in the buffer, swelling pressure of the buffer, and strain in the rock mass. The field experiment led to a better understanding of the behavior of the T-H-M phenomena in the near field. (H. Bata)

  16. Development of apertureless near-field scanning optical microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Kodama, T; Umezawa, T; Watanabe, S; Ohtani, H

    2008-02-01

    In this study, we suggested two types of novel metallized tip for the apertureless near-field scanning optical microscope probe. The first is a silver nanorod immobilized tip and the other is a double metallized probe. We calculated the electric field enhancement factor and the electric field distribution of a single sphere, aggregated spheres, an ellipse and a nanorod by the finite-differential time-domain method to improve the silver nanosphere immobilized tip developed in our previous studies. The enhanced field of the nanorod is localized at the external surfaces. The simulation results of the nanorod revealed that the position of the maximum peak is shifted to a longer wavelength and that its electric field enhancement factor increases as the aspect ratio increases. Thus, we developed the silver nanorod immobilized tip, and the tip-enhanced Raman spectrum of rhodamine 6G molecule on the substrate could be measured by the tip though it could not be detected by the previous nanosphere immobilized tip. Further, the finite-differential time-domain calculation predicted that the double metallized tips considerably enhance the electric field and that its enhancement factor in the longer wavelength region (500-600 nm) does not decrease when the tip is rounded. The results show that the proposed metallized tips were useful for the apertureless near-field scanning optical microscope system.

  17. First-principles calculations of high-pressure and -temperature properties of stishovite

    Science.gov (United States)

    Yang, R.; Wu, Z.

    2013-12-01

    Quartz is one of the main gradient of the crust and is transformed into coesite and then stishovite under pressure. Stishovite is stable at 9~50GPa [1,2]. It is estimated that stishovite makes up more than 20% of the subducted oceanic crust in the mantle transition zone and lower mantle [3,4,5]. Therefore, the properties of stishovite under high-pressure and -temperature are very critical for us to understand the mantle convection. We investigated themodynamic properties of stishovite by combing first-principles calculations with quasi-hamonic approximation. We also calculated the elastic constants of stishovite at high-temperature and -pressure using the new method developed by Wu and Wentzcovitch [6]. The calculated results are in consistence with the experimental data. Both temperature and pressure significantly affect the anistropy of the stishovite. 1, Zhang, J., Li, B., Utsumi, W., Liebermann, R. C., Phys. Chem. Miner., 23, 1-10 (1996) 2, Kingma, K. J., R. E. Cohen, R. J. Hemley, and H. K. Mao, Nature, 374, 243-245 (1995). 3. Kesson, S. E., Fitz Gerald, J. D. Shelley, J. M. G., Nature, 372,767-769 (1994) 4, Ono, S., Ito, E., Katsura, T., Earth Planet. Sci. Lett., 190, 57-63 (2001) 5, Irifue, T., Ringwood, A. E., Earth Planet. Sci. Lett., 117, 101-110 (1993) 6, Wu, Z., Wentzcovitch, R. M., Phys. Rev. B 83, 184115 (2011)

  18. Near-field chemistry of the spent nuclear fuel repository; Kemialliset vuorovaikutukset kaeytetyn ydinpolttoaineen loppusijoitustilan laehialueella

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, H.; Lehikoinen, J.; Muurinen, A.; Ollila, K. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1998-07-01

    Factors affecting near-field chemistry of the spent nuclear fuel repository as well as the involved mutual interactions are described on the basis of literature. The most important processes in the near-field (spent-fuel, canister and bentonite) are presented. The related examples on near-field chemistry models shed light on the extensive problematics of near-field chemistry. (authors) 80 refs.

  19. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    Science.gov (United States)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  20. Methodology for Calculation of Pressure Impulse Distribution at Gas-Impulse Regeneration of Water Well Filters

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2010-01-01

    Full Text Available The paper considers a mathematical model for process of pressure impulse distribution in a water well which appear as a result of underwater gas explosions in cylindrical and spherical explosive chambers with elastic shells and in a rigid cylindrical chamber which is open from the bottom. The proposed calculation methodology developed on the basis of the mathematical model makes it possible to determine pressure in the impulse on a filter wall and at any point of a water well pre-filter zone. 

  1. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    Science.gov (United States)

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying

  2. FDTD simulations of near-field mediated semiconductor molecular optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dai; Sakrow, Marcus; Mihaljevic, Josip; Meixner, Alfred J. [Institute of Physical and Theoretical Chemistry, University Tuebingen, Auf der Morgenstelle 8, Tuebingen (Germany)

    2010-07-01

    The optical properties of molecules can be dramatically altered when they are in a close proximity of an excited metal antenna. In order to get insight into how the antenna generated near-field influences the optical properties of low quantum yield molecules, we carried out FDTD simulations of a sharp laser-illuminated Au tip approaching to a semiconductor thin film. The time-averaged field distribution between the semiconductor thin film and the tip antenna is calculated regarding to different distances. Our calculation demonstrates that the coupling between the localized plasmon at the tip apex and semiconductor polariton can be achieved building up a distance-dependent high field enhancement. Our experimental results show that such a high field strength enhances not only the excitation process by a factor of 104, but alters the radiative: non-radiative decay rate giving approx. 15 times stronger photoluminescence emission.

  3. Monte Carlo calculations of thermodynamic properties of deuterium under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Levashov, P R; Filinov, V S; BoTan, A; Fortov, V E [Joint Institute for High Temperatures, Izhorskaya 13-2, Moscow 125412 (Russian Federation); Bonitz, M [Cristian-Albrechts-Universitaet zu Kiel, ITPA, Leibnizstr. 15, 24098 Kiel (Germany)], E-mail: pasha@ihed.ras.ru

    2008-07-15

    Two different numerical approaches have been applied for calculations of shock Hugoniots and compression isentrope of deuterium: direct path integral Monte Carlo and reactive Monte Carlo. The results show good agreement between two methods at intermediate pressure which is an indication of correct accounting of dissociation effects in the direct path integral Monte Carlo method. Experimental data on both shock and quasi-isentropic compression of deuterium are well described by calculations. Thus dissociation of deuterium molecules in these experiments together with interparticle interaction play significant role.

  4. Wearable near-field communication antennas with magnetic composite films

    Directory of Open Access Journals (Sweden)

    Bihong Zhan

    2017-06-01

    Full Text Available The flexible near-field communication (NFC antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L and quality factor (Q of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  5. A novel mathematical model for controllable near-field electrospinning

    Directory of Open Access Journals (Sweden)

    Changhai Ru

    2014-01-01

    Full Text Available Near-field electrospinning (NFES had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.

  6. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei

    2017-10-21

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  7. Interfacing external sensors with Android smartphones through near field communication

    Science.gov (United States)

    Leikanger, Tore; Häkkinen, Juha; Schuss, Christian

    2017-04-01

    In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones.

  8. A novel mathematical model for controllable near-field electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Changhai, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [College of Automation, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Chen, Jie; Shao, Zhushuai [Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Pang, Ming [College of Automation, Harbin Engineering University, Harbin 150001 (China); Luo, Jun, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072 (China)

    2014-01-15

    Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.

  9. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Wearable near-field communication antennas with magnetic composite films

    Science.gov (United States)

    Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng

    2017-06-01

    The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  11. Flexible Passive near Field Communication Tag for Multigas Sensing.

    Science.gov (United States)

    Escobedo, P; Erenas, M M; López-Ruiz, N; Carvajal, M A; Gonzalez-Chocano, S; de Orbe-Payá, I; Capitán-Valley, L F; Palma, A J; Martínez-Olmos, A

    2017-02-07

    In this work we present a full-passive flexible multigas sensing tag for the determination of oxygen, carbon dioxide, ammonia, and relative humidity readable by a smartphone. This tag is based on near field communication (NFC) technology for energy harvesting and data transmission to a smartphone. The gas sensors show an optic response that is read through high-resolution digital color detectors. A white LED is used as the common optical excitation source for all the sensors. Only a reduced electronics with very low power consumption is required for the reading of the optical responses and data transmission to a remote user. An application for the Android operating system has been developed for the power supplying and data reception from the tag. The responses of the sensors have been calibrated and fitted to simple functions, allowing a fast prediction of the gases concentration. Cross-sensitivity has also been evaluated, finding that in most of the cases it is negligible or easily correctable using the rest of the readings. The election of the target gases has been due to their importance in the monitoring of modified atmosphere packaging. The resolutions and limits of detection measured are suitable for such kinds of applications.

  12. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    Science.gov (United States)

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  13. Analysis of near-field thermal energy transfer within the nanoparticles

    Science.gov (United States)

    Yuksel, Anil; Yu, Edward T.; Cullinan, Michael; Murthy, Jayathi

    2017-08-01

    Nanoscale size effects bring additional near-field thermal considerations when heating nanoparticles under high laser power. Scanning electron micrographs of a typical copper nanoparticle powder bed reveal that the nanoparticles are distributed log-normally with 116 nm mean radius and 48 nm standard deviation. In this paper, we solve Maxwell's equations in frequency domain to understand near-field thermal energy effects for different standard deviations. Log-normally distributed copper nanoparticle packings which have 116 nm mean radius with 3 different standard deviations (12, 48 and 84 nm) are created by using Discrete Element Model (DEM) in which certain number of particles are generated, specifying a position and radius for each. The solid particles interacting with the neighbouring particles are to be distributed randomly into the bed domain with an initial velocity and a boundary condition, which creates the particle packing within a defined time range under gravitational and weak van der Waals forces. Finite Difference Frequency Domain analysis, which yields the electromagnetic field distribution, is applied by solving Maxwell's equations to obtain absorption, scattering and extinction coefficients. We show that different particle distributions create different plasmonic effects in the bed domain which results in non-local heat transport. We calculate the surface plasmon effect due to the electromagnetic coupling between the nanoparticles and the dielectric medium under the different distributions. This analysis helps to reveal how sintering quality can be enhanced by creating stronger laser-particle interactions for specific groups of nanoparticles.

  14. An ab-initio coupled mode theory for near field radiative thermal transfer.

    Science.gov (United States)

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  15. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P.C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  16. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    Science.gov (United States)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  17. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  18. Spherical near field acoustic holography with microphones on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Hald, Jørgen; Fernandez Grande, Efren

    2008-01-01

    Spherical near field acoustic holography (SNAH) is a recently developed technique that makes it possible to reconstruct the sound field inside and just outside an acoustically transparent spherical surface on which the sound pressure is measured with an array of microphones with negligible...... scattering. Because of the versatile geometry of a sphere SNAH is potentially extremely useful for source identification. On the other hand a rigid sphere is somewhat more practical than an open sphere, and it is possible to modify the SNAH theory so that a similar sound field reconstruction can be made...... with an array of microphones flush-mounted on a rigid sphere. However, this approach is only valid if it can be assumed that the sphere has a negligible influence on the incident sound field, in other words if multiple scattering can be ignored, and this is not necessarily a good assumption when the sphere...

  19. Near field acoustic holography with microphones mounted on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno, Guillermo; Fernandez Grande, Efren

    2008-01-01

    Spherical near field acoustic holography (spherical NAH) is a technique that makes it pos-sible to reconstruct the sound field inside and just outside an acoustically transparent spherical surface on which the sound pressure is measured with an array of microphones with negligible scattering....... This is potentially very useful for source identification. On the other hand a rigid sphere is somewhat more practical than an open sphere, and it is possible to modify the existing spherical NAH theory so that a similar sound field reconstruction can be made with an array of microphones flush-mounted on a rigid...... is only valid if it can be assumed that the sphere has a negligible in-fluence on the incident sound field, and this is not necessarily a good assumption when the sphere is very close to a radiating surface. This paper describes the modified spherical NAH theory and examines the matter through simulations...

  20. Lessons Learned from Near Field Modeling and Data Collected at the SPE Chemical Explosions in Jointed Rock Masses

    Science.gov (United States)

    Vorobiev, O.; Ezzedine, S. M.; Hurley, R.; Antoun, T.; Glenn, L.

    2016-12-01

    This work describes the near-field modeling of wave propagation from underground chemicalexplosions conducted at the Nevada National Security Site (NNSS) in fractured granitic rock. Lab testsperformed on granite samples excavated from various locations at the SPE site have shown littlevariability in mechanical properties. Granite at this scale can be considered as an isotropic medium. Wehave shown, however, that on the scale of the pressure waves generated during chemical explosions(tens of meters), the effective mechanical properties may vary significantly and exhibit both elastic andplastic anisotropies due to local variations in joint properties such as spacing orientation, joint aperture,cohesion and saturation. Since including every joint in a discrete fashion in computational model is notfeasible, especially for large-scale calculations ( 1.5 km domain), we have developed a computationaltechnique to upscale mechanical properties for various scales (frequencies) using geophysicalcharacterization conducted during recent SPE tests at the NNSS. Stochastic representation of thesefeatures based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode.Scale dependency in mechanical properties is important in order to understand how the ground motionscales with yield. We hope that such an approach will not only provide a better prediction of theground motion observed in the SPE (where the yield varies from 100 kg to few tons of TNT equivalent)but also will allow us to extrapolate results of the SPE to sources with bigger yields. We have validatedour computational results by comparing the measured and computed ground motion at various rangesfor experiments of various yields (SPE1-SPE5). Using the new model we performed severalcomputational studies to identify the most important mechanical properties of the rock mass specific tothe SPE site and to understand their roles in the observed ground motion in the near-field. We willpresent a series

  1. Qualification of a Method to Calculate the Irrecoverable Pressure Loss in High Reynolds Number Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, K. C.; Coffield, R. D.

    2002-09-01

    High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.

  2. WSPMaker: a web tool for calculating selection pressure in proteins and domains using window-sliding.

    Science.gov (United States)

    Lee, Yong Seok; Kim, Tae-Hyung; Kang, Tae-Wook; Chung, Won-Hyong; Shin, Gwang-Sik

    2008-12-12

    In the study of adaptive evolution, it is important to detect the protein coding sites where natural selection is acting. In general, the ratio of the rate of non-synonymous substitutions (Ka) to the rate of synonymous substitutions (Ks) is used to estimate either negative or positive selection for an entire gene region of interest. However, since each amino acid in a region has a different function and structure, the type and strength of natural selection may be different for each amino acid. Specifically, domain sites on the protein are indicative of structurally and functionally important sites. Therefore, Window-sliding tools can be used to detect evolutionary forces acting on mutation sites. This paper reports the development of a web-based tool, WSPMaker (Window-sliding Selection pressure Plot Maker), for calculating selection pressures (estimated by Ka/Ks) in the sub-regions of two protein-coding DNA sequences (CDSs). The program uses a sliding window on DNA with a user-defined window length. This enables the investigation of adaptive protein evolution and shows selective constraints of the overall/specific region(s) of two orthologous gene-coding DNA sequences. The method accommodates various evolutionary models and options such as the sliding window size. WSPmaker uses domain information from Pfam HMM models to detect highly conserved residues within orthologous proteins. WSPMaker is a web tool for scanning and calculating selection pressures (estimated by Ka/Ks) in sub-regions of two protein-coding DNA sequences (CDSs).

  3. High-pressure Raman spectra and DFT calculations of L-tyrosine hydrochloride crystal

    Science.gov (United States)

    dos Santos, C. A. A. S. S.; Carvalho, J. O.; da Silva Filho, J. G.; Rodrigues, J. L.; Lima, R. J. C.; Pinheiro, G. S.; Freire, P. T. C.; Façanha Filho, P. F.

    2018-02-01

    High-pressure Raman spectra of L-tyrosine hydrochloride crystal were obtained from 1.0 atm to 7.0 GPa in the 90-1800 cm-1 spectral region. At atmospheric pressure, the Raman spectrum was obtained in the 50-3200 cm-1 spectral range and the assignment of the normal modes based on density functional theory calculations was provided. We found good correspondence between the calculated and the observed intramolecular geometry parameters. This confirms the correct assignment of the normal modes, since it was crucial to understand the meaning of the changes observed in particular Raman active modes. Here we show that bands associated with internal modes undergo slight modifications during compression. However, an inversion of the relative intensity of bands around 125 cm-1 as well as a change of slope dω/dP from 1.0 to 1.5 GPa was understood as a conformational change involving a torsion of the L-tyrosine molecule. As a consequence, it is possible to conclude that the crystal remained in the same monoclinic structure in the 1 atm-7.0 GPa interval, although conformational change of the molecule was verified. A comparison of our results with other selected studies provided insights about the role of the amino acid side chain on the arrangement of hydrogen bonds. Finally, when the pressure was released back to 1 atm, the Raman spectrum was recovered and no hysteresis was observed.

  4. Development of a database system for the calculation of indicators of environmental pressure caused by transport.

    Science.gov (United States)

    Giannouli, Myrsini; Samaras, Zissis; Keller, Mario; DeHaan, Peter; Kallivoda, Manfred; Sorenson, Spencer; Georgakaki, Aliki

    2006-03-15

    The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given on the latest features incorporated in the model and their applications. One of the recently developed features of the software provides an option for simple scenario analysis including vehicle dynamics (such as turnover and evolution) for all EU15 member states. This feature is called the Transport Activity Balance module (TAB) and enables the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment of the results produced by TRENDS was conducted by means of comparison with data found in the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIS maps were generated. Examples of these maps are displayed in this document, for the various modes of transport considered in the study.

  5. Mean Blood Pressure Assessment during Post-Exercise: Result from Two Different Methods of Calculation

    Directory of Open Access Journals (Sweden)

    Gianmarco Sainas, Raffaele Milia, Girolamo Palazzolo, Gianfranco Ibba, Elisabetta Marongiu, Silvana Roberto, Virginia Pinna, Giovanna Ghiani, Filippo Tocco, Antonio Crisafulli

    2016-09-01

    Full Text Available At rest the proportion between systolic and diastolic periods of the cardiac cycle is about 1/3 and 2/3 respectively. Therefore, mean blood pressure (MBP is usually calculated with a standard formula (SF as follows: MBP = diastolic blood pressure (DBP + 1/3 [systolic blood pressure (SBP – DBP]. However, during exercise this proportion is lost because of tachycardia, which shortens diastole more than systole. We analysed the difference in MBP calculation between the SF and a corrected formula (CF which takes into account changes in the diastolic and systolic periods caused by exercise-induced tachycardia. Our hypothesis was that the SF potentially induce a systematic error in MBP assessment during recovery after exercise. Ten healthy males underwent two exercise-recovery tests on a cycle-ergometer at mild-moderate and moderate-heavy workloads. Hemodynamics and MBP were monitored for 30 minutes after exercise bouts. The main result was that the SF on average underestimated MBP by –4.1 mmHg with respect to the CF. Moreover, in the period immediately after exercise, when sustained tachycardia occurred, the difference between SF and CF was large (in the order of -20-30 mmHg. Likewise, a systematic error in systemic vascular resistance assessment was present. It was concluded that the SF introduces a substantial error in MBP estimation in the period immediately following effort. This equation should not be used in this situation.

  6. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  7. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications

    Science.gov (United States)

    Montaño-Priede, Luis; Peña-Rodríguez, Ovidio; Rivera, Antonio; Guerrero-Martínez, Andrés; Pal, Umapada

    2016-08-01

    The near electric field enhancement around plasmonic nanoparticles (NPs) is very important for applications like surface enhanced spectroscopies, plasmonic dye-sensitized solar cells and plasmon-enhanced OLEDs, where the interactions occur close to the surface of the NPs. In this work we have calculated the near-field enhancement around solid and core-shell alloy NPs as a function of their geometrical parameters and composition. We have found that the field enhancement is lower in the AuxAg1-x alloys with respect to pure Ag NPs, but it is still high enough for most near-field applications. The higher order modes have a stronger influence over the near-field due to a sharper spatial decay of the near electric field with the increase of the order of multipolar modes. For the same reason, in AuxAg1-x@SiO2 core-shell structures, the quadrupolar mode is dominant around the core, whereas the dipolar mode is predominant around the shell. The LSPR modes can have different behaviours in the near- and the far-field, particularly for larger particles with high Ag contents, which indicates that caution must be exercised for designing plasmonic nanostructures for near-field applications, as the variations of the LSPR in the near-field cannot be inferred from those observed in the far-field. These results have important implications for the application of gold-silver alloy NPs in surface enhanced spectroscopies and in the fabrication of plasmon-based optoelectronic devices, like dye-sensitized solar cells and plasmon-enhanced organic light-emitting diodes.

  8. Calculating osmotic pressure of xylitol solutions from molality according to UNIFAC model and measuring it with air humidity osmometry.

    Science.gov (United States)

    Yu, Lan; Zhan, Tingting; Zhan, Xiancheng; Wei, Guocui; Tan, Xiaoying; Wang, Xiaolan; Li, Chengrong

    2014-11-01

    The osmotic pressure of xylitol solution at a wide concentration range was calculated according to the UNIFAC model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with UNIFAC model calculations from dilute to saturated solution. Results indicate that air humidity osmometry measurements are comparable to UNIFAC model calculations at a wide concentration range by two one-sided test and multiple testing corrections. The air humidity osmometry is applicable to measure the osmotic pressure and the osmotic pressure can be calculated from the concentration.

  9. Calculation of Pressure Distribution at Rotary Body Surface with the Vortex Element Method

    Directory of Open Access Journals (Sweden)

    S. A. Dergachev

    2014-01-01

    Full Text Available Vortex element method allows to simulate unsteady hydrodynamic processes in incompressible environment, taking into account the evolution of the vortex sheet, including taking into account the deformation or moving of the body or part of construction.For the calculation of the hydrodynamic characteristics of the method based on vortex element software package was developed MVE3D. Vortex element (VE in program is symmetrical Vorton-cut. For satisfying the boundary conditions at the surface used closed frame of vortons.With this software system modeled incompressible flow around a cylindrical body protection elongation L / D = 13 with a front spherical blunt with the angle of attack of 10 °. We analyzed the distribution of the pressure coefficient on the body surface of the top and bottom forming.The calculate results were compared with known Results of experiment.Considered design schemes with different number of Vorton framework. Also varied radius of VE. Calculation make possible to establish the degree of sampling surface needed to produce close to experiment results. It has been shown that an adequate reproducing the pressure distribution in the transition region spherical cylindrical surface, on the windward side requires a high degree of sampling.Based on these results Can be possible need to improve on the design scheme of body's surface, allowing more accurate to describe the flow vorticity in areas with abrupt changes of geometry streamlined body.

  10. Subwavelength electromagnetic near-field imaging of point dipole with metamaterial nanoslab.

    Science.gov (United States)

    Hakkarainen, Timo; Setälä, Tero; Friberg, Ari T

    2009-10-01

    We investigate near-field imaging of a point dipole by a lossy, nanoscale metamaterial slab. Making use of the electromagnetic angular-spectrum representation, we derive the Green tensor for the field transmission through the metamaterial slab, duly considering multiple reflections, polarizations, and wave-vector signs. With this general formalism, we calculate the point-spread function of the imaging system, which enables us to assess, for instance, resolution and image brightness. Our results demonstrate that with the metamaterial-slab lens one achieves resolution beyond the conventional diffraction limit of half the wavelength. In general, the resolution and image brightness are degraded when the slab thickness and absorption increase, but we show that in some cases the resolution is rather insensitive to the magnitude of the losses in the metamaterial.

  11. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    Science.gov (United States)

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  12. Reduction of truncation errors in partial spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Cano Facila, Francisco J.

    2010-01-01

    In this report, a new and effective method for reduction of truncation errors in partial spherical near-field (SNF) antenna measurements is proposed. This method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the far......-field pattern calculated from a truncated SNF measurement up to the whole forward hemisphere. The method is useful when measuring electrically large antennas and the measurement over the whole sphere is very time consuming. Therefore, a solution is considered to take samples over a portion of the spherical...... surface and then to apply the above method to reconstruct the far-field pattern. The work described in this report was carried out within the external stay of Francisco J. Cano at the Technical University of Denmark (DTU) from September 6th to December 18th in 2010....

  13. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    Science.gov (United States)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  14. EosFit-Pinc: a GUI program to calculate pressures in host-inclusion systems

    Science.gov (United States)

    Angel, Ross; Alvaro, Matteo; Mazzucchelli, Mattia; Nestola, Fabrizio

    2017-04-01

    A remnant pressure in an inclusion trapped inside a host mineral is developed because the inclusion and the host have different thermal expansion and compressibilities, and the inclusion does not expand in response to P and T as would a free crystal. Instead it is restricted to expand only as much as the cavity of the host mineral, and this constriction in volume can result in inclusions exhibiting over-pressures when the host is studied at room conditions. The remnant pressure of the inclusion, measured by X-ray diffractometry, birefringence analysis or Raman spectroscopy, can then be used with the equations of state (EoS) of the host and inclusion to constrain the P and T at entrapment. This concept has been known for a long time, but satisfactory quantitative modelling of inclusion-host systems based on non-linear elasticity theory and precise EoS has only recently come available (Angel et al., 2014, 2015), even though calculations still assume isotropic elastic properties. The elasticity calculations to determine entrapment conditions involving the EoSs for both the host and the inclusion are complex if thermodynamically-realistic EoS are employed. We have therefore developed a simple GUI program, EosFit-Pinc that performs all of the necessary calculations under the assumptions of isotropic elasticity. Equations of state of the host and the inclusion can be loaded as files created by other software in the EosFit7 program suite, or imported directly from thermodynamic databases such as Thermocalc. The complete range of EoS types supported by EosFit-7 are available in EosFit-Pinc. Fluid EoS can be provided in the form of PVT tables, which allows fluid inclusions to be modelled. Once loaded, the EoS of the host and inclusion can be used to calculate the entrapment isomeke from the measured remnant pressure of the inclusion. Or the final pressure can be calculated if the entrapment conditions are known or estimated. Calculations of the isochors of both the host and

  15. Resummed two-loop calculation of the disjoining pressure of a symmetric electrolyte soap film.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2004-07-01

    In this paper we consider the calculation of the disjoining pressure of a symmetric electrolytic soap film correct to two loops in perturbation theory. We show that the disjoining pressure is finite when the loop expansion is resummed using a cumulant expansion and requires no short distance cutoff in order to give a finite result. The loop expansion is resummed in terms of an expansion in g= lB / lD where lD is the Debye length and lB is the Bjerrum length. We show that there there is a nonanalytic contribution of order g ln(g). We also show that the two-loop correction is greater than the one-loop term at large film thicknesses suggesting a nonperturbative correction to the one-loop result in this limit.

  16. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    Directory of Open Access Journals (Sweden)

    Hector Luis Laurencio-Alfonso,

    2012-10-01

    Full Text Available Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model describes temperature changes, viscous friction effects and the effects of blending flow layers; which is therefore the basis of calculation for the selection, evaluation and rationalization of transport of heavy fuel oil by pipelines.

  17. Development of a database system for the calculation of indicators of environmental pressure caused by transport

    DEFF Research Database (Denmark)

    Giannouli, Myrsini; Samaras, Zissis; Keller, Mario

    2006-01-01

    emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given oil the latest features incorporated...... of the results produced by TRENDS was conducted by means of comparison with data found ill the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIs maps were generated. Examples of these maps are displayed...

  18. Calculation and Experimental Validation of Pressure and Temperature Effects on COG-Air Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Jan Skrinsky

    2018-01-01

    Full Text Available COG have been widely used together with blast furnace gas and blast furnace oxygen gas in the steel industry in Moravian-Silesian region of Czech Republic. COG is a flammable and explosive substance. Most explosion characteristics published so far are valid for pure compounds and limited experimental conditions, mostly ambient. There have been no explosion characteristic exists for COG-air mixtures which cover industrial conditions up to 423 K. Experimental tests have been carried out in a 20-L closed explosion chamber adopted for the explosion tests. The element potential approach in the thermochemical equilibrium calculations applied in the Chemkin subroutine has been used for explosion pressure calculations. Different explosion characteristics have been reported in a range from 298 K up to 423 K and from 0.5 bar(a up to 1.0 bar(a.

  19. Investigation of temperature- and pressure effects on drilling fluid properties and related downhole torque and drag calculations

    OpenAIRE

    Tveiterå, Martin

    2016-01-01

    Master's thesis in Petroleum engineering Increasing temperature and pressure with depth, affects the properties of drilling fluid. The effect of temperature and pressure on the density and viscosity of drilling fluid is of great importance. This is because, among several reasons, it affects the calculation of downhole pressure and the buoyancy factor for the well. Correct pressure estimation, could pose a great concern regarding well integrity. The buoyancy factor would affect the effectiv...

  20. Numerical and Experimental Investigation of Near-Field Mixing in Parallel Dual Round Jets

    Directory of Open Access Journals (Sweden)

    Xie Zheng

    2016-01-01

    Full Text Available Parallel underexpanded round jets system has been widely used in engineering applications, and the flow field structures are very complex because of the jets interaction. In this paper, we studied the near-field mixing phenomenon in parallel dual underexpanded jets numerically by solving the Reynolds-Averaged Navier-Stokes Equations. The numerical results agree well with experimental data acquired by particle image velocimetry. Similar to plane jets, to some degree, two round jets are deflected towards the dual nozzle symmetry plane; the flow field can also be divided into three regions. Meanwhile, attempts have been made to predict merge point and combine point locations on certain cross profile of computational domain by correlating them with jet spacing and jet pressure ratio. The jet spacing plays an important role in jets interaction, and jet interaction decreases with the increase in jet spacing. The jets interaction in terms of merge (combine point and pressure varies significantly while the jet spacing differs. Additionally, as pressure ratio increases, the effect of jet interaction decreases, and the merge (combine point location moves downstream.

  1. Near-Field Acoustic Resonance Scattering of a Finite Bessel Beam by an Elastic Sphere

    CERN Document Server

    Mitri, F G

    2014-01-01

    The near-field acoustic scattering from a sphere centered on the axis of a finite Bessel acoustic beam is derived stemming from the Rayleigh-Sommerfeld diffraction surface integral and the addition theorems for the spherical wave and Legendre functions. The beam emerges from a finite circular disk vibrating according to one of its radial modes corresponding to the fundamental solution of a Bessel beam J0. The incident pressure field's expression is derived analytically as a partial-wave series expansion taking into account the finite size and the distance from the center of the disk transducer. Initially, the scattered pressure by a rigid sphere is evaluated, and backscattering pressure moduli plots as well as 3-D directivity patterns for an elastic PMMA sphere centered on a finite Bessel beam with appropriate tuning of its half-cone angle, reveal possible resonance suppression of the sphere only in the zone near the Bessel transducer. Moreover, the analysis is extended to derive the mean spatial incident and...

  2. Accuracy verification and analysis of SEA method for calculating radiation noise pressure of submerged cylindrical shell

    Directory of Open Access Journals (Sweden)

    ZHANG Kai

    2017-08-01

    Full Text Available Statistical Energy Analysis(SEAis an effective method for solving high frequency structural vibration and acoustic radiation problems. When we use it to analyze submerged structures, it is necessary to consider the actions of fluid as'heavy fluid' relative to structures, which differs from when it is used in the air. The simple model of a submerged cylindrical shell is used to calculate at a higher frequency using FEM/BEM. The SEA and FEM method are then used to calculate the radiation sound pressure level, verifying the accuracy of the SEA prediction for submerged structures. The classified method of subsystems and the effect of the error of the internal loss factor on the accuracy of the results are explored. The calculated results of SEA and FEM/BEM are very different below 400 Hz, and basically the same above 400 Hz. The error caused by the division of different subsystems is about 5 dB. The error in the calculation results caused by the error of the internal loss factor is 2-3 dB. It is possible to use SEA to calculate the radiated noise of an underwater cylindrical shell when the modal density is high enough.For the cylindrical shell, dividing the subsystems along the circumference is not reliable at a low frequency, as it may lead to inaccurate calculation results. At a high frequency, it is more accurate to divide the subsystems along the circumference than the axle. For subsystems with high energy, the internal loss factor has a greater effect on the simulation results, so a more accurate way should be taken to determine the internal loss factor of subsystems with high energy.

  3. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  4. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...... status, and addresses future challenges for spherical near-field antenna measurements; in particular, from the viewpoint of the DTU-ESA Spherical Near-Field Antenna Test Facility....

  5. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  6. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited)

    Science.gov (United States)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2013-12-01

    algorithm. It is also suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of this uncertainty quantification study are presented in a separate abstract (Vorobiev, et.al). In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an accompanied work (Pitarka, et al). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Aspects of geochemical evolution of the SKB near field in the frame of SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21, Barcelona (Spain))

    2010-09-15

    The concept for the final disposal of high level nuclear waste (HLNW) developed by the Swedish Nuclear Waste Management Company (SKB) entails a multi-barrier system that surrounds the HLNW, which is also known as the near-field. In the near-field, the buffer is initially subject to a high thermal gradient induced by the heat generated by the radioactive decay of the HLNW. During this period, the buffer is also subject to a hydrodynamic pressure induced by the surrounding water saturated rock massif which progressively leads to the saturation of the buffer. After saturation and cooling of the near-field, the interaction of groundwater with the bentonite buffer may result in an evolving distribution of some aqueous species in the bentonite porewater, as well as the redistribution of accessory minerals and the cation exchanger composition in the montmorillonite interlayer. The distribution of aqueous and solid species in the buffer can affect, directly or indirectly, some of the relevant safety function indicators defined by. In this context, the work developed by Arcos et al is revisited in the present work and, based on new data from SKB, additional models are developed for the SR-Site Safety Assessment. The work presented here represents an update of the model conducted within the SR-Can exercise and, therefore, similar simulation cases are developed. Three aspects must be considered regarding the geochemical evolution of the near field: (1) the effect of the thermal period; (2) the processes during the saturation of bentonite; and, (3) the interaction of the water-saturated bentonite with the local groundwater. In this numerical exercise, two types of bentonite are analysed: the MX-80 and the Deponit CA-N. The effect of the thermal period and the water saturation are analysed in a series of one-dimensional radial-symmetric simulations performed using TOUGHREACT which is a reactive transport code that accounts for variably saturated multi-phase flow under non

  8. Glaucoma Surgery Calculator: Limited Additive Effect of Phacoemulsification on Intraocular Pressure in Ab Interno Trabeculectomy.

    Science.gov (United States)

    Neiweem, Ashley E; Bussel, Igor I; Schuman, Joel S; Brown, Eric N; Loewen, Nils A

    2016-01-01

    To compare intraocular pressure (IOP) reduction and to develop a predictive surgery calculator based on the results between trabectome-mediated ab interno trabeculectomy in pseudophakic patients versus phacoemulsification combined with trabectome-mediated ab interno trabeculectomy in phakic patients. This observational surgical cohort study analyzed pseudophakic patients who received trabectome-mediated ab interno trabeculectomy (AIT) or phacoemulsification combined with AIT (phaco-AIT). Follow up for less than 12 months or neovascular glaucoma led to exclusion. Missing data was imputed by generating 5 similar but non-identical datasets. Groups were matched using Coarsened Exact Matching based on age, gender, type of glaucoma, race, preoperative number of glaucoma medications and baseline intraocular pressure (IOP). Linear regression was used to examine the outcome measures consisting of IOP and medications. Of 949 cases, 587 were included consisting of 235 AIT and 352 phaco-AIT. Baseline IOP between groups was statistically significant (p≤0.01) in linear regression models and was minimized after Coarsened Exact Matching. An increment of 1 mmHg in baseline IOP was associated with a 0.73±0.03 mmHg IOP reduction. Phaco-AIT had an IOP reduction that was only 0.73±0.32 mmHg greater than that of AIT. The resulting calculator to determine IOP reduction consisted of the formula -13.54+0.73 × (phacoemulsification yes:1, no:0) + 0.73 × (baseline IOP) + 0.59 × (secondary open angle glaucoma yes:1, no:0) + 0.03 × (age) + 0.09 × (medications). This predictive calculator for minimally invasive glaucoma surgery can assist clinical decision making. Only a small additional IOP reduction was observed when phacoemulsification was added to AIT. Patients with a higher baseline IOP had a greater IOP reduction.

  9. First-principles calculation of thermal conductivity of silicate perovskite at high pressures and high temperatures

    Science.gov (United States)

    Dong, Jianjun; Tang, Xiaoli; Kavner, Abby; Ntam, Moses

    2011-03-01

    The lattice thermal conductivity of silicate perovskite, the most abundant mineral in the Earth's lower mantle, is calculated by combining the first-principles electronic structure theory and Peierls-Boltzmann transport theory. The phonon scattering rate due to lattice anharmonicity and Mg/Fe mass disorder is evaluated for each mode at the extreme P-T conditions of the lower mantle. The predicted thermal conductivity of single crystal MgSiO3 perovskite at ambient condition, about 5.7 W/m/K, is in excellent agreement with experiment. Adding about 6% Fe will lower the thermal conductivity by nearly 40%. Our calculation also reveals an unique pressure dependence for the thermal conductivity of perovskite, and the calculated thermal conductivity of iron bearing perovskite is almost an order of magnitude lower than the previously estimates based on long extrapolation of single crystal data. Including a re-evaluation of radiative contribution, we discuss the implications of our results for the heat flow in deep Earth. Funded by NSF (EAR-0757847).

  10. Cementitious Near-Field Sorption Data Base for Performance Assessment of an ILW Repository in Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Van Loon, L. R

    2003-08-01

    The present report describes a cement sorption database (SDB) for the safety-relevant radionuclides to be disposed of in the planned Swiss repository for long-lived intermediate-level radioactive wastes (ILW). This report is an update on earlier SDBs, which were compiled for the cementitious near field of a repository for low- and intermediate-level radioactive wastes (L/ILW) by BRADBURY + SAROTT (1995) and BRADBURY + VAN LOON (1998). The radionuclide inventories are determined by the waste streams to be disposed of in the ILW repository. A list of the safety-relevant radionuclides was provided based on the currently available information on ILW inventories. The compositions of the cement porewaters in the near fields of the L/ILW and ILW repositories, which had been calculated using well-established codes for modelling cement degradation, were compared to identify any differences in the near-field conditions and to assess their influence on radionuclide sorption. Sorption values were selected based on the previously reported SDBs for the near field of the L/ILW repository. Sorption values were revised if new information and/or data were available which allowed changes to or re-appraisals of the data to be made. The sorption values recommended in this report were either selected on the basis of data from in-house experimental studies or from literature data. For some key radioelements, i.e., Cs(l), Sr(II), Ni(II), Eu(lll), Th(IV) and Sn(IV), new data were available from in-house measurements. These elements had been selected for experimental studies due to their relevance to safety assessment and/or their importance as appropriate chemical analogues. Degradation products of bitumen and cellulose, concrete admixtures and cement-derived near-field colloids were taken into account as the main potential perturbations, which could reduce radionuclide sorption in the near field. Possible impacts of the perturbing factors on radionuclide mobility were considered and

  11. Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography.

    Science.gov (United States)

    Zhao, Xiang; Wu, Sean F

    2005-02-01

    In this paper we examine the accuracy and efficiency of reconstructing the vibroacoustic quantities generated by a vibrating structure in half-space by using hybrid near-field acoustic holography (NAH) and modified Helmholtz equation least squares (HELS) formulations. In hybrid NAH, we combine modified HELS with an inverse boundary element method (IBEM) to reconstruct a vibroacoustic field. The main advantage of this approach is that the majority of the input data can be regenerated but not measured, thus the efficiency is greatly enhanced. In modified HELS, we expand the field acoustic pressure in terms of outgoing and incoming spherical waves and specify the corresponding expansion coefficients by solving a system of equations obtained by matching the assumed-form solution to the measured acoustic pressure. Here the system of equations is ill conditioned and Tikhonov regularization is implemented through singular value decomposition (SVD) and the generalized cross-validation (GCV) method. Numerical examples of a dilating and oscillating spheres and finite cylinder are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than does a modified HELS, but a modified HELS is more efficient than is hybrid NAH [Work supported by NSF].

  12. A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; van Hulst, N.F.

    2007-01-01

    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed

  13. Plasmonic Antennas Nanocoupler for Telecom Range: Simulation, Fabrication and Near-Field Characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2014-01-01

    We report simulation, fabrication and, for the first time, full amplitude-phase near-field optical characterization in telecom range of the compact and efficient plasmonic nanoantenna based couplers. Near-field data allowed characterizing the subwavelength slot waveguide’s propagation losses...

  14. Panel discussion on near-field coupled processes with emphasis on performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Codell, R.B.; Baca, R.G.; Ahola, M.P. [and others

    1996-04-01

    The presentations in this panel discussion involve the general topic of near-field coupled processes and postclosure performance assessment with an emphasis on rock mechanics. The potential impact of near-field rock mass deformation on repository performance was discussed, as well as topics including long term excavation deterioration, the performance of geologic seals, and coupled processes concerning rock mechanics in performance assessments.

  15. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  16. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  17. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical c...

  18. Error Bounds Due to Random Noise in Cylindrical Near-Field Measurements

    OpenAIRE

    Romeu Robert, Jordi; Jofre Roca, Lluís

    1991-01-01

    The far field errors due to near field random noise are statistically bounded when performing cylindrical near to far field transform. In this communication, the far field noise variance it is expressed as a function of the measurement parameters and the near field noise variance. Peer Reviewed

  19. Estimated Pulse Wave Velocity Calculated from Age and Mean Arterial Blood Pressure

    DEFF Research Database (Denmark)

    Greve, S. V.; Laurent, Stéphane; Olsen, M. H.

    2016-01-01

    In a recently published paper, Greve et al [J Hypertens 2016;34:1279-1289] investigate whether the estimated carotid-femoral pulse wave velocity (ePWV), calculated using an equation derived from the relationship between carotid-femoral pulse wave velocity (cfPWV), age, and blood pressure, predicts...... cardiovascular disease (CVD) as good as the measured cfPWV. Because ePWV predicts CVD as good as cfPWV, some might wonder whether ePWV could be replaced by cfPWV, which is a time-consuming measurement requiring an expensive apparatus. This question is addressed in this mini-review. (C) 2016 S. Karger AG, Basel...

  20. Research on simulation of target echo of laser fuse in the near field

    Science.gov (United States)

    Cui, Yanjie; Su, Bida; Chen, Wenqiang; Zhang, Xiangyang; Rong, Deng

    2014-11-01

    In order to study the near-field target characteristic of the laser fuse, an algorithm based on the relationship of bidirectional reflectance distribution function and laser radar cross section per unit area is proposed to calculate the echo power of laser fuse in the near-field. The main research work in this paper involves the followings (1)Based on the theory of beam division, a mathematical description of the angular distribution of the detonator laser beam is given to depicted the mathematical model of Gaussian beam. (2)By using the scattering characteristics of rough surface as well as the geometry mesh model of the target, the relation formula between received power and transmitted power of remote system for a facet is derived. (3)Establishing the missile-target encounter model though the conversion from different coordinate systems. Then calculate the echo power of laser fuse by integrating those of the geometrical elements which are illuminated by laser beam during missile target encounter. Consequently, the received power in each channels of the laser fuse can be calculated. In addition, the proposed theoretical model in this paper is calibrated by actually-measured data. And the emulation results are with a good agreement with measured results. Based on the theoretical analysis methods proposed in former chapters, we have developed a program to compute the echo power. Finally , we consider a simplified missile model, and compute its echo power under different angle and different material as well as different miss distance and different target miss in azimuth. The results show that scattering peaks correspond to the points of the wings of the missile. In addition, the results change obviously when using different material .For instance, the results with aluminum material are almost 10 times than that of white paint when ignoring the influence of atmospheric attenuation. At the same time, the results are different under the different miss distance as well

  1. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium.

    Science.gov (United States)

    Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng

    2015-01-26

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.

  2. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  3. Generalized spectral method for near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B.-Y.; Zhang, L. M.; Basov, D. N.; Fogler, M. M. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Castro Neto, A. H. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore 117542 (Singapore)

    2016-02-07

    Electromagnetic interaction between a sub-wavelength particle (the “probe”) and a material surface (the “sample”) is studied theoretically. The interaction is shown to be governed by a series of resonances corresponding to surface polariton modes localized near the probe. The resonance parameters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity of the material. Calculation of such resonances is carried out for several types of axisymmetric probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is developed, capable of handling cases of large or strongly momentum-dependent surface reflectivity. Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves, i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape and optical constants of the model. For less resonant materials such as silicon oxide, the dependence is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic approximation with radiative damping included perturbatively.

  4. Evolution of near-field physico-chemical characteristics of the SFR repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D. [Quintessa Ltd., Nottingham (United Kingdom); Stenhouse, M. [Monitor Scientific LLC, Denver, CO (United States); Benbow, S. [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10{sup -3} M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10{sup -3} M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR

  5. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  6. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  7. Automated calculation of the distal contractile integral in esophageal pressure topography with a region-growing algorithm.

    Science.gov (United States)

    Lin, Z; Roman, S; Pandolfino, J E; Kahrilas, P J

    2012-01-01

    The distal contractile integral (DCI) is an index of contractile vigor in high-resolution esophageal pressure topography (EPT) calculated as the product of amplitude, duration, and span of the distal esophageal contraction. The aim of this study was to develop an automated algorithm calculating DCI. The DCI was calculated conventionally using ManoView™ (Given Imaging, Los Angeles, CA, USA) software in EPT studies from 72 controls and 20 patients and compared to the calculation using a MATLAB™ (Version 7.9.0, R2009b; The MathWorks Inc., Natick, MA, USA) 'region-growing' algorithm. This algorithm first established the spatial limits of the distal contraction (the proximal pressure trough to either the distal pressure trough or to the superior margin of the lower esophageal sphincter at rest). Pixel-by-pixel horizontal line segments were then analyzed within this span starting at the pressure maximum and extending outward from that point. The limits of 'region-growing' were defined either by the spatial DCI limits or by encountering a pressure calculated as the total units of mmHg s cm greater than 20 mmHg within this domain. Excellent correlation existed between the two methods (r = 0.98, P calculation were slightly but significantly greater than with the region-growing algorithm. Differences were attributed to the inclusion of vascular pressures in the conventional calculation or to differences in localization of the distal limit of the DCI. The proposed region-growing algorithm provides an automated method to calculate DCI that limits inclusion of vascular pressure artifacts and minimizes the need for user input in data analysis. © 2011 Blackwell Publishing Ltd.

  8. On the applicability of the spherical wave expansion with a single origin for near-field acoustical holography

    DEFF Research Database (Denmark)

    Gomes, J.; Hald, J.; Juhl, P.

    2009-01-01

    The spherical wave expansion with a single origin is sometimes used in connection with near-field acoustical holography to determine the sound field on the surface of a source. The radiated field is approximated by a truncated expansion, and the expansion coefficients are determined by matching...... the sound field model to the measured pressure close to the source. This problem is ill posed, and therefore regularization is required. The present paper investigates the consequence of using only the expansion truncation as regularization approach and compares it with results obtained when additional...

  9. Experimental study of the mapping relationship based near-field acoustic holography with spherical fundamental solutions

    Science.gov (United States)

    Wu, Haijun; Jiang, Weikang

    2017-04-01

    This paper is a consequent work of the previously proposed mapping relationship based near-field acoustic holography (MRS-based NAH), [H.J.Wu W.K. Jiang and H.B. Zhang, JSV, 373:66-88, 2016]. It is devoted to the performance study of its practical application with error analysis and experimental validation. Two types of errors, the truncation errors due to the limited number of participant modes, and the inevitable measurement errors caused by uncertainties in the experiment, are considered in the analysis. The influences of the errors on the performance of MRS-based NAH are systematically investigated. First of all, expression of the relative reconstruction error of the pressure energy is derived based on the two types of errors. An approach is developed to estimate the lower and upper bounds of the relative error. It gives a guide to predict the error for a reconstruction under the condition that the truncation error and the signal-to-noise ratio are given. Then, the condition number of the inverse operator is investigated to measure the sensitivity of the reconstruction to the input errors. Asymptotic expressions of the condition number for a special case, conformal spherical model and hologram, are obtained, which indicates the condition number has a geometric growth with the number of participant modes. Numerical examples with different kinds of errors are elaborately designed to validate the stability as well as the correctness of the error analysis. At last, the MRS-based NAH is further examined and verified by a physical experiment, a vibrating cubic model reconstructed from measurement on a spherical hologram. A satisfied agreement with the directly measured pressure on a validation surface is observed for both quantity and distribution of the reconstructed pressure.

  10. A rapid estimation of near field tsunami run-up

    Science.gov (United States)

    Riqueime, Sebastian; Fuentes, Mauricio; Hayes, Gavin; Campos, Jamie

    2015-01-01

    Many efforts have been made to quickly estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori.However, such models are generally based on uniform slip distributions and thus oversimplify the knowledge of the earthquake source. Here, we show how to predict tsunami run-up from any seismic source model using an analytic solution, that was specifically designed for subduction zones with a well defined geometry, i.e., Chile, Japan, Nicaragua, Alaska. The main idea of this work is to provide a tool for emergency response, trading off accuracy for speed. The solutions we present for large earthquakes appear promising. Here, run-up models are computed for: The 1992 Mw 7.7 Nicaragua Earthquake, the 2001 Mw 8.4 Perú Earthquake, the 2003Mw 8.3 Hokkaido Earthquake, the 2007 Mw 8.1 Perú Earthquake, the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake and the recent 2014 Mw 8.2 Iquique Earthquake. The maximum run-up estimations are consistent with measurements made inland after each event, with a peak of 9 m for Nicaragua, 8 m for Perú (2001), 32 m for Maule, 41 m for Tohoku, and 4.1 m for Iquique. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first minutes after the occurrence of similar events. Thus, such calculations will provide faster run-up information than is available from existing uniform-slip seismic source databases or past events of pre-modeled seismic sources.

  11. Pressure effects on the elastic and lattice dynamics properties of AlP from first-principles calculations

    Science.gov (United States)

    Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.

    2015-03-01

    We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ɛ0, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III-V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.

  12. Engine jet entrainment in the near field of an aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, F.; Jacquin, L.; Laverdant, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.

  13. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse combined with the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit...... area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography......' (SONAH). The purpose is to examine whether one should use a correction similar to the well-known 'Waterhouse correction' when the incident sound power is deduced from the sound pressure in the source room....

  14. Acoustic structures in the near-field from clustered rocket nozzles

    Science.gov (United States)

    Canchero, Andres; Tinney, Charles E.; Murray, Nathan E.; Ruf, Joseph H.

    2014-11-01

    The plume and acoustic field produced by a cluster of two and four rocket nozzles is visualized by way of retroreflective shadowgraphy. Steady state and transient operations (startup/shutdown) were conducted in the fully-anechoic chamber and open jet facility of The University of Texas at Austin. The laboratory scale rocket nozzles comprise thrust-optimized parabolic contours, which during start-up, experience free shock separated flow, restricted shock separated flow and an end-effects regime prior to flowing full. Shadowgraphy images with synchronized surveys of the acoustic loads produced in close vicinity to the rocket clusters and wall static pressure profiles are first compared with several RANS simulations during steady operations. A Proper Orthogonal Decomposition of various regions in the shadowgraphy images is then performed to elucidate the prominent features residing in the supersonic annular flow region, the acoustic near field and the interaction zone that resides between the nozzle plumes. POD modes are used to detect propagation paths of the acoustic waves and shock cell structures in the supersonic shear layer. Spectral peak frequencies on the propagation paths are associated with the shock cell length, which are responsible for generating broadband shock noise. Aerospace Engineering & Engineering Mechanics.

  15. EARLY DETECTION OF NEAR-FIELD TSUNAMIS USING UNDERWATER SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    L. E. Freitag

    2012-01-01

    Full Text Available We propose a novel approach for near-field tsunami detection, specifically for the area near the city of Padang, Indonesia. Padang is located on the western shore of Sumatra, directly across from the Mentawai segment of the Sunda Trench, where accumulated strain has not been released since the great earthquake of 1797. Consequently, the risk of a major tsunamigenic earthquake on this segment is high. Currently, no ocean-bottom pressure sensors are deployed in the Mentawai basin to provide a definitive tsunami warning for Padang. Timely warnings are essential to initiate evacuation procedures and minimize loss of human life. Our approach augments existing technology with a network of underwater sensors to detect tsunamis generated by an earthquake or landslide fast enough to provide at least 15 minutes of warning. Data from the underwater sensor network would feed into existing decision support systems that accept input from land and sea-based sensors and provide warning information to city and regional authorities.

  16. Research on Diagnosing the Gearbox Faults Based on Near Field Acoustic Holography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W K; Hou, J J [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240 (China); Xing, J T, E-mail: wkjiang@sjtu.edu.cn [Ship Science, School of Engineering Sciences, University of Southampton (United Kingdom)

    2011-07-19

    The gearbox fault diagnosis was developed for some decades. The current diagnosis techniques were mostly based on analyzing the shell vibration signals especially close to the bearing seat of gearbox. In order to utilize the spatial distribution information of fault signal, the near field acoustic holography (NAH) is employed for the condition monitoring and fault diagnosis of the gearbox in this presentation. The distribution images of sound pressure on the surface of gearbox are reconstructed by NAH, and the feature extraction and pattern recognition can be made by image processing techniques. A gearbox is studied in a semi-anechoic chamber to verify the fault diagnosis technique based on NAH. The pitting and partial broken tooth faults of gears are artificially made on one gear as the fault statuses, and the differences of acoustic images among normal and fault working states under the idling condition are analyzed. It can be found that the acoustic images of gearbox in the three different situations change regularly, and the main sound sources can be recognized from the acoustic images which also contain rich diagnosis information. After feature extraction of the acoustic images, the pattern reorganization technique is employed for diagnosis. The results indicate that this diagnosis procedure based on acoustic images is available and feasible for the gearbox fault diagnosis.

  17. Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials

    CERN Document Server

    Parigi, Valentina; Binard, Guillaume; Bourdillon, Céline; Maître, Agnès; Carminati, Rémi; Krachmalnicoff, Valentina; De Wilde, Yannick

    2016-01-01

    We study the intensity spatial correlation function of optical speckle patterns above a disordered dielectric medium in the multiple scattering regime. The intensity distributions are recorded by scanning near-field optical microscopy (SNOM) with sub-wavelength spatial resolution at variable distances from the surface in a range which spans continuously from the near-field (distance $ \\ll \\lambda $) to the far-field regime (distance $\\gg \\lambda $). The non-universal behavior at sub-wavelength distances reveals the connection between the near-field speckle pattern and the internal structure of the medium.

  18. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaoji G., E-mail: xgx214@lehigh.edu [Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Gilburd, Leonid; Walker, Gilbert C., E-mail: gwalker@chem.utoronto.ca [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-12-29

    Scattering type scanning near-field optical microscopy (s-SNOM) allows sub diffraction limited spatial resolution. Interferometric homodyne detection in s-SNOM can amplify the signal and extract vibrational responses based on sample absorption. A stable reference phase is required for a high quality homodyne-detected near-field signal. This work presents the development of a phase stabilization mechanism for s-SNOM to provide stable homodyne conditions. The phase stability is found to be better than 0.05 rad for the mid infrared light source. Phase stabilization results in improved near field images and vibrational spectroscopies. Spatial inhomogeneities of the boron nitride nanotubes are measured and compared.

  19. Room-temperature near-field reflection spectrocopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher; Madsen, Steen

    1999-01-01

    We investigate the properties of near-field reflection spectroscopy in different polarization and detection modes using uncoated fiber probes. The results show, that cross-polarized detection suppresses to a large extent far-field contributions. Using the fiber dithering as a modulation source...... for the optical signal, the signal background and topographical artifacts are also strongly suppressed. This technique allows for a very sensitive and essentially artifact-free near-field imaging of the susceptibility contrast. A spatial resolution better than 150 nm is acheived in near-field imaging. We show...... optical images corresponding to purely topographical contrast and purely optical contrast....

  20. An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System

    OpenAIRE

    Singh, Parth Raj; Wang, Yide; Charg?, Pascal

    2017-01-01

    In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed...

  1. Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials.

    Science.gov (United States)

    Parigi, Valentina; Perros, Elodie; Binard, Guillaume; Bourdillon, Céline; Maître, Agnès; Carminati, Rémi; Krachmalnicoff, Valentina; De Wilde, Yannick

    2016-04-04

    We study the intensity spatial correlation function of optical speckle patterns above a disordered dielectric medium in the multiple scattering regime. The intensity distributions are recorded by scanning near-field optical microscopy (SNOM) with sub-wavelength spatial resolution at variable distances from the surface in a range which spans continuously from the near-field (distance ≪ λ) to the far-field regime (distance ≫ λ). The non-universal behavior at sub-wavelength distances reveals the connection between the near-field speckle pattern and the internal structure of the medium.

  2. Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography

    Science.gov (United States)

    Yamaguchi, Maiku; Nobusada, Katsuyuki; Kawazoe, Tadashi; Yatsui, Takashi

    2015-05-01

    An electric field gradient is an inherent property of the optical near-field (ONF). We investigated its effect on electron excitation in a quantum dot via model calculations combining a density matrix formalism and a classical Lorentz model. The electric field gradient of the ONF was found to cause two-photon absorption by an unusual mechanism. Furthermore, the absorption exhibits a nonmonotonic dependence on the spatial arrangement of the nanosystem, completely different from that of conventional two-photon absorption induced by an intense electric field. The present two-photon absorption process was verified in a previous experimental observation by reinterpreting the results of ONF photolithography.

  3. Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Maiku; Kawazoe, Tadashi; Yatsui, Takashi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Nobusada, Katsuyuki, E-mail: nobusada@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2015-05-11

    An electric field gradient is an inherent property of the optical near-field (ONF). We investigated its effect on electron excitation in a quantum dot via model calculations combining a density matrix formalism and a classical Lorentz model. The electric field gradient of the ONF was found to cause two-photon absorption by an unusual mechanism. Furthermore, the absorption exhibits a nonmonotonic dependence on the spatial arrangement of the nanosystem, completely different from that of conventional two-photon absorption induced by an intense electric field. The present two-photon absorption process was verified in a previous experimental observation by reinterpreting the results of ONF photolithography.

  4. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2008-01-01

    A simple and effective procedure for the reduction of truncation errors in planar near-field measurements of aperture antennas is presented. The procedure relies on the consideration that, due to the scan plane truncation, the calculated plane wave spectrum of the field radiated by the antenna...... is reliable only within a certain portion of the visible region. Accordingly, the truncation error is reduced by extrapolating the remaining portion of the visible region by the Gerchberg-Papoulis iterative algorithm, exploiting a condition of spatial concentration of the fields on the antenna aperture plane...

  5. Estimate on the uncertainty of predicting radiated emission from near-field scan caused by insufficient or inaccurate near-field data

    DEFF Research Database (Denmark)

    Sørensen, Morten; Radchenko, Andriy; Kam, Keong

    2012-01-01

    Near-field scan on a Huygens’ box can be used in order to predict the maximal radiated emission from a Printed Circuit Board. The significance of step size and phase accuracy, and the importance of a full Huygens’ box are investigated by simulation of two different models with two different numer...

  6. Application of Near-Field Emission Processing for Microwave Circuits under Ultra-Short Duration Perturbations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-10-01

    Full Text Available This paper is dealing with a time-frequency modeling method of electromagnetic (EM near-field (NF radiated by electronic devices excited by transient pulse signals. The model developed enables to calculate the EM NF maps at different distances from the given device and also the synthesis of radiation sources enabling to reproduce the field maps. The method proposed is based on the ultra wide band (UWB frequency model of EM NF maps. The number of EM NF maps can be reduced by considering an innovative algorithm in order to establish simply the dipole model. Then, the transient model can be realized by considering the convolution between the transient excitation signals and the dipole-array model. The method proposed was validated by a standard 3D EM tool with a planar microstrip device excited by microwave signal modulating 1.25-GHz-carrier with 0.5-GHz-bandwidth. As expected, good correlation is found between results from simulation and the investigated modelling method.  The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs.

  7. Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy

    Science.gov (United States)

    Karsch, Jonathan C.; Bartell, Jason M.; Fuchs, Gregory D.

    2017-08-01

    The development of spintronic technology with increasingly dense, high-speed, and complex devices will be accelerated by accessible microscopy techniques capable of probing magnetic phenomena on picosecond time scales and at deeply sub-micron length scales. A recently developed time-resolved magneto-thermal microscope provides a path towards this goal if it is augmented with a picosecond, nanoscale heat source. We theoretically study adiabatic nanofocusing and near-field heat induction using conical gold plasmonic antennas to generate sub-100 nm thermal gradients for time-resolved magneto-thermal imaging. Finite element calculations of antenna-sample interactions reveal focused electromagnetic loss profiles that are either peaked directly under the antenna or are annular, depending on the sample's conductivity, the antenna's apex radius, and the tip-sample separation. We find that the thermal gradient is confined to 40 nm to 60 nm full width at half maximum for realistic ranges of sample conductivity and apex radius. To mitigate this variation, which is undesirable for microscopy, we investigate the use of a platinum capping layer on top of the sample as a thermal transduction layer to produce heat uniformly across different sample materials. After determining the optimal capping layer thickness, we simulate the evolution of the thermal gradient in the underlying sample layer and find that the temporal width is below 10 ps. These results lay a theoretical foundation for nanoscale, time-resolved magneto-thermal imaging.

  8. The conditions of similarity and generalized dependences for calculating convective heat transfer in supercritical pressure coolants

    Science.gov (United States)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.; Baisov, A. M.

    2017-11-01

    In this report the assessment of the results of recent experimental investigations of heat transfer in turbulent flow of supercritical water and modeling fluids (carbon dioxide, Freon) in vertical channels of different geometry (tubes, annular gaps and rod bundles) is presented. The conditions of similarity and the system of criteria, which determine the intensity of heat exchange in the fluids near the critical point, are considered. Due to the small hydraulic diameter of the heat exchange channels in the core of nuclear reactors it is possible to neglect the gravitational forces compared to the acceleration caused by the thermal inertia effects and the forces of viscosity. Based on these ideas two comprehensive criteria were proposed. Their application in the basic equation of heat transfer suggested by the authors earlier for the normal regimes satisfactorily (with an error of 20–25%) describes the features of change of heat transfer coefficient in the deteriorated and mixed regimes of heat transfer. The system of equations suitable for engineering calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water was developed.

  9. Effects of a power and photon energy of incident light on near-field etching properties

    Science.gov (United States)

    Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.

    2017-12-01

    We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.

  10. Nanohybrids Near-Field Optical Microscopy: From Image Shift to Biosensor Application

    Directory of Open Access Journals (Sweden)

    Nayla El-Kork

    2016-01-01

    Full Text Available Near-Field Optical Microscopy is a valuable tool for the optical and topographic study of objects at a nanometric scale. Nanoparticles constitute important candidates for such type of investigations, as they bear an important weight for medical, biomedical, and biosensing applications. One, however, has to be careful as artifacts can be easily reproduced. In this study, we examined hybrid nanoparticles (or nanohybrids in the near-field, while in solution and attached to gold nanoplots. We found out that they can be used for wavelength modulable near-field biosensors within conditions of artifact free imaging. In detail, we refer to the use of topographic/optical image shift and the imaging of Local Surface Plasmon hot spots to validate the genuineness of the obtained images. In summary, this study demonstrates a new way of using simple easily achievable comparative methods to prove the authenticity of near-field images and presents nanohybrid biosensors as an application.

  11. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  12. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy

    National Research Council Canada - National Science Library

    Thomas Taubner; F. Keilmann; R. Hillenbrand

    2005-01-01

    We demonstrate that scattering-type scanning near-field optical microscopy (s-SNOM) allows nanoscale-resolved imaging of objects below transparent surface layers at both visible and mid-infrared wavelengths...

  13. Near field communications technology and the potential to reduce medication errors through multidisciplinary application

    LENUS (Irish Health Repository)

    O’Connell, Emer

    2016-07-01

    Patient safety requires optimal management of medications. Electronic systems are encouraged to reduce medication errors. Near field communications (NFC) is an emerging technology that may be used to develop novel medication management systems.

  14. Plasmon Enhanced Optical Near-field Probing of Metal Nanoaperture Surface Emitting Laser

    National Research Council Canada - National Science Library

    Jiro Hashizume; Fumio Koyama

    2004-01-01

    ...) for sub-wavelength optical near-filed probing, which exhibits the strong plasmon enhancement of both optical near-fields and voltage signals with forming a metal nano-particle in the nano-aperture...

  15. Plasmon Enhanced Optical Near-field Probing of Metal Nanoaperture Surface Emitting Laser.

    Science.gov (United States)

    Hashizume, Jiro; Koyama, Fumio

    2004-12-13

    We demonstrate a metal nano-aperture GaAs vertical cavity surface emitting laser (VCSEL) for sub-wavelength optical near-filed probing, which exhibits the strong plasmon enhancement of both optical near-fields and voltage signals with forming a metal nano-particle in the nano-aperture. The threshold current is as low as 300microA, which shows a potential of nano-probing with low power consumption. We achieved the first demonstration of a plasmon enhanced VCSEL near-field probe. The spatial resolutions of the VCSEL probe with 400 nm and 200 nm apertures are 240nm and 130 nm, respectively. The enhancement factors of the optical near-field and voltage signal with a Au particle are 1.8 and 2, respectively. Our FDTD simulation shows that localized plasmon with a Au particle is very helpful for increasing optical near-field intensity and signal voltage in the VCSEL nano-probing.

  16. Scenario development for performance assessment - some questions for the near-field modelers

    Energy Technology Data Exchange (ETDEWEB)

    Barr, G.E.; Barnard, R.W. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    In an attempt to achieve completeness and consistency, the performance-assessment analyses developed by the Yucca Mountain Project are tied to scenarios described in event trees. Development of scenarios requires describing the constituent features, events, and processes in detail. Several features and processes occurring at the waste packages and the rock immediately surrounding the packages (i.e., the near field) have been identified: The effects of radiation on fluids in the near-field rock, the path-dependency of rock-water interactions, and the partitioning of contaminant transport between colloids and solutes. This paper discusses some questions regarding these processes that the near-field performance-assessment modelers will need to have answered to specify those portions of scenarios dealing with the near field.

  17. Scenario development for performance assessment: Some questions for the near-field modelers

    Energy Technology Data Exchange (ETDEWEB)

    Barr, G.E.; Barnard, R.W.

    1992-12-31

    In an attempt to achieve completeness and consistency, the performance-assessment analyses developed by the Yucca Mountain Project are tied to scenarios described in event trees. Development of scenarios requires describing the constituent features, events, and processes in detail. Several features and processes occurring at the waste packages and the rock immediately surrounding the packages (i.e., the near field) have been identified: the effects of radiation on fluids in the near-field rock, the path-dependency of rock-water interactions, and the partitioning of contaminant transport between colloids and solutes. This paper discusses some questions regarding these processes that the near-field performance-assessment modelers will need to have answered to specify those portions of scenarios dealing with the near field.

  18. Graphene-based photovoltaic cells for near-field thermal energy conversion

    National Research Council Canada - National Science Library

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    .... While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution...

  19. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... and circulating energy in the near-field of the source. This quantity is of concern because it makes it possible to identify the regions of a source that contribute to the far field radiation, which is often the ultimate concern in noise control. Therefore, this is a very useful analysis tool complementary...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  20. A platform for time-resolved scanning Kerr microscopy in the near-field.

    Science.gov (United States)

    Keatley, Paul S; Loughran, Thomas H J; Hendry, Euan; Barnes, William L; Hicken, Robert J; Childress, Jeffrey R; Katine, Jordan A

    2017-12-01

    Time-resolved scanning Kerr microscopy (TRSKM) is a powerful technique for the investigation of picosecond magnetization dynamics at sub-micron length scales by means of the magneto-optical Kerr effect (MOKE). The spatial resolution of conventional (focused) Kerr microscopy using a microscope objective lens is determined by the optical diffraction limit so that the nanoscale character of the magnetization dynamics is lost. Here we present a platform to overcome this limitation by means of a near-field TRSKM that incorporates an atomic force microscope (AFM) with optical access to a metallic AFM probe with a nanoscale aperture at its tip. We demonstrate the near-field capability of the instrument through the comparison of time-resolved polar Kerr images of magnetization dynamics within a microscale NiFe rectangle acquired using both near-field and focused TRSKM techniques at a wavelength of 800 nm. The flux-closure domain state of the in-plane equilibrium magnetization provided the maximum possible dynamic polar Kerr contrast across the central domain wall and enabled an assessment of the magneto-optical spatial resolution of each technique. Line profiles extracted from the Kerr images demonstrate that the near-field spatial resolution was enhanced with respect to that of the focused Kerr images. Furthermore, the near-field polar Kerr signal (∼1 mdeg) was more than half that of the focused Kerr signal, despite the potential loss of probe light due to internal reflections within the AFM tip. We have confirmed the near-field operation by exploring the influence of the tip-sample separation and have determined the spatial resolution to be ∼550 nm for an aperture with a sub-wavelength diameter of 400 nm. The spatial resolution of the near-field TRSKM was in good agreement with finite element modeling of the aperture. Large amplitude electric field along regions of the modeled aperture that lie perpendicular to the incident polarization indicate that the aperture can

  1. A platform for time-resolved scanning Kerr microscopy in the near-field

    Science.gov (United States)

    Keatley, Paul S.; Loughran, Thomas H. J.; Hendry, Euan; Barnes, William L.; Hicken, Robert J.; Childress, Jeffrey R.; Katine, Jordan A.

    2017-12-01

    Time-resolved scanning Kerr microscopy (TRSKM) is a powerful technique for the investigation of picosecond magnetization dynamics at sub-micron length scales by means of the magneto-optical Kerr effect (MOKE). The spatial resolution of conventional (focused) Kerr microscopy using a microscope objective lens is determined by the optical diffraction limit so that the nanoscale character of the magnetization dynamics is lost. Here we present a platform to overcome this limitation by means of a near-field TRSKM that incorporates an atomic force microscope (AFM) with optical access to a metallic AFM probe with a nanoscale aperture at its tip. We demonstrate the near-field capability of the instrument through the comparison of time-resolved polar Kerr images of magnetization dynamics within a microscale NiFe rectangle acquired using both near-field and focused TRSKM techniques at a wavelength of 800 nm. The flux-closure domain state of the in-plane equilibrium magnetization provided the maximum possible dynamic polar Kerr contrast across the central domain wall and enabled an assessment of the magneto-optical spatial resolution of each technique. Line profiles extracted from the Kerr images demonstrate that the near-field spatial resolution was enhanced with respect to that of the focused Kerr images. Furthermore, the near-field polar Kerr signal (˜1 mdeg) was more than half that of the focused Kerr signal, despite the potential loss of probe light due to internal reflections within the AFM tip. We have confirmed the near-field operation by exploring the influence of the tip-sample separation and have determined the spatial resolution to be ˜550 nm for an aperture with a sub-wavelength diameter of 400 nm. The spatial resolution of the near-field TRSKM was in good agreement with finite element modeling of the aperture. Large amplitude electric field along regions of the modeled aperture that lie perpendicular to the incident polarization indicate that the aperture can

  2. Diverse radiofrequency sensitivity and radiofrequency effects of mobile or cordless phone near fields exposure in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Styliani Geronikolou

    Full Text Available INTRODUCTION: The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. METHODS/RESULTS: Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. CONCLUSIONS/SIGNIFICANCE: Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects.

  3. Diverse Radiofrequency Sensitivity and Radiofrequency Effects of Mobile or Cordless Phone near Fields Exposure in Drosophila melanogaster

    Science.gov (United States)

    Geronikolou, Styliani; Zimeras, Stelios; Davos, Constantinos H.; Michalopoulos, Ioannis; Tsitomeneas, Stephanos

    2014-01-01

    Introduction The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. Methods/Results Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations) and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. Conclusions/Significance Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects. PMID:25402465

  4. Mode profiling of THz fibers with dynamic aperture near-field imaging

    DEFF Research Database (Denmark)

    Stecher, Matthias; Dürrschmidt, Stefan F.; Nielsen, Kristian

    2011-01-01

    We present terahertz near-field mode profiling of different polymer THz fibers. Images with a resolution below the THz wavelength show the fundamental mode profile and higher order modes appearing at higher frequencies.......We present terahertz near-field mode profiling of different polymer THz fibers. Images with a resolution below the THz wavelength show the fundamental mode profile and higher order modes appearing at higher frequencies....

  5. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  6. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  7. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  8. Validation of EMC near-field scanning amplitude and phase measurement data

    DEFF Research Database (Denmark)

    Mynster, Anders P.; Sørensen, Morten

    2012-01-01

    A frequency selection and data validation procedure is presented. It shows that using data from the reference channel it makes possible to estimate the validity of the measured data from an EMC near-field scan with phase on active circuits.......A frequency selection and data validation procedure is presented. It shows that using data from the reference channel it makes possible to estimate the validity of the measured data from an EMC near-field scan with phase on active circuits....

  9. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    OpenAIRE

    R., Ishikawa; Jongsuck, Bae; K., Mizuno

    2001-01-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analy...

  10. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  11. Ab initio calculations of pressure-dependence of high-order elastic constants using finite deformations approach

    Science.gov (United States)

    Mosyagin, I.; Lugovskoy, A. V.; Krasilnikov, O. M.; Vekilov, Yu. Kh.; Simak, S. I.; Abrikosov, I. A.

    2017-11-01

    We present a description of a technique for ab initio calculations of the pressure dependence of second- and third-order elastic constants. The technique is based on an evaluation of the corresponding Lagrangian stress tensor derivative of the total energy assuming finite size of the deformations. Important details and parameters of the calculations are highlighted. Considering body-centered cubic Mo as a model system, we demonstrate that the technique is highly customizable and can be used to investigate non-linear elastic properties under high-pressure conditions.

  12. A Mathematical Scheme for Calculating Flows and Pressure Drops in Lit and Unlit Cigarettes

    Directory of Open Access Journals (Sweden)

    Dwyer RW

    2014-12-01

    Full Text Available A computational methodology is presented for evaluating the flows and pressure drops in both lit and unlit cigarettes. The flows and pressure drops across rows of tipping-paper perforations are considered explicitly, as are the locations and relative sizes of the ventilation holes. The flows and pressure drops across air-permeable cigarette papers are included. The influence of plugwrappermeabilities on filter ventilation is developed. Lit cigarettes are mimicked by adding a “coal” pressure drop to the upstream end of the cigarette. The computational scheme is used to predict the effects of tobacco-rod length, puff volume, and vent blocking on cigarette ventilation and pressure drop. A derivation of the pressure-drop and flow equations for a cigarette with an upstream pressure drop is included in an appendix.

  13. Beam spot diameter of the near-field scanning electron microscopy.

    Science.gov (United States)

    Kyritsakis, A; Xanthakis, J P

    2013-02-01

    We have examined the beam spot diameter at the anode of the scanning electron microscopy (SEM) in the near-field mode as a function of the anode-tip distance d. The detector lateral resolution of this type of microscopy is approximately equal to this spot diameter. For our calculations we have simulated the apex region of the tip with an ellipsoid of revolution of radii R₁ and R₂ with R₁>R₂ as suggested by TEM images of the realistic tips. We have then solved the Laplace equation to obtain the electrostatic potential and to this we have added a spherical image potential. The calculated electrostatic field is highly asymmetric, being strong along the tip-axis and weakening quickly towards the sides. When a 3-dimensional WKB approximation is used to calculate the electron paths corresponding to such a potential, the latter are shown to bend significantly towards the vertical (tip-axis) direction producing a beam narrowing effect very similar to the beam narrowing effect we discovered for the traditional SEM case. When the values of R₁, R₂ are chosen from fittings to the TEM images of the tips used in the experiments, the beam spot diameter W at the anode (d=25 nm) varies from 12.5 nm to 9 nm depending on the fitted R₁, R₂. These values of W are considerably smaller than previously predicted by calculating solid angles of emission from spherical surfaces (41 nm) but also much closer to the detector lateral resolution (6-7 nm) obtained from differentiating the experimental current step. This trend continued at all other d examined. Furthermore the beam width W was found to decrease quickly with increasing sharpness S=R₁/R₂ of the tip and then saturate. W is also decreasing with decreasing R₁, R₂ with S kept constant. We deduce that the sharpness of the tip is important not only for creating high extraction fields but also for guaranteeing a very small beam spot diameter. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A mapping relationship based near-field acoustic holography with spherical fundamental solutions for Helmholtz equation

    Science.gov (United States)

    Wu, Haijun; Jiang, Weikang; Zhang, Haibin

    2016-07-01

    In the procedure of the near-field acoustic holography (NAH) based on the fundamental solutions for Helmholtz equation (FS), the number of FS and the measurement setup to obtain their coefficients are two crucial issues to the successful reconstruction. The current work is motivated to develop a framework for the NAH which supplies a guideline to the determination of the number of FS as well as an optimized measurement setup. A mapping relationship between modes on surfaces of boundary and hologram is analytically derived by adopting the modes as FS in spherical coordinates. Thus, reconstruction is converted to obtain the coefficients of participant modes on holograms. In addition, an integral identity is firstly to be derived for the modes on convex surfaces, which is useful in determining the inefficient or evanescent modes for acoustic radiation in free space. To determine the number of FS adopted in the mapping relationship based NAH (MRS-based NAH), two approaches are proposed to supply reasonable estimations with criteria of point-wise pressure and energy, respectively. A technique to approximate a specific degree of mode on patches by a set of locally orthogonal patterns is explored for three widely used holograms, such as planar, cylindrical and spherical holograms, which results in an automatic determinations of the number and position of experimental setup for a given tolerance. Numerical examples are set up to validate the theory and techniques in the MRS-based NAH. Reconstructions of a cubic model demonstrate the potential of the proposed method for regular models even with corners and shapers. Worse results for the elongated cylinder with two spherical caps reveal the deficiency of the MRS-based NAH for irregular models which is largely due to the adopted modes are FS in spherical coordinates. The NAH framework pursued in the current work provides a new insight to the reconstruction procedure based on the FS in spherical coordinates.

  15. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.

  16. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  17. Temperature and pressure effects on GFP mutants: explaining spectral changes by molecular dynamics simulations and TD-DFT calculations.

    Science.gov (United States)

    Jacchetti, Emanuela; Gabellieri, Edi; Cioni, Patrizia; Bizzarri, Ranieri; Nifosì, Riccardo

    2016-05-14

    By combining spectroscopic measurements under high pressure with molecular dynamics simulations and quantum mechanics calculations we investigate how sub-angstrom structural perturbations are able to tune protein function. We monitored the variations in fluorescence output of two green fluorescent protein mutants (termed Mut2 and Mut2Y, the latter containing the key T203Y mutation) subjected to pressures up to 600 MPa, at various temperatures in the 280-320 K range. By performing 150 ns molecular dynamics simulations of the protein structures at various pressures, we evidenced subtle changes in conformation and dynamics around the light-absorbing chromophore. Such changes explain the measured spectral tuning in the case of the sizable 120 cm(-1) red-shift observed for pressurized Mut2Y, but absent in Mut2. Previous work [Barstow et al., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13362] on pressure effects on GFP also involved a T203Y mutant. On the basis of cryocooling X-ray crystallography, the pressure-induced fluorescence blue shift at low temperature (77 K) was attributed to key changes in relative conformation of the chromophore and Tyr203 phenol ring. At room temperature, however, a red shift was observed at high pressure, analogous to the one we observe in Mut2Y. Our investigation of structural variations in compressed Mut2Y also explains their result, bridging the gap between low-temperature and room-temperature high-pressure effects.

  18. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2013-01-01

    Full Text Available Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.

  19. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  20. Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient

    Science.gov (United States)

    Alizadeh, M.; Seyedpour, S. M.; Mozafari, V.; Babazadeh, Shayan S.

    2012-07-01

    Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers. Any changes in blood pressure and its normal velocity can be a sign of a disease. Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag, velocity and periodic blood pressure in vessels. In this paper, by considering available experimental quantities, for blood pressure and velocity in periodic time of a thigh artery of a living dog, at first it is written into Fourier series, then by solving Navier-Stokes equations, a relation for curve drawing of vessel blood pressure with rigid wall is obtained. Likewise in another part of this paper, vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series. In this case, by solving Navier-Stokes equations, some relations for blood velocity, viscous drag on vessel wall and blood pressure are obtained. In this study by noting that vessel diameter is almost is large (3.7 mm), and blood is considered as a Newtonian fluid. Finally, available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared. In blood analysis in rigid vessel, existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall, results in new relations for blood flow description. The Resultant curve is obtained from new relations holding 10% variance in systole peak.

  1. In Vivo Validation of Patient-Specific Pressure Gradient Calculations for Iliac Artery Stenosis Severity Assessment.

    Science.gov (United States)

    Heinen, Stefan G H; van den Heuvel, Daniel A F; Huberts, Wouter; de Boer, Sanne W; van de Vosse, Frans N; Delhaas, Tammo; de Vries, Jean-Paul P M

    2017-12-23

    Currently, the decision to treat iliac artery stenoses is mainly based on visual inspection of digital subtraction angiographies. Intra-arterial pressure measurements can provide clinicians with accurate hemodynamic information. However, pressure measurements are rarely performed because of their invasiveness and the time required. Therefore, the aim of the study was to test the feasibility of a computational model that can predict translesional pressure gradients across iliac artery stenoses on the basis of imaging data only. Patients (N=21) with symptomatic peripheral arterial disease and a peak systolic velocity ratio between 2.5 and 5.0 were included in the study. Patients underwent per-procedural 3-dimensional rotational angiography and hyperemic intra-arterial translesional pressure measurements. Vascular anatomical features were reconstructed from the 3-dimensional rotational angiography data into an axisymmetrical 2-dimensional computational mesh, and flow was estimated on the basis of the stenosis geometry. Computational fluid dynamics were performed to predict the pressure gradient and were compared with the measured pressure gradients. A good agreement by overlapping error bars of the predicted and measured pressure gradients was found in 21 of 25 lesions. Stratification of the stenosis on the basis of the predicted pressure gradient into hemodynamic not significant (URL: http://www.trialregister.nl. Unique identifier: NTR5085. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  3. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.

    Science.gov (United States)

    Metzger, Bernd; Hentschel, Mario; Giessen, Harald

    2017-03-08

    We introduce a new concept that enables subwavelength polarization-resolved probing of the second-harmonic near-field distribution of plasmonic nanostructures. As a local sensor, this method utilizes aluminum nanoantennas, which are resonant to the second-harmonic wavelength and which allow to efficiently scatter the local second-harmonic light to the far-field. We place these sensors into the second-harmonic near-field generated by plasmonic nanostructures and carefully vary their position and orientation. Observing the second-harmonic light resonantly scattered by the aluminum nanoantennas provides polarization-resolved information about the local second-harmonic near-field distribution. We then investigate the polarization-resolved second-harmonic near-field of inversion symmetric gold dipole nanoantennas. Interestingly, we find strong evidence that the second-harmonic dipole is predominantly oriented perpendicular to the gold nanoantenna long axis, although the excitation laser is polarized parallel to the nanoantennas. We believe that our investigations will help to disentangle the highly debated origin of the second-harmonic response of inversion symmetric plasmonic structures. Furthermore, we believe that our new method, which enables the measurement of local nonlinear electric fields, will find widespread implementation and applications in nonlinear near-field optical microscopy.

  4. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography.

    Science.gov (United States)

    Govyadinov, Alexander A; Mastel, Stefan; Golmar, Federico; Chuvilin, Andrey; Carney, P Scott; Hillenbrand, Rainer

    2014-07-22

    The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.

  5. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  6. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Science.gov (United States)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-01

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  7. On the Impact of the Fuel Dissolution Rate Upon Near-Field Releases From Nuclear Waste Disposal

    Directory of Open Access Journals (Sweden)

    A Pereira

    2016-09-01

    Full Text Available Calculations of the impact of the dissolution of spent nuclear fuel on the release from a damaged canister in a KBS-3 repository are presented. The dissolution of the fuel matrix is a complex process and the dissolution rate is known to be one of the most important parameters in performance assessment models of the near-field of a geological repository. A variability study has been made to estimate the uncertainties associated with the process of fuel dissolution. The model considered in this work is a 3D model of a KBS-3 copper canister. The nuclide used in the calculations is Cs-135. Our results confirm that the fuel degradation rate is an important parameter, however there are considerable uncertainties associated with the data and the conceptual models. Consequently, in the interests of safety one should reduce, as far as possible, the uncertainties coupled to fuel degradation.

  8. Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems.

    Science.gov (United States)

    Nakamura, Takenobu; Shinoda, Wataru; Ikeshoji, Tamio

    2011-09-07

    We propose a novel method for computing the pressure tensor along the radial axis of a molecular system with spherical symmetry. The proposed method uses the slice averaged pressure to improve the numerical stability and precision significantly. Simplified expressions of the local pressure are derived for a conventional molecular force field including non-bond, bond stretching, angle bending, and torsion interactions; these expressions are advantageous in terms of the computational cost. We also discuss an algorithm to avoid numerical singularity. Finally, the method is successfully applied to three different molecular systems, i.e., a water droplet in oil, a spherical micelle, and a liposome. © 2011 American Institute of Physics

  9. Pressure induced novel compounds in the Hf-O system from first-principles calculations

    OpenAIRE

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Xue, Kan-Hao; Wang, Zhenhai; Dong, Huafeng

    2015-01-01

    Using first-principles evolutionary simulations, we have systematically investigated phase stability in the Hf-O system at pressure up to 120 GPa. New compounds Hf5O2, Hf3O2, HfO and HfO3 are discovered to be thermodynamically stable at certain pressure ranges and a new stable high-pressure phase is found for Hf2O with space group Pnnm and anti-CaCl2-type structure. Both P62m-HfO and P4m2-Hf2O3 show semimetallic character. Pnnm-HfO3 shows interesting structure, simultaneously containing oxide...

  10. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A. [Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.

  11. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    Directory of Open Access Journals (Sweden)

    Shang-Te Yang

    2013-01-01

    Full Text Available An efficient approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3×3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.

  12. The near-field acoustic levitation for spheres by transducer with concave spherical radiating surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian Fang; Sun, Xu Guang; Jiao, Xiao Yang; Chen, Hong Xia [Jilin University, Changchun (China); Hua, Shun Ming [Zhejiang University, Ningbo (China); Zhang, Hong Chun [Aviation University of AirForce, Changchun (China)

    2013-02-15

    To levitate ICF target spheres in the near-field acoustic levitation, a transducer with concave spherical radiating surface and a nearfield acoustic levitation system is established. The concave spherical radiating surface of the transducer is designed by the finite element parametric method. Then the levitation height and levitation perturbation of spheres with different mass and diameters in the near-field acoustic levitation system are tested and discussed in the driving voltage at 400V, 500V and 600V, respectively, when the levitation system is under the resonant frequency. Finally, based on the experimental results, the height formula of the near-field acoustic levitation for spheres is deduced by introducing a coupling coefficient.

  13. Near field optical and spectroscopic imaging of InN nanostructures

    Science.gov (United States)

    Madapu, Kishore K.; Sivadasan, A. K.; Dhara, Sandip

    2017-05-01

    Conventional optical spectroscopy is limited by the diffraction limit which impose the condition of spatial resolution to be achieved ≤ λ/2. Near field optical microscopic techniques such as near field scanning optical microscopy (NSOM) and tip enhanced Raman spectroscopy (TERS) improves the spatial resolution by utilizing the evanescent field. Here, we studied the near field light matter interaction of InN nanostructures using the NSOM technique and achieved a spatial resolution of 50 nm with 150 nm aperture tip and 532 nm light source. The optical contrast in the NSOM images is attributed to the local variation of dielectric constant of individual nanostructures. TERS imaging is performed with an atomic force microscopy (AFM) tip attached with a 300 nm Au particle to achieve a sub-diffraction spatial resolution of ˜200 nm using 785 nm laser excitation.

  14. Improvement of infrared near-field spectrum by asymmetric interferometer configuration

    Science.gov (United States)

    Ikemoto, Yuka; Okamura, Hidekazu; Moriwaki, Taro; Suto, Hitoshi; Kinoshita, Toyohiko

    2015-08-01

    Infrared synchrotron radiation (IR-SR) is a highly brilliant white light source. We are developing an infrared near-field spectroscopy system with an IR-SR light source. The near-field spectroscopy system previously reported comprised an atomic force microscope (AFM) and a commercial Fourier transform infrared (FTIR) spectrometer. In the present study, the configuration of the FTIR interferometer has been modified to an asymmetric one. In the asymmetric interferometer, one beam split by a beamsplitter is focused onto the tip of an AFM probe, and the other beam goes to a movable mirror. The scattered light from the probe and the light reflected by the movable mirror interfere with each other. The near-field signal is extracted by a modulation method with an AFM oscillation frequency. The signal-to-noise ratio has been improved 6-fold and the signal-to-background ratio is improved 8-fold compared with those observed in the previous system.

  15. An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.

    Science.gov (United States)

    Singh, Parth Raj; Wang, Yide; Chargé, Pascal

    2017-03-30

    In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.

  16. Three-dimensional near-field MIMO array imaging using range migration techniques.

    Science.gov (United States)

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  17. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  18. Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars

    Science.gov (United States)

    Intonti, F.; Caselli, N.; Lawrence, N.; Trevino, J.; Wiersma, D. S.; Dal Negro, L.

    2013-08-01

    In this work, we employ scanning near-field optical microscopy, full-vector finite difference time domain numerical simulations and fractional Fourier transformation to investigate the near-field and propagation behavior of the electromagnetic energy scattered at 1.56 μm by dielectric arrays of silicon nitride nanopillars with chiral α1-Vogel spiral geometry. In particular, we experimentally study the spatial evolution of scattered radiation and demonstrate near-field coupling between adjacent nanopillars along the parastichies arms. Moreover, by measuring the spatial distribution of the scattered radiation at different heights from the array plane, we demonstrate a characteristic rotation of the scattered field pattern consistent with net transfer of orbital angular momentum in the Fresnel zone, within a few micrometers from the plane of the array. Our experimental results agree with the simulations we performed and may be of interest to nanophotonics applications.

  19. A total generalized variation approach for near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    2017-01-01

    Near-field methods based on microphone array measurements are useful to understand how a source radiates sound. Due to discretization errors, these methods are typically restricted to low frequencies. Sparse approaches have gained considerable attention, as they can potentially recover a seemingly...... under-sampled signal with remarkable accuracy, extending the valid frequency range. However, near-field problems are generally not spatially sparse, and it is more appropriate to promote block-sparse solutions (i.e. spatially extended) rather than direct spatial sparsity. In this paper, a method...... is examined that promotes solutions with sparse spatial derivatives. The method seeks spatially extended solutions, valid over a wide frequency range, and suitable to near-fields and extended sources. The methodology is based on a Total Variation approach using higher order derivatives. The frequency range...

  20. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case

    Science.gov (United States)

    Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.

    2012-10-01

    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  1. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    Science.gov (United States)

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  2. Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, Nikolay N [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Atanasov, Petar A [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Obara, Minoru [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2007-08-01

    In this paper we present experimental and theoretical results on the properties of the electromagnetic field in the near-field zone of gold nanoparticles excited by an 800 nm ultrashort laser pulse. The near-field properties are studied for the case of a single isolated particle and 2D nanoparticle array case. Particles are deposited on different substrates: metal (Au), semiconductor (Si) and dielectric (SiO{sub 2}). The calculations based on the finite difference time domain (FDTD) simulation technique predict that the field in the vicinity of the particles is enhanced as the magnitude of the field intensity depends on the substrate material and the interparticle distance for 2D array. For closely arrayed nanoparticles on the gold substrate, the maximal field intensity is more than two times lower than that of a single particle. With the increase of the distance between 200 nm diameter gold particles, the value of the field intensity increases up to a distance of about 800 nm. The theoretical prediction of the field enhancement on the substrate is confirmed experimentally. The irradiation of the nanoparticles deposited on the three different substrates with a single laser pulse of a Ti:sapphire laser results in a nanohole formation. Discussion on the observed properties is presented.

  3. Far- and near-field second harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Pedersen, Kjeld; Skettrup, Torben

    1998-01-01

    Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about 0.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....

  4. Near field thermal memory based on radiative phase bistability of VO2

    Science.gov (United States)

    Dyakov, S. A.; Dai, J.; Yan, M.; Qiu, M.

    2015-08-01

    We report the concept of a near-field memory device based on the radiative bistability effect in the system of two closely separated parallel plates of SiO2 and VO2 which exchange heat by thermal radiation in vacuum. We demonstrate that the VO2 plate, having metal-insulator transition at 340 K, has two thermodynamical steady-states. One can switch between the states using an external laser impulse. We show that due to near-field photon tunneling between the plates, the switching time is found to be only 5 ms which is several orders lower than in case of far field.

  5. A sparse equivalent source method for near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical......This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive–Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based...

  6. Near field and altered zone environmental report Volume I: technical bases for EBS design

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, D. G., LLNL

    1997-08-01

    This report presents an updated summary of results for the waste package (WP) and engineered barrier system (EBS) evaluations, including materials testing, waste-form characterization, EBS performance assessments, and near-field environment (NFE) characterization. Materials testing, design criteria and concept development, and waste-form characterization all require an understanding of the environmental conditions that will interact with the WP and EBS. The Near-Field Environment Report (NFER) was identified in the Waste Package Plan (WPP) (Harrison- Giesler, 1991) as the formal means for transmitting and documenting this information.

  7. Near-field scanning microwave microscopy of few-layer graphene.

    Energy Technology Data Exchange (ETDEWEB)

    Kalugin, Nikolai G. (New Mexico Tech, Socorro. NM); Gonzales, Edward; Kalichava, Irakli (New Mexico Tech, Socorro. NM); Gin, Aaron V.; Wickey, Lee (New Mexico Tech, Socorro. NM); Del Barga, Christopher (New Mexico Tech, Socorro. NM); Talanov, Vladimir V. (Semilab USA, Billerica, MA); Shaner, Eric Arthur

    2010-08-01

    Near-field microwave microscopy can be used as an alternative to atomic-force microscopy or Raman microscopy in determination of graphene thickness. We evaluated the values of AC impedance for few layer graphene. The impedance of mono and few-layer graphene at 4GHz was found predominantly active. Near-field microwave microscopy allows simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without device fabrication. Our results may be useful for design of future graphene-based microwave devices.

  8. Three-dimensional radar imaging techniques and systems for near-field applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  9. Thermal supercurrent in non-reciprocal many-body near field electromagnetic heat transfer

    CERN Document Server

    Zhu, Linxiao

    2016-01-01

    We consider the consequence of non-reciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that in thermal equilibrium, non-reciprocal many-body system can support a persistent directional heat current, i.e. thermal supercurrent, without violating the second law of thermodynamics. Such a thermal supercurrent can not occur in reciprocal systems, and can only arise in many-body systems. The use of non-reciprocity therefore points to a new regime of near-field heat transfer for the control of heat flow in the nanoscale.

  10. Development of a backscattering type ultraviolet apertureless near-field scanning optical microscope.

    Science.gov (United States)

    Kwon, Sangjin; Jeong, Hyun; Jeong, Mun Seok; Jeong, Sungho

    2011-08-01

    A backscattering type ultraviolet apertureless near-field scanning optical microscope (ANSOM) for the correlated measurement of topographical and optical characteristics of photonic materials with high optical resolution was developed. The near-field Rayleigh scattering image of GaN covered with periodic submicron Cr dots showed that optical resolution around 40 nm was achievable. By measuring the tip scattered photoluminescence of InGaN/GaN multi quantum wells, the applicability of the developed microscope for high resolution fluorescence measurement was also demonstrated.

  11. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths....... Is is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realise imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical...

  12. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...... by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics....

  13. Wideband Phase Retrieval Technique from Amplitude-Only Near-Field Data

    Directory of Open Access Journals (Sweden)

    G. D. Massa

    2008-12-01

    Full Text Available A wideband frequency behavior is demonstrated for a phaseless near-field technique of basically interferometric approach, which uses two identical probes interfering each other through a microstrip circuit and performing amplitude-only near-field measurements on a single scanning surface. The phase retrieval procedure is properly formulated to take into account the frequency dependence without changing neither the microstrip circuit nor the distance between the probes. Numerical simulations on a linear array of elementary sources are presented to validate the theoretical results.

  14. Laser wavelength effects in ultrafast near-field laser nanostructuring of Si

    Energy Technology Data Exchange (ETDEWEB)

    Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

    2010-03-18

    We study the effect of laser wavelength (400 nm and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond (fs) pulse duration regime through sub-wavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure which can be tuned between craters and protrusions. A single or a few fs pulses can deliver enough energy on the substrate to induce sub-diffraction limited surface modification, which is among the smallest ever reported in sub-wavelength apertured Near-field Scanning Optical Microscope (NSOM) schemes.

  15. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    Science.gov (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  16. Near field evidence of backward surface plasmon polaritons on negative index material boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-12-09

    Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.

  17. Scanning optical near-field resolution analyzed in terms of communication modes.

    Science.gov (United States)

    Martinsson, Per; Lajunen, Hanna; Friberg, Ari T

    2006-11-13

    We present an analysis of scanning near-field optical microscopy in terms of the so-called communication modes using scalar wave theory. We show that the number of connected modes increases when the scanning distance is decreased, but the number of modes decreases when the size of the scanning aperture is decreased. In the limit of small detector aperture the best-connected mode reduces effectively to the Green function, evaluated at the center of the scanning aperture. We also suggest that the resolution of a scanning optical near-field imaging system is essentially given by the width of the lowest-order communication mode.

  18. An mHealth system for toxicity monitoring of paediatric oncological patients using Near Field Communication technology.

    Science.gov (United States)

    Duregger, Katharina; Hayn, Dieter; Morak, Jürgen; Ladenstein, Ruth; Schreier, Gunter

    2015-01-01

    Home-based monitoring might be useful to reduce the burden of long-lasting oncological treatment for children. Current telemonitoring applications focus on chronic diseases or elderly people. Based on the workflow for different stakeholders and the identification of parameters important in paediatric oncology, we developed a prototype of a smartphone-based telehealth system using Near Field Communication technology for monitoring paediatric neuroblastoma patients at home. The parameters blood pressure, heart rate, temperature, body weight, C-reactive protein, white blood cell count, wellbeing, pain level, nausea level and skin alterations could be monitored using a smartphone, a designated app, point-of-care measurement devices and a smart-poster containing RFID tags. The system has been designed to increase the quality of life for paediatric cancer patients. As a future step, a clinical trial is currently being planned to evaluate the system in clinical setting.

  19. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Arayones, J.M.

    1985-06-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions.

  20. Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution.

    Science.gov (United States)

    Kocifaj, Miroslav; Klačka, Jozef

    2012-01-15

    This Letter treats the scattering of electromagnetic waves by an electrically charged spherical particle in near-field approximation. Particular attention is paid to the external intensity distribution at the outer edges of the particle. The difference between scattering by a charged sphere and an electrically neutral sphere is significant only when size parameters exceed unity.

  1. Odd-order probe correction technique for spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2005-01-01

    In this paper, an odd-order probe for spherical near-field antenna measurements is defined. A probe correction technique for odd-order probes is then formulated and tested by computer simulations. The probe correction for odd-order probes is important, since a wide range of realistic antennas...

  2. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...

  3. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  4. Investigation of whispering gallery modes in microlasers by scanning near-field optical microscopy

    Science.gov (United States)

    Polubavkina, Yu S.; Kryzhanovskaya, N. V.; Nadtochiy, A. M.; Mintairov, A. M.; Lipovsky, A. A.; Scherbak, S. A.; Kulagina, M. M.; Maximov, M. V.; Zhukov, A. E.

    2017-11-01

    Near-field scanning optical microscopy (NSOM) with a spatial resolution below the light diffraction limit was used to study intensity distributions of the whispering gallery modes (WGMs) in quantum dot-based microdisk and microring lasers on GaAs with different outer diameters. Room temperature microphotoluminescence study (μPL) reveal lasing in microlasers of both geometries.

  5. Compact First-Order Probe for Spherical Near-Field Antenna Measurements at Low Frequencies

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2017-01-01

    Guidelines for designing compact and lightweight first-order probes for spherical near-field antenna measurements at frequencies below 1 GHz that exploit first-order properties of electrically small self-resonant radiators combined into superdirective endfire arrays are established theoretically...... is just 343 mm above a 720-mm circular ground plane and weighs about 5 kg....

  6. Simulation, Fabrication and Near-Field Characterization of Nanoantenna Couplers for Telecom Range

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu

    2014-01-01

    We report a modified bow - tie antenna for light coupling to subwavelength plasmonic slot waveguide . Its effective area is 15 times larger than that of the bare waveguide terminatio n at the wavelength 1.55 μm . We demonstrate numerical simulation, fabrication and , for the first time, full ampl...... amplitude - phase near - field optical characterization of nanocoupler in telecom range ....

  7. Strains of scattering of near-field of a point source

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    close enough to the point source so that the near-field intermediate wave is dominating over the far-field spherical P and S pulses. The integral ... tine observations of tilt and strain around an active fault is important for short-term earthquake ..... Rate of decrease of dilatation and rota- tion is almost similar. Time of travel also ...

  8. Iterative probe correction technique for spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2005-01-01

    An iterative probe correction technique is presented to correct for the errors caused by the application of the traditional first-order probe correction for nonideal first-order probes in spherical near-field antenna measurements. The technique may be applied, with certain restrictions, for more...... general probes as well....

  9. Characterization of viscous biofuel sprays using digital imaging in the near field region

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, Artur Krzysztof; Brem, Gerrit

    2015-01-01

    The atomization of biodiesel, vegetable oil and glycerin has been studied in an atmospheric spray rig by using digital imaging (PDIA). Images of the spray were captured in the near field, just 18 mm downstream of the atomizer, and processed to automatically determine the size of both ligaments and

  10. Characterization of aniosotropic nano-particles by using depolarized dynamic light scattering in the near field

    NARCIS (Netherlands)

    Brogioli, D.; Salerno, D.; Cassina, V.; Sacanna, S.|info:eu-repo/dai/nl/311471676; Philipse, A.P.|info:eu-repo/dai/nl/073532894; Croccolo, F.; Mantegazza, F.

    2009-01-01

    Light scattering techniques are widely used in many fields of condensed and soft matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light

  11. Compact First-Order Probe for Spherical Near-Field Antenna Measurements at P-band

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A novel compact P-band dual-linearly polarized firstorder probe for spherical near-field (SNF) antenna measurements is presented. The probe covers the bandwidth 421- 444 MHz with more than 9 dBi directivity and parasitic |μ| ≠ 1 spherical modes suppressed below -35 dB. The height of the probe...

  12. Weighted near-field focusing in an array-based GPR

    NARCIS (Netherlands)

    Savelyev, T.G.; Yarovoy, A.G.; Ligthart, L.P.

    2008-01-01

    This paper presents a 3-D imaging technique for an ultra-wideband (UWB) ground penetrating radar (GPR) with a single transmit antenna and a linear receive array. The video impulse GPR working in the frequency band of 0.3–3 GHz has been designed in IRCTR for landmine detection, i.e., for a near-field

  13. A review of models for near-field exposure pathways of chemicals in consumer products

    DEFF Research Database (Denmark)

    Huang, Lei; Ernstoff, Alexi; Fantke, Peter

    2017-01-01

    Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models...

  14. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    Science.gov (United States)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  15. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2015-01-01

    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  16. Scanning near-field lithography with high precision flexure orientation stage control

    Science.gov (United States)

    Qin, Jin; Zhang, Liang; Tan, Haosen; Wang, Liang

    2017-09-01

    A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh's equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography.

  17. Near-field short correlation in optical waves transmitted through random media

    NARCIS (Netherlands)

    Emiliani, V.; Intonti, F.; caza, M.; Wiersma, D.S.; Colocci, M.; Aliev, F.; Lagendijk, Aart

    2003-01-01

    Two-dimensional near-field images of light transmitted through a disordered dielectric structure have been measured for two probe wavelengths. From these data, the 2D spatial dependence of the intensity correlation function, C(¿R¿), has been extracted. We observe that the spatial dependence of C is

  18. Near-field imaging of interference pattern of counterpropagating evanescent waves

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Bozhevolnaya, Elena A.

    1999-01-01

    It is generally accepted that measurement of of the contrast of the intensity interference pattern formed by two counterpropagating evanescent waves can be used to characterize the resolving power of a collection near-field microscope. We argue that, if the light collected by a fiber probe...

  19. Minimal BRDF Sampling for Two-Shot Near-Field Reflectance Acquisition

    DEFF Research Database (Denmark)

    Xu, Zexiang; Nielsen, Jannik Boll; Yu, Jiyang

    2016-01-01

    the condition-number alone performs poorly. We demonstrate practical near-field acquisition of BRDFs from only one or two input images. Our framework generalizes to configurations like a fixed camera setup, where we also develop a simple extension to spatially-varying BRDFs by clustering the materials....

  20. Near-field optical microscopy of localized excitations on rough surfaces: influence of a probe

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Starting from the general principles of near-field optical microscopy. I consider the influence of a probe when being used to image localized dipolar excitations and suggest a way of evaluating the perturbation thus introduced. Using the rigorous microscopic (electric) point-dipole description, I...

  1. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    NARCIS (Netherlands)

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of

  2. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  3. Near-Field Scanning Optical Microscopy of Single Fluorescent Dendritic Molecules

    NARCIS (Netherlands)

    Veerman, J.A.; Levi, S.; van Veggel, F.C.J.M.; Reinhoudt, David; van Hulst, N.F.

    1999-01-01

    Individual dendritic molecules adsorbed o­n glass containing a single fluorescent rhodamine B core have been observed with near-field scanning optical microscopy (NSOM); height and fluorescence images were obtained simultaneously. The dendritic assemblies can be discriminated from free fluorescent

  4. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  5. Minimal BRDF Sampling for Two-Shot Near-Field Reflectance Acquisition

    DEFF Research Database (Denmark)

    Xu, Zexiang; Nielsen, Jannik Boll; Yu, Jiyang

    2016-01-01

    We develop a method to acquire the BRDF of a homogeneous flat sample from only two images, taken by a near-field perspective camera, and lit by a directional light source. Our method uses the MERL BRDF database to determine the optimal set of lightview pairs for data-driven reflectance acquisition...

  6. A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations

    Science.gov (United States)

    2015-08-01

    and b) near-field configuration ...3 Fig. 2 Vivaldi notch antenna used as the receiver element in the SIRE radar system, showing the a) physical...field transfer function of the Vivaldi notch antenna computed by FEKO at boresight, showing a) magnitude and b) unwrapped phase ....5 Fig. 4

  7. Induced Light Emission from Quantum Dots: The Directional Near-Field Pattern

    DEFF Research Database (Denmark)

    Iezhokin, Igor; Keller, Ole; Lozovski, Valeri

    2010-01-01

    The optical Lippmann-Schwinger equation, supplemented by the microscopic conductivity tensor, is used to establish a near-field radiation theory for a mesoscopic particle. The present theory deviates from previous ones in that it allows one to take into account the finite size of the particle...

  8. A calculation of the differential pressure of MOV(Moter Operated Valve) using Flowmaster and SFM code

    Energy Technology Data Exchange (ETDEWEB)

    Rey, H. K.; Park, S. K.; Kim, D. W.; Kang, S. C.; Jung, H. K.; Park, S. K. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2000-10-01

    Comparisons of the calculation of the differential pressure through four MOV's between Flowmaster code and SFM model has been presented. The Flowmaster and SFM model basically use 1-D steady-state equation, but for the transient analysis, the Flowmaster uses Joukowsky equation considering the effect of fluid velocity variation and wave speed, while, the SFM model uses quasi-steady equation including fluid inertia effect due to pipe inertia. The maximum differential pressures in opening stroke are almost the same between Flowmaster and SFM model, because the two code have the same steady-state equation. For closing stroke, however, the maximum differential pressure is somewhat different, the Flowmaster code shows higher large estimation than SFM code.

  9. An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy.

    Science.gov (United States)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2007-08-01

    A conjugate gradient method based on inverse algorithm is applied in this study to estimate the unknown space- and time-dependent heat source in aluminum-coated tapered optical fibers for scanning near-field optical microscopy, by reading the transient temperature data at the measurement positions. No prior information is available on the functional form of the unknown heat source in the present study; thus, it is classified as the function estimation in inverse calculation. The accuracy of the inverse analysis is examined by using the simulated exact and inexact temperature measurements. Results show that an excellent estimation on the heat source and temperature distributions in the tapered optical fiber can be obtained for all the test cases considered in this study.

  10. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  11. Filter efficiency and pressure drop calculations through two and three dimensional fiber arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Corey, I.; Speck, D.

    1994-04-01

    We have used a commercially available fluid dynamics code, NEKTON version 2.85, and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through a 2-D and two 3-D fiber matrix elements.

  12. Calculation of the contact pressure between ski and snow during a carved turn in Alpine skiing.

    Science.gov (United States)

    Heinrich, D; Mössner, M; Kaps, P; Nachbauer, W

    2010-06-01

    The macroscopic contact area between ski and snow and the contact pressure are crucial influencing factors for carved turns in Alpine skiing. In the present paper, a simulation model is developed to quantify these factors. The ski is modelled as an Euler-Bernoulli beam with variable cross section, camber, bending and torsional stiffness using measured data from skis. The reaction forces of the snow are decomposed in penetration and shear forces. For the penetration forces a hypoplastic constitutive law is applied incorporating elastic and plastic deformation of the snow at the contact area. For the shear forces metal cutting theory is used. Ski deformation, contact area and contact pressure are computed based on quasi-static equilibrium between forces exerted by the skier and snow reaction forces. Parameter studies are performed to investigate the influence of edging and distributing the load between the inner and outer ski. Higher edging angles as well as loading both skis affected the contact pressure positively by increasing the resistance against shearing. The results of our study agree well with measurement data taken from literature. Based on the results, the importance of actions of the skier during carved turns is concluded.

  13. Tuning near-field enhancements on an off-resonance nanorod dimer via temporally shaped femtosecond laser

    Science.gov (United States)

    Du, Guangqing; Yang, Qing; Chen, Feng; Lu, Yu; Wu, Yanmin; Ou, Yan; Hou, Xun

    2015-11-01

    We theoretically investigated ultrafast thermal dynamics tuning of near-field enhancements on an off-resonance gold nanorod dimer via temporally shaped femtosecond (fs) laser double pulses. The nonequilibrium thermal excitation is self-consistently coupled into a near-field scattering model for exploring the ultrafast near-field enhancement effects. It is revealed that the near electric-field localized within the gold nanorod dimer can be largely promoted via optimizing the temporal separation and the pulse energy ratio of temporally shaped femtosecond laser double pulses. The results are explained as thermal dynamics manipulation of plasmon resonances in the nanorod dimer via tailoring temporally shaped femtosecond laser. This study provides basic understanding for tuning near-field properties on poorly fabricated metallic nano-structures via temporally shaped femtosecond laser, which can find potential applications in the fields such as fs super-resolution near-field imaging, near-field optical tweezers, and fs photothermal therapy.

  14. An intercomparison of POLARIS measurement results from the DTU-ESA Facility and from the ESTEC Near-Field Range

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav

    This report documents an intercomparison of measurement results of the POLARIS antenna from measurement at the DTU-ESA Spherical Near-Field Antenna Test Facility in August 2011 and from measurement at the ESTEC Near-Field Range in the fall 2012. The comparison was carried out at the DTU-ESA Facil......This report documents an intercomparison of measurement results of the POLARIS antenna from measurement at the DTU-ESA Spherical Near-Field Antenna Test Facility in August 2011 and from measurement at the ESTEC Near-Field Range in the fall 2012. The comparison was carried out at the DTU...

  15. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    Science.gov (United States)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  16. Statistical mechanics of light elements at high pressure. VI - Liquid-state calculations with Thomas-Fermi-Dirac theory

    Science.gov (United States)

    Macfarlane, J. J.

    1984-01-01

    A model free energy is developed for hydrogen-helium mixtures based on solid-state Thomas-Fermi-Dirac calculations at pressures relevant to the interiors of giant planets. Using a model potential similar to that for a two-component plasma, effective charges for the nuclei (which are in general smaller than the actual charges because of screening effects) are parameterized, being constrained by calculations at a number of densities, compositions, and lattice structures. These model potentials are then used to compute the equilibrium properties of H-He fluids using a charged hard-sphere model. The results find critical temperatures of about 0 K, 500 K, and 1500 K, for pressures of 10, 100, and 1000 Mbar, respectively. These phase separation temperatures are considerably lower (approximately 6,000-10,000 K) than those found from calculations using free electron perturbation theory, and suggest that H-He solutions should be stable against phase separation in the metallic zones of Jupiter and Saturn.

  17. Observation of nanostructure by scanning near-field optical microscope with small sphere probe

    Directory of Open Access Journals (Sweden)

    Yasushi Oshikane, Toshihiko Kataoka, Mitsuru Okuda, Seiji Hara, Haruyuki Inoue and Motohiro Nakano

    2007-01-01

    Full Text Available Step and terrace structure has been observed in an area of 1 μm×1 μm on the cleaved surface of KCl–KBr solid-solution single crystal by scanning near-field optical microscope (SNOM with a small sphere probe of 500 nm diameter. Lateral spatial resolution of the SNOM system was estimated to be 20 nm from the observation of step width and the scanning-step interval. Vertical spatial resolution was estimated to be 5–2 nm from the observation of step height and noise level of photomultiplier tube (PMT. With applying a dielectric dipole radiation model to the probe surface, the reason why such a high spatial resolution was obtained in spite of the 500 nm sphere probe, was understood as the effect of the near-field term appeared in the radiation field equations.

  18. [Transmission efficiency analysis of near-field fiber probe using FDTD simulation].

    Science.gov (United States)

    Huang, Wei; Dai, Song-Tao; Wang, Huai-Yu; Zhou, Yun-Song

    2011-10-01

    A fiber probe is the key component of near-field optical technology which is widely used in high resolution imaging, spectroscopy detection and nano processing. How to improve the transmission efficiency of the fiber probe is a very important problem in the application of near-field optical technology. Based on the results of 3D-FDTD computation, the dependence of the transmission efficiency on the cone angle, the aperture diameter, the wavelength and the thickness of metal cladding is revealed. The authors have also made a comparison between naked probe and the probe with metal cladding in terms of transmission efficiency and spatial resolution. In addition, the authors have discovered the fluctuation phenomena of transmission efficiency as the wavelength of incident laser increases.

  19. Near-field analysis of metallic DFB lasers at telecom wavelengths.

    Science.gov (United States)

    Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R

    2013-05-06

    We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.

  20. Prediction and near-field observation of skull-guided acoustic waves

    CERN Document Server

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  1. Development of a shear force scanning near-field fluorescence microscope for biological applications.

    Science.gov (United States)

    Shang, G Y; Qiao, W H; Lei, F H; Angiboust, J-F; Troyon, M; Manfait, M

    2005-11-01

    In this paper, a shear force scanning near-field fluorescence microscope combined with a confocal laser microspectrofluorometer is described. The shear force detection is realized based on a bimorph cantilever, which provides a very sensitive, reliable, and easy to use method to control the probe-sample distance during scanning. With the system, high-quality shear force imaging of various samples has been carried out. Furthermore, simultaneous shear force and near-field fluorescence imaging of biological cells has also been realized. As an example, we especially present the result on the distribution of P-glycoprotein in the plasma membrane of human small cell lung cancer cells, suggesting that the system would be a promising tool for biological applications.

  2. Direct Amplitude-Phase Near-Field Observation of Higher-Order Anapole States.

    Science.gov (United States)

    Zenin, Vladimir A; Evlyukhin, Andrey B; Novikov, Sergey M; Yang, Yuanqing; Malureanu, Radu; Lavrinenko, Andrei V; Chichkov, Boris N; Bozhevolnyi, Sergey I

    2017-11-08

    Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy, and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher-order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as nonlinear higher-harmonic generators and nanoscale lasers.

  3. Exposure to chemicals in consumer products: The role of the near-field environment

    DEFF Research Database (Denmark)

    Fantke, Peter; Csiszar, S.A.; Huang, L.

    2016-01-01

    F, the fraction of the chemical in a product that is taken in by humans via each exposure pathway, considering specific compartments of entry into the near-field environment (releases of chemicals encapsulated in articles, indoor air spray, etc.). To est imate PiFs, we combined far-field environmental......Humans can be exposed to chemicals in consumer products during product use and environmental releases with inhalation, ingestion, and dermal uptake as typical exposure routes. Nevertheless, chemical exposure modeling has traditionally focused on the far-field with near-field indoor models only...... recently gaining attention. Further, models that are mostly emissions-based, may not necessarily be applicable to all types of chemical release from consumer products. To address this gap, we (1) define a framework to simultaneously account for exposure to chemicals in the near- and far-field, (2...

  4. Passive Localization of 3D Near-Field Cyclostationary Sources Using Parallel Factor Analysis

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2013-01-01

    Full Text Available By exploiting favorable characteristics of a uniform cross-array, a passive localization algorithm of narrowband cyclostationary sources in the spherical coordinates (azimuth, elevation, and range is proposed. Firstly, we construct a parallel factor (PARAFAC analysis model by computing the third-order cyclic moment matrices of the properly chosen sensor outputs. Then, we analyze the uniqueness of the constructed model and obtain three-dimensional (3D near-field parameters via trilinear alternating least squares regression (TALS. The investigated algorithm is well suitable for the localization of the near-field cyclostationary sources. In addition, it avoids the multidimensional search and pairing parameters. Results of computer simulations are carried out to confirm the satisfactory performance of the proposed method.

  5. Spectroscopic near-field microscopy using frequency combs in the mid-infrared.

    Science.gov (United States)

    Brehm, Markus; Schliesser, Albert; Keilmann, Fritz

    2006-11-13

    We introduce a new concept of spectroscopic near-field optical microscopy that records broad infrared spectra at each pixel during scanning. Two coherent beams with harmonic frequency-comb spectra are employed, one for illuminating the scanning tip, the other as reference for multi-heterodyne detection of the scattered light. Our implementation yields 200 cm(-1) wide amplitude and phase spectra centered at 950 cm(-1) (this band can be tuned between 700 and 1400 cm(-1)). We introduce a new technique of background suppression enabled by the short, 10 mus "snapshot" acquisition of infrared spectra which allows time-resolving the tapping motion. Thus we demonstrate broad-band mid-infrared near-field imaging that is essentially free of background artefacts.

  6. Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming-li, E-mail: mlwan@pdsu.edu.cn [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); He, Jin-na [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); Song, Yue-li [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); New PV-energy Engineering Research Center, Pingdingshan University, Pingdingshan 467000 (China); Zhou, Feng-qun [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China)

    2015-09-04

    We theoretically investigate optical properties of a plasmonic metasurface consisting of a dipolar wire as the bright antenna stacked above a quadrupolar wire as the dark antenna. It is demonstrated that by adjusting the lateral displacement between the two resonators, the spectral feature of the metasurface can be evolved from the plasmonic electromagnetically-induced transparency to electromagnetically-induced absorption. The extracted physical parameters based on the two-coupled-oscillator model reveal that the near-field coupling strength plays a key role for the transition behavior in the plasmonic metasurface. - Highlights: • We study spectral response of metamaterial in dependence on near-field coupling. • Coupled two-oscillator is adopted to explain the spectral behavior. • For weak coupling, metamaterials exhibit an EIA-like feature. • For strong coupling, metamaterials exhibit an EIT-like profile.

  7. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Soumyadipta, E-mail: soumya.005@gmail.com; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  8. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  9. Longitudinal Near-Field Coupling between Acoustic Resonators Grafted onto a Waveguide

    Directory of Open Access Journals (Sweden)

    Yan-Feng Wang

    2017-10-01

    Full Text Available We investigate longitudinal near-field coupling between acoustic resonators grafted along a waveguide. Experiments are performed in the audible range with a simple acoustic system composed of a finite aperiodic sequence of air resonators. Transmission typically shows a zero around a resonance frequency of a single resonator, as is well known. When two identical resonators are brought in close proximity, however, we observe that longitudinal near-field coupling strongly influences the acoustic transmission. When the separation between resonators is increased so that they can be considered in the far field of one another, we further observe the appearance of Fano-like transmission profiles. We explain this observation by the formation of locally resonant Fabry-Perot interferometers from every pair of resonators. All experimental results are compared to three-dimensional finite element analysis of the acoustic system.

  10. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim [Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen (Germany)

    2016-01-29

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.

  11. Periodic surface identification with phase or phaseless near-field data

    Science.gov (United States)

    Zheng, Jinchang; Cheng, Jin; Li, Peijun; Lu, Shuai

    2017-11-01

    We investigate the inverse diffraction grating problem which is to reconstruct the periodic surface from the diffracted field. The surface is assumed to be a sufficiently smooth and small perturbation of the flat surface. A novel computational method is developed to solve the inverse problem with super-resolution by using phase or phaseless near-field data. The method utilizes Rayleigh’s coefficients of the near field data and updates iteratively the approximated surface function by solving a truncated linearized system. Monotonicity of the error estimate is proved under the small perturbation assumption of the surface. Numerical examples are shown to verify the theoretical findings and illustrate the effectiveness of the proposed method.

  12. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.

    Science.gov (United States)

    Vasconcelos, Thiago L; Archanjo, Bráulio S; Fragneaud, Benjamin; Oliveira, Bruno S; Riikonen, Juha; Li, Changfeng; Ribeiro, Douglas S; Rabelo, Cassiano; Rodrigues, Wagner N; Jorio, Ado; Achete, Carlos A; Cançado, Luiz Gustavo

    2015-06-23

    A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes.

  13. Localization of Near-Field Sources Based on Sparse Signal Reconstruction with Regularization Parameter Selection

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2017-01-01

    Full Text Available Source localization using sensor array in the near-field is a two-dimensional nonlinear parameter estimation problem which requires jointly estimating the two parameters: direction-of-arrival and range. In this paper, a new source localization method based on sparse signal reconstruction is proposed in the near-field. We first utilize l1-regularized weighted least-squares to find the bearings of sources. Here, the weight is designed by making use of the probability distribution of spatial correlations among symmetric sensors of the array. Meanwhile, a theoretical guidance for choosing a proper regularization parameter is also presented. Then one well-known l1-norm optimization solver is employed to estimate the ranges. The proposed method has a lower variance and higher resolution compared with other methods. Simulation results are given to demonstrate the superior performance of the proposed method.

  14. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure

    Science.gov (United States)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan

    2017-04-01

    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  15. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  16. Scanning near-field optical microscopy on rough surfaces: Applications in chemistry, biology, and medicine

    OpenAIRE

    Kaupp, Gerd

    2006-01-01

    Shear-force apertureless scanning near-field optical microscopy (SNOM) with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials) contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The ex...

  17. Mechanical and hydrological characterization of the near-field surrounding excavations in a geologic salt formation

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Clifford L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-09-01

    The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are impermeable. Upon mining, the salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called the disturbed rock zone (DRZ).

  18. Development of the near field geochemistry model; Desarrollo de un modelo geoquimico de campo proximo

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Bruno, J.; Duro, L.; Grive, M.

    2000-07-01

    This report discusses in a quantitative manner the evolution of the near field geochemistry as a result of the interactions between two different introducing granitic groundwaters and the FEBEX bentonite as a buffer material. The two granitic groundwaters considered are: SR-5 water, sampled in a borehole at 500 m depth in Mina Ratones, and a mean composition of different granitic groundwaters from the iberian Massif. The steel canister has also been introduced by considering the iron corrosion in anoxic conditions. (Author)

  19. Near-field nonlinear optical spectroscopy of Langmuir-Blodgett films

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Geisler, T.

    1998-01-01

    Using an uncoated fiber tip as a light source and a multilayer Langmuir-Blodgett film of 2-docosylamino-5-nitropyridine as a sample, we obtain near-field images at the fundamental-harmonic (FH) and second-harmonic (SH) wavelengths for different polarizations and wavelengths of the pump light...... differently but predominantly in the dipping direction and whose SH efficiency is maximum for pump wavelengths in the range of 770-800 nm. (C) 1998 Optical Society of America....

  20. Concept study of radar sensors for near-field tsunami early warning

    OpenAIRE

    Börner, T.; Galletti, M.; Marquart, N. P.; Krieger, G.

    2010-01-01

    Off-shore detection of tsunami waves is a critical component of an effective tsunami early warning system (TEWS). Even more critical is the off-shore detection of local tsunamis, namely tsunamis that strike coastal areas within minutes after generation. In this paper we propose new concepts for near-field tsunami early detection, based on innovative and up-to-date microwave remote sensing techniques. We particularly introduce the NESTRAD (NEar-Space Tsunami RADar) concept, which consists of a...

  1. Near Field HF Antenna Pattern Measurement Method Using an Antenna Pattern Range

    Science.gov (United States)

    2015-12-01

    TECHNICAL REPORT 3006 December 2015 Near-Field HF Antenna Pattern Measurement Method Using an Antenna Pattern Range Ani Siripuram Michael Daly...link budget. This report focuses on computing absolute gain for HF antennas measured on the APR. Recent research efforts by SSC Pacific’s Applied...Electromagnetics Branch (Code 52250) show that the APR extends to accurate measurement of normalized far-field radiation patterns of HF antennas. The

  2. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization.

    Science.gov (United States)

    Geldhauser, Tobias; Kolloch, Andreas; Murazawa, Naoki; Ueno, Kosei; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke; Misawa, Hiroaki

    2012-06-19

    The quantitative determination of the strength of the near-field enhancement in and around nanostructures is essential for optimizing and using these structures for applications. We combine the gaussian intensity distribution of a laser profile and two-photon-polymerization of SU-8 to a suitable tool for the quantitative experimental measurement of the near-field enhancement of a nanostructure. Our results give a feedback to the results obtained by finite-difference time-domain (FDTD) simulations. The structures under investigation are gold nanotriangles on a glass substrate with 85 nm side length and a thickness of 40 nm. We compare the threshold fluence for polymerization for areas of the gaussian intensity profile with and without the near-field enhancement of the nanostructures. The experimentally obtained value of the near-field intensity enhancement is 600 ± 140, independent of the laser power, irradiation time, and spot size. The FDTD simulation shows a pointlike maximum of 2600 at the tip. In a more extended area with an approximate size close to the smallest polymerized structure of 25 nm in diameter, we find a value between 800 and 600. Using our novel approach, we determine the threshold fluence for polymerization of the commercially available photopolymerizable resin SU-8 by a femtosecond laser working at a wavelength of 795 nm and a repetition rate of 82 MHz to be 0.25 J/cm(2) almost independent of the irradiation time and the laser power used. This finding is important for future applications of the method because it enables one to use varying laser systems.

  3. Near-field analysis of the anapole states in high-index particles

    Science.gov (United States)

    Baryshnikova, Kseniia V.; Denisultanov, Alaudi Kh.; Shalin, Alexander S.

    2017-09-01

    In this work we study near-fields features of anapole states in dielectric particles of different size and shape. We show that for spherical nanoparticles anapole states can be divided into several groups with similar properties. Herewith for cylindrical nanoparticles properties of each group can be modified by changing on cylinder's aspect-ratio. Obtained results are useful in different applications such as selective enhancement of magnetic dipole transitions in the optical range, nanolasers, nanosensors, metrology applications etc.

  4. A modified nodal pressure method for calculating flow distribution in hydraulic circuits for the case of unconventional closing relations

    Directory of Open Access Journals (Sweden)

    Egor M. Mikhailovsky

    2015-06-01

    Full Text Available We proposed a method for numerically solving the problem of flow distribution in hydraulic circuits with lumped parameters for the case of random closing relations. The conventional and unconventional types of relations for the laws of isothermal steady fluid flow through the individual hydraulic circuit components are studied. The unconventional relations are presented by those given implicitly by the flow rate and dependent on the pressure of the working fluid. In addition to the unconventional relations, the formal conditions of applicability were introduced. These conditions provide a unique solution to the flow distribution problem. A new modified nodal pressure method is suggested. The method is more versatile in terms of the closing relation form as compared to the unmodified one, and has lower computational costs as compared to the known technique of double-loop iteration. The paper presents an analysis of the new method and its algorithm, gives a calculated example of a gas transportation network, and its results.

  5. Reconstruction of the near-field distribution in an X-ray waveguide array.

    Science.gov (United States)

    Zhong, Qi; Melchior, Lars; Peng, Jichang; Huang, Qiushi; Wang, Zhanshan; Salditt, Tim

    2017-06-01

    Iterative phase retrieval has been used to reconstruct the near-field distribution behind tailored X-ray waveguide arrays, by inversion of the measured far-field pattern recorded under fully coherent conditions. It is thereby shown that multi-waveguide interference can be exploited to control the near-field distribution behind the waveguide exit. This can, for example, serve to create a secondary quasi-focal spot outside the waveguide structure. For this proof of concept, an array of seven planar Ni/C waveguides are used, with precisely varied guiding layer thickness and cladding layer thickness, as fabricated by high-precision magnetron sputtering systems. The controlled thickness variations in the range of 0.2 nm results in a desired phase shift of the different waveguide beams. Two kinds of samples, a one-dimensional waveguide array and periodic waveguide multilayers, were fabricated, each consisting of seven C layers as guiding layers and eight Ni layers as cladding layers. These are shown to yield distinctly different near-field patterns.

  6. Near-field radiative heat transfer in graphene plasmonic nanodisk dimers

    Science.gov (United States)

    Ramirez, Francisco V.; Shen, Sheng; McGaughey, Alan J. H.

    2017-10-01

    Near-field thermal radiation mediated by surface plasmons in parallel graphene nanodisk dimers is studied using a semianalytical model under the electrostatic approximation. The radiative heat transfer between two disks as a function of the distance between them in coaxial and coplanar configurations is first considered. Three regimes are identified and their extents determined using nondimensional analysis. When the edge-to-edge separation is smaller than the disk diameter, near-field coupling and surface plasmon hybridization lead to an enhancement of the radiative heat transfer by up to four orders of magnitude compared to the Planck blackbody limit. A mismatch in the disk diameters affects the plasmonic mode hybridization and can either diminish or enhance the near-field radiation. Destructive interference between eigenmodes that emerge when the relative orientation between disks is varied can induce a twofold reduction in the radiative heat transfer. In all configurations, the radiative heat transfer properties can be controlled by tuning the disk size/orientation, the substrate optical properties, and graphene's doping concentration and electron mobility.

  7. Near-field microscopy and lithography of light-emitting polymers.

    Science.gov (United States)

    Richards, David; Cacialli, Franco

    2004-04-15

    We describe the application of scanning near-field optical microscopy (SNOM) to the study of the photophysical and self-organization properties of thin films of blends of conjugated polymers, and also to the lateral nanoscale patterning of conjugated-polymer structures. Such thin-film plastic semiconductor nanostructures offer significant potential for use in opto-electronic devices. The implementation of SNOM we employ is the most established form in which a probe with a sub-wavelength aperture is scanned in close proximity to the sample surface. We consider the nature of the near-field optical distribution, which decays within the first ca. 100 nm of these semiconductor materials, and address the identification of topographic artefacts in near-field optical images. While the topographic information obtained simultaneously with optical data in any SNOM experiment enables an easy comparison with the higher-resolution tapping-mode atomic force microscopy, the spectroscopic contrast provided by fluorescence SNOM gives an unambiguous chemical identification of the different phases in a conjugated-polymer blend. Both fluorescence and photoconductivity SNOM indicate that intermixing of constituent polymers in a blend, or nanoscale phase separation, is responsible for the high efficiency of devices employing these materials as their active layer. We also demonstrate a scheme for nano-optical lithography with SNOM of conjugated-polymer structures, which has been employed successfully for the fabrication of poly(-phenylene vinylene) nanostructures with 160 nm feature sizes.

  8. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    Science.gov (United States)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  9. Near-field infrared vibrational dynamics and tip-enhanced decoherence.

    Science.gov (United States)

    Xu, Xiaoji G; Raschke, Markus B

    2013-04-10

    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  10. Vortex rings and jets recent developments in near-field dynamics

    CERN Document Server

    Yu, Simon

    2015-01-01

    In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...

  11. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.

    Science.gov (United States)

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-09-19

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  12. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    Directory of Open Access Journals (Sweden)

    Yingzhi Kan

    2016-09-01

    Full Text Available In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D imaging is proposed that uses a two-dimensional (2-D plane antenna array. First, a two-dimensional fast Fourier transform (FFT is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT combined with 2-D inverse FFT (IFFT is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  13. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    Science.gov (United States)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  14. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Science.gov (United States)

    Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas

    2006-01-01

    Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers

  15. Considerations of force plate transitions on centre of pressure calculation for maximal velocity sprint running.

    Science.gov (United States)

    Exell, Timothy A; Gittoes, Marianne J R; Irwin, Gareth; Kerwin, David G

    2012-11-01

    The aims of this study were to evaluate the accuracy of centre of pressure (COP) data obtained during transition of load across the boundary between two force plates, and secondly to examine the effect of such COP data on joint kinetics during sprint running performances. COP data were collected from two piezoelectric force plates as a trolley wheel was rolled across the boundary between the plates. Position data for the trolley were collected using an opto-electronic motion analysis system for comparison with COP data. Mean COP errors during transition across the plate boundary were 0.003 +/- 0.002 m relative to a control point. Kinematic and kinetic data were also collected from eight athletes during sprint running trials to demonstrate the sensitivity of the inverse dynamics analysis to COP error for the ground contact phase of the dynamic movement trials. Kinetic sensitivity to the COP error was assessed during the entire stance phase for the ankle, knee, and hip joints and was less than 5% and 3% for joint moment and power data, respectively. Based on the small COP error during transition across plate boundaries, it is recommended that foot contacts overlapping two force plates may be included in inverse dynamics analyses.

  16. Controlling the development of coherent structures in high speed jets and the resultant near field

    Science.gov (United States)

    Speth, Rachelle

    and an increase on the non-flapping plane. Therefore, these thicker layers and higher Reynolds number jets may require actuators with a higher energy input (i.e. higher duty cycle, higher actuator temperature, more actuators) to ensure the excitation of the flow instability. The final parameter studied is the effect of Mach number on the development and decay of large scale structures for no-control and control cases for Mach 0.9 and Mach 1.3 jets. For this exercise, the axisymmetric mode (m=0) was considered at excitation frequencies of St=0.05, 0.15, and 0.25, with emphasis on the evolution of coherent structures and their effects on the resultant near field pressure map. Without control, the two jets have similar shear layer growth until the end of the potential core length of the subsonic case, at which point the subsonic jet spreads at a higher rate. For the controlled cases, relatively larger streamwise hairpin vortices have been noted for the subsonic cases than the supersonic cases resulting in stronger entrainment of the ambient fluid. This increased entrainment in the subsonic cases causes a reduction in the normalized convective velocity resulting in similar normalized values to that of the supersonic cases. As the excitation frequency is increased, more hairpin vortices are present and the normalized convective velocity is reduced for both subsonic and supersonic cases. (Abstract shortened by ProQuest.).

  17. Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculations

    CERN Document Server

    Chen, Yang M; Wu, Qiang; Geng, Hua Y; Yan, Xiao Z; Wang, Yi X; Wang, Zi W

    2016-01-01

    High pressure and high temperature properties of AB (A = $^6$Li, $^7$Li; B = H, D, T) are investigated with first-principles method comprehensively. It is found that the H$^{-}$ sublattice features in the low-pressure electronic structure near the Fermi level of LiH are shifted to that dominated by the Li$^{+}$ sublattice in compression. The lattice dynamics is studied in quasi-harmonic approximation, from which the phonon contribution to the free energy and the isotopic effects are accurately modelled with the aid of a parameterized double-Debye model. The obtained equation of state (EOS) matches perfectly with available static experimental data. The calculated principal Hugoniot is also in accordance with that derived from shock wave experiments. Using the calculated principal Hugoniot and the previous theoretical melting curve, we predict a shock melting point at 56 GPa and 1923 K. In order to establish the phase diagram for LiH, the phase boundaries between the B1 and B2 solid phases are explored. The B1-...

  18. Ultrafast dynamics of near-field enhancements at an off-resonance nano-dimer via femtosecond laser excitations

    Science.gov (United States)

    Du, GuangQing; Yang, Qing; Chen, Feng; Bian, Hao; Wu, Yanmin; Lu, Yu; Farooq, Umar; Hou, Xun

    2015-04-01

    Giant electric-field enhancements localized on nano-antennas are important for the optical near-field applications in fields such as super-resolution imaging, near-field optical tweezers, and photothermal therapy. Physically, the field enhancement requires plasmon resonance with respect to structure matching. We report a tunable near-field effect, including localized electric-field enhancement and resistive heating at an off-resonance Au nano-sphere dimer via femtosecond laser irradiation. The near field was strongly modified (up to 81 times) with respect to time evolution at a laser fluence of 0.1 \\text{J/cm}2 . The results are explained as thermal dynamics manipulation of the Au nano-sphere dimer plasmon resonances. This study provides a new alternative route to tailoring the near-field enhancement for wide applications in nano-antennas.

  19. First principles calculations of structural, elastic, electronic properties of Ir{sub 3}Zr with L1{sub 2} structure under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Na; Wang, Xueye, E-mail: wxueye@xtu.edu.cn; Wan, Yali

    2015-07-15

    The effects of pressure on the structural, elastic and electronic properties of Ir{sub 3}Zr are investigated by means of the first-principles calculations based on the density functional theory with generalized gradient approximation and local density approximation methods. The calculated lattice parameters and elastic modulus of Ir{sub 3}Zr at zero pressure are in good agreement with available experimental and theoretical results. The values of elastic constants (C{sub 11}, C{sub 12}, C{sub 44}), bulk modulus (B), shear modulus (G), Young modulus (E), Poisson's ratio (υ), anisotropy index (A) and Debye temperature (T{sub D}) present the linearly increasing dependences on the external pressure. Additionally, the B/G values exhibit an upward trend with increasing pressure, which means that higher pressure can improve its ductility. Ir{sub 3}Zr exhibits a brittle characteristic at zero pressure. When the pressure reaches 10 GPa, the Cauchy pressure and B/G value show ductile feature. In addition, the pressure-dependence behavior of density of states, Mulliken charge and bond length are analyzed. - Graphical abstract: Display Omitted - Highlights: • The elastic and electronic properties of Ir{sub 3}Zr under pressure are investigated. • The elastic constants, elastic moduli increase with the pressure increasing. • When the pressure reaches 10 GPa, Ir{sub 3}Zr changes from brittle to ductile. • Ir{sub 3}Zr remains as a stable structure and no structural transition under pressure.

  20. Near field 3D displacement of El Mayor-Cupapah Earthquake: A hybrid approach. (Invited)

    Science.gov (United States)

    Hinojosa-Corona, A.; Limon, F. J.; Nissen, E.; Glennie, C. L.; Krishnan, A.; Oskin, M. E.; Arrowsmith, R.; Leprince, S.; Saripalli, S.; Arregui, S. M.; Borsa, A. A.; Kreylos, O.; Banesh, D.; Fletcher, J. M.

    2013-12-01

    DF. We also compare the results from ICP and COSI-Corr individually for each of the horizontal components. Both methods delineate very clearly the rupture, and agree in direction with small discrepancies in magnitude for the horizontal DF. Results from far field deformation measurements obtained from different remote sensing techniques, such as GPS and InSAR, could be fused with the near-field LiDAR and COSI-Corr results to provide a synoptic view of the strain induced by earthquakes such as the El Mayor-Cucapah event.

  1. Near-Field to Far-Field Uncertainty Propagation and Quantification of Ground Motions Generated by the Source Physics Experiments (SPE)

    Science.gov (United States)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Pitarka, A.; Hurley, R.; Hirakawa, E. T.; Glenn, L.; Walter, W. R.

    2016-12-01

    LLNL has developed a framework for uncertainty propagation and quantification using HPC numerical codes to simulate end-to-end, from source to receivers, the ground motions observed during the Source Physics Experiments (SPE) conducted in fractured granitic rock at the Nevada National Security Site (NNSS). SPE includes six underground chemical explosions designed with different yields initiated at different depths. To date we have successfully applied this framework to explain the near-field shear motions observed in the vicinity of SPE3 thru SPE5. However, systematic uncertainty propagation to the far-field seismic receiver has not been addressed yet. In the current study, we used a coupling between the non-linear inelastic hydrodynamic regime in the near-field and the seismic elastic regime in the far-field to conduct the analysis. Several realizations of the stochastic discrete fracture network were generated conditional to the observed sparse data. These realizations were then used to calculate the ground motions generated from the SPE shots up to the elastic radius. The latter serves as the handshake interface for the far-field simulations. By creating several realizations of near-field responses one can embed those sources into the far-field elastic wave code and further the uncertainty propagation to the receivers. We will present a full assessment from end-to-end for the near- and far-field measurements. Separate analyses of the effect of the different conceptual geological models are also carried over using a nested Monte Carlo scheme. We compare the observed frequency content at several gages with the simulated ones. We conclude that both regions experience different sampling of frequencies: small features are relevant to near-field simulations while larger feature are more dominant at the far-field. We finally rank the primary sensitive parameters for both regions to drive and refine the field characterization data collection.

  2. Preliminary bounds on the water composition and secondary mineral development that may influence the near-field environment

    Energy Technology Data Exchange (ETDEWEB)

    Whitbeck, M.; Glassley, W.

    1998-02-01

    The evolution of the water chemistry and secondary mineral development in the vicinity of the near-field of a potential Yucca Mountain high level nuclear waste repository will be controlled by temperature, and interaction of water with rock over time. This report describes initial bounds on water composition and secondary mineral development, as a function of time, temperature, and rock type (devitrified, welded tuff and vitrophyre). The code EQ3/6 was used in the calculations, with explicit use of transition state theory models for mineral dissolution rates for the framework minerals of the tuff. Simulations were run for time durations sufficient to achieve steady state conditions. Uncertainty in the calculations, due to uncertainty in the measured dissolution rates, was considered by comparing results in simulations in which rates were varied within the range of known uncertainties for dissolution rate constants. The results demonstrate that the steady state mineralogy and water compositions are relatively insensitive to the rock unit modeled, which is consistent with the fact that the compositions of the rock units in the vicinity if the potential repository are similar, and will tend toward similar thermodynamic free energy minima, for similar rock:water ratios. Significant differences are observed, however, for large differences in rock: water ratios. The rates at which this end point condition are approached are a function of the rate parameters used, and can vary by orders of magnitude.

  3. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    Science.gov (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  4. Near-field tsunami early warning and emergency planning in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Gerassimos A. Papadopoulos

    2013-04-01

    Full Text Available The new European project Near-field Tsunami Early Warning and Emergency Planning in the Mediterranean Sea (NEARTOWARN faces the need to develop operational tsunami early warning systems in near-field (local conditions where the travel time of the first tsunami wave is very short, that is less than 30 min, which is a typical case in the North East Atlantic and the Mediterranean Sea region but also elsewhere around the globe. The operational condition that should be fulfilled is that the time of tsunami detection, plus the time of warning transmitting, plus the time of evacuation should not exceed the travel time of the first tsunami wave from its source to the closest evacuation zone. To this goal the time to detect of the causative earthquake should be compressed at the very minimum. In this context the core of the proposed system is a network of seismic early warning devices, which activate and send alert in a few seconds after the generation of a near-field earthquake, when a seismic ground motion exceeding a prescribed threshold is detected. Then civil protection mobilizes to manage the earthquake crisis but also to detect and manage a possible tsunami through a geographical risk management system. For the tsunami detection the system is supported by tide-gauges of radar type, a database of presimulated tsunami scenarios, and a local tsunami decision matrix. The island of Rhodes in the eastern termination of the Hellenic Arc and Trench has been selected for a pilot and operational development of the local tsunami warning system given that the island is a highly popular tourist destination, historically it was hit by large tsunamigenic earthquakes and was recently the master test-site for the pan-European FP6 tsunami research project Tsunami Risk ANd Strategies For the European Region (TRANSFER.

  5. Evolution of Biomass Burning Aerosol Optical Properties in the Near Field

    Science.gov (United States)

    Sedlacek, A. J., III; Arnott, W. P.; Chand, D.; Fortner, E.; Freedman, A.; Kleinman, L. I.; Onasch, T. B.; Shilling, J. E.; Springston, S. R.

    2014-12-01

    Biomass burning (BB) events are known to produce chemically rich environments that can impact the evolution of primary aerosols and influence secondary aerosols production rates. With their increasing in frequency, BB events are expected to exert an ever-increasing impact on climate due to aerosol radiative forcing processes. One area that is still poorly understood is the evolution of these smoke aerosols in the near field. Recent literature suggests that BB aerosols undergo a rapid evolution near their source that is then followed by a slower aging phase. During the summer of 2013, the Department of Energy-sponsored an aircraft field campaign called the Biomass Burning Observation Project (BBOP) that specifically targeted the evolution of smoke aerosols in the near field (Soot Photometer (SP2) to probe the mixing state of refractory black carbon (rBC) and a Soot Particle Aerosol Mass Spectrometer (SP-AMS) to investigate the composition of both non-refractory and rBC-containing particles. Aerosol optical properties were measured in situ using a 355 nm Photoacoustic spectrometer (PAS), a 532 nm photo thermal interferometer (PTI), a 630 nm cavity Attenuation Phase Shifted (CAPS) spectrometer, a 3-λ nephelometer, and a 3-λ PSAP. The BBOP study represented the maiden aircraft deployment for the SP-AMS, the 355 nm PAS and 532 nm PTI. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distributions and single scattering albedo (SSA) of light absorbing aerosols. In the cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results will be given from wildfires sampled in the US northwest and on controlled agricultural burns in the south-central Mississippi valley.

  6. Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast

    Science.gov (United States)

    Wei, Yong; Chamberlin, Christopher; Titov, Vasily V.; Tang, Liujuan; Bernard, Eddie N.

    2013-06-01

    During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan's coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan's coastline demonstrate the ability and potential of NOAA's methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation

  7. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    Science.gov (United States)

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna; Dawson, Timothy E.; Rubin, Ron S.; Ericksen, Todd; Lockner, David A.; Hudnut, Kenneth W.; Langenheim, Victoria; Lutz, Andrew; Murray, Jessica R.; Schwartz, David P.; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  8. Engineering complex nanolasers: from spaser quantum information sources to near-field anapole lasers

    KAUST Repository

    Gongora, J. S. Totero

    2017-02-16

    In this invited contribution I will review recent results of our research in the field of complex nanolasers. I will begin by discussing recent experimental results from a new type of ultra-dark nanoparticles, which behave as an ideal black-body and spontaneously produce single color pulses thanks to an equivalent Bose-Einstein Condensation of light. I will then discuss new quantum information sources from core-shell spaser nanoparticles. Finally, I will illustrate a new type of laser source that emits only in the near field, discussing applications in integrated optical circuits.

  9. A New Algorithm for Joint Range-DOA-Frequency Estimation of Near-Field Sources

    Directory of Open Access Journals (Sweden)

    Jian-Feng Chen

    2004-03-01

    Full Text Available This paper studies the joint estimation problem of ranges, DOAs, and frequencies of near-field narrowband sources and proposes a new computationally efficient algorithm, which employs a symmetric uniform linear array, uses eigenvalues together with the corresponding eigenvectors of two properly designed matrices to estimate signal parameters, and does not require searching for spectral peak or pairing among parameters. In addition, the proposed algorithm can be applied in arbitrary Gaussian noise environment since it is based on the fourth-order cumulants, which is verified by extensive computer simulations.

  10. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  11. Near-field antenna testing using the Hewlett Packard 8510 automated network analyzer

    Science.gov (United States)

    Kunath, Richard R.; Garrett, Michael J.

    1990-01-01

    Near-field antenna measurements were made using a Hewlett-Packard 8510 automated network analyzer. This system features measurement sensitivity better than -90 dBm, at measurement speeds of one data point per millisecond in the fast data acquisition mode. The system was configured using external, even harmonic mixers and a fiber optic distributed local oscillator signal. Additionally, the time domain capability of the HP8510, made it possible to generate far-field diagnostic results immediately after data acquisition without the use of an external computer.

  12. Transient waves generated by a moving bottom obstacle: a new near-field solution

    DEFF Research Database (Denmark)

    Madsen, Per A.; Hansen, Asger Bendix

    2012-01-01

    in the region over the obstacle dispersion can be ignored while nonlinearity cannot. The relevant governing equations for the near-field solution are therefore the nonlinear shallow water (NSW) equations. These are bidirectional and can be formulated in terms of a two-family system of characteristics. We...... analytically integrate and eliminate the backward-going family and achieve a versatile unidirectional single-family formulation, which covers subcritical, transcritical and supercritical conditions with relatively high accuracy. The formulation accounts for the temporal and spatial evolution of the bound waves...

  13. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    A scanning near-field optical microscope is used to directly map the propagation of light in the wavelength range of 1500-1630 nm along straight photonic crystal waveguides (PCWs) fabricated on silicon-on-insulator wafers. The PVWs were formed by removing a single row of holes in the triangular 428...... guiding (for both samples) of the TM-polarized radiation is observed in the whole range of laser tunability. For TE polarization, the efficient guiding is limited to the wavelengths shorter than 1552 or 1570 nm for the PCW with the filling factor of 0.76 or 0.82, respectively. For longer wavelengths, we...

  14. The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields

    CERN Document Server

    Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J

    2016-01-01

    To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.

  15. Analysis and Simulations of Near-Field Ground Motion from Source Physics Experiments (spe)

    Science.gov (United States)

    Vorobiev, O.; Xu, H.; Lomov, I.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2012-12-01

    This work is focused on analysis of near-field measurements (up to 50-70 m from the source) recorded during Source Physics Experiments SPE1, SPE2 and SPE3 in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). The explosive source used in these experiments is a sensitized heavy ANFO (SHANFO) with a well characterized equation of state. The first event, SPE1, had a yield of 0.1 ton, and was detonated at a 55 m depth of burial in a spherical cavity of about 0.3 m radius. SPE2 and SPE3 had an explosive yield of 1 ton, and they were both detonated in the same cavity at a depth of burial of 45 meters. One of the main goals of these experiments was to investigate the possible mechanisms of shear wave generation in the nonlinear source region. Another objective, relating specifically to the SPE2-SPE3 sequence, was to investigate the effect of damage from one explosion on the response of the medium to a second explosion of the same yield and at the same location as the first explosion. Comparison of the results from SPE2 and SPE3 show some interesting trends. . At the shot level, and at deeper locations, the data from SPE3 seem to agree quite well with SPE2 data, indicating that damage from SPE2 had little to no effect on the response of the medium at these locations. On the other hand, SPE3 data consistently show delay in arrival times as well as reduced wave amplitudes both at 50 ft (16 m) depth and at the ground surface, indicating that above the shot horizon damage from SPE2 had a perceptible effect on the SPE3 near field motions. The quality of the near field data at some gages from the SPE1 and SPE2 events is somewhat questionable, with orientation uncertainties making it difficult to ascertain with confidence the extent to which shear wave generation in the source region affected near field motions. New gages were strategically added to the SPE3 test bed to provide the data needed to address this issue and verify previous

  16. Concept study of radar sensors for near-field tsunami early warning

    Directory of Open Access Journals (Sweden)

    T. Börner

    2010-09-01

    Full Text Available Off-shore detection of tsunami waves is a critical component of an effective tsunami early warning system (TEWS. Even more critical is the off-shore detection of local tsunamis, namely tsunamis that strike coastal areas within minutes after generation. In this paper we propose new concepts for near-field tsunami early detection, based on innovative and up-to-date microwave remote sensing techniques. We particularly introduce the NESTRAD (NEar-Space Tsunami RADar concept, which consists of a real aperture radar accommodated inside a stationary stratospheric airship providing continuous monitoring of tsunamigenic oceanic trenches.

  17. Concept study of radar sensors for near-field tsunami early warning

    Science.gov (United States)

    Börner, T.; Galletti, M.; Marquart, N. P.; Krieger, G.

    2010-09-01

    Off-shore detection of tsunami waves is a critical component of an effective tsunami early warning system (TEWS). Even more critical is the off-shore detection of local tsunamis, namely tsunamis that strike coastal areas within minutes after generation. In this paper we propose new concepts for near-field tsunami early detection, based on innovative and up-to-date microwave remote sensing techniques. We particularly introduce the NESTRAD (NEar-Space Tsunami RADar) concept, which consists of a real aperture radar accommodated inside a stationary stratospheric airship providing continuous monitoring of tsunamigenic oceanic trenches.

  18. Near-field wireless sensing of single and multiple open-ended micro coils

    Directory of Open Access Journals (Sweden)

    A. Yousaf

    2013-05-01

    Full Text Available In this work we present near-field wireless sensing of single and multiple open-ended micro coils using an electrically small loop antenna. Wirelessly characterized parameters of open-ended micro coils include its resonance frequency, quality factor and inductance. Moreover a wireless frequency-dependent analytical model was developed. Micro coil inductance was extracted from the wirelessly measured signal using a constraint-based least-squares approach. Wireless measurements and analytical fit of micro coils are in strong agreement which validates the analytical model. Finite element method (FEM simulations of the coupled system were done in COMSOL Multiphysics.

  19. Radiation Pattern Reconstruction from the Near-Field Amplitude Measurement on Two Planes Using PSO

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2005-12-01

    Full Text Available The paper presents a new approach to the radiation patternreconstruction from near-field amplitude only measurement over a twoplanar scanning surfaces. This new method for antenna patternreconstruction is based on the global optimization PSO (Particle SwarmOptimization. The paper presents appropriate phaseless measurementrequirements and phase retrieval algorithm together with a briefdescription of the particle swarm optimization method. In order toexamine the methodologies developed in this paper, phaselessmeasurement results for two different antennas are presented andcompared to results obtained by a complex measurement (amplitude andphase.

  20. Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons

    Science.gov (United States)

    Davoyan, Arthur R.; Popov, Vyacheslav V.; Nikitov, Sergei A.

    2012-03-01

    We suggest a novel possibility for electrically tunable terahertz near-field enhancement in flatland electronic materials supporting two-dimensional plasmons, including recently discovered graphene. We employ electric-field effect modulation of electron density in such materials and induce a periodic plasmonic lattice with a defect cavity. We demonstrate that the plasmons resonantly excited in such a periodic plasmonic lattice by an incident terahertz radiation can strongly pump the cavity plasmon modes leading to a deep subwavelength concentration of terahertz energy, beyond λ/1000, with giant electric-field enhancement factors up to 104, which is 2 orders of magnitude higher than achieved previously in metal-based terahertz field concentrators.

  1. Cathodoluminescence-activated nanoimaging: noninvasive near-field optical microscopy in an electron microscope.

    Science.gov (United States)

    Bischak, Connor G; Hetherington, Craig L; Wang, Zhe; Precht, Jake T; Kaz, David M; Schlom, Darrell G; Ginsberg, Naomi S

    2015-05-13

    We demonstrate a new nanoimaging platform in which optical excitations generated by a low-energy electron beam in an ultrathin scintillator are used as a noninvasive, near-field optical scanning probe of an underlying sample. We obtain optical images of Al nanostructures with 46 nm resolution and validate the noninvasiveness of this approach by imaging a conjugated polymer film otherwise incompatible with electron microscopy due to electron-induced damage. The high resolution, speed, and noninvasiveness of this "cathodoluminescence-activated" platform also show promise for super-resolution bioimaging.

  2. Computations with near-field coupled plasmon particles interacting with phase-change materials

    Science.gov (United States)

    Kanazawa, Shohei; Kuwamura, Kenta; Kihara, Yuya; Hirukawa, Yusuke; Saiki, Toshiharu

    2015-12-01

    The computing functionality emerging from spatial correlations due to near-field interactions between local processing and memory elements is discussed. In particular, we investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on a coupled plasmon-particle system interacting with a phase-change material; this system exhibits threshold behavior and plasticity to provide processing and memory functions, respectively.

  3. Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures

    Science.gov (United States)

    Bourke, Levi; Blaikie, Richard J.

    2017-09-01

    Grating coupled near-field interference lithography has the ability to produce deep-subwavelength interference patterns. Simulations of these systems is very computationally intensive. An inverse design procedure employing a genetic algorithm is utilized here to massively reduce the computational load and allow for the design of systems capable of interfering extremely high numerical apertures. This method is used to optimize systems with an interference patterns with a half pitch of λ /40 corresponding to a numerical aperture of 20. It is also used to demonstrate interference of higher | m| diffraction orders.

  4. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  5. Application of scanning force and near field microscopies to the characterization of minimally adhesive polymer surfaces.

    Science.gov (United States)

    Akhremitchev, Boris B; Bemis, Jason E; al-Maawali, Sabah; Sun, Yujie; Stebounova, Larissa; Walker, Gilbert C

    2003-04-01

    This mini-review reports efforts to develop new scanning probe microscopies to characterize the function and aging of textured, minimally adhesive polymer surfaces used for antifouling applications in the marine environment. Novel atomic force and infrared near field microscopy techniques have been used to characterize the polymer surface adhesion and structural properties. These techniques may find promise for characterizing the deposition of the extracellular matrix of organisms as well as aging of the polymer coating itself. The reported work is part of a larger effort to reduce biofouling on ships' hulls through the development and use of improved coating materials.

  6. Near-field imaging of out-of-plane light scattering in photonic crystal slabs

    DEFF Research Database (Denmark)

    Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk

    2003-01-01

    A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out......-of-plane light scattering is directly observed for both 1D and 2D gratings (period 590 nm) fabricated on silicon-on-insulator wafers and the corresponding SNOM images are presented. Using the obtained SNOM images, we analyze light intensity distributions along PC gratings measured at different wavelengths and...

  7. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...... PCW bends, bend loss is evaluated and found to noticeably increase with the increase of the light wavelength from similar to1 dB at 1520 nm to similar to6 dB at 1570 nm. We analyze light intensity variations along PCWs measured with the SNOM at different distances from the sample surface. Considering...

  8. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  9. Electronic data capture platform for clinical research based on mobile phones and near field communication technology.

    Science.gov (United States)

    Morak, Jürgen; Schwetz, Verena; Hayn, Dieter; Fruhwald, Friedrich; Schreier, Gunter

    2008-01-01

    Electronic data capture systems support data acquisition for clinical research and enable the evaluation of new investigational medical devices. In case of evaluating a device the most challenging part is the user interface i.e. the solution how to acquire the data within a clinical setting and to synchronize them with a web-based data centre. The aim of this paper is to describe the development of an electronic data capture system with a mobile data input solution based on mobile phones and Near Field Communication technology. This system was evaluated within a real clinical setting and demonstrated high usability, security and reliability.

  10. Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate

    Science.gov (United States)

    Chang, Jui-Yung; Yang, Yue; Wang, Liping

    2016-11-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail.

  11. Three-Dimensional Super-Resolution Morphology by Near-Field Assisted White-Light Interferometry

    Science.gov (United States)

    Wang, Feifei; Liu, Lianqing; Yu, Peng; Liu, Zhu; Yu, Haibo; Wang, Yuechao; Li, Wen Jung

    2016-04-01

    Recent developments in far-field fluorescent microscopy have enabled nanoscale imaging of biological entities by ingenious applications of fluorescent probes. For non-fluorescence applications, however, scanning probe microscopy still remains one of the most commonly used methods to “image” nanoscale features in all three dimensions, despite its limited throughput and invasiveness to scanned samples. Here, we propose a time-efficient three-dimensional super-resolution microscopy method: near-field assisted white light interferometry (NFWLI). This method takes advantage of topography acquisition using white-light interferometry and lateral near-field imaging via a microsphere superlens. The ability to discern structures in central processing units (CPUs) with minimum feature sizes of approximately 50 nm in the lateral dimensions and approximately 10 nm in the axial dimension within 25 s (40 times faster than atomic force microscopes) was demonstrated. We elaborate in this paper the principles of NFWLI and demonstrate its potential for becoming a practical method for high-speed and non-toxic three-dimensional nanoscale imaging.

  12. Convergence of vector spherical wave expansion method applied to near-field radiative transfer.

    Science.gov (United States)

    Sasihithlu, Karthik; Narayanaswamy, Arvind

    2011-07-04

    Near-field radiative transfer between two objects can be computed using Rytov's theory of fluctuational electrodynamics in which the strength of electromagnetic sources is related to temperature through the fluctuation-dissipation theorem, and the resultant energy transfer is described using the dyadic Green's function of the vector Helmholtz equation. When the two objects are spheres, the dyadic Green's function can be expanded in a series of vector spherical waves. Based on comparison with the convergence criterion for the case of radiative transfer between two parallel surfaces, we derive a relation for the number of vector spherical waves required for convergence in the case of radiative transfer between two spheres. We show that when electromagnetic surface waves are active at a frequency the number of vector spherical waves required for convergence is proportional to Rmax/d when d/Rmax → 0, where Rmax is the radius of the larger sphere, and d is the smallest gap between the two spheres. This criterion for convergence applies equally well to other near-field electromagnetic scattering problems.

  13. Low Power Near Field Communication Methods for RFID Applications of SIM Cards.

    Science.gov (United States)

    Chen, Yicheng; Zheng, Zhaoxia; Gong, Mingyang; Yu, Fengqi

    2017-04-14

    Power consumption and communication distance have become crucial challenges for SIM card RFID (radio frequency identification) applications. The combination of long distance 2.45 GHz radio frequency (RF) technology and low power 2 kHz near distance communication is a workable scheme. In this paper, an ultra-low frequency 2 kHz near field communication (NFC) method suitable for SIM cards is proposed and verified in silicon. The low frequency transmission model based on electromagnetic induction is discussed. Different transmission modes are introduced and compared, which show that the baseband transmit mode has a better performance. The low-pass filter circuit and programmable gain amplifiers are applied for noise reduction and signal amplitude amplification. Digital-to-analog converters and comparators are used to judge the card approach and departure. A novel differential Manchester decoder is proposed to deal with the internal clock drift in range-controlled communication applications. The chip has been fully implemented in 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology, with a 330 µA work current and a 45 µA idle current. The low frequency chip can be integrated into a radio frequency SIM card for near field RFID applications.

  14. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  15. Near-Field Sound Localization Based on the Small Profile Monaural Structure.

    Science.gov (United States)

    Kim, Youngwoong; Kim, Keonwook

    2015-11-13

    The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA) are derived by the designed model. From an azimuthal distance of 3-15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  16. Cross-Plane Near-Field Turbulence Structure of Swirling Jets

    Science.gov (United States)

    Demillard, Eric; Naughton, Jonathan

    2017-11-01

    Swirling jets are used in several industrial applications and are interesting from a fundamental view of turbulence. It has been shown that, as swirl increases past a threshold value, the single-point statistics in the jet significantly change suggesting changes in turbulence structure. To test this assumption, Stereoscopic Particle Image Velocimetry (SPIV) is applied to measure instantaneous velocity in cross-planes (the radial-azimuthal planes). Proper Orthogonal Decomposition (POD) is then applied to these measurements to identify large scale turbulence structure. The POD results allow for comparisons in structure to be made between non-swirling jets and swirling jets. POD results were previously obtained using measurements in the axial-radial plane of the near field, and a significant reordering in modal dominance was observed. In the present study, the measurements in the radial-azimuthal plane are axisymmetric, and the POD analysis takes advantage of the homogeneity in the azimuthal direction. Results obtained at several different axial locations are considered in order to understand how the turbulence structures develop and evolve in the near field.

  17. The Self-Similarity of the Near-Field Liquid Region from an Airblast Atomizer

    Science.gov (United States)

    Bothell, Julie; Li, Danyu; Morgan, Timothy; Aliseda, Alberto; Machicoane, Nathanael; Kastengren, Alan; Heindel, Theodore

    2017-11-01

    The atomization process in liquid gas coaxial injectors has been the subject of intense investigation that has identified multiple break-up regimes for the liquid jet and the dominant instabilities that determine the final liquid droplet size distribution. There are, however, many unknowns in the basic physics and practical applications of this atomizer configuration including the liquid gas interface dynamics in the presence of swirl as well as injection rate fluctuations. This study uses advanced X-ray imaging to characterize the complex, two-phase system in the near-field region of a canonical coaxial airblast atomizer. The Advanced Photon Source at Argonne National Laboratory was used to collect time resolved measurements of the liquid volume fraction in the flow. The resulting data, containing quantitative information about the interface dynamics and phenomena controlling droplet break-up, was analyzed to improve the understanding of the natural mechanisms that drive the atomization process. In the analysis, self-similarity models are used to relate the upstream liquid flow structures to the downstream atomization at various flow conditions. These self-similarity models show great potential in characterizing complex liquid flow in the near-field region of the atomizer. Office of Naval Research and Argonne National Laboratory.

  18. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    Science.gov (United States)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  19. Reflection spectra and near-field images of a liquid crystalline half-Skyrmion lattice.

    Science.gov (United States)

    Fukuda, Jun-Ichi; Žumer, Slobodan

    2018-01-22

    We investigate numerically the optical properties of a hexagonal half-Skyrmion lattice exhibited by a highly chiral liquid crystal confined between two parallel plates. Our study focuses on the near and far-field reflection for normally incident light with different polarizations. We show that, when the wavelength of the incident light is longer than a threshold value, the reflectivity is almost insensitive to the polarization of the incident light, although the intensity profiles of the reflected light, in particular in the near-field regime, depend significantly on the polarization. The former property is attributable to the quasi two-dimensional nature of the half-Skyrmion lattice, that is, almost uniform orientational order along the direction normal to the confining plates. Our results for the intensity of reflected light generated by evanescent as well as propagating contributions suggest that direct evidence of the formation and structure of half-Skyrmions could be provided by near-field optics with resolutions higher than that of conventional optical microscopy.

  20. Three-Dimensional Near-Field Microwave Holography for Tissue Imaging

    Directory of Open Access Journals (Sweden)

    Reza K. Amineh

    2012-01-01

    Full Text Available This paper reports the progress toward a fast and reliable microwave imaging setup for tissue imaging exploiting near-field holographic reconstruction. The setup consists of two wideband TEM horn antennas aligned along each other’s boresight and performing a rectangular aperture raster scan. The tissue sensing is performed without coupling liquids. At each scanning position, wideband data is acquired. Then, novel holographic imaging algorithms are implemented to provide three-dimensional images of the inspected domain. In these new algorithms, the required incident field and Green’s function are obtained from numerical simulations. They replace the plane (or spherical wave assumption in the previous holographic methods and enable accurate near-field imaging results. Here, we prove that both the incident field and Green’s function can be obtained from a single numerical simulation. This eliminates the need for optimization-based deblurring which was previously employed to remove the effect of realistic non-point-wise antennas.

  1. High-Throughput Near-Field Optical Nanoprocessing of Solution-Deposited Nanoparticles

    KAUST Repository

    Pan, Heng

    2010-07-27

    The application of nanoscale electrical and biological devices will benefit from the development of nanomanufacturing technologies that are highthroughput, low-cost, and flexible. Utilizing nanomaterials as building blocks and organizing them in a rational way constitutes an attractive approach towards this goal and has been pursued for the past few years. The optical near-field nanoprocessing of nanoparticles for high-throughput nanomanufacturing is reported. The method utilizes fluidically assembled microspheres as a near-field optical confinement structure array for laserassisted nanosintering and nanoablation of nanoparticles. By taking advantage of the low processing temperature and reduced thermal diffusion in the nanoparticle film, a minimum feature size down to ≈i100nm is realized. In addition, smaller features (50nm) are obtained by furnace annealing of laser-sintered nanodots at 400 °C. The electrical conductivity of sintered nanolines is also studied. Using nanoline electrodes separated by a submicrometer gap, organic field-effect transistors are subsequently fabricated with oxygen-stable semiconducting polymer. © 2010 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.

  2. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    Directory of Open Access Journals (Sweden)

    Youngwoong Kim

    2015-11-01

    Full Text Available The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  3. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  4. Novel droplet near-field transducer for heat-assisted magnetic recording

    Directory of Open Access Journals (Sweden)

    Gosciniak Jacek

    2015-12-01

    Full Text Available Two main ingredients of plasmonics are surface plasmon polaritons (SPP and localized surface plasmon resonances (LSPR as they provide a high degree of concentration of electromagnetic fields in the vicinity of metal surfaces, which is well beyond that allowed by the diffraction limit of optics. Those properties have been used in the new technique of heat assisted magnetic recording (HAMR to overcome an existing limit of conventional magnetic recording by utilizing a near-field transducer (NFT. The NFT designs are based on excitation of surface plasmons on a metal structure, which re-radiate with a subdiffraction limited light spot confined in the near field. In this paper, we propose a novel “droplet”-shaped NFT, which takes full advantage of a recenltly proposed Mach–Zehnder Interferometer (MZI, a coupling arrangement that allows optimal coupling of light to the transducer. The droplet design ensures better impedance match with the recording media and, consequently, better coupling of power. The droplet design results in very high enhancement of the electric field and allows the confinement of light in a spot size much smaller than the present stateof- the-art lollipop transducer.

  5. Caroli formalism in near-field heat transfer between parallel graphene sheets

    Science.gov (United States)

    Jiang, Jia-Huei; Wang, Jian-Sheng

    2017-10-01

    In this work we conduct a close-up investigation into the nature of near-field heat transfer (NFHT) of two graphene sheets in parallel-plate geometry. We develop a fully microscopic and quantum approach using the nonequilibrium Green's function method. A Caroli formula for heat flux is proposed and numerically verified. We show that our near-field-to-black-body heat flux ratios generally exhibit 1 /dα dependence, with an effective exponent α ≈2.2 , at long distances exceeding 100 nm and up to one micron; in the opposite d →0 limit, the values converge to a range within an order of magnitude. We justify this feature by noting it is owing to the breakdown of local conductivity theory, which predicts a 1 /d dependence. Furthermore, from the numerical result, we find that in addition to thermal wavelength λt h a shorter distance scale ˜10 -100 nm, comparable to the graphene thermal length (ℏ vF/kBT ) or Fermi wavelength (kF-1), marks the transition point between the short- and long-distance transfer behaviors; within that point, a relatively large variation of heat flux in response to doping level becomes a typical characteristic. The emergence of such large variation is tied to relative NFHT contributions from the intra- and interband transitions. Beyond that point, scaling of thermal flux ∝1 /dα can be generally observed.

  6. Direct Measurements of Terahertz Meta-atoms with Near-Field Emission of Terahertz Waves

    Science.gov (United States)

    Serita, Kazunori; Darmo, Juraj; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2017-09-01

    We present the direct measurements of terahertz meta-atoms, an elementary unit of metamaterials, by using locally generated terahertz waves in the near-field region. In contrast to a conventional far-field terahertz spectroscopy or imaging, our technique features the localized emission of coherent terahertz pulses on a sub-wavelength scale, which has a potential for visualizing details of dynamics of each meta-atom. The obtained data show the near-field coupling among the meta-atoms and the impact of the electric field distribution from the excited meta-atom to neighbor meta-atoms. The observable LC resonance response is enhanced with an increase of numbers of meta-atoms. Furthermore, our approach also has a potential for visualizing the individual mode of meta-atom at different terahertz irradiation spots. These data can help us to understand the important role of the meta-atom in metamaterials and develop the novel terahertz components and devices such as active terahertz metamaterial and compact, high-sensitive bio-sensor devices.

  7. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption.

    Science.gov (United States)

    Othman, Mohamed A K; Guclu, Caner; Capolino, Filippo

    2013-03-25

    We investigate a novel implementation of hyperbolic metamaterial (HM) at far-infrared frequencies composed of stacked graphene sheets separated by thin dielectric layers. Using the surface conductivity model of graphene, we derive the homogenization formula for the multilayer structure by treating graphene sheets as lumped layers with complex admittances. Homogenization results and limits are investigated by comparison with a transfer matrix formulation for the HM constituent layers. We show that infrared iso-frequency wavevector dispersion characteristics of the proposed HM can be tuned by varying the chemical potential of the graphene sheets via electrostatic biasing. Accordingly, reflection and transmission properties for a film made of graphene-dielectric multilayer are tunable at terahertz frequencies, and we investigate the limits in using the homogenized model compared to the more accurate transfer matrix model. We also propose to use graphene-based HM as a super absorber for near-fields generated at its surface. The power emitted by a dipole near the surface of a graphene-based HM is increased dramatically (up to 5 × 10(2) at 2 THz), furthermore we show that most of the scattered power is directed into the HM. The validity and limits of the homogenized HM model are assessed also for near-fields and show that in certain conditions it overestimates the dipole radiated power into the HM.

  8. Polarimetic near-field backpropagation algorithm for application to GPR imaging of mines and minelike objects

    Science.gov (United States)

    Morrow, Ivor L.; van Genderen, Piet

    2001-10-01

    This paper presents a novel polarimetric near-field two-dimension (2D) synthetic aperture focusing technique (SAFT) suitable for ground penetrating radar (GPR) application. The imaging algorithm is intended for locating metallic and non-metallic anti-personnel (AP's) mines using an ultra-wide-band stepped frequency radar. A radar image can be formed by coherently integrating the backscattered field over the measured frequency spectrum and cross-range scan. The coherent integration is essentially a convolution of the collected data and a focusing (test) function, which only depends on the geometry of the measurement. Wavefront curvature must be taken account of when attempting to image an object within 1-2 wavelengths off an antenna(s) phase center. Applying conventional far-field SAR imaging using a direct Fourier inversion may result in images which are increasingly blurred and shifted at points more distant from the point of rotation of the focusing function. Here, a focusing function is first derived based on a conventional far-field geometrical optic propagator for a two-media problem. Then to correct for geometric distortion in the focusing function when applied in the near-field zone we introduce higher order terms to the range function. In order to verify and augment the technique described two field studies were conducted, over different frequency spectrums, the finding of which demonstrates the utility of the technique and the experimental practices.

  9. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.

    Science.gov (United States)

    Bao, Wei; Staffaroni, Matteo; Bokor, Jeffrey; Salmeron, Miquel B; Yablonovitch, Eli; Cabrini, Stefano; Weber-Bargioni, Alexander; Schuck, P James

    2013-04-08

    Efficient conversion of photonic to plasmonic energy is important for nano-optical applications, particularly imaging and spectroscopy. Recently a new generation of photonic/plasmonic transducers, the 'campanile' probes, has been developed that overcomes many shortcomings of previous near-field probes by efficiently merging broadband field enhancement with bidirectional coupling of far- to near-field electromagnetic modes. In this work we compare the properties of the campanile structure with those of current NSOM tips using finite element simulations. Field confinement, enhancement, and polarization near the apex of the probe are evaluated relative to local fields created by conical tapered tips in vacuum and in tip-substrate gap mode. We show that the campanile design has similar field enhancement and bandwidth capabilities as those of ultra-sharp metallized tips, but without the substrate and sample restrictions inherent in the tip-surface gap mode operation often required by those tips. In addition, we show for the first time that this campanile probe structure also significantly enhances the radiative rate of any dipole emitter located near the probe apex, quantifying the enhanced decay rate and demonstrating that over 90% of the light radiated by the emitter is "captured" by this probe. This is equivalent to collecting the light from a solid angle of ~3.6 pi. These advantages are crucial for performing techniques such as Raman and IR spectroscopy, white-light nano-ellipsometry and ultrafast pump-probe studies at the nanoscale.

  10. Near-Field Coupling Communication Technology For Human-Area Networking

    Directory of Open Access Journals (Sweden)

    Ryoji Nagai

    2012-12-01

    Full Text Available We propose a human-area networking technology that uses the surface of the human body as a data transmission path and uses near-field coupling TRXs. This technology aims to achieve a "touch and connect" form of communication and a new concept of "touch the world" by using a quasi-electrostatic field signal that propagates along the surface of the human body. This paper explains the principles underlying near-field coupling communication. Special attention has been paid to common-mode noise since our communication system is strongly susceptible to this. We designed and made a common-mode choke coil and a transformer to act as common-mode noise filters to suppress common-mode noise. Moreover, we describe how we evaluated the quality of communication using a phantom model with the same electrical properties as the human body and present the experimental results for the packet error rate (PER as a function of the signal to noise ratio (SNR both with the common-mode choke coil or the transformer and without them. Finally, we found that our system achieved a PER of less than 10-2 in general office rooms using raised floors, which corresponded to the quality of communication demanded by communication services in ordinary office spaces.

  11. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    Science.gov (United States)

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity.

  12. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  13. Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher

    1998-01-01

    We present a reflection scanning near-field optical microscope utilizing counter-directional light propagation in an uncoated fiber probe, cross-polarized detection and shear-force feedback. Topographical and near-field optical imaging with a scanning speed of up to 10 mu m/s and a lateral...... resolution better than 40 nm are demonstrated with a latex projection test sample. Determination of the optical resolution as well as correlation between topographical and near-field optical images are discussed. (C) 1998 Elsevier Science B.V....

  14. Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects

    Science.gov (United States)

    Azari Sisi, Aida; Askan, Ayşegül; Erberik, Murat Altuğ

    2017-04-01

    In this study, stochastic earthquake catalog of the Erzincan region in Turkey is generated based on synthetic ground motions. Monte Carlo simulation method is used to identify the spatial and temporal distribution of events. Ground motion time histories are generated using stochastic simulation methodology. Annual exceedance rate of each ground motion amplitude is calculated through statistical distribution of the complete set of ground motions. The results are compared with classical probabilistic seismic hazard analysis (PSHA). Classical PSHA generally produces larger spectral amplitudes than the proposed study due to wide range of aleatory variability. The effects of near-field forward directivity and detailed site response are also investigated on the results.

  15. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    been developed for calculation and synchronization purposes. The data exchange is realized by means of the Parallel Virtual Machine (PVM) software package. In this contribution, steady-state and transient results of a quarter of PWR fuel assembly with cold water injection are presented and compared with obtained results from a RELAP5/PARCS v2.7 coupled calculation. A simplified model for the spacers has been included. A methodology has been introduced to take into account the pressure drop and the turbulence enhancement produced by the spacers. (author)

  16. Fuzzy logic scheme for tip-sample distance control for a low cost near field optical microscope

    Directory of Open Access Journals (Sweden)

    J.A. Márquez

    2013-12-01

    Full Text Available The control of the distance between the surface and the tip-sample of a Scanning Near Field Optical Microscope (SNOM is essential for a reliable surface mapping. The control algorithm should be able to maintain the system in a constant distance between the tip and the surface. In this system, nanometric adjustments should be made in order to sense topographies at the same scale with an appropriate resolution. These kinds of devices varies its properties through short periods of time, and it is required a control algorithm capable of handle these changes. In this work a fuzzy logic control scheme is proposed in order to manage the changes the device might have through the time, and to counter the effects of the non-linearity as well. Two inputs are used to program the rules inside the fuzzy logic controller, the difference between the reference signal and the sample signal (error, and the speed in which it decreases or increases. A lock-in amplifier is used as data acquisition hardware to sample the high frequency signals used to produce the tuning fork oscillations. Once these variables are read the control algorithm calculate a voltage output to move the piezoelectric device, approaching or removing the tip-probe from the sample analyzed.

  17. Near Field Communication and Health: Turning a Mobile Phone into an Interactive Multipurpose Assistant in Healthcare Scenarios

    Science.gov (United States)

    Benelli, Giuliano; Pozzebon, Alessandro

    In this paper we discuss the introduction of the Near Field Communication (NFC) technology in the management of the assistance operations in the hospitals. NFC is a new short range communication system based on RFID technology.

  18. Quantitative imaging of graphene impedance with the near-field scanning microwave microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Kalugin, Nikolai G. (New Mexico Tech, Socorro, NM); Gonzales, Edward; Kalichava, Irakli (New Mexico Tech, Socorro, NM); Gin, Aaron V.; Wickey, Lee (New Mexico Tech, Socorro, NM); Del Barga, Christopher (New Mexico Tech, Socorro, NM); Talanov, Vladimir V. (Neocera, LLC, Beltsville, MD); Shaner, Eric Arthur

    2010-07-01

    Graphene has emerged as a promising material for high speed nano-electronics due to the relatively high carrier mobility that can be achieved. To further investigate electronic transport in graphene and reveal its potential for microwave applications, we employed a near-field scanning microwave microscope with the probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator. Because of the balanced probe geometry, our microscope allows for truly localized quantitative characterization of various bulk and low-dimensional materials, with the response region defined by the one micron spacing between the two metallic strips at the probe tip. The single- and few-layer graphene flakes were fabricated by a mechanical cleavage method on 300-nm-thick silicon dioxide grown on low resistivity Si wafer. The flake thickness was determined using both AFM and Raman microscopies. We observe clear correlation between the near-field microwave and far-field optical images of graphene produced by the probe resonant frequency shift and thickness-defined color gradation, respectively. We show that the microwave response of graphene flakes is determined by the local sheet impedance, which is found to be predominantly active. Furthermore, we apply a quantitative electrodynamic model relating the probe resonant frequency shift to 2D conductivity of single- and few-layer graphene. From fitting a model to the experimental data we evaluate graphene sheet resistance as a function of thickness. Near-field scanning microwave microscopy can simultaneously image location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication. The approach may be useful for design of graphene-based microwave transistors, quality control of large area graphene sheets, or investigation of chemical and electrical doping effects on graphene transport properties. We acknowledge support from the DOE Center for

  19. Single-molecule imaging of cell surfaces using near-field nanoscopy.

    Science.gov (United States)

    Hinterdorfer, Peter; Garcia-Parajo, Maria F; Dufrêne, Yves F

    2012-03-20

    Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional

  20. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Lukas [Univ. of Rochester, NY (United States)

    2004-10-18

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  1. Pressure potential and stability analysis in an acoustical noncontact transportation

    Science.gov (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  2. Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Katrin Kneipp

    2013-12-01

    Full Text Available Strongly enhanced and spatially confined near-fields in the vicinity of plasmonic nanostructures open up exciting new capabilities for photon-driven processes and particularly also for optical spectroscopy. Surface enhanced Raman signatures of single molecules can provide us with important information about the optical near-field. We discuss one- and two-photon excited surface enhanced Raman scattering at the level of single molecules as a tool for probing the plasmonic near-field of silver nanoaggregates. The experiments reveal enhancement factors of local fields in the hottest hot spots of the near-field and their dependence on the photon energy. Also, the number of the hottest spots and their approximate geometrical size are found. Near-field amplitudes in the hottest spots can be enhanced by three orders of magnitudes. Nanoaggregates of 100 nm dimensions provide one hot spot on this highest enhancement level where the enhancement is confined within less than 1nm dimension. The near-field enhancement in the hottest spots increases with decreasing photon energy.

  3. Optical image contrast enhancement in near-field optics induced by water condensation.

    Science.gov (United States)

    Douas, Maysoun; Marqués, Manuel I; Serena, Pedro A

    2013-12-01

    In surface science, water adsorption on hydrophilic samples is usually invoked, addressing their nanoscale experimental effects in scanning probe microscopy, especially when water condensates between tip and sample. Here we study by means of a numerical hybrid method the effect of water bridge formation in near field imaging. We show how this nanometric water neck plays an important role not only in the optical image, producing a high contrast at hydrophilic patches, but also in the tip-sample distance control. This work contributes with a new methodology able to retrieve the original application of SNOM, using it as an instrument to study the optical properties of matter overcoming the diffraction limit. It extends the application of SNOM to study the hydrophilic character of polymeric and biological samples, taking advantage of ubiquitous effect of humidity when operating in ambient condition. © 2013 Elsevier B.V. All rights reserved.

  4. A Study on Electronic-Money Technology Using Near Field Communication

    Directory of Open Access Journals (Sweden)

    Min Soo Jung

    2014-12-01

    Full Text Available Recently, due to the introduction of NFC (Near Field Communication, it has become possible to make easy electronic payments. Therefore, a secure communication method is necessary in these environments. NFC can be said to be relatively safe compared to other communication methods, because it carries out communications within 10 cm. However, it has made possible the risk of impersonation attacks by a disguised reader, leaving user information on the reader. In order to solve these problems, in this paper, we propose an authentication scheme that can reduce the weight of computation by using only a hash function and XOR (eXclusive OR operation algorithms. This paper also shows that our method is safe, since it leaves no information with the other party.

  5. Electron beam confinement and image contrast enhancement in near field emission scanning electron microscopy.

    Science.gov (United States)

    Kirk, T L; De Pietro, L G; Pescia, D; Ramsperger, U

    2009-04-01

    In conventional scanning electron microscopy (SEM), the lateral resolution is limited by the electron beam diameter impinging on the specimen surface. Near field emission scanning electron microscopy (NFESEM) provides a simple means of overcoming this limit; however, the most suitable field emitter remains to be determined. NFESEM has been used in this work to investigate the W (110) surface with single-crystal tungsten tips of (310), (111), and (100)-orientations. The topographic images generated from both the electron intensity variations and the field emission current indicate higher resolution capabilities with decreasing tip work function than with polycrystalline tungsten tips. The confinement of the electron beam transcends the resolution limitations of the geometrical models, which are determined by the minimum beam width.

  6. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    Science.gov (United States)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  7. Natural quasy-periodic binary structure with focusing property in near field diffraction pattern.

    Science.gov (United States)

    Mihailescu, Mona

    2010-06-07

    A naturally-inspired phase-only diffractive optical element with a circular symmetry given by a quasi-periodic structure of the phyllotaxis type is presented in this paper. It is generated starting with the characteristic parametric equations which are optimal for the golden angle interval. For some ideal geometrical parameters, the diffracted intensity distribution in near-field has a central closed ring with almost zero intensity inside. Its radius and intensity values depend on the geometry or non-binary phase distribution superposed onto the phyllotaxis geometry. Along propagation axis, the transverse diffraction patterns from the binary-phase diffractive structure exhibit a self-focusing behavior and a rotational motion.

  8. An internet of things example: classrooms access control over near field communication.

    Science.gov (United States)

    Palma, Daniel; Agudo, Juan Enrique; Sánchez, Héctor; Macías, Miguel Macías

    2014-04-21

    The Internet of Things is one of the ideas that has become increasingly relevant in recent years. It involves connecting things to the Internet in order to retrieve information from them at any time and from anywhere. In the Internet of Things, sensor networks that exchange information wirelessly via Wi-Fi, Bluetooth, Zigbee or RF are common. In this sense, our paper presents a way in which each classroom control is accessed through Near Field Communication (NFC) and the information is shared via radio frequency. These data are published on the Web and could easily be used for building applications from the data collected. As a result, our application collects information from the classroom to create a control classroom tool that displays access to and the status of all the classrooms graphically and also connects this data with social networks.

  9. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Science.gov (United States)

    Brown, R. C.; Miake-Lye, R. C.; Anderson, M. R.; Kolb, C. E.

    A two dimensional, axisymmetric flowfield model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the Concorde engine on the formation and growth of volatile H2SO4/H2O aerosols in the near field plume. Rased on estimated exit plane sulfur speciation, results are shown for between 2% and 20% conversion of the fuel sulfur to S(VI) (SO3 and H2SO4) in engine. The primary motivation is to provide estimates for the changes in the number density and surface area density of sulfuric acid aerosols due to sulfur oxidation in the engine. This analysis indicates the need for experimental measurements of sulfur emissions at the exhaust exit, in addition to soot properties, to fully assess the atmospheric impact of aircraft emissions.

  10. Near field measurements on contrail properties from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Busen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Schroeder, F.P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Baumann, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Kuhn, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology; Hagen, D.E. [Missouri Univ., Rolla, MO (United States); Whitefield, P.D. [Missouri Univ., Rolla, MO (United States); Baumgardner, D. [National Center for Atmospheric Research, Boulder, Colorado (United States); Arnold, F. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany). Bereich Atmosphaerenphysik; Borrmann, S. [Mainz Univ. (Germany). Inst. fuer Physik der Atmosphaere; Schumann, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-08-01

    Microphysical properties of jet engine exhaust aerosol and contrails were studied in the near field of the emitting aircraft for different fuel sulfur contents. Measurements were performed behind the research aircraft ATTAS of DLR and an Airbus A310-300 using fuels with different sulfur contents of 6 ppm and 2700 ppm. The major differences in accumulation mode aerosol and microphysical contrail properties between the used aircraft were an increased number concentration of both the accumulation mode aerosol and the contrail particles in the Airbus A310-300 plume compared to the ATTAS plume. Part of the difference in contrail particles may be caused by different ambient conditions, but the major differences are assumed to be caused by different engine properties. (orig.)

  11. An Internet of Things Example: Classrooms Access Control over Near Field Communication

    Directory of Open Access Journals (Sweden)

    Daniel Palma

    2014-04-01

    Full Text Available The Internet of Things is one of the ideas that has become increasingly relevant in recent years. It involves connecting things to the Internet in order to retrieve information from them at any time and from anywhere. In the Internet of Things, sensor networks that exchange information wirelessly via Wi-Fi, Bluetooth, Zigbee or RF are common. In this sense, our paper presents a way in which each classroom control is accessed through Near Field Communication (NFC and the information is shared via radio frequency. These data are published on the Web and could easily be used for building applications from the data collected. As a result, our application collects information from the classroom to create a control classroom tool that displays access to and the status of all the classrooms graphically and also connects this data with social networks.

  12. Photonic forces in the near field of statistically homogeneous fluctuating sources

    CERN Document Server

    Aunon, Juan Miguel

    2012-01-01

    Electromagnetic sources, as e.g. lasers, antennas, diffusers or thermal sources, produce a wavefield that interacts with objects to transfer them its momentum. We show that the photonic force exerted on a small particle in the near field of a planar statistically homogeneous fluctuating source uniquely depends and acts along the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent components of the emitted field, its sign being opposite to that of the real part of the particle polarizability. The non-conservative force part is uniquely due to the propagating components, being repulsive and constant. Also, the source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons in the source surface drastically enhances the gradient force. Hence, partially coherent wavefields from fluctuating sources constitute new concepts for particle manipulation at the subwavelength scale

  13. Gravitational Effects on Near-Field Flow Structure of Low-Density Gas Jets

    Science.gov (United States)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon

    2004-01-01

    Experiments were conducted in earth gravity and micro gravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2 s drop tower at NASA John H. Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distribution of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70% wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth are absent in microgravity. Quantitative deatails are provided of the evolution as the experiment undergoes changes in gravity in the drop tower.

  14. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    Science.gov (United States)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  15. Real-time phase error compensation in phase sensitive scanning near-field optical microscopy.

    Science.gov (United States)

    Wu, Xiaoyu; Sun, Lin; Wang, Jia; Tan, Qiaofeng

    2015-07-01

    Phase measurements are critical for investigations on the optical properties of surface plasmon polariton (SPP) nanostructures. In this paper, a real-time phase error compensation method based on a phase sensitive scanning near-field optical microscopy (SNOM) measurement system is proposed. The method adopts the common optical path configuration and CMR (common-mode rejection) principle. It can be seen that the phase error compensation is real-time and mainly relies on optical devices, therefore neither post processing nor previous knowledge of environmental effects is required. The causes of the phase drift errors are discussed. We demonstrate experimentally the effectiveness of this method by measuring a SPP focusing device. Regardless of the drift velocity, degree of linearity, or phase accuracy, the compensation method shows great improvement compared to the previous phase sensitive SNOMs. All the measured distributions are in good agreement with theoretical simulations obtained by the finite-different time-domain (FDTD) method.

  16. Graphene-based photovoltaic cells for near-field thermal energy conversion

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat. PMID:23474891

  17. Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, D. [Institut de Physique de la Matiere Complexe, Ecole Polytechnique Federale de Lausanne (EPFL), Station 3, CH-1015 Lausanne (Switzerland)]. E-mail: dusan.vobornik@epfl.ch; Margaritondo, G. [Institut de Physique de la Matiere Complexe, Ecole Polytechnique Federale de Lausanne (EPFL), Station 3, CH-1015 Lausanne (Switzerland); Sanghera, J.S. [Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SE, Washington, DC 20375 (United States); Thielen, P. [Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SE, Washington, DC 20375 (United States); Aggarwal, I.D. [Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SE, Washington, DC 20375 (United States); Ivanov, B. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 31235 (United States); Tolk, N.H. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 31235 (United States); Manni, V. [Institute of Neurobiology and Molecular Medicine, 00133 Rome (Italy); Grimaldi, S. [Institute of Neurobiology and Molecular Medicine, 00133 Rome (Italy); Lisi, A. [Institute of Neurobiology and Molecular Medicine, 00133 Rome (Italy); Rieti, S. [Institute of Neurobiology and Molecular Medicine, 00133 Rome (Italy); Piston, D.W. [Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Generosi, R. [Istituto di Stuttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Luce, M. [Istituto di Stuttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Perfetti, P. [Istituto di Stuttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Cricenti, A. [Istituto di Stuttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2005-09-29

    Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of {lambda}/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample.

  18. Geotechnical Distinction of Landslides Induced by Near-Field Earthquakes in Niigata, Japan

    Directory of Open Access Journals (Sweden)

    Hirofumi Toyota

    2015-01-01

    Full Text Available Landslides triggered by near-field earthquakes with epicentres directly beneath towns have attracted intense attention since the 2004 Mid-Niigata (Niigata-ken Chuetsu Earthquake. Hilly and mountainous areas sustained heavy damage. Social problems developed when many towns became isolated because landslides cut off traffic and public service lifelines. Soil from landslides closed river channels and formed natural dams. The natural dams submerged some towns. Emergency measures were undertaken promptly to prevent debris flows caused by natural dam breaks. Subsequently, the 2007 Mid-Niigata Offshore (Niigata-ken Chuetsu-oki Earthquake and the 2011 Northern Nagano Earthquake struck the Niigata region. Landslides triggered by those earthquakes differed in terms of their number, scale, and location. Therefore, characteristics of the landslide sites of the respective earthquakes were examined to ascertain their topographical and geological features. Furthermore, differences in groundwater level and damage related to compound disasters were explained for discussion of the stability progress of damaged slopes.

  19. Ultra-broadband near-field antenna for terahertz plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Knap, W. [Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb, UMR 5221 (France)

    2015-01-15

    A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type of antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.

  20. Double-blind digital in-line holography from multiple near-field intensities

    Science.gov (United States)

    Loetgering, Lars; Froese, Heinrich; Wilhein, Thomas

    2017-05-01

    We present a phase retrieval technique for the recovery of complex-valued wave-fields from multiple near-field diffraction measurements. The proposed method does neither rely on any a priori knowledge about the sample nor on knowledge about an external reference wave, but instead uses multiple self-referencing object exit surface waves that are iteratively recovered. The key ingredient to our approach is a system of relaxed coupled waves that allow for the incorporation of holographic data. We use diffraction measurements of multiple exit surface waves as well as their holograms at multiple sample-detector distances to provide sufficient data redundancy to successfully reconstruct the complex-valued wave field. Parameters for stable performance are investigated. Numerical reconstruction is shown by simulation and experiment to be robust against systematic errors such as position uncertainty and noise. The method proposed is realizable at low cost with instrumentation available in typical optical laboratories.