Calculating evolutionary dynamics in structured populations.
Directory of Open Access Journals (Sweden)
Charles G Nathanson
2009-12-01
Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.
Passivity and Evolutionary Game Dynamics
Park, Shinkyu; Shamma, Jeff S.; Martins, Nuno C.
2018-01-01
This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.
Passivity and Evolutionary Game Dynamics
Park, Shinkyu
2018-03-21
This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.
Evolutionary dynamics of mammalian karyotypes
Directory of Open Access Journals (Sweden)
Carlo Alberto Redi
2012-12-01
Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....
Evolutionary dynamics of incubation periods.
Ottino-Loffler, Bertrand; Scott, Jacob G; Strogatz, Steven H
2017-12-21
The incubation period for typhoid, polio, measles, leukemia and many other diseases follows a right-skewed, approximately lognormal distribution. Although this pattern was discovered more than sixty years ago, it remains an open question to explain its ubiquity. Here, we propose an explanation based on evolutionary dynamics on graphs. For simple models of a mutant or pathogen invading a network-structured population of healthy cells, we show that skewed distributions of incubation periods emerge for a wide range of assumptions about invader fitness, competition dynamics, and network structure. The skewness stems from stochastic mechanisms associated with two classic problems in probability theory: the coupon collector and the random walk. Unlike previous explanations that rely crucially on heterogeneity, our results hold even for homogeneous populations. Thus, we predict that two equally healthy individuals subjected to equal doses of equally pathogenic agents may, by chance alone, show remarkably different time courses of disease.
Evolutionary dynamics under interactive diversity
Su, Qi; Li, Aming; Wang, Long
2017-10-01
As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.
EDEN: evolutionary dynamics within environments
Münch, Philipp C.; Stecher, Bärbel; McHardy, Alice C.
2017-01-01
Abstract Summary Metagenomics revolutionized the field of microbial ecology, giving access to Gb-sized datasets of microbial communities under natural conditions. This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as of their microevolution and adaptation to changing environmental conditions. However, phylogenetic methods for studying adaptation and evolutionary dynamics are not able to cope with big data. EDEN is the first software for the rapid detection of protein families and regions under positive selection, as well as their associated biological processes, from meta- and pangenome data. It provides an interactive result visualization for detailed comparative analyses. Availability and implementation EDEN is available as a Docker installation under the GPL 3.0 license, allowing its use on common operating systems, at http://www.github.com/hzi-bifo/eden. Contact alice.mchardy@helmholtz-hzi.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637301
International Nuclear Information System (INIS)
Devooght, J.; Lefvert, T.; Stankiewiez, J.
1981-01-01
This chapter deals with the work done in reactor dynamics within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations by three groups in Belgium, Poland, Sweden and Italy. Discretization methods in diffusion theory, collision probability methods in time-dependent neutron transport and singular perturbation method are represented in this paper
On evolutionary ray-projection dynamics
Joosten, Reinoud A.M.G.; Roorda, Berend
2011-01-01
We introduce the ray-projection dynamics in evolutionary game theory by employing a ray projection of the relative fitness (vector) function, i.e., a projection unto the unit simplex along a ray through the origin. Ray-projection dynamics are weakly compatible in the terminology of Friedman
Evolutionary dynamics on infinite strategy spaces
Oechssler, Jörg; Riedel, Frank
1998-01-01
The study of evolutionary dynamics was so far mainly restricted to finite strategy spaces. In this paper we show that this unsatisfying restriction is unnecessary. We specify a simple condition under which the continuous time replicator dynamics are well defined for the case of infinite strategy spaces. Furthermore, we provide new conditions for the stability of rest points and show that even strict equilibria may be unstable. Finally, we apply this general theory to a number of applications ...
Evolutionary dynamics of complex communications networks
Karyotis, Vasileios; Papavassiliou, Symeon
2013-01-01
Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to
Multiscale structure in eco-evolutionary dynamics
Stacey, Blake C.
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.
Evolutionary Dynamics and Diversity in Microbial Populations
Thompson, Joel; Fisher, Daniel
2013-03-01
Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.
Evolutionary dynamics of cooperation in neutral populations
Szolnoki, Attila; Perc, Matjaž
2018-01-01
Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.
The Evolutionary Dynamics of Biofuel Value Chains
DEFF Research Database (Denmark)
Ponte, Stefano
2014-01-01
In this paper I propose to push the frontier of global value chain (GVC) governance analysis through the concept of ‘polarity’. Much of the existing GVC literature has focused on ‘unipolar’ value chains, where one group of ‘lead firms’ inhabiting a specific function in a chain plays a dominant role...... in governing it. Some scholars have explored the dynamics of governance in GVCs characterized as ‘bipolar’, where two sets of actors in different functional positions both drive the chain. I expand this direction further to suggest conceptualizing governance within a continuum between unipolarity...... and multipolarity. Empirically, I do so by examining the evolutionary dynamics of governance in biofuel value chains, with specific focus on the key regulatory and institutional features that facilitated their emergence and expansion. First, I examine the formation, evolution, and governance of three national/regional...
Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.
Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito
2014-11-11
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Evolutionary dynamics with fluctuating population sizes and strong mutualism
Chotibut, Thiparat; Nelson, David R.
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Evolutionary dynamics with fluctuating population sizes and strong mutualism.
Chotibut, Thiparat; Nelson, David R
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Passivity analysis of higher order evolutionary dynamics and population games
Mabrok, Mohamed
2017-01-05
Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.
Essays on nonlinear evolutionary game dynamics
Ochea, M.I.
2010-01-01
Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis
Bridging developmental systems theory and evolutionary psychology using dynamic optimization.
Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H
2013-07-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.
Dynamic and photometric evolutionary models of tidal tails and ripples
International Nuclear Information System (INIS)
Wallin, J.F.
1989-01-01
An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies
Passivity analysis of higher order evolutionary dynamics and population games
Mabrok, Mohamed; Shamma, Jeff S.
2017-01-01
Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population
Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.
Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L
2017-07-01
Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Hanski, Ilkka A
2011-08-30
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
The evolutionary rate dynamically tracks changes in HIV-1 epidemics
Energy Technology Data Exchange (ETDEWEB)
Maljkovic-berry, Irina [Los Alamos National Laboratory; Athreya, Gayathri [Los Alamos National Laboratory; Daniels, Marcus [Los Alamos National Laboratory; Bruno, William [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory
2009-01-01
Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.
Spatial effect on stochastic dynamics of bistable evolutionary games
International Nuclear Information System (INIS)
So, Kohaku H Z; Ohtsuki, Hisashi; Kato, Takeo
2014-01-01
We consider the lifetimes of metastable states in bistable evolutionary games (coordination games), and examine how they are affected by spatial structure. A semiclassical approximation based on a path integral method is applied to stochastic evolutionary game dynamics with and without spatial structure, and the lifetimes of the metastable states are evaluated. It is shown that the population dependence of the lifetimes is qualitatively different in these two models. Our result indicates that spatial structure can accelerate the transitions between metastable states. (paper)
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic Ising model: reconstruction of evolutionary trees
International Nuclear Information System (INIS)
De Oliveira, P M C
2013-01-01
An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N − 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed. (paper)
Contrasting evolutionary dynamics between angiosperm and mammalian genomes
Czech Academy of Sciences Publication Activity Database
Kejnovský, Eduard; Leitch, I.J.; Leitch, A.R.
2009-01-01
Roč. 24, č. 10 (2009), s. 572-582 ISSN 0169-5347 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genomes * evolutionary dynamics * recombination Subject RIV: BO - Biophysics Impact factor: 11.564, year: 2009
Evolutionary dynamics of a smoothed war of attrition game.
Iyer, Swami; Killingback, Timothy
2016-05-07
In evolutionary game theory the War of Attrition game is intended to model animal contests which are decided by non-aggressive behavior, such as the length of time that a participant will persist in the contest. The classical War of Attrition game assumes that no errors are made in the implementation of an animal׳s strategy. However, it is inevitable in reality that such errors must sometimes occur. Here we introduce an extension of the classical War of Attrition game which includes the effect of errors in the implementation of an individual׳s strategy. This extension of the classical game has the important feature that the payoff is continuous, and as a consequence admits evolutionary behavior that is fundamentally different from that possible in the original game. We study the evolutionary dynamics of this new game in well-mixed populations both analytically using adaptive dynamics and through individual-based simulations, and show that there are a variety of possible outcomes, including simple monomorphic or dimorphic configurations which are evolutionarily stable and cannot occur in the classical War of Attrition game. In addition, we study the evolutionary dynamics of this extended game in a variety of spatially and socially structured populations, as represented by different complex network topologies, and show that similar outcomes can also occur in these situations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs
Stollmeier, Frank; Nagler, Jan
2018-02-01
Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.
Dynamical calculation of nuclear temperature
International Nuclear Information System (INIS)
Zheng Yuming
1998-01-01
A new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the microcanonical ensemble of thermodynamics is presented. It shows that under the hypothesis of ergodicity the temperature can be computed as a time average of a function on the energy surface. This method not only yields an efficient computational approach for determining the temperature, but also provides an intrinsic link between dynamical system theory and the statistical mechanics of Hamiltonian system
Population and evolutionary dynamics in spatially structured seasonally varying environments.
Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin
2018-03-25
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can
Evolutionary game dynamics in a growing structured population
Energy Technology Data Exchange (ETDEWEB)
Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de
2009-08-15
We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.
Evolutionary game dynamics in a growing structured population
International Nuclear Information System (INIS)
Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne
2009-01-01
We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.
International Nuclear Information System (INIS)
Faulkner, D.J.; Wood, P.R.
1984-01-01
Evolutionary calculations for nuclei of planetary nebulae are described. They were made using assumptions regarding mass of the NPN, phase in the He shell flash cycle at which the NPN leaves the AGB, and time variation of the mass loss rate. Comparison of the evolutionary tracks with the observational Harman-Seaton sequence indicates that some recently published NPN luminosities may be too low by a factor of three. Comparison of the calculated timescales with the observed properties of NPN and of white dwarfs provides marginal evidence for the PN ejection being initiated by the helium shell flash itself
Evolutionary dynamics on graphs: Efficient method for weak selection
Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph
2009-04-01
Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.
molecular dynamics simulations and quantum chemical calculations
African Journals Online (AJOL)
ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.
Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
Directory of Open Access Journals (Sweden)
Guillaume Chevereau
Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation
Evolutionary dynamics of protein domain architecture in plants
Directory of Open Access Journals (Sweden)
Zhang Xue-Cheng
2012-01-01
Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing
A quantitative evolutionary theory of adaptive behavior dynamics.
McDowell, J J
2013-10-01
The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved
A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies
Directory of Open Access Journals (Sweden)
An-Jiang Lu
2016-03-01
Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.
Evolutionary programming for goal-driven dynamic planning
Vaccaro, James M.; Guest, Clark C.; Ross, David O.
2002-03-01
one step closer to solving more difficult real-world AI problems. Using a hybrid approach that includes adaptation via evolutionary computation for the intelligent planning of a Risk player's turn provides better dynamic intelligent planning than more uniform approaches.
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Directory of Open Access Journals (Sweden)
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
Biased Brownian dynamics for rate constant calculation.
Zou, G; Skeel, R D; Subramaniam, S
2000-01-01
An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampl...
Nuclear Research Center IRT reactor dynamics calculation
International Nuclear Information System (INIS)
Aleman Fernandez, J.R.
1990-01-01
The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs
Home and away- the evolutionary dynamics of homing endonucleases
Directory of Open Access Journals (Sweden)
Barzel Adi
2011-11-01
Full Text Available Abstract Background Homing endonucleases (HEases are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic diseases and for the genetic engineering of crop, animal models and cell lines. Results Using mathematical analysis and computational modeling, we present here a novel account for the evolution and population dynamics of HEase genes (HEGs. We describe HEGs as paradoxical selfish elements whose long-term persistence in a single population relies on low transmission rates and a positive correlation between transmission efficiency and toxicity. Conclusion Plausible conditions allow HEGs to sustain at high frequency through long evolutionary periods, with the endonuclease frequency being either at equilibrium or periodically oscillating. The predictions of our model may prove important not only for evolutionary theory but also for gene therapy and bio-engineering applications of HEases.
Evolutionary Dynamics of Collective Action in Structured Populations
Santos, Marta Daniela de Almeida
The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None
Evolutionary dynamics of fluctuating populations with strong mutualism
Chotibut, Thiparat; Nelson, David
2013-03-01
Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.
Fast stochastic algorithm for simulating evolutionary population dynamics
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
Evolutionary dynamics of bacteria in a human host environment
DEFF Research Database (Denmark)
Yang, Lei; Jelsbak, Lars; Marvig, Rasmus Lykke
2011-01-01
Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolution...... long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.......Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize...... the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment...
Looking for the optimal rate of recombination for evolutionary dynamics
Saakian, David B.
2018-01-01
We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.
Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics
Scott, Adam; King, Dawn; Bahar, Sonya
2013-03-01
An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation
How mutation alters the evolutionary dynamics of cooperation on networks
Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki
2018-05-01
Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.
Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
Yeang, Chen-Hsiang; Beckman, Robert A
2016-10-22
Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between
Ma, Zhanshan (Sam)
In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three
Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids
Karmakar, Pralay Kumar; Dutta, Pranamika
2017-11-01
The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.
Evolutionary game dynamics of controlled and automatic decision-making.
Toupo, Danielle F P; Strogatz, Steven H; Cohen, Jonathan D; Rand, David G
2015-07-01
We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.
Evolutionary game dynamics of controlled and automatic decision-making
Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.
2015-07-01
We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.
Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.
Directory of Open Access Journals (Sweden)
Andrea Sottoriva
2011-05-01
Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Stability properties of nonlinear dynamical systems and evolutionary stable states
Energy Technology Data Exchange (ETDEWEB)
Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)
2017-03-18
Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.
Dynamical calculations for RHEED intensity oscillations
Daniluk, Andrzej
2005-03-01
A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and
Improving the accuracy of dynamic mass calculation
Directory of Open Access Journals (Sweden)
Oleksandr F. Dashchenko
2015-06-01
Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.
Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics
Amaral, Marco Antonio; Javarone, Marco Alberto
2018-04-01
Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
Eco-evolutionary dynamics in a coevolving host-virus system.
Frickel, Jens; Sieber, Michael; Becks, Lutz
2016-04-01
Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.
The faith dynamic in creationism and evolutionary theory
Jackson, Edgar Basil
2012-01-01
This study attempts to examine evolutionary theory and creationism objectively without engaging in an apology for or a criticism of either. It compares the presuppositions and assumptions of both systems, and examines the role of faith in religion and in the scientific theory of evolution. After discussing the nature of the scientific method and the development of the theory of evolution, the study explores the dichotomy of faith and reason, the ways in which these operate in theories of int...
The stability concept of evolutionary game theory a dynamic approach
1992-01-01
These Notes grew from my research in evolutionary biology, specifically on the theory of evolutionarily stable strategies (ESS theory), over the past ten years. Personally, evolutionary game theory has given me the opportunity to transfer my enthusiasm for abstract mathematics to more practical pursuits. I was fortunate to have entered this field in its infancy when many biologists recognized its potential but were not prepared to grant it general acceptance. This is no longer the case. ESS theory is now a rapidly expanding (in both applied and theoretical directions) force that no evolutionary biologist can afford to ignore. Perhaps, to continue the life-cycle metaphor, ESS theory is now in its late adolescence and displays much of the optimism and exuberance of this exciting age. There are dangers in writing a text about a theory at this stage of development. A comprehensive treatment would involve too many loose ends for the reader to appreciate the central message. On the other hand, the current central m...
Despotism, democracy, and the evolutionary dynamics of leadership and followership.
Van Vugt, Mark
2009-01-01
Responds to comments made by George B. Graen and Stephen J. Guastello on the current author's article Leadership, followership, and evolution: Some lessons from the past by Van Vugt, Hogan, and Kaiser. In the original article my co-authors and I proposed a new way of thinking about leadership, informed by evolutionary (neo-Darwinian) theory. In the first commentary, Graen noted that we ignored a number of recently developed psychological theories of leadership that take into account the leader-follower relationship, most notably LMX theory. LMX theory asserts that leadership effectiveness and team performance are affected by the quality of working relationships between superior and subordinates. Because the original article primarily dealt with questions about the origins of leadership--the phylogenetic and evolutionary causes--we had to be concise in our review of proximate psychological theories of leadership. In the second commentary, Guastello concurred with the importance of an evolutionary game analysis for studying leadership but disagreed with certain details of our analysis. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Stochastic evolutionary dynamics in minimum-effort coordination games
Li, Kun; Cong, Rui; Wang, Long
2016-08-01
The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.
Identification and evolutionary dynamics of cacta DNA transposons in brassica
International Nuclear Information System (INIS)
Nouroz, F.; Noreen, S.; Harrison, J.S.H.
2017-01-01
Transposable elements are the major drivers of genome evolution and plasticity. Due to their transposition mode, they are classified into two major classes as Retrotransposons and DNA transposons. The En/Spm or CACTA elements are diverse group of DNA transposons proliferating in plant genomes. Various bioinformatics and molecular approaches were used for identification and distribution of CACTA transposons in Brassica genome. A combination of dot plot analysis and BLASTN searches yielded 35 autonomous and 7 non-autonomous CACTA elements in Brassica. The elements ranged in sizes from 1.2 kb non-autonomous elements to 11kb autonomous elements, terminated by 3 bp Target Site Duplication (TSD) and ~15 bp conserved Terminal Inverted Repeat (TIR) motifs (5'-CACTACAAGAAAACA-3'), with heterogeneous internal regions. The transposase (TNP) was identified from autonomous CACTA elements, while other protein domains from Brassica and other plants CACTA revealed similar organizations with minor differences. Both transposases (TNPD, TNPA) are present in most CACTA, while a few CACTA harboured an additional ATHILA ORF1-like domain. The PCR analysis amplified the CACTA transposases from 40 Brassica accessions (A, B, and C-genome) suggesting their distribution among various Brassica crops. A detailed characterization and evolutionary analysis of the identified CACTA elements allowed some to be placed in genome-specific groups, while most of them (Brassica-Arabidopsis elements) have followed the same evolutionary line. The distribution of CACTA in Brassica concluded that 3 bp TSDs generating CACTA transposons contributed significantly to genome size and evolution of Brassica genome. (author)
Quantifying evolutionary dynamics from variant-frequency time series
Khatri, Bhavin S.
2016-09-01
From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.
Dynamics, Stability, and Evolutionary Patterns of Mesoscale Intrathermocline Vortices
2016-12-01
different manner from a dynamic eddy, which underscores inherent limitations of intrusion modeling in quiescent background states. Finally, it...of observed values. (3) A static eddy dissipates in a very different manner from a dynamic eddy, which underscores inherent limitations of...does not react to the environment in a physical manner . This establishes a need for future research on eddies to be modeled on a dynamically rotating
Evolutionary Dynamics of Tumor-Stroma Interactions in Multiple Myeloma.
Directory of Open Access Journals (Sweden)
Javad Salimi Sartakhti
Full Text Available Cancer cells and stromal cells cooperate by exchanging diffusible factors that sustain tumor growth, a form of frequency-dependent selection that can be studied in the framework of evolutionary game theory. In the case of multiple myeloma, three types of cells (malignant plasma cells, osteoblasts and osteoclasts exchange growth factors with different effects, and tumor-stroma interactions have been analysed using a model of cooperation with pairwise interactions. Here we show that a model in which growth factors have autocrine and paracrine effects on multiple cells, a more realistic assumption for tumor-stroma interactions, leads to different results, with implications for disease progression and treatment. In particular, the model reveals that reducing the number of malignant plasma cells below a critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast and osteoblast, a result in line with current therapies against multiple myeloma.
Sanchez, Alvaro; Gore, Jeff
2013-01-01
The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate
Directory of Open Access Journals (Sweden)
Alvaro Sanchez
Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the
Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.
Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu
2016-09-01
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.
Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu
2016-01-01
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883
Evolutionary dynamics of division of labor games with selfish agents
Zhang, Jianlei; Li, Qiaoyu; Zhang, Chunyan
2017-11-01
The division of labor is one of the most basic and widely studied aspects of collective behavior in natural systems. Studies of division of labor are concerned with the integration of the individual worker behavior into a colony level task organization and with the question of how the regulation of the division of labor may contribute to the colony efficiency. This paper investigates the evolution of the division of labor with three strategies by employing the evolutionary game theory. Thus, these available strategies are, respectively, strategy A (performing task A), strategy B (performing task B), and strategy D (not performing any task but only free riding others' contributions). And, two typical networks (i.e., BA scale-free network and lattice network) are employed here for describing the interaction structure among agents. The theoretical analysis together with simulation results reveal that the division of labor can evolve and leads to players that differ in their tendency to take on a given task. The conditions under which the division of labor evolves depend on the costs for performing the task, the benefits led by performing the task, and the interaction structures among the players who are involved with division of labor games.
Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.
Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz
2015-06-07
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Yaroslavsky, Leonid P.
1996-11-01
We show that one can treat pseudo-random generators, evolutionary models of texture images, iterative local adaptive filters for image restoration and enhancement and growth models in biology and material sciences in a unified way as special cases of dynamic systems with a nonlinear feedback.
Lin, XuXun; Yuan, PengCheng
2018-01-01
In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.
P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)
2007-01-01
htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future
Molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...
108 NUMERICAL CALCULATIONS IN THE GENERAL DYNAMICAL ...
African Journals Online (AJOL)
DR. AMINU
Dynamical Principles and Laws and compare to construct a corresponding theory of Gravitational. Time Dilation and compute the ratio of the ... mass mi and passive and mass mp and active mass mA of a photon of frequency ν is given by. 2 ... Conservation of mechanical Energy in gravitational fields that the instantaneous ...
Convergence analysis and control of evolutionary matrix-game dynamics
Ramazi, Pouria
2017-01-01
Networks of decision-making individuals with simple dynamics may give rise to complex and seemingly unpredictable collective behaviors which may have negative consequences such as traffic jams and market crashes or positive outcomes such as volunteer disaster relief and free-market stabilization.
Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2012-01-01
This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...
Power system dynamic state estimation using prediction based evolutionary technique
International Nuclear Information System (INIS)
Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan
2016-01-01
In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.
Viscosity calculations at molecular dynamics simulations
International Nuclear Information System (INIS)
Kirova, E M; Norman, G E
2015-01-01
Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)
The Tangled Nature Model of evolutionary dynamics reconsidered
DEFF Research Database (Denmark)
Andersen, Christian Walther; Sibani, Paolo
2016-01-01
The Tangled Nature Model of biological and cultural evolution features interacting agents which compete for limited resources and reproduce in an error prone fashion and at a rate depending on the `tangle' of interactions they maintain with others. The set of interactions linking a TNM individual....... To bring out the structural and dynamical effects of trait inheritance , we introduce and numerically analyze a family of TNM models where a positive integer $K$ parametrises correlations between the interactions of an agent and those of its mutated offspring. For $K=1$ a single point mutation randomizes...
Study on system dynamics of evolutionary mix-game models
Gou, Chengling; Guo, Xiaoqian; Chen, Fang
2008-11-01
Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.
A Runtime Analysis of Parallel Evolutionary Algorithms in Dynamic Optimization
DEFF Research Database (Denmark)
Lissovoi, Andrei; Witt, Carsten
2017-01-01
A simple island model with (Formula presented.) islands and migration occurring after every (Formula presented.) iterations is studied on the dynamic fitness function Maze. This model is equivalent to a (Formula presented.) EA if (Formula presented.), i. e., migration occurs during every iteratio.......). The relationship of (Formula presented.), and the ability of the island model to track the optimum is then investigated more closely. Finally, experiments are performed to supplement the asymptotic results, and investigate the impact of the migration topology.......A simple island model with (Formula presented.) islands and migration occurring after every (Formula presented.) iterations is studied on the dynamic fitness function Maze. This model is equivalent to a (Formula presented.) EA if (Formula presented.), i. e., migration occurs during every iteration....... It is proved that even for an increased offspring population size up to (Formula presented.), the (Formula presented.) EA is still not able to track the optimum of Maze. If the migration interval is chosen carefully, the algorithm is able to track the optimum even for logarithmic (Formula presented...
Beam dynamics calculations for fault-tolerance
International Nuclear Information System (INIS)
Biarrotte, J.L.; Uriot, D.
2007-10-01
The European Transmutation Demonstration requires a high-power proton accelerator operating in CW mode. This accelerator is also expected to have a very limited number of unexpected beam interruptions per year. To reach such an ambitious goal, it is clear that reliability-oriented design practices need to be followed from the early stage of components design and fault-tolerance capabilities have to be introduced to the maximum extent. The goal of this document is precisely to investigate in more details the fault-tolerance capability of the XT-ADS linac. From previous analysis, it appears that if nothing is done, a cavity's failure leads in nearly all the cases to a complete beam loss, due to the non-relativistic varying velocity of the particles. To avoid such a total beam loss, it is clear that some kind of retuning has to be performed to compensate the lack of acceleration due to the faulty cavity. We have to identify and develop fast failure recovery scenarios to ensure that such retuning can be performed in less than 1 second. 2 ways are investigated. The first way is to stop the beam to achieve the retuning (Scenario 1). The other way is to try to perform the retuning without stopping the beam (Scenario 2). The present analysis demonstrates on the beam dynamics point of view that a fast retuning procedure can be envisaged without stopping the beam (Scenario 2). Nevertheless, this Scenario 2 implies stringent specifications, especially on: - the fault detection time, that has to be extremely short (order of magnitude: 100 μs) and - the margins required on the accelerating field and RF power point of view, that are higher than in Scenario 1
Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems
DEFF Research Database (Denmark)
Lissovoi, Andrei
the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...
A representation-theoretic approach to the calculation of evolutionary distance in bacteria
Sumner, Jeremy G.; Jarvis, Peter D.; Francis, Andrew R.
2017-08-01
In the context of bacteria and models of their evolution under genome rearrangement, we explore a novel application of group representation theory to the inference of evolutionary history. Our contribution is to show, in a very general maximum likelihood setting, how to use elementary matrix algebra to sidestep intractable combinatorial computations and convert the problem into one of eigenvalue estimation amenable to standard numerical approximation techniques.
Evolutionary Game Dynamics in a Fitness-Dependent Wright-Fisher Process with Noise
International Nuclear Information System (INIS)
Quan Ji; Wang Xianjia
2011-01-01
Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright-Fisher process. We consider symmetric 2x2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments. (general)
Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.
2004-01-01
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell reta...
Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang
2015-01-01
In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
O'Brien, M; Taylor, J; Procassini, R
2004-01-01
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations
McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan
2017-07-01
Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Turcotte, Martin M; Reznick, David N; Daniel Hare, J
2013-05-01
An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.
Burdon, J J; Thrall, P H; Ericson, L
2013-08-01
Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.
Solé, Ricard V; Montoya, José M; Erwin, Douglas H
2002-01-01
Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Ohtsuki, Hisashi; Iwasa, Yoh
2007-02-07
Reputation formation is a key to understanding indirect reciprocity. In particular, the way to assign reputation to each individual, namely a norm that describes who is good and who is bad, greatly affects the possibility of sustained cooperation in the population. Previously, we have exhaustively studied reputation dynamics that are able to maintain a high level of cooperation at the ESS. However, this analysis examined the stability of monomorphic population and did not investigate polymorphic population where several strategies coexist. Here, we study the evolutionary dynamics of multiple behavioral strategies by replicator dynamics. We exhaustively study all 16 possible norms under which the reputation of a player in the next round is determined by the action of the self and the reputation of the opponent. For each norm, we explore evolutionary dynamics of three strategies: unconditional cooperators, unconditional defectors, and conditional cooperators. We find that only three norms, simple-standing, Kandori, and shunning, can make conditional cooperation evolutionarily stable, hence, realize sustained cooperation. The other 13 norms, including scoring, ultimately lead to the invasion by defectors. Also, we study the model in which private reputation errors exist to a small extent. In this case, we find the stable coexistence of unconditional and conditional cooperators under the three norms.
Ancient origin of the tryptophan operon and the dynamics of evolutionary change.
Xie, Gary; Keyhani, Nemat O; Bonner, Carol A; Jensen, Roy A
2003-09-01
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting
Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†
Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.
2003-01-01
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting
Directory of Open Access Journals (Sweden)
David Lee Erickson
2014-11-01
Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for
Molecular dynamics calculation of shear viscosity for molten salt
International Nuclear Information System (INIS)
Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru
1993-12-01
A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)
Molecular dynamics and Monte Carlo calculations in statistical mechanics
International Nuclear Information System (INIS)
Wood, W.W.; Erpenbeck, J.J.
1976-01-01
Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references
Calculation of the 5th AER dynamic benchmark with APROS
International Nuclear Information System (INIS)
Puska, E.K.; Kontio, H.
1998-01-01
The model used for calculation of the 5th AER dynamic benchmark with APROS code is presented. In the calculation of the 5th AER dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic VVER-440 plant model created by IVO PE. (author)
Calculation of the dynamic air flow resistivity of fibre materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1997-01-01
The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...
Energy Technology Data Exchange (ETDEWEB)
Kulicke, B [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany); Schlegel, S [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany)
1993-06-28
An important part of network operation management is the estimation and maintenance of the security of supply. So far the control personnel has only been supported by static network analyses and safety calculations. The authors describe an expert system, which is coupled to a real time simulation program on a transputer basis, for dynamic network safety calculations. They also introduce the system concept and the most important functions of the expert system. (orig.)
Turcotte, Martin M; Reznick, David N; Hare, J Daniel
2011-11-01
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.
Liao, David; Tlsty, Thea D
2014-08-06
Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.
Fe IX CALCULATIONS FOR THE SOLAR DYNAMICS OBSERVATORY
International Nuclear Information System (INIS)
Foster, Adam R.; Testa, Paola
2011-01-01
New calculations of the energy levels, radiative transition rates, and collisional excitation rates of Fe IX have been carried out using the Flexible Atomic Code, paying close attention to experimentally identified levels and extending existing calculations to higher energy levels. For lower levels, R-matrix collisional excitation rates from earlier work have been used. Significant emission is predicted by these calculations in the 5f-3d transitions, which will impact analysis of Solar Dynamics Observatory Atmospheric Imaging Assembly observations using the 94 A filter.
International Nuclear Information System (INIS)
Unsihuay-Vila, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.
2010-01-01
This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods. (author)
Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks
Yong, Xi
2016-01-01
The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882
Calculation of particle dynamics in CI-10 cyclotron
International Nuclear Information System (INIS)
Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.
1999-01-01
The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)
Innovation dynamics of Salvadoran agri-food industry from an evolutionary perspective
Energy Technology Data Exchange (ETDEWEB)
Peraza Castaneda, E.H.; Aleixandre Mendizábal, G.
2016-07-01
This paper presents a holistic approach to analyse the dynamics of innovation of a low-tech sector in a less developed economy, the agri-food industry in El Salvador, in the context of evolutionary economy. This requires using complementary quantitative and qualitative data and methodologies to better understand how Salvadoran agri-food industry innovation system works and how STI public policies can improve the performance of a key sector in terms of national socioeconomic development. The work already done shows a concentrated and vigorous sector with some upstream and downstream connections that innovate depending on firm size, age, R&D activities and use of industrial property rights. (Author)
Directory of Open Access Journals (Sweden)
Shujian Ma
2016-01-01
Full Text Available A government-market-public partnership (GMPP could be a feasible arrangement for providing insurance coverage for natural disaster. Firstly, we put forward GMPP management mode. Secondly, the emergency financial service supply chain for natural disaster risk is built from the view of supply chain. Finally, the objective of this paper is to obtain insights into the cooperative and competitive relationship in GMPP system. We establish the cooperative and competitive differential dynamic evolutionary models and prove the existence of equilibrium solutions in order to solve the coordination problems. In conclusion, the equilibrium solutions can be achieved among the insurers, the operating governments, and the public.
Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
Krasny, Darren P; Orin, David E
2004-08-01
Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.
Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.
Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi
2015-11-01
How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.
Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard
2011-01-01
Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.
The co-evolutionary dynamics of directed network of spin market agents
Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin
2006-09-01
The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.
Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-09-01
In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.
A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks
Directory of Open Access Journals (Sweden)
Guoqiang Chen
2013-01-01
Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.
Structure-dynamic model verification calculation of PWR 5 tests
International Nuclear Information System (INIS)
Engel, R.
1980-02-01
Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de
Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John
2014-01-01
Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of
Calculation of dynamic hydraulic forces in nuclear plant piping systems
International Nuclear Information System (INIS)
Choi, D.K.
1982-01-01
A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)
Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets
Energy Technology Data Exchange (ETDEWEB)
Cooke, J. F.
1980-10-01
Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.
The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.
De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M
2017-01-07
We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis
Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi
2014-01-01
The stabilization of host–symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost–benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume–rhizobia symbioses, which is extendable to other single-host, multiple
Directory of Open Access Journals (Sweden)
David Gresham
2008-12-01
Full Text Available The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes -- including point mutations, structural changes, and insertion variation -- that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for approximately 200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5-50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications to known features
Directory of Open Access Journals (Sweden)
Matos Margarida
2009-06-01
Full Text Available Abstract Here we present a correction to our article "Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura". We have recently detected an error concerning the application of the Ln RH formula – a test to detect positive selection – to our microsatellite data. Here we provide the corrected data and discuss its implications for our overall findings. The corrections presented here have produced some changes relative to our previous results, namely in a locus (dsub14 that presents indications of being affected by positive selection. In general, our populations present less consistent indications of positive selection for this particular locus in both periods studied – between generations 3 and 14 and between generation 14 and 40 of laboratory adaptation. Despite this, the main findings of our study regarding the possibility of positive selection acting on that particular microsatellite still hold. As previously concluded in our article, further studies should be performed on this specific microsatellite locus (and neighboring areas to elucidate in greater detail the evolutionary forces acting on this specific region of the O chromosome of Drosophila subobscura.
Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
Gorter, Florien A; Aarts, Mark G M; Zwaan, Bas J; de Visser, J Arjan G M
2018-01-01
The fitness landscape is a concept that is widely used for understanding and predicting evolutionary adaptation. The topography of the fitness landscape depends critically on the environment, with potentially far-reaching consequences for evolution under changing conditions. However, few studies have assessed directly how empirical fitness landscapes change across conditions, or validated the predicted consequences of such change. We previously evolved replicate yeast populations in the presence of either gradually increasing, or constant high, concentrations of the heavy metals cadmium (Cd), nickel (Ni), and zinc (Zn), and analyzed their phenotypic and genomic changes. Here, we reconstructed the local fitness landscapes underlying adaptation to each metal by deleting all repeatedly mutated genes both by themselves and in combination. Fitness assays revealed that the height, and/or shape, of each local fitness landscape changed considerably across metal concentrations, with distinct qualitative differences between unconditionally (Cd) and conditionally toxic metals (Ni and Zn). This change in topography had particularly crucial consequences in the case of Ni, where a substantial part of the individual mutational fitness effects changed in sign across concentrations. Based on the Ni landscape analyses, we made several predictions about which mutations had been selected when during the evolution experiment. Deep sequencing of population samples from different time points generally confirmed these predictions, demonstrating the power of landscape reconstruction analyses for understanding and ultimately predicting evolutionary dynamics, even under complex scenarios of environmental change. Copyright © 2018 by the Genetics Society of America.
Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium
Directory of Open Access Journals (Sweden)
Lynch Michael
2010-05-01
Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.
Catania, Francesco; Lynch, Michael
2010-05-04
In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.
Directory of Open Access Journals (Sweden)
Yao Yao
Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.
Yao, Yao; Marchal, Kathleen; Van de Peer, Yves
2014-01-01
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485
Dynamical gluon masses in perturbative calculations at the loop level
International Nuclear Information System (INIS)
Machado, Fatima A.; Natale, Adriano A.
2013-01-01
Full text: In the phenomenology of strong interactions one always has to deal at some extent with the interplay between perturbative and non-perturbative QCD. On one hand, the former has quite developed tools, yielded by asymptotic freedom. On the other, concerning the latter, we nowadays envisage the following scenario: 1) There are strong evidences for a dynamically massive gluon propagator and infrared finite coupling constant; 2) There is an extensive and successful use of an infrared finite coupling constant in phenomenological calculations at tree level; 3) The infrared finite coupling improves the perturbative series convergence; 4) The dynamical gluon mass provides a natural infrared cutoff in the physical processes at the tree level. Considering this scenario it is natural to ask how these non-perturbative results can be used in perturbative calculations of physical observables at the loop level. Recent papers discuss how off-shell gauge and renormalization group invariant Green functions can be computed with the use of the Pinch Technique (PT), with IR divergences removed by the dynamical gluon mass, and using a well defined effective charge. In this work we improve the former results by the authors, which evaluate 1-loop corrections to some two- and three-point functions of SU(3) pure Yang-Mills, investigating the dressing of quantities that could account for an extension of loop calculations to the infrared domain of the theory, in a way applicable to phenomenological calculations. One of these improvements is maintaining the gluon propagator transverse in such a scheme. (author)
Ding, Fei; Liu, Yun; Li, Yong
In this paper, a new model of opinion formation within the framework of evolutionary game theory is presented. The model simulates strategic situations when people are in opinion discussion. Heterogeneous agents adjust their behaviors to the environment during discussions, and their interacting strategies evolve together with opinions. In the proposed game, we take into account payoff discount to join a discussion, and the situation that people might drop out of an unpromising game. Analytical and emulational results show that evolution of opinion and strategy always tend to converge, with utility threshold, memory length, and decision uncertainty parameters influencing the convergence time. The model displays different dynamical regimes when we set differently the rule when people are at a loss in strategy.
Random Evolutionary Dynamics Driven by Fitness and House-of-Cards Mutations: Sampling Formulae
Huillet, Thierry E.
2017-07-01
We first revisit the multi-allelic mutation-fitness balance problem, especially when mutations obey a house of cards condition, where the discrete-time deterministic evolutionary dynamics of the allelic frequencies derives from a Shahshahani potential. We then consider multi-allelic Wright-Fisher stochastic models whose deviation to neutrality is from the Shahshahani mutation/selection potential. We next focus on the weak selection, weak mutation cases and, making use of a Gamma calculus, we compute the normalizing partition functions of the invariant probability densities appearing in their Wright-Fisher diffusive approximations. Using these results, generalized Ewens sampling formulae (ESF) from the equilibrium distributions are derived. We start treating the ESF in the mixed mutation/selection potential case and then we restrict ourselves to the ESF in the simpler house-of-cards mutations only situation. We also address some issues concerning sampling problems from infinitely-many alleles weak limits.
Nuclear structure calculations in the dynamic-interaction propagator approach
International Nuclear Information System (INIS)
Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.
1978-01-01
The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af
Cressler, Clayton E; Bengtson, Stefan; Nelson, William A
2017-07-01
Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.
Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen
2016-06-14
Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.
Advanced Dynamics Analytical and Numerical Calculations with MATLAB
Marghitu, Dan B
2012-01-01
Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...
Dynamic calculation of structures in seismic zones. 2. ed.
International Nuclear Information System (INIS)
Capra, Alain; Davidovici, Victor
1982-01-01
The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr
Approximate dynamic fault tree calculations for modelling water supply risks
International Nuclear Information System (INIS)
Lindhe, Andreas; Norberg, Tommy; Rosén, Lars
2012-01-01
Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.
Dynamical calculations of nuclear fission and heavy-ion reactions
International Nuclear Information System (INIS)
Nix, J.R.; Sierk, A.J.
1984-01-01
With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references
DEFF Research Database (Denmark)
Tian, Yihui; Govindan, Kannan; Zhu, Qinghua
2014-01-01
In this study, a system dynamics (SD) model is developed to guide the subsidy policies to promote the diffusion of green supply chain management (GSCM) in China. The relationships of stakeholders such as government, enterprises and consumers are analyzed through evolutionary game theory. Finally...
Jeremy J. Burdon; Peter H. Thrall; Adnane Nemri
2012-01-01
Natural plant-pathogen associations are complex interactions in which the interplay of environment, host, and pathogen factors results in spatially heterogeneous ecological and epidemiological dynamics. The evolutionary patterns that result from the interaction of these factors are still relatively poorly understood. Recently, integration of the appropriate spatial and...
Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics.
Directory of Open Access Journals (Sweden)
Matthew T Aliota
2018-03-01
Full Text Available Defining the complex dynamics of Zika virus (ZIKV infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.
ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS
International Nuclear Information System (INIS)
HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.
2002-01-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings
Lara-Cabrera, Raúl; Cotta, Carlos; Fernández Leiva, Antonio J.
2013-01-01
This work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based ...
Genome-wide evolutionary dynamics of influenza B viruses on a global scale.
Directory of Open Access Journals (Sweden)
Pinky Langat
2017-12-01
Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.
Helbing, Dirk; Johansson, Anders
2010-01-01
Evolutionary game theory has been successfully used to investigate the dynamics of systems, in which many entities have competitive interactions. From a physics point of view, it is interesting to study conditions under which a coordination or cooperation of interacting entities will occur, be it spins, particles, bacteria, animals, or humans. Here, we analyze the case, where the entities are heterogeneous, particularly the case of two populations with conflicting interactions and two possible states. For such systems, explicit mathematical formulas will be determined for the stationary solutions and the associated eigenvalues, which determine their stability. In this way, four different types of system dynamics can be classified and the various kinds of phase transitions between them will be discussed. While these results are interesting from a physics point of view, they are also relevant for social, economic, and biological systems, as they allow one to understand conditions for (1) the breakdown of cooperation, (2) the coexistence of different behaviors (“subcultures”), (3) the evolution of commonly shared behaviors (“norms”), and (4) the occurrence of polarization or conflict. We point out that norms have a similar function in social systems that forces have in physics.
Genome-wide evolutionary dynamics of influenza B viruses on a global scale
Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John
2017-01-01
The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042
Barton, Ian S; Fuqua, Clay; Platt, Thomas G
2018-01-01
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Evolutionary Dynamics of Mating-Type Loci of Mycosphaerella spp. Occurring on Banana▿ †
Arzanlou, Mahdi; Crous, Pedro W.; Zwiers, Lute-Harm
2010-01-01
The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular. PMID:19915079
Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana.
Arzanlou, Mahdi; Crous, Pedro W; Zwiers, Lute-Harm
2010-01-01
The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular.
Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes
Skippington, Elizabeth; Ragan, Mark A.
2012-01-01
Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
The fifth AER dynamic benchmark calculation with hextran-smabre
International Nuclear Information System (INIS)
Haemaelaeinen, A.; Kyrki-Rajamaeki, R.
1998-01-01
The first AER benchmark for coupling of the thermohydraulic codes and three-dimensional reactordynamic core models is discussed. HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models, the Loviisa model and standard VVER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 1/6 symmetry is used in the core. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark. (author)
Kou, Jisheng
2017-09-30
Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.
Origin and evolutionary dynamics of Hepatitis B virus (HBV) genotype E in Madagascar.
Lo Presti, Alessandra; Andriamandimby, Soa Fy; Lai, Alessia; Angeletti, Silvia; Cella, Eleonora; Mottini, Giovanni; Guarino, Michele Pier Luca; Balotta, Claudia; Galli, Massimo; Heraud, Jean-Michel; Zehender, Gianguglielmo; Ciccozzi, Massimo
2017-02-01
Africa is one of the endemic regions of HBV infection. In particular, genotype E is highly endemic in most of sub-Saharan Africa such as West African countries where it represents more than 90% of total infections. Madagascar, which is classified as a high endemic area for HBV and where the most prevalent genotype is E, might play a relevant role in the dispersion of this genotype due to its crucial position in the Indian Ocean. The aim of this study was to investigate the origin, population dynamics, and circulation of HBV-E genotype in Madagascar through high-resolution phylogenetic and phylodynamic approaches. The phylogenetic tree indicated that Malagasy isolates were intermixed and closely related with sequences mostly from West African countries. The Bayesian tree highlighted three statistically supported clusters of Malagasy strains which dated back to the years 1981 (95% HPD: 1971-1992), 1986 (95% HPD: 1974-1996), and 1989 (95% HPD: 1974-2001). Population dynamics analysis showed an exponential increase in the number of HBV-E infections approximately from the year 1975 until 2000s. The migration analysis was also performed and a dynamic pattern of gene flow was identified. In conclusion, this study confirms previous observation of HBV-E circulation in Africa and expands these findings at Madagascar demonstrating its recent introduction, and highlighting the role of the African countries in the spread of HBV-E genotype. Further studies on molecular epidemiology of HBV genotype E are needed to clarify the evolutionary history of this genotype.
Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I
2005-04-01
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.
Beam dynamics calculations and particle tracking using massively parallel processors
International Nuclear Information System (INIS)
Ryne, R.D.; Habib, S.
1995-01-01
During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking
Attractive evolutionary equilibria
Joosten, Reinoud A.M.G.; Roorda, Berend
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary
Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America.
Campitelli, Brandon E; Stinchcombe, John R
2014-06-03
Disentangling the historical evolutionary processes that contribute to patterns of phenotypic and genetic variation is important for understanding contemporary patterns of both traits of interest and genetic diversity of a species. Ipomoea hederacea is a self-compatible species whose geographic origin is contested, and previous work suggests that although there are signals of adaptation (significant leaf shape and flowering time clines), no population structure or neutral genetic differentiation of I. hederacea populations was detected. Here, we use DNA sequence data to characterize patterns of genetic variation to establish a more detailed understanding of the current and historical processes that may have generated the patterns of genetic variation in this species. We resequenced ca. 5000 bp across 7 genes for 192 individuals taken from 24 populations in North America. Our results indicate that North American I. hederacea populations are ubiquitously genetically depauperate, and patterns of nucleotide diversity are consistent with population expansion. Contrary to previous findings, we discovered significant population subdivision and isolation-by-distance, but genetic structure was spatially discontinuous, potentially implicating long-distance dispersal. We further found significant genetic differentiation at sequenced loci but nearly fourfold stronger differentiation at the leaf shape locus, strengthening evidence that the leaf shape locus is under divergent selection. We propose that North American I. hederacea has experienced a recent founder event, and/or population dynamics are best described by a metapopulation model (high turnover and dispersal), leading to low genetic diversity and a patchy genetic distribution. Copyright © 2014 Campitelli and Stinchcombe.
Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.
Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T
2015-11-01
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.
International Nuclear Information System (INIS)
Ahmadigorji, Masoud; Amjady, Nima
2014-01-01
Highlights: • A new dynamic distribution network expansion planning model is presented. • A Binary Enhanced Particle Swarm Optimization (BEPSO) algorithm is proposed. • A Modified Differential Evolution (MDE) algorithm is proposed. • A new bi-level optimization approach composed of BEPSO and MDE is presented. • The effectiveness of the proposed optimization approach is extensively illustrated. - Abstract: Reconstruction in the power system and appearing of new technologies for generation capacity of electrical energy has led to significant innovation in Distribution Network Expansion Planning (DNEP). Distributed Generation (DG) includes the application of small/medium generation units located in power distribution networks and/or near the load centers. Appropriate utilization of DG can affect the various technical and operational indices of the distribution network such as the feeder loading, energy losses and voltage profile. In addition, application of DG in proper size is an essential tool to achieve the DG maximum potential benefits. In this paper, a time-based (dynamic) model for DNEP is proposed to determine the optimal size, location and installation year of DG in distribution system. Also, in this model, the Optimal Power Flow (OPF) is exerted to determine the optimal generation of DGs for every potential solution in order to minimize the investment and operation costs following the load growth in a specified planning period. Besides, the reinforcement requirements of existing distribution feeders are considered, simultaneously. The proposed optimization problem is solved by the combination of evolutionary methods of a new Binary Enhanced Particle Swarm Optimization (BEPSO) and Modified Differential Evolution (MDE) to find the optimal expansion strategy and solve OPF, respectively. The proposed planning approach is applied to two typical primary distribution networks and compared with several other methods. These comparisons illustrate the
Indian Academy of Sciences (India)
In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...
DEFF Research Database (Denmark)
Stygar, Anna Helena; Krogh, Mogens Agerbo; Kristensen, Troels
2017-01-01
Evolutionary operations is a method to exploit the association of often small changes in process variables, planned during systematic experimentation and occurring during the normal production flow, to production characteristics to find a way to alter the production process to be more efficient....... The objective of this study was to construct a tool to assess the intervention effect on milk production in an evolutionary operations setup. The method used for this purpose was a dynamic linear model (DLM) with Kalman filtering. The DLM consisted of parameters describing milk yield in a herd, individual cows...... bulk tank records. The presented model proved to be a flexible and dynamic tool, and it was successfully applied for systematic experimentation in dairy herds. The model can serve as a decision support tool for on-farm process optimization exploiting planned changes in process variables...
Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe
2014-01-01
Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells
Dynamic stability calculations for power grids employing a parallel computer
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K
1982-06-01
The aim of dynamic contingency calculations in power systems is to estimate the effects of assumed disturbances, such as loss of generation. Due to the large dimensions of the problem these simulations require considerable computing time and costs, to the effect that they are at present only used in a planning state but not for routine checks in power control stations. In view of the homogeneity of the problem, where a multitude of equal generator models, having different parameters, are to be integrated simultaneously, the use of a parallel computer looks very attractive. The results of this study employing a prototype parallel computer (SMS 201) are presented. It consists of up to 128 equal microcomputers bus-connected to a control computer. Each of the modules is programmed to simulate a node of the power grid. Generators with their associated control are represented by models of 13 states each. Passive nodes are complemented by 'phantom'-generators, so that the whole power grid is homogenous, thus removing the need for load-flow-iterations. Programming of microcomputers is essentially performed in FORTRAN.
CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2017-02-01
Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the
Luchetti, Andrea; Mantovani, Barbara
2011-02-01
Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.
Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael
2016-01-01
Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated ‘UC’ and ‘UP’. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon (Oncorhynchus nerka) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by FST. Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.
Attractive evolutionary equilibria
Roorda, Berend; Joosten, Reinoud
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.
Directory of Open Access Journals (Sweden)
Colin J Worby
Full Text Available Genome sequencing is an increasingly common component of infectious disease outbreak investigations. However, the relationship between pathogen transmission and observed genetic data is complex, and dependent on several uncertain factors. As such, simulation of pathogen dynamics is an important tool for interpreting observed genomic data in an infectious disease outbreak setting, in order to test hypotheses and to explore the range of outcomes consistent with a given set of parameters. We introduce 'seedy', an R package for the simulation of evolutionary and epidemiological dynamics (http://cran.r-project.org/web/packages/seedy/. Our software implements stochastic models for the accumulation of mutations within hosts, as well as individual-level disease transmission. By allowing variables such as the transmission bottleneck size, within-host effective population size and population mixing rates to be specified by the user, our package offers a flexible framework to investigate evolutionary dynamics during disease outbreaks. Furthermore, our software provides theoretical pairwise genetic distance distributions to provide a likelihood of person-to-person transmission based on genomic observations, and using this framework, implements transmission route assessment for genomic data collected during an outbreak. Our open source software provides an accessible platform for users to explore pathogen evolution and outbreak dynamics via simulation, and offers tools to assess observed genomic data in this context.
Directory of Open Access Journals (Sweden)
Ali Ghorbani
2017-01-01
Full Text Available Coupled Piled Raft Foundations (CPRFs are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs.
A comparison of techniques for calculating protein essential dynamics
van Aalten, D.M.F.; de Groot, B.L.; Findlay, J.B.C.; Berendsen, H.J.C.; Amadei, A
1997-01-01
Recently the basic theory of essential dynamics, a method for extracting large concerted motions from protein molecular dynamics trajectories, was described. Here, we introduce and test new aspects. A method for diagonalizing large covariance matrices is presented. We show that it is possible to
International Nuclear Information System (INIS)
Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis
2008-01-01
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
DEFF Research Database (Denmark)
Neumann, Frank; Witt, Carsten
2015-01-01
combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...
A molecular dynamics calculation of solid phase of malonic acid ...
Indian Academy of Sciences (India)
Sathya S R R Perumal
Keywords. Hydrogen bond chain; elastic constants; molecular dynamics. 1. Introduction ... theory - a probabilistic model to determine the hydro- gen bonds within the .... compares poorly with the experimental value of 108.5. Similarly β and γ ...
Directory of Open Access Journals (Sweden)
Shuai Wang
Full Text Available Individual genes or regions are still commonly used to estimate the phylogenetic relationships among viral isolates. The genomic regions that can faithfully provide assessments consistent with those predicted with full-length genome sequences would be preferable to serve as good candidates of the phylogenetic markers for molecular epidemiological studies of many viruses. Here we employed a statistical method to evaluate the evolutionary relationships between individual viral genes and full-length genomes without tree construction as a way to determine which gene can match the genome well in phylogenetic analyses. This method was performed by calculation of linear correlations between the genetic distance matrices of aligned individual gene sequences and aligned genome sequences. We applied this method to the phylogenetic analyses of porcine circovirus 2 (PCV2, measles virus (MV, hepatitis E virus (HEV and Japanese encephalitis virus (JEV. Phylogenetic trees were constructed for comparisons and the possible factors affecting the method accuracy were also discussed in the calculations. The results revealed that this method could produce results consistent with those of previous studies about the proper consensus sequences that could be successfully used as phylogenetic markers. And our results also suggested that these evolutionary correlations could provide useful information for identifying genes that could be used effectively to infer the genetic relationships.
Beam dynamics calculations for the linac booster beam line
International Nuclear Information System (INIS)
Lu, J.Q.; Cramer, J.G.; Storm, D.W.
1987-01-01
Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated
Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes
Directory of Open Access Journals (Sweden)
Podder Soumita
2012-01-01
Full Text Available Abstract Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.
Between Pleasure and Contentment: Evolutionary Dynamics of Some Possible Parameters of Happiness
Gao, Yue; Edelman, Shimon
2016-01-01
We offer and test a simple operationalization of hedonic and eudaimonic well-being ("happiness") as mediating variables that link outcomes to motivation. In six evolutionary agent-based simulation experiments, we compared the relative performance of agents endowed with different combinations of happiness-related traits (parameter values), under four types of environmental conditions. We found (i) that the effects of attaching more weight to longer-term than to momentary happiness and of exten...
Synthesizing multi-objective H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
Synthesizing mixed H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
2001-01-01
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A
2017-01-19
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong
2013-01-01
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with
Directory of Open Access Journals (Sweden)
Jiaqin Shi
Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite
Dynamic simulation of flash drums using rigorous physical property calculations
Directory of Open Access Journals (Sweden)
F. M. Gonçalves
2007-06-01
Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.
Calculations of beam dynamics in Sandia linear electron accelerators, 1984
International Nuclear Information System (INIS)
Poukey, J.W.; Coleman, P.D.
1985-03-01
A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table
Hommes, C.H.; Ochea, M.I.
2010-01-01
This paper investigates, by means of simple, three and four strategy games, the occurrence of periodic and chaotic behaviour in a smooth version of the Best Response Dynamics, the Logit Dynamics. The main finding is that, unlike Replicator Dynamics, generic Hopf bifurcation and thus, stable limit
Calculation of dynamic stresses in viscoelastic sandwich beams using oma
DEFF Research Database (Denmark)
Pelayo, F.; Aenlle, M. L.; Ismael, G.
2017-01-01
The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...
Non-linear calculation of PCRV using dynamic relaxation
International Nuclear Information System (INIS)
Schnellenbach, G.
1979-01-01
A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered
Caizzi, Ruggiero; Moschetti, Roberta; Piacentini, Lucia; Fanti, Laura; Marsano, Renè Massimiliano; Dimitri, Patrizio
2016-08-01
The term heterochromatin has been long considered synonymous with gene silencing, but it is now clear that the presence of transcribed genes embedded in pericentromeric heterochromatin is a conserved feature in the evolution of eukaryotic genomes. Several studies have addressed the epigenetic changes that enable the expression of genes in pericentric heterochromatin, yet little is known about the evolutionary processes through which this has occurred. By combining genome annotation analysis and high-resolution cytology, we have identified and mapped 53 orthologs of D. melanogaster heterochromatic genes in the genomes of two evolutionarily distant species, D. pseudoobscura and D. virilis. Our results show that the orthologs of the D. melanogaster heterochromatic genes are clustered at three main genomic regions in D. virilis and D. pseudoobscura. In D. virilis, the clusters lie in the middle of euchromatin, while those in D. pseudoobscura are located in the proximal portion of the chromosome arms. Some orthologs map to the corresponding Muller C element in D. pseudoobscura and D. virilis, while others localize on the Muller B element, suggesting that chromosomal rearrangements that have been instrumental in the fusion of two separate elements involved the progenitors of genes currently located in D. melanogaster heterochromatin. These results demonstrate an evolutionary repositioning of gene clusters from ancestral locations in euchromatin to the pericentromeric heterochromatin of descendent D. melanogaster chromosomes. Remarkably, in both D. virilis and D. pseudoobscura the gene clusters show a conserved association with the HP1a protein, one of the most highly evolutionarily conserved epigenetic marks. In light of these results, we suggest a new scenario whereby ancestral HP1-like proteins (and possibly other epigenetic marks) may have contributed to the evolutionary repositioning of gene clusters into heterochromatin.
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.
Mank, Judith E
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe
2018-01-01
In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.
The evolutionary dynamics of major regulators for sexual development among Hymenoptera species
Directory of Open Access Journals (Sweden)
Matthias eBiewer
2015-04-01
Full Text Available All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem gene, a transformer (tra ortholog, and mediates in conjunction with transformer2 (tra2 sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway.
Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics
Directory of Open Access Journals (Sweden)
Sofie Van Holle
2017-05-01
Full Text Available Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica. The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST, hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285
CFD calculations on the IFMIF Li-jet fluid dynamics
International Nuclear Information System (INIS)
Casal, N.
2007-01-01
IFMIF is an accelerator-based neutron source to test fusion candidate materials, in which two deuteron beams will strike a target of liquid lithium. The deuteron-lithium stripping reactions will produce the required energy neutron flux to simulate the fusion reactor irradiation. The lithium jet must remove up to 10 MW of beam power deposited on it, so a lithium velocity as high as 20 m/s is required in the target. In addition, in the beam power deposition area, the lithium flows over a concave backwall so that the centrifugal forces avoid lithium boiling. A stable liquid free surface is a very critical requirement of the target system, otherwise the neutron field could be altered. In this line, 1mm of amplitude has been established as the limit of lithium free surface perturbations in IFMIF present design. The experimental results of a number of water and lithium facilities together with previous fluiddynamics calculations show that the lithium free surface stability can hardly fulfill or even will exceed this design requirement. Other effects, like lithium jet thickness variation, have also been observed and predicted by calculations. Therefore, hydrodynamical stability of the lithium jet is a major issue and the possible occurrences that could affect it must be examined. To look into these problems, a simulation of the target area has been carried out by means of a CFX 5.7 code calculation. RANS (Reynolds-Averaged Navier Stokes) CFD codes are a very useful tool to supply information of main flow parameters, but there is the necessity to validate the models supporting the results by experimental data. In addition, owing to the uncertainties associated with modelling the free surface of liquid metal with the available turbulent approaches, efforts have been devoted to support the results by means of model assessment. The behaviour of the free surface and lithium jet thickness has been studied considering the liquid fraction volume as a first rough indicator of the
Directory of Open Access Journals (Sweden)
Xing Fan
Full Text Available The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2 a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3 sweep event and population expansion might result in the difference in the d(N/d(S value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4 an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5 the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.
Body drop into a fluid tank and dynamic loads calculation
Directory of Open Access Journals (Sweden)
Komarov Aleksandr Andreevich
2014-05-01
Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.
Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm
Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew
2000-01-01
One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous
DEFF Research Database (Denmark)
Hansen, Sara Krogh; Vestergaard, Mikkel; Thøgersen, Lea
2014-01-01
, for example, order parameters. Therefore, valuable insight into the dynamics of biomolecules may be achieved by the present method. We have applied this method to study the dynamics of lipid bilayers containing the antimicrobial peptide alamethicin, and we show that the calculated 31P spectra obtained...
Directory of Open Access Journals (Sweden)
Jing Chen
2013-01-01
Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.
An extension of the classification of evolutionary singular strategies in Adaptive Dynamics
Boldin, Barbara; Diekmann, Odo
2014-01-01
The existing classification of evolutionarily singular strategies in Adaptive Dynamics (Geritz et al. in Evol Ecol 12:35–57, 1998; Metz et al. in Stochastic and spatial structures of dynamical systems, pp 183–231, 1996) assumes an invasion exponent that is differentiable twice as a function of both
DEFF Research Database (Denmark)
Faria, Lourenco; Andersen, Maj Munch
2017-01-01
We know from evolutionary theory that sectoral characteristics are important to innovation. This paper investigates if sectoral characteristics also are important to eco-innovation, a hitherto under-researched theme. We argue that research into possible sectoral patterns in eco-innovation is key...... 1965 to 2012, focusing on powertrain technologies. The empirical analysis is based on patent data amongst big car producers and focuses on identifying changes in two main aspects: (1) the convergence/divergence of firms’ green strategies and technologies within the automotive sector; and (2......) the contribution of alternative key green technological trajectories relative to the dominant design. Our findings indicate that the evolution of relative green patenting has followed a positive, linear growth over the last decades with increasing participation of alternative propulsion technologies and increasing...
Between Pleasure and Contentment: Evolutionary Dynamics of Some Possible Parameters of Happiness.
Directory of Open Access Journals (Sweden)
Yue Gao
Full Text Available We offer and test a simple operationalization of hedonic and eudaimonic well-being ("happiness" as mediating variables that link outcomes to motivation. In six evolutionary agent-based simulation experiments, we compared the relative performance of agents endowed with different combinations of happiness-related traits (parameter values, under four types of environmental conditions. We found (i that the effects of attaching more weight to longer-term than to momentary happiness and of extending the memory for past happiness are both stronger in an environment where food is scarce; (ii that in such an environment "relative consumption," in which the agent's well-being is negatively affected by that of its neighbors, is more detrimental to survival when food is scarce; and (iii that having a positive outlook, under which agents' longer-term happiness is increased by positive events more than it is decreased by negative ones, is generally advantageous.
The Evolutionary History and Spatiotemporal Dynamics of the NC Lineage of Citrus Tristeza Virus
Directory of Open Access Journals (Sweden)
María José Benítez-Galeano
2017-10-01
Full Text Available Citrus tristeza virus (CTV is a major pathogen affecting citrus trees worldwide. However, few studies have focused on CTV’s evolutionary history and geographic behavior. CTV is locally dispersed by an aphid vector and long distance dispersion due to transportation of contaminated material. With the aim to delve deeper into the CTV-NC (New Clade genotype evolution, we estimated an evolution rate of 1.19 × 10−3 subs/site/year and the most common recent ancestor in 1977. Furthermore, the place of origin of the genotype was in the United States, and a great expansion of the population was observed in Uruguay. This expansion phase could be a consequence of the increment in the number of naïve citrus trees in Uruguayan orchards encompassing citrus industry growth in the past years.
Between Pleasure and Contentment: Evolutionary Dynamics of Some Possible Parameters of Happiness.
Gao, Yue; Edelman, Shimon
2016-01-01
We offer and test a simple operationalization of hedonic and eudaimonic well-being ("happiness") as mediating variables that link outcomes to motivation. In six evolutionary agent-based simulation experiments, we compared the relative performance of agents endowed with different combinations of happiness-related traits (parameter values), under four types of environmental conditions. We found (i) that the effects of attaching more weight to longer-term than to momentary happiness and of extending the memory for past happiness are both stronger in an environment where food is scarce; (ii) that in such an environment "relative consumption," in which the agent's well-being is negatively affected by that of its neighbors, is more detrimental to survival when food is scarce; and (iii) that having a positive outlook, under which agents' longer-term happiness is increased by positive events more than it is decreased by negative ones, is generally advantageous.
Directory of Open Access Journals (Sweden)
Zoran Stefanovic
2015-08-01
Full Text Available The paper provides an insight into the dominant trends of contemporary evolutionary economics and outlines the important issues related to the articulation of this approach in thinking about the economy. The paper also affirms a proposition on institutions as carrier structures of socio-economic evolution, whose numerous effects at the societal level are decoded through the coordination function. In addition to the market, the process of coordination also employs other non-market institutional structures, whose profile and operational principles are the product of the trajectories of cultural and historical evolution, different among social orders. Projects aimed at the transformation of the economic system are to be sensitized to an objectively conditioned diversity of the institutional structures of the world economy, and in this sense, should be very careful in the installation of „universal” reform solutions.
Directory of Open Access Journals (Sweden)
Boyang Qu
2017-12-01
Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.
Lu, Zhixiang; Wei, Yongping; Feng, Qi; Xie, Jiali; Xiao, Honglang; Cheng, Guodong
2018-09-01
There is limited quantitative understanding of interactions between human and environmental systems over the millennial scale. We aim to reveal the co-evolutionary dynamics of the human-environment system in a river basin by simulating the water use and net primary production (NPP) allocation for human and environmental systems over the last 2000years in Heihe River basin (HRB) in northwest China. We partition the catchment total evapotranspiration (ET) into ET for human and environmental systems with a social-hydrological framework and estimate the NPP for human and environmental systems using the Box-Lieth model, then classify the co-evolutionary processes of the human-environment system into distinct phases using the rate of changes of NPP over time, and discover the trade-offs or synergies relationships between them based on the elasticity of change of the NPP for humans to the change of NPP for environment. The co-evolutionary dynamics of human-environment system in the HRB can be divided into four periods, including: Phase I (Han Dynasty-Yuan Dynasty): predevelopment characterized by nearly no trade-offs between human and environment; Phase II (Yuan Dynasty-RC): slow agricultural development: characterized by a small human win due to small trade-offs between human and environment; Phase III (RC-2000): rapid agricultural development: characterized by a large human win due to large trade-offs between human and environment, and Phase IV (2000-2010): a rebalance characterized by large human wins with a small-environment win due to synergies, although these occurred very occasionally. This study provides a quantitative approach to describe the co-evolution of the human-environment system from the perspective of trade-offs and synergies in the millennial scale for the first time. The relationships between humans and environment changed from trade-off to synergy with the implementation of the water reallocation scheme in 2000. These findings improve the
Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.
Zhu, Henan; Hughes, Joseph; Murcia, Pablo R
2015-05-01
Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
Wininger, Kerry; Rank, Nathan
2017-11-01
Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research. © 2017 New York Academy of Sciences.
A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs
Directory of Open Access Journals (Sweden)
Guoqin Mai
2016-01-01
Full Text Available Motivation. Clustered regularly interspaced short palindromic repeat (CRISPR is a genetic element with active regulation roles for foreign invasive genes in the prokaryotic genomes and has been engineered to work with the CRISPR-associated sequence (Cas gene Cas9 as one of the modern genome editing technologies. Due to inconsistent definitions, the existing CRISPR detection programs seem to have missed some weak CRISPR signals. Results. This study manually curates all the currently annotated CRISPR elements in the prokaryotic genomes and proposes 95 updates to the annotations. A new definition is proposed to cover all the CRISPRs. The comprehensive comparison of CRISPR numbers on the taxonomic levels of both domains and genus shows high variations for closely related species even in the same genus. The detailed investigation of how CRISPRs are evolutionarily manipulated in the 8 completely sequenced species in the genus Thermoanaerobacter demonstrates that transposons act as a frequent tool for splitting long CRISPRs into shorter ones along a long evolutionary history.
Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes.
Laopichienpong, Nararat; Muangmai, Narongrit; Chanhome, Lawan; Suntrarachun, Sunutcha; Twilprawat, Panupon; Peyachoknagul, Surin; Srikulnath, Kornsorn
2017-03-01
Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.
Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.
Directory of Open Access Journals (Sweden)
Vanessa Rodrigues Paixão-Côrtes
Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.
Geuverink, E; Beukeboom, L W
2014-01-01
Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects. © 2013 S. Karger AG, Basel.
Directory of Open Access Journals (Sweden)
Cruz Luisa Ana B
2012-12-01
Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.
de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.
2013-01-01
Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected
Eco-evolutionary Red Queen dynamics regulate biodiversity in a metabolite-driven microbial system.
Bonachela, Juan A; Wortel, Meike T; Stenseth, Nils Chr
2017-12-15
The Red Queen Hypothesis proposes that perpetual co-evolution among organisms can result from purely biotic drivers. After more than four decades, there is no satisfactory understanding as to which mechanisms trigger Red Queen dynamics or their implications for ecosystem features such as biodiversity. One reason for such a knowledge gap is that typical models are complicated theories where limit cycles represent an idealized Red Queen, and therefore cannot be used to devise experimental setups. Here, we bridge this gap by introducing a simple model for microbial systems able to show Red Queen dynamics. We explore diverse biotic sources that can drive the emergence of the Red Queen and that have the potential to be found in nature or to be replicated in the laboratory. Our model enables an analytical understanding of how Red Queen dynamics emerge in our setup, and the translation of model terms and phenomenology into general underlying mechanisms. We observe, for example, that in our system the Red Queen offers opportunities for the increase of biodiversity by facilitating challenging conditions for intraspecific dominance, whereas stasis tends to homogenize the system. Our results can be used to design and engineer experimental microbial systems showing Red Queen dynamics.
Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies
Czech Academy of Sciences Publication Activity Database
Streicker, D. G.; Winternitz, Jamie Caroline; Satterfield, D. A.; Condori-Condori, R. E.; Broos, A.; Tello, C.; Recuenco, S.; Velasco-Villa, A.; Altizer, S.; Valderrama, W.
2016-01-01
Roč. 113, č. 39 (2016), s. 10926-10931 ISSN 0027-8424 Institutional support: RVO:68081766 Keywords : Desmodus * zoonotic disease * forecasting * sex bias * spatial dynamics Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 9.661, year: 2016
The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics.
Antunes, Agostinho; Troyer, Jennifer L; Roelke, Melody E; Pecon-Slattery, Jill; Packer, Craig; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Frank, Laurence; Stander, Philip; Siefert, Ludwig; Driciru, Margaret; Funston, Paul J; Alexander, Kathy A; Prager, Katherine C; Mills, Gus; Wildt, David; Bush, Mitch; O'Brien, Stephen J; Johnson, Warren E
2008-11-01
The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIV(Ple)), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA Phi(ST) = 0.92; nDNA F(ST) = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIV(Ple) subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa ( approximately 324,000-169,000 years ago), which expanded during the Late Pleistocene ( approximately 100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition ( approximately 14,000-7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIV(Ple) variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently.
The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics.
Directory of Open Access Journals (Sweden)
Agostinho Antunes
2008-11-01
Full Text Available The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA, paternal (Y-chromosome, and biparental nuclear (nDNA genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIV(Ple, a lentivirus analogous to human immunodeficiency virus (HIV. In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA Phi(ST = 0.92; nDNA F(ST = 0.18, and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIV(Ple subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa ( approximately 324,000-169,000 years ago, which expanded during the Late Pleistocene ( approximately 100,000 years ago into Central and North Africa and into Asia. During the Pleistocene/Holocene transition ( approximately 14,000-7,000 years, another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIV(Ple variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently.
Zhang, Hai-Feng; Wu, Zhi-Xi; Tang, Ming; Lai, Ying-Cheng
2014-07-11
How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that, under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our findings indicate that any disease-control policy should be exercised with extreme care: its success depends on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental policies, and behavioral responses of individuals.
Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin
2015-04-21
Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.
Co-Evolutionary Mechanisms of Emotional Bursts in Online Social Dynamics and Networks
Directory of Open Access Journals (Sweden)
Bosiljka Tadić
2013-11-01
Full Text Available Collective emotional behavior of users is frequently observed on various Web portals; however, its complexity and the role of emotions in the acting mechanisms are still not thoroughly understood. In this work, using the empirical data and agent-based modeling, a parallel analysis is performed of two archetypal systems—Blogs and Internet-Relayed-Chats—both of which maintain self-organized dynamics but not the same communication rules and time scales. The emphasis is on quantifying the collective emotions by means of fractal analysis of the underlying processes as well as topology of social networks, which arise and co-evolve in these stochastic processes. The results reveal that two distinct mechanisms, which are based on different use of emotions (an emotion is characterized by two components, arousal and valence, are intrinsically associated with two classes of emergent social graphs. Their hallmarks are the evolution of communities in accordance with the excess of the negative emotions on popular Blogs, on one side, and smooth spreading of the Bot’s emotional impact over the entire hierarchical network of chats, on the other. Another emphasis of this work is on the understanding of nonextensivity of the emotion dynamics; it was found that, in its own way, each mechanism leads to a reduced phase space of the emotion components when the collective dynamics takes place. That a non-additive entropy describes emotion dynamics, is further confirmed by computing the q-generalized Kolmogorov-Sinai entropy rate in the empirical data of chats as well as in the simulations of interacting emotional agents and Bots.
The galactic globular cluster NGC 1851: its dynamical and evolutionary properties
Saviane, I.; Piotto, G.; Fagotto, F.; Zaggia, S.; Capaccioli, M.; Aparicio, A.
1998-05-01
We have completely mapped the Galactic globular cluster NGC 1851 with large-field, ground-based VI CCD photometry and pre-repair HST/WFPC1 data for the central region. The photometric data set has allowed a V vs. (V-I) colour-magnitude diagram for ~ 20500 stars to be constructed. >From the apparent luminosity of the horizontal branch (HB) we derive a true distance modulus (m-M)_0 = 15.44 +/- 0.20. An accurate inspection of the cluster's bright and blue objects confirms the presence of seven ``supra-HB'' stars, six of which are identified as evolved descendants from HB progenitors. The HB morphology is found to be clearly bimodal, showing both a red clump and a blue tail, which are not compatible with standard evolutionary models. Synthetic Hertzsprung-Russell (HR) diagrams demonstrate that the problem could be solved by assuming a bimodal efficiency of the mass loss along the red giant branch (RGB). With the aid of Kolmogorov-Smirnov statistics we find evidence that the radial distribution of the blue HB stars is different from that of the red HB and sub-giant branch (SGB) stars. We give the first measurement of the mean absolute I magnitude for 22 known RR Lyr variables ( = 0.12 +/- 0.20 mag at a metallicity [Fe/H] = -1.28). The mean absolute V magnitude is = 0.58 +/- 0.20 mag, and we confirm that these stars are brighter than those of the zero-age HB (ZAHB). Moreover, we found seven new RR Lyr candidates (six ab type and one c type). With these additional variables the ratio of the two types is now N_c/Nab = 0.38. >From a sample of 25 globular clusters a new calibration for Delta V_bump() HB as a function of cluster metallicity is derived. NGC 1851 follows this general trend fairly well. From a comparison with the theoretical models, we also find some evidence for an age-metallicity relation among globular clusters. We identify 13 blue straggler stars, which do not show any sign of variability. The blue stragglers are less concentrated than the subgiant branch
VizieR Online Data Catalog: NGC 1851 dynamical and evolutionary properties (Saviane+ 1998)
Saviane, I.; Piotto, G.; Fagotto, F.; Zaggia, S.; Capaccioli, M.; Aparicio, A.
1998-02-01
We have completely mapped the Galactic globular cluster NGC 1851 with large-field, ground-based VI CCD photometry and pre-repair HST/WFPC1 data for the central region. The photometric data set has allowed a V vs. (V-I) colour-magnitude diagram for ~20500 stars to be constructed. From the apparent luminosity of the horizontal branch (HB) we derive a true distance modulus (m-M)0=15.44+/-0.20. An accurate inspection of the cluster's bright and blue objects confirms the presence of seven ``supra-HB'' stars, six of which are identified as evolved descendants from HB progenitors. The HB morphology is found to be clearly bimodal, showing both a red clump and a blue tail, which are not compatible with standard evolutionary models. Synthetic Hertzsprung-Russell (HR) diagrams demonstrate that the problem could be solved by assuming a bimodal efficiency of the mass loss along the red giant branch (RGB). With the aid of Kolmogorov-Smirnov statistics we find evidence that the radial distribution of the blue HB stars is different from that of the red HB and supgiant branch (SGB) stars. We give the first measurement of the mean absolute I magnitude for 22 known RR Lyr variables (=0.12+/-0.20mag at a metallicity [Fe/H]=-1.28). The mean absolute V magnitude is =0.58+/-0.20mag, and we confirm that these stars are brighter than those of the zero-age HB (ZAHB). Moreover, we found seven new RR Lyr candidates (six ab type and one c type). With these additional variables the ratio of the two types is now Nc/Nab=0.38. From a sample of 25 globular clusters a new calibration for {DELTA} VbumpHB as a function of cluster metallicity is derived. NGC 1851 follows this general trend fairly well. From a comparison with the theoretical models, we also find some evidence for an age-metallicity relation among globular clusters. We identify 13 blue straggler stars, which do not show any sign of variability. The blue stragglers are less concentrated than the subgiant branch stars with similar
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
The effect of walking speed on local dynamic stability is sensitive to calculation methods
DEFF Research Database (Denmark)
Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona
2014-01-01
Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...
New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft
Directory of Open Access Journals (Sweden)
Bai-gang Mi
2017-01-01
Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.
Directory of Open Access Journals (Sweden)
Dai Zusai
2017-11-01
Full Text Available While conformity pressures people to assimilate in a community, an individual occasionally migrates among communities when the individual feels discomfort. These two factors cause segregation and cultural diversity within communities in the society. By embedding a migration dynamic into Kuran and Sandholm’s model (2008 of preference evolution, we build an agent-based model to see how the variance of preferences in the entire society quantitatively changes over time. We find from the Monte-Carlo simulations that, while preferences assimilate within a community, self-selected migrations enlarge the diversity of preferences over communities in the society. We further study how the arrival rate of migration opportunities and the degree of conformity pressures affect the variance of preferences.
Fluid and structural dynamics calculations to determine core barrel loads during blowdown (EV 3,000)
International Nuclear Information System (INIS)
Krieg, R.; Schlechtendahl, E.G.
1977-01-01
To begin with, the main physical phenomena in connection with blowdown loads on the care barrel and the computer models used are briefly described. These models have also been used in the design of the HTR test care barrel. The fluid dynamics part of the calculations was carried out using the WHAMMOD and DAPSY codes; for the structural dynamics part, the STRUDL/Dynal code was employed. (orig./RW) [de
Calculation of the fifth atomic energy research dynamic benchmark with APROS
International Nuclear Information System (INIS)
Puska Eija Karita; Kontio Harii
1998-01-01
The band-out presents the model used for calculation of the fifth atomic energy research dynamic benchmark with APROS code. In the calculation of the fifth atomic energy research dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic WWER-440 plant model created by IVO Power Engineering Ltd. - Finland. (Author)
Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk
2013-01-01
WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197
Jackson, Andrew P.
2014-05-05
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.
Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab
2014-01-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.
Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab
2014-01-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432
Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab
2014-06-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Universal effect of dynamical reinforcement learning mechanism in spatial evolutionary games
International Nuclear Information System (INIS)
Zhang, Hai-Feng; Wu, Zhi-Xi; Wang, Bing-Hong
2012-01-01
One of the prototypical mechanisms in understanding the ubiquitous cooperation in social dilemma situations is the win–stay, lose–shift rule. In this work, a generalized win–stay, lose–shift learning model—a reinforcement learning model with dynamic aspiration level—is proposed to describe how humans adapt their social behaviors based on their social experiences. In the model, the players incorporate the information of the outcomes in previous rounds with time-dependent aspiration payoffs to regulate the probability of choosing cooperation. By investigating such a reinforcement learning rule in the spatial prisoner's dilemma game and public goods game, a most noteworthy viewpoint is that moderate greediness (i.e. moderate aspiration level) favors best the development and organization of collective cooperation. The generality of this observation is tested against different regulation strengths and different types of network of interaction as well. We also make comparisons with two recently proposed models to highlight the importance of the mechanism of adaptive aspiration level in supporting cooperation in structured populations
A CRITICAL AND COMPARATIVE ANALYSIS OF THE INDUSTRIAL CORPORATIONS IN THEIR EVOLUTIONARY DYNAMIC
Directory of Open Access Journals (Sweden)
GHERGHEL Sabina
2017-05-01
Full Text Available Since the 2000s, a series of mergers and acquisitions of brand at industrial corporations’ level has been observed in the global industry landscape, and an even more pronounced dynamism was manifested in Europe. The wave of mergers and acquisitions continues nowadays, when the concentration of the dominant "actors" on the industrial stage is followed by a similar process of creating enterprises able to compete with the first ones, either by the size of production or financial strength, or by innovativeness and introduction of new and competitive products. The existence of the Common Market and the EU on our continent has contributed enormously to the process of restructuring the "old" Europe. In the first phase of the European construction, the stage where national markets were still dominant, but there could be noticed a serious growth of competition, in Europe there has been produced a huge wave of mergers, for many surprising. Once with the consolidation of the European Community, a new phase begins, in which enterprises begin to adopt "continental" strategies and policies, reasoning according to the logic of a market area. Through international mergers means, is implemented a strategy that adapts the minimization of costs and simultaneously an insurance policy against a future possible currency devaluation. Today we are witnessing the third stage, with rules that tend quickly towards a complete unification and a single currency. The agreements between the European enterprises can be considered favorable because they often lead to high levels of efficiency without decreasing elements that make them competitive.
Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.
Wang, Maojun; Wang, Pengcheng; Lin, Min; Ye, Zhengxiu; Li, Guoliang; Tu, Lili; Shen, Chao; Li, Jianying; Yang, Qingyong; Zhang, Xianlong
2018-02-01
The formation of polyploids significantly increases the complexity of transcriptional regulation, which is expected to be reflected in sophisticated higher-order chromatin structures. However, knowledge of three-dimensional (3D) genome structure and its dynamics during polyploidization remains poor. Here, we characterize 3D genome architectures for diploid and tetraploid cotton, and find the existence of A/B compartments and topologically associated domains (TADs). By comparing each subgenome in tetraploids with its extant diploid progenitor, we find that genome allopolyploidization has contributed to the switching of A/B compartments and the reorganization of TADs in both subgenomes. We also show that the formation of TAD boundaries during polyploidization preferentially occurs in open chromatin, coinciding with the deposition of active chromatin modification. Furthermore, analysis of inter-subgenomic chromatin interactions has revealed the spatial proximity of homoeologous genes, possibly associated with their coordinated expression. This study advances our understanding of chromatin organization in plants and sheds new light on the relationship between 3D genome evolution and transcriptional regulation.
International Nuclear Information System (INIS)
Hills, J.G.
1975-01-01
We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15
Directory of Open Access Journals (Sweden)
Huan Chen
2017-04-01
Full Text Available Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN and its futures price fluctuation network (HFPFN in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.
Dynamical optimization techniques for the calculation of electronic structure in solids
International Nuclear Information System (INIS)
Benedek, R.; Min, B.I.; Garner, J.
1989-01-01
The method of dynamical simulated annealing, recently introduced by Car and Parrinello, provides a new tool for electronic structure computation as well as for molecular dynamics simulation. In this paper, we explore an optimization technique that is complementary to dynamical simulated annealing, the method of steepest descents (SD). As an illustration, SD is applied to calculate the total energy of diamond-Si, a system previously treated by Car and Parrinello. The adaptation of SD to treat metallic systems is discussed and a numerical application is presented. (author) 18 refs., 3 figs
Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C
2009-12-01
Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.
Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.
2009-12-01
Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.
Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids
Directory of Open Access Journals (Sweden)
Fernandes António MG
2008-10-01
Full Text Available Abstract Background Segmental duplications (SDs are euchromatic portions of genomic DNA (≥ 1 kb that occur at more than one site within the genome, and typically share a high level of sequence identity (>90%. Approximately 5% of the human genome is composed of such duplicated sequences. Here we report the detailed investigation of CHEK2 duplications. CHEK2 is a multiorgan cancer susceptibility gene encoding a cell cycle checkpoint kinase acting in the DNA-damage response signalling pathway. The continuous presence of the CHEK2 gene in all eukaryotes and its important role in maintaining genome stability prompted us to investigate the duplicative evolution and phylogeny of CHEK2 and its paralogs during anthropoid evolution. Results To study CHEK2 duplicon evolution in anthropoids we applied a combination of comparative FISH and in silico analyses. Our comparative FISH results with a CHEK2 fosmid probe revealed the single-copy status of CHEK2 in New World monkeys, Old World monkeys and gibbons. Whereas a single CHEK2 duplication was detected in orangutan, a multi-site signal pattern indicated a burst of duplication in African great apes and human. Phylogenetic analysis of paralogous and ancestral CHEK2 sequences in human, chimpanzee and rhesus macaque confirmed this burst of duplication, which occurred after the radiation of orangutan and African great apes. In addition, we used inter-species quantitative PCR to determine CHEK2 copy numbers. An amplification of CHEK2 was detected in African great apes and the highest CHEK2 copy number of all analysed species was observed in the human genome. Furthermore, we detected variation in CHEK2 copy numbers within the analysed set of human samples. Conclusion Our detailed analysis revealed the highly dynamic nature of CHEK2 duplication during anthropoid evolution. We determined a burst of CHEK2 duplication after the radiation of orangutan and African great apes and identified the highest CHEK2 copy number
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling
Directory of Open Access Journals (Sweden)
Honghai Fan
2017-01-01
Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.
International Nuclear Information System (INIS)
Zunger, A.
1975-07-01
Semiempirical all-valence-electron LCAO methods, that were previously used to study the electronic structure of molecules are applied to three problems in solid state physics: the electronic band structure of covalent crystals, point defect problems in solids and lattice dynamical study of molecular crystals. Calculation methods for the electronic band structure of regular solids are introduced and problems regarding the computation of the density matrix in solids are discussed. Three models for treating the electronic eigenvalue problem in the solid, within the proposed calculation schemes, are discussed and the proposed models and calculation schemes are applied to the calculation of the electronic structure of several solids belonging to different crystal types. The calculation models also describe electronic properties of deep defects in covalent insulating crystals. The possible usefulness of the semieipirical LCAO methods in determining the first order intermolecular interaction potential in solids and an improved model for treating the lattice dynamics and related thermodynamical properties of molecular solids are presented. The improved lattice dynamical is used to compute phonon dispersion curves, phonon density of states, stable unit cell structure, lattice heat capacity and thermal crystal parameters, in α and γ-N 2 crystals, using the N 2 -N 2 intermolecular interaction potential that has been computed from the semiempirical LCAO methods. (B.G.)
The calculation of turbulence phenomena in plasma focus dynamics using REDUCE
International Nuclear Information System (INIS)
Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.
1982-05-01
Based on previous calculations of the development of highly turbulent plasma states resulting from m=0 instabilities and the application to the turbulent development in the late stage of a plasma focus experiment, using REDUE, the treatment of plasma focus dynamics is extended to the compression stage and 'intermediate' stage between maximum density and m = o onset. For this, a two-fluid model of the magneto-fluid dynamic equations is employed. The non-linear development is again treated in ω, k-space and transformed back into r, t-space to obtain local dynamic variables as functions of time. The calculation is applied to the Stuttgart plasma focus experiment POSEIDON. It is shown that for relatively high pinch currents, neutron production also appears in the 'intermediate' phase, the life-time of which increases with increasing pinch current. (orig.)
Directory of Open Access Journals (Sweden)
Sornek Krzysztof
2016-01-01
Full Text Available The proper design of renewable energy based systems is really important to provide their efficient and safe operation. The aim of this paper is to compare the results obtained during traditional static calculations, with the results of dynamic simulations. For this reason, simulations of solar water heating (SWH system, designed for a typical residential building, were conducted in the TRNSYS (Transient System Simulation Tool. Carried out calculations allowed to determine the heat generation in the discussed system as well as to estimate the efficiency of considered installation. Obtained results were compared with the results from other available tool based on the static calculations. It may be concluded, that using dynamic simulations at the designing stage of renewable energy based systems may help to avoid many exploitation problems (including low efficiency, overheating etc. and allows to provide safe exploitation of such installations.
Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.
2018-04-01
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
Alunno-bruscia, Marianne; Van Der Veer, Henk W.; Kooijman, Sebastiaan A.l.m.
2009-01-01
The European Research Project AquaDEB (20072011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main sci...
Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans
International Nuclear Information System (INIS)
Stapleton, S; Zavgorodni, S; Popescu, I A; Beckham, W A
2005-01-01
The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot
Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans
Stapleton, S.; Zavgorodni, S.; Popescu, I. A.; Beckham, W. A.
2005-02-01
The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot.
Evolutionary Multiplayer Games
Gokhale, Chaitanya S.; Traulsen, Arne
2014-01-01
Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...
International Nuclear Information System (INIS)
Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong
2016-01-01
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S_2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S_0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T_1 state have been proposed for these phototranspositions.
Energy Technology Data Exchange (ETDEWEB)
Cao, Jun [Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang, Guizhou 550018 (China); Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018 (China); Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie, Zhi-Zhong [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Yu, Xiaodong, E-mail: yuxdhy@163.com [Department of Architecture and Chemical Engineering, Tangshan Polytechnic College, Tangshan 063020 (China)
2016-08-02
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S{sub 2} state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S{sub 0} state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T{sub 1} state have been proposed for these phototranspositions.
Viscosity of magnetic fluids must be modified in calculations of dynamic susceptibility
Energy Technology Data Exchange (ETDEWEB)
Lebedev, A.V., E-mail: lav@icmm.ru
2017-06-01
The frequency dependences of dynamic susceptibility were measured for a series of magnetic fluid samples with the same dispersed composition at different temperatures. Coincidence of normalized dynamic susceptibility curves plotted for different concentrations was obtained only after introducing correction for the value of dynamic viscosity of the magnetic fluid. The value of the correction coefficient doesn’t depend on temperature and is the universal function of the hydrodynamic concentration of particles. - Highlights: • Dynamic susceptibility was measured at different temperatures and concentrations. • Coincidence of curves requires a correction of value of viscosity in calculations. • This correction is function of the hydrodynamic concentration of particles. • With this function the rotation of particles are described correctly.
Kim, Kiyeon
2016-01-13
Understanding the evolutionary dynamics of influenza viruses is essential to control both avian and human influenza. Here, we analyze host-specific and segment-specific Tajima’s D trends of influenza A virus through a systematic review using viral sequences registered in the National Center for Biotechnology Information. To avoid bias from viral population subdivision, viral sequences were stratified according to their sampling locations and sampling years. As a result, we obtained a total of 580 datasets each of which consists of nucleotide sequences of influenza A viruses isolated from a single population of hosts at a single sampling site within a single year. By analyzing nucleotide sequences in the datasets, we found that Tajima’s D values of viral sequences were different depending on hosts and gene segments. Tajima’s D values of viruses isolated from chicken and human samples showed negative, suggesting purifying selection or a rapid population growth of the viruses. The negative Tajima’s D values in rapidly growing viral population were also observed in computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M genes of the viruses circulating in wild mallards were close to zero, suggesting that these genes have undergone neutral selection in constant-sized population. On the other hand, Tajima’s D values of HA and NA genes of these viruses were positive, indicating HA and NA have undergone balancing selection in wild mallards. Taken together, these results indicated the existence of unknown factors that maintain viral subtypes in wild mallards.
Kim, Kiyeon; Omori, Ryosuke; Ueno, Keisuke; Iida, Sayaka; Ito, Kimihito
2016-01-01
Understanding the evolutionary dynamics of influenza viruses is essential to control both avian and human influenza. Here, we analyze host-specific and segment-specific Tajima’s D trends of influenza A virus through a systematic review using viral sequences registered in the National Center for Biotechnology Information. To avoid bias from viral population subdivision, viral sequences were stratified according to their sampling locations and sampling years. As a result, we obtained a total of 580 datasets each of which consists of nucleotide sequences of influenza A viruses isolated from a single population of hosts at a single sampling site within a single year. By analyzing nucleotide sequences in the datasets, we found that Tajima’s D values of viral sequences were different depending on hosts and gene segments. Tajima’s D values of viruses isolated from chicken and human samples showed negative, suggesting purifying selection or a rapid population growth of the viruses. The negative Tajima’s D values in rapidly growing viral population were also observed in computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M genes of the viruses circulating in wild mallards were close to zero, suggesting that these genes have undergone neutral selection in constant-sized population. On the other hand, Tajima’s D values of HA and NA genes of these viruses were positive, indicating HA and NA have undergone balancing selection in wild mallards. Taken together, these results indicated the existence of unknown factors that maintain viral subtypes in wild mallards.
Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation
Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team
2017-11-01
Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.
The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir
Zhang, Shanghong; Jing, Zhu; Yi, Yujun; Wu, Yu; Zhao, Yong
2017-12-01
To evaluate the flood control ability of a river-type reservoir, an accurate simulation method for the flood storage, discharge process, and dynamic capacity of the reservoir is important. As the world's largest reservoir, the storage capacity and flood control capacity of the Three Gorges Reservoir (TGR) has attracted widespread interest and academic debate for nearly 20 years. In this study, a model for calculating the dynamic capacity of a river-type reservoir is established based on data from 394 river cross sections and 2.5-m resolution digital elevation model (DEM) data of the TGR area. The storage capacity and flood control capacity of the TGR were analysed based on the scheduling procedures of a normal impoundment period. The results show that the static capacity of the TGR is 43.43 billion m3, the dynamic flood control capacity is 22.45 billion m3, and the maximum floodwater flow regulated by the dynamic capacity at Zhicheng is no more than 67,700 m3/s. This study supply new simulation method and up-to-date high-precision data to discuss the 20 years debate, and the results reveal the TGR design is conservative for flood control according to the Preliminary Design Report of the Three Gorges Project. The dynamic capacity calculation method used here can provide a reference for flood regulation of large river-type reservoirs.
Directory of Open Access Journals (Sweden)
M. S. Shahul Hameed
2016-03-01
Full Text Available E. coli thioredoxin has been regarded as a hub protein as it interacts with, and regulates, numerous target proteins involved in a wide variety of cellular processes. Thioredoxin can form complexes with a variety of target proteins with a wide range of affinity, using a consensus binding surface. In this study an attempt to deduce the molecular basis for the observed multispecificity of E. coli thioredoxin has been made. In this manuscript it has been shown that structural plasticity, adaptable and exposed hydrophobic binding surface, surface electrostatics, closely clustered multiple hot spot residues and conformational changes brought about by the redox status of the protein have been shown to account for the observed multispecificity and molecular recognition of thioredoxin. Dynamical differences between the two redox forms of the enzyme have also been studied to account for their differing interactions with some target proteins.
International Nuclear Information System (INIS)
Li Qingzhong; Sun Chengwei; Zhao Feng; Gao Wen; Wen Shanggang; Liu Wenhan
1999-11-01
The generalized geometrical optics model for the detonation shock dynamics (DSD) has been incorporated into the two dimensional hydro-code WSU to form a combination code ADW for numerical simulation of explosive acceleration of metals. An analytical treatment of the coupling conditions at the nodes just behind the detonation front is proposed. The experiments on two kinds of explosive-flyer assemblies with different length/diameter ratio were carried out to verify the ADW calculations, where the tested explosive was HMX or TATB based. It is found that the combination of DSD and hydro-code can improve the calculation precision, and has advantages in larger meshes and less CPU time
International Nuclear Information System (INIS)
Viais J, J.
1994-01-01
Kinetic parameters for dynamic study of two different configurations, 8 and 9, both with standard fuel, 20% enrichment and Flip (Fuel Life Improvement Program with 70% enrichment) fuel, for TRIGA Mark-III reactor from Mexico Nuclear Center, are obtained. A calculation method using both WIMS-D4 and DTF-IV and DAC1 was established, to decide which of those two configurations has the best safety and operational conditions. Validation of this methodology is done by calculate those parameters for a reactor core with new standard fuel. Configuration 9 is recommended to be use. (Author)
Molecular dynamics calculations of the thermal expansion properties and melting points of Si and Ge
International Nuclear Information System (INIS)
Timon, V; Brand, S; Clark, S J; Abram, R A
2006-01-01
The thermal expansion properties and melting points of silicon and germanium are calculated using molecular dynamics simulations within the density functional theory framework. An isothermal-isobaric (NPT) ensemble is considered in a periodic system with a relatively small number of particles per unit cell to obtain the thermal expansion data over a range of temperatures, and it is found that the calculated thermal expansion coefficients and bond lengths agree well with experimental data. Also, the positions of discontinuities in the potential energy as a function of temperature are in good agreement with the experimental melting points
One-loop calculation in time-dependent non-equilibrium thermo field dynamics
International Nuclear Information System (INIS)
Umezawa, H.; Yamanaka, Y.
1989-01-01
This paper is a review on the structure of thermo field dynamics (TFD) in which the basic concepts such as the thermal doublets, the quasi-particles and the self-consistent renormalization are presented in detail. A strong emphasis is put on the computational scheme. A detailed structure of this scheme is illustrated by the one-loop calculation in a non-equilibrium time-dependent process. A detailed account of the one-loop calculation has never been reported anywhere. The role of the self-consistent renormalization is explained. The equilibrium TFD is obtained as the long-time limit of non-equilibrium TFD. (author)
Large scale exact quantum dynamics calculations: Ten thousand quantum states of acetonitrile
Halverson, Thomas; Poirier, Bill
2015-03-01
'Exact' quantum dynamics (EQD) calculations of the vibrational spectrum of acetonitrile (CH3CN) are performed, using two different methods: (1) phase-space-truncated momentum-symmetrized Gaussian basis and (2) correlated truncated harmonic oscillator basis. In both cases, a simple classical phase space picture is used to optimize the selection of individual basis functions-leading to drastic reductions in basis size, in comparison with existing methods. Massive parallelization is also employed. Together, these tools-implemented into a single, easy-to-use computer code-enable a calculation of tens of thousands of vibrational states of CH3CN to an accuracy of 0.001-10 cm-1.
DEFF Research Database (Denmark)
Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew
experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated......Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known to form amyloids is Transthyretine (TTR), the secondary transporter of thyroxine and transporter of retinol-binding-protein. Several...
Generalized monitor unit calculation for the Varian enhanced dynamic wedge field
International Nuclear Information System (INIS)
Liu Chihray; Kim, Siyong; Kahler, Darren L.; Palta, Jatinder R.
2003-01-01
The generalized monitor unit (MU) calculation equation for the Varian enhanced dynamic wedge (EDW) is derived. The assumption of this MU calculation method is that the wedge factor of the EDW at the center of the field is a function of field size, the position of the center of the field in the wedge direction, and the final position of the moving jaw. The wedge factors at the center of the field in both symmetric and asymmetric fields are examined. The difference between calculated and measured wedge factors is within 1.0%. The method developed here is easy to implement. The only datum required in addition to the standard set of conventional physical wedge implementation data is the off-axis output factor for the open field in the reference condition. The off-center point calculation is also examined. For the off-center point calculation, the dose profile in the wedge direction for the largest EDW field is used to obtain the relative off-center ratio in any smaller wedge field. The accuracy of the off-center point calculation decreases when the point of calculation is too close to the field edge
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Comparison of inverse dynamics calculated by two- and three-dimensional models during walking
DEFF Research Database (Denmark)
Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P
2001-01-01
recorded the subjects as they walked across two force plates. The subjects were invited to approach a walking speed of 4.5 km/h. The ankle, knee and hip joint moments in the sagittal plane were calculated by 2D and 3D inverse dynamics analysis and compared. Despite the uniform walking speed (4.53 km....../h) and similar footwear, relatively large inter-individual variations were found in the joint moment patterns during the stance phase. The differences between individuals were present in both the 2D and 3D analysis. For the entire sample of subjects the overall time course pattern of the ankle, knee and hip...... the magnitude of the joint moments calculated by 2D and 3D inverse dynamics but the inter-individual variation was not affected by the different models. The simpler 2D model seems therefore appropriate for human gait analysis. However, comparisons of gait data from different studies are problematic...
Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Erpenbeck, J.J.; Kincaid, J.M.
1985-01-01
A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo time correlation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau
Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Erpenbeck, J.J.; Kincaid, J.M.
1986-01-01
A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure, which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo timecorrelation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau
Three-dimensional static and dynamic reactor calculations by the nodal expansion method
International Nuclear Information System (INIS)
Christensen, B.
1985-05-01
This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)
SALLY - a computer programme for the calculation of the dynamical behaviour of a cooling channel
International Nuclear Information System (INIS)
Reiche, C.; Ziegenbein, D.
1978-12-01
This report describes the mathematical-physical fundamentals and provides a user's manual as well as some test examples for the programme SALLY. SALLY is suitable for the calculation of the dynamical behaviour of a cooling channel under following conditions: point-kinetics, heat transfer in the fuel in radial direction only, reactivity feedback, simple model of the first cooling cycle. Reactivity, coolant inlet temperature or coolant velocity can be disturbed. (author)
The fifth Atomic Energy Research dynamic benchmark calculation with HEXTRAN-SMABRE
International Nuclear Information System (INIS)
Haenaelaeinen, Anitta
1998-01-01
The fifth Atomic Energy Research dynamic benchmark is the first Atomic Energy Research benchmark for coupling of the thermohydraulic codes and three-dimensional reactor dynamic core models. In VTT HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models. the Loviisa model and standard WWER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 176 symmetry is used in the core. In the sequence of main steam header break at the hot standby state, the liquid temperature is decreased symmetrically in the core inlet which leads to return to power. In the benchmark, no isolations of the steam generators are assumed and the maximum core power is about 38 % of the nominal power at four minutes after the break opening in the HEXTRAN-SMABRE calculation. Due to boric acid in the high pressure safety injection water, the power finally starts to decrease. The break flow is pure steam in the HEXTRAN-SMABRE calculation during the whole transient even in the swell levels in the steam generators are very high due to flashing. Because of sudden peaks in the preliminary results of the steam generator heat transfer, the SMABRE drift-flux model was modified. The new model is a simplified version of the EPRI correlation based on test data. The modified correlation behaves smoothly. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark.(Author)
Directory of Open Access Journals (Sweden)
V. A. Gribkov
2015-01-01
Full Text Available We consider the multilink pendulum system consisting of six physical pendulums. A pendulum (carrier has inertia parameters, which significantly exceed the remaining (carried ones placed on the carrier. In addition to the system under analysis, in particular, the paper presents a design scheme for a two-stage liquid fuel rocket using pendulums as the analogues of fluctuating fuel. Pendulum models also find application to solve problems of stabilization of space tether systems. The objective of the study is to determine dynamic characteristics of the said sixmembered pendulum system, as well as to identify specific dynamic properties inherent in objects of this kind. Dynamic characteristics of the system are determined by calculations. A physical model of the pendulum allowed us to compare the calculated and experimental results. To conduct the frequency tests of the pendulum model three pilot units have been created. The first two units turned out to be inappropriate for fulfilling the experimental tasks for various reasons. The third unit enabled us to obtain desirable experimental results. The "calculation–experiment” discrepancy on the natural frequencies of the pendulum model for the majority of frequencies was less than 5%. We analyzed the dynamic features of multilink pendulum systems "carried by the carrier unit links". The analysis results are applicable to the above-noted object classes of rocket and space technology.
Tao, Wei; Shen, Zheng-Kang; Zhang, Yong
2016-04-01
The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Bunyakova, Yu Ya; Florko, T. A.; Agayar, E. V.; Solyanikova, E. P.
2017-10-01
The present paper concerns the results of computational studying dynamics of the atmospheric pollutants (dioxide of nitrogen, sulphur etc) concentrations in an atmosphere of the industrial cities (Odessa) by using the dynamical systems and chaos theory methods. A chaotic behaviour in the nitrogen dioxide and sulphurous anhydride concentration time series at several sites of the Odessa city is numerically investigated. As usually, to reconstruct the corresponding attractor, the time delay and embedding dimension are needed. The former is determined by the methods of autocorrelation function and average mutual information, and the latter is calculated by means of a correlation dimension method and algorithm of false nearest neighbours. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and Kolmogorov entropy are computed. It has been found an existence of a low-D chaos in the time series of the atmospheric pollutants concentrations.
Gardiner, N.; Bjerklie, D. M.
2011-12-01
Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used
Recknagel, Friedrich; Orr, Philip T; Cao, Hongqing
2014-01-01
Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured variables as inputs as well as models using electronically measurable variables only as inputs forecasted accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed bloom events with 0.45≤r 2 >0.61 and 0.4≤r 2 >0.57, respectively. The models also revealed relationships and thresholds triggering bloom events that provide valuable information on synergism between water quality conditions and population dynamics of C. raciborskii. Best performing models based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of 206-280mSm -1 as threshold above which fast growth and high abundances of C. raciborskii have been observed for the three lakes. Best models based on electronically measurable variables for the Lakes Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5-32.7°C within which fast growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii. Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010 resulted in predictive models with 0.61≤r 2 >0.65 whereby again similar levels of EC and WT have been discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r 2 =0.75 for an in situ data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by 1 day. These time lags have been discovered by a systematic screening of all possible combinations of time lags between 0 and 10 days for all electronically measurable variables. The so
Evolutionary biology of bacterial and fungal pathogens
National Research Council Canada - National Science Library
Baquero, F
2008-01-01
... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...
Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H
2006-09-01
To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.
Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy
International Nuclear Information System (INIS)
Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.
2006-01-01
Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate
Molecular dynamics calculations of defect energetics in β-SiC
International Nuclear Information System (INIS)
Huang, H.; El-Azab, A.; Ghoniem, N.
1993-01-01
The Molecular Dynamics (MD) method is used to calculate defect energetics in β-silicon carbide. Many-body interaction effects in this covalent material are accounted for by using a hybrid of two-body and three-body potentials. Calculated bulk properties of β-SiC based on this potential are in agreement with experimental data to within 17%. A micro-crystal is constructed to represent the computational cell and external forces are applied to the micro-crystal so that it behaves as a part of an infinite medium. The potential energy for the unperturbed computational cell is first calculated. The cell is then set at a defect configuration and relaxed, and the potential energy of the relaxed cell is calculated. The difference between the potential energy of the unperturbed cell and that of the defect-containing cell is used to calculate the formation and binding energies of point defects, defect clusters and helium-vacancy clusters in SiC
Schilthuizen, M.
2011-01-01
The karst formations of southeast Asia are a wonderful evolutionary and ecological experiment, and a sad example of observable extinction (Clements et al., 2006). In this paper, I shall focus on those in Malaysia and, in particular, on the land snail faunas that they support.
Directory of Open Access Journals (Sweden)
Robert L. Chevalier
2017-05-01
Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
International Nuclear Information System (INIS)
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-01-01
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP
Matrix-operator method for calculation of dynamics of intense beams of charged particles
International Nuclear Information System (INIS)
Kapchinskij, M.I.; Korenev, I.L.; Rinskij, L.A.
1989-01-01
Calculation algorithm for particle dynamics in high-current cyclic and linear accelerators is suggested. Particle movement in six-dimensional phase space is divided into coherent and incoherent components. Incoherent movement is described by envelope method; particle cluster is considered to be even-charged by tri-axial ellipsoid. Coherent movement is described in para-axial approximation; each structure element of the accelerator transport channel is characterized by six-dimensional matrix of phase coordinate transformation of cluster centre and by shift vector resulting from deviation of focusing element parameters from calculated values. Effect of space charge reflected forces is taken into account in the element matrix. Algorithm software is realized using well-known TRANSPORT program
Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya
2018-04-01
Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.
Tests and calculations of reinforced concrete beams subject to dynamic reversed loads
International Nuclear Information System (INIS)
Livolant, M.; Hoffmann, A.; Gauvain, J.
1978-01-01
This study presents the tests of a reinforced concrete beam conducted by the Department of Mechanical and Thermal Studies at the Centre d'Etudes Nucleaires, Saclay, France. The actual behavior of nuclear power plant buildings submitted to seismic loads is generally non linear even for moderate seismic levels. The non linearity is specially important for reinforced concrete beams type buildings. To estimate the safety factors when the building is designed by standard methods, accurate non linear calculations are necessary. For such calculations one of the most difficult point is to define a correct model for the behavior of a reinforced beam subject to reversed loads. For that purpose, static and dynamic experimental tests on a shaking table have been carried out and a model reasonably accurate has been established and checked on the tests results
Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations
Poater, Albert
2014-05-25
In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.
Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations
Poater, Albert; Correa, Andrea; Pump, Eva; Cavallo, Luigi
2014-01-01
In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.
DEFF Research Database (Denmark)
Gurtovenko, Andrey A; Vattulainen, Ilpo
2009-01-01
of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...... systems). For symmetric bilayers we demonstrate that both approaches give essentially the same potential profiles, provided that simulations are long enough (a production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer are properly accounted for. In contrast...
The elastoplastic calculation of disks with the help of dynamic relaxation
International Nuclear Information System (INIS)
Zerna, W.; Schnellenbach, G.; Ick, U.
1973-12-01
The possibilities for the computation of elasticplastic properties via dynamic relaxation are shown. From the various theories of plasticity the laws of Prandtl-Reuzs for solidifying materials were chosen for in this investigation. The calculation is carried out directly without further linearizations in a single computer run. It is possible to obtain an approximate solution via a direct process involving a fictitious elastic material law. Two disks with - according to the theory of elasticity - single stress points are used as examples. (orig.) [de
Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations
Directory of Open Access Journals (Sweden)
M. H. Cole
2005-01-01
Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee
Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package.
Kaus, Joseph W; Pierce, Levi T; Walker, Ross C; McCammont, J Andrew
2013-09-10
Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license.
Structure of thallium and lead calculated from Shaw local pseudopotential and molecular dynamics
Directory of Open Access Journals (Sweden)
Gasser J. G.
2011-05-01
Full Text Available Recently, we (Es Sbihi Phil. Mag 2010 have successfully calculated, by molecular dynamics, the static structure factor of liquid bismuth at different temperatures. Our results were in very good agreement with the Waseda experimental data. Our assumption was to consider the true density of states which presents a gap as measured by Indlekofer (J. Non-Cryst. Solids 1989 and calculated by Hafner-Jank (Phys. Rev. B 1990 for liquid bismuth. The number of electrons at the Fermi energy has been calculated with three conduction electrons for bismuth (number of p electrons. With this assumption, the structures were determined with an effective ion-ion potential constructed from the Shaw local Optimised Model Potential (OMP and the Ichimaru-Utsumi dielectric function. In the present paper, we generalize our assumptions to liquid thallium and lead which also present such a gap. Their calculated structures are also very close to the experimental ones. This confirms that the number of conduction electrons on the Fermi sphere is consistent with the number of p electrons as has been even shown for our electronic transport properties of liquid lead (A. Ben Abdellah, Phys. Rev. B 2003.
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
DEFF Research Database (Denmark)
Levitis, Daniel
2015-01-01
of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...
Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula
2015-03-23
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula
2015-01-01
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351
Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics
International Nuclear Information System (INIS)
Seker, V.; Thomas, J.W.; Downar, T.J.
2007-01-01
A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k eff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport
Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J
2012-07-07
The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 2: Example of Calculation
Ufimtcev, E. M.
2017-11-01
The second part of the article illustrates the use of the time analysis method (TAM) by the example of the calculation of a 3-storey building, the design dynamic model (DDM) of which is adopted in the form of a flat vertical cantilever rod with 3 horizontal degrees of freedom associated with floor and coverage levels. The parameters of natural oscillations (frequencies and modes) and the results of the calculation of the elastic forced oscillations of the building’s DDM - oscillograms of the reaction parameters on the time interval t ∈ [0; 131,25] sec. The obtained results are analyzed on the basis of the computed values of the discrepancy of the DDS motion equation and the comparison of the results calculated on the basis of the numerical approach (FEM) and the normative method set out in SP 14.13330.2014 “Construction in Seismic Regions”. The data of the analysis testify to the accuracy of the construction of the computational model as well as the high accuracy of the results obtained. In conclusion, it is revealed that the use of the TAM will improve the strength of buildings and structures subject to seismic influences when designing them.
Molecular dynamics calculation of thermophysical properties for a highly reactive liquid.
Wang, H P; Luo, B C; Wei, B
2008-10-01
In order to further understand the physical characteristics of liquid silicon, the thermophysical properties are required over a broad temperature range. However, its high reactivity brings about great difficulties in the experimental measurement. Here we report the thermophysical properties by molecular dynamics calculation, including density, specific heat, diffusion coefficient, and surface tension. The calculation is performed with a system consisting of 64,000 atoms, and employing the Stillinger-Weber (SW) potential model and the modified embedded atom method (MEAM) potential model. The results show that the density increases as a quadratic function of undercooling, and the value calculated by SW potential model is only 2-4 % smaller than the reported experimental data. The specific heat is obtained to be 30.95 J mol;{-1}K;{-1} by SW potential model and 32.50 J mol;{-1}K;{-1} by MEAM potential model, both of which are constants in the corresponding ranges of temperature. The self-diffusion coefficient is exponentially dependent on the temperature and consistent with the Arrhenius equation. The surface tension increases linearly with the rise of undercooling and agrees well with the reported experimental results. This work provides reasonable data in much wider temperature range, especially for the undercooled metastable state.
International Nuclear Information System (INIS)
Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg
2015-01-01
We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.
Poirier, Bill; Salam, A
2004-07-22
In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
, they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...
Wjst, M
2013-12-01
Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Gregory Gorelik
2014-10-01
Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.
CALCULATION OF THE UNIQUE HIGH-RISE BUILDING FOR EARTHQUAKES IN NONLINEAR DYNAMIC FORMULATION
Directory of Open Access Journals (Sweden)
Mkrtychev Oleg Vartanovich
2016-06-01
Full Text Available The article contains the calculation of a 80-storey high-rise building on 3-component accelerograms with different dominant frequencies. The “Akhmat Tower” belongs to the complex “Grozny-city 2” and is classified as a unique construction, its height is 400 m. During the construction unique high-rise buildings and high-rise buildings in seismic areas an additional computational studies are required, which should take into account the nonlinear nature of the design. For the case of linear instrumental-synthesized accelerograms, it is necessary to apply nonlinear dynamic methods. The studies were conducted using the software LS-DYNA, implementing the methods of direct integration of the equations of motion by the explicit scheme. The constructive scheme of the building frame is braced, the spatial stability is ensured by load-bearing interior walls, columns and hard disks, and frame metal coatings. The choice of the type and dimensions of the finite element and the step of integration is due to the ability to perform calculations in reasonable time, and to the required accuracy of calculation. For this aim the issues of convergence of the solutions on a number of settlement schemes were investigated with the terms of thickened mesh of finite elements: 0.5 m; 1 m; 2 m; 3 m. As a result of the research it was obtained that the best is to split into finite elements with a characteristic size of 2 m. The calculation of the building is made on rigid foundation. The authors used accelerograms normalized for earthquakes of 8 and 9 points on the MSK-64 scale. The destruction of the elements in the process of loading, and the interaction of the elements during their contact was taken into account, i.e. the calculation was made taking into account physical, geometrical and structural nonlinearities. The article analyzes the results of the calculation. The authors evaluated the seismic stability of the building. Possible ways to improve the seismic
Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics
International Nuclear Information System (INIS)
Seker, V.; Thomas, J. W.; Downar, T. J.
2007-01-01
The interest in high fidelity modeling of nuclear reactor cores has increased over the last few years and has become computationally more feasible because of the dramatic improvements in processor speed and the availability of low cost parallel platforms. In the research here high fidelity, multi-physics analyses was performed by solving the neutron transport equation using Monte Carlo methods and by solving the thermal-hydraulics equations using computational fluid dynamics. A computation tool based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR' along with the verification and validation efforts. McSTAR is written in PERL programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STAR-CD for every region. Three different methods were investigated and two of them are implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. The necessary input file manipulation, data file generation, normalization and multi-processor calculation settings are all done through the program flow in McSTAR. Initial testing of the code was performed using a single pin cell and a 3X3 PWR pin-cell problem. The preliminary results of the single pin-cell problem are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code De
Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.
2009-08-01
The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from
Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas
International Nuclear Information System (INIS)
Lisitsa, V.S.
2009-01-01
An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)
Bootstrap calculation of the dynamical quark mass in QCD4 at finite temperature
International Nuclear Information System (INIS)
Cabo, A.; Kalashnikov, O.K.; Veliev, E.Kh.
1988-01-01
Nonperturbative calculations of the dynamical quark mass m(T) are given in QCD 4 , based on the bootstrap solution of the Schwinger-Dyson equation for the quark Green function at finite temperatures. A closed nonlinear equation is obtained for m(T) whose solution is found under some simplifying assumptions. We used a particular approximation for the effective charge and the nonperturbative expressions of the gluon magnetic and electric masses. The singular behavior of m(T) is established and its parameters are determined numerically. The singularity found is shown to correctly reproduce the chiral phase transition and the temperature limits obtained for m(T) are qualitatively correct. The complete phase diagram of QCD 4 in the (μ,T) plane is briefly discussed. (orig.)
Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki
2007-03-01
Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).
De Beer, Stephanie B A; Glättli, Alice; Hutzler, Johannes; Vermeulen, Nico P E; Oostenbrink, Chris
2011-07-30
4-Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one-step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. Copyright © 2011 Wiley Periodicals, Inc.
Puligheddu, Marcello; Gygi, Francois; Galli, Giulia
The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.
International Nuclear Information System (INIS)
Bayonas, Alberto Carmona
2011-01-01
Surgery has contributed to unveil a tumor behavior that is difficult to reconcile with the models of tumorigenesis based on gradualism. The postsurgical patterns of progression include unexpected features such as distant interactions and variable rhythms. The underlying evidence can be summarized as follows: (1) the resection of the primary tumor is able to accelerate the evolution of micrometastasis in early stages, and (2) the outcome is transiently opposed in advanced tumors. The objective of this paper is to give some insight into tumorigenesis and surgery-related effects, by applying the concepts of the evolutionary theory in those tumor behaviors that gompertzian and tissular-centered models are unable to explain. According to this view, tumors are the consequence of natural selection operating at the somatic level, which is the basic mechanism of tumorigenesis, notwithstanding the complementary role of the intrinsic constrictions of complex networks. A tumor is a complicated phenomenon that entails growth, evolution and development simultaneously. So, an evo-devo perspective can explain how and why tumor subclones are able to translate competition from a metabolic level into neoangiogenesis and the immune response. The paper proposes that distant interactions are an extension of the ecological events at the local level. This notion explains the evolutionary basis for tumor dormancy, and warns against the teleological view of tumorigenesis as a process directed towards the maximization of a concrete trait such as aggressiveness
Energy Technology Data Exchange (ETDEWEB)
Bayonas, Alberto Carmona [Department of Hematology and Medical Oncology, Hospital Morales Meseguer, Murcia (Spain)
2011-03-02
Surgery has contributed to unveil a tumor behavior that is difficult to reconcile with the models of tumorigenesis based on gradualism. The postsurgical patterns of progression include unexpected features such as distant interactions and variable rhythms. The underlying evidence can be summarized as follows: (1) the resection of the primary tumor is able to accelerate the evolution of micrometastasis in early stages, and (2) the outcome is transiently opposed in advanced tumors. The objective of this paper is to give some insight into tumorigenesis and surgery-related effects, by applying the concepts of the evolutionary theory in those tumor behaviors that gompertzian and tissular-centered models are unable to explain. According to this view, tumors are the consequence of natural selection operating at the somatic level, which is the basic mechanism of tumorigenesis, notwithstanding the complementary role of the intrinsic constrictions of complex networks. A tumor is a complicated phenomenon that entails growth, evolution and development simultaneously. So, an evo-devo perspective can explain how and why tumor subclones are able to translate competition from a metabolic level into neoangiogenesis and the immune response. The paper proposes that distant interactions are an extension of the ecological events at the local level. This notion explains the evolutionary basis for tumor dormancy, and warns against the teleological view of tumorigenesis as a process directed towards the maximization of a concrete trait such as aggressiveness.
Ottaviani, E; Valensin, S; Franceschi, C
1998-04-16
The evolutionary perspective indicates that an immune-neuroendocrine effector system integrating innate immunity, stress and inflammation is present in invertebrates. This defense network, centered on the macrophage and exerting primitive and highly promiscuous recognition units, is very effective, ancestral and appears to have been conserved throughout evolution from invertebrates to higher vertebrates. It would seem that there was a "big bang" in the recognition system of lower vertebrates, and T and B cell repertoires, MHC and antibodies suddenly appeared. We argue that this phenomenon is the counterpart of the increasing complexity of the internal circuitry and recognition units in the effector system. The immediate consequences were a progressive enlargement of the pathogen repertoire and new problems regarding self/not-self discrimination. Probably not by chance, a new organ appeared, capable of purging cells able of excessive self recognition. This organ, the thymus, appears to be the result of a well known evolutionary strategy of re-using pre-existing material (neuroendocrine cells and mediators constituting the thymic microenvironment). This bricolage at an organ level is similar to the effect we have already described at the level of molecules and functions of the defense network, and has a general counterpart at genetic level. Thus, in vertebrates, the conserved immune-neuroendocrine effector system remains of fundamental importance in defense against pathogens, while its efficiency has increased through synergy with the new, clonotipical recognition repertoire.
Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong
2012-10-01
East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Directory of Open Access Journals (Sweden)
Alberto Carmona Bayonas
2011-03-01
Full Text Available Surgery has contributed to unveil a tumor behavior that is difficult to reconcile with the models of tumorigenesis based on gradualism. The postsurgical patterns of progression include unexpected features such as distant interactions and variable rhythms. The underlying evidence can be summarized as follows: (1 the resection of the primary tumor is able to accelerate the evolution of micrometastasis in early stages, and (2 the outcome is transiently opposed in advanced tumors. The objective of this paper is to give some insight into tumorigenesis and surgery-related effects, by applying the concepts of the evolutionary theory in those tumor behaviors that gompertzian and tissular-centered models are unable to explain. According to this view, tumors are the consequence of natural selection operating at the somatic level, which is the basic mechanism of tumorigenesis, notwithstanding the complementary role of the intrinsic constrictions of complex networks. A tumor is a complicated phenomenon that entails growth, evolution and development simultaneously. So, an evo-devo perspective can explain how and why tumor subclones are able to translate competition from a metabolic level into neoangiogenesis and the immune response. The paper proposes that distant interactions are an extension of the ecological events at the local level. This notion explains the evolutionary basis for tumor dormancy, and warns against the teleological view of tumorigenesis as a process directed towards the maximization of a concrete trait such as aggressiveness.
Energy Technology Data Exchange (ETDEWEB)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.
Houston, Paul L; Wang, Xiaohong; Ghosh, Aryya; Bowman, Joel M; Quinn, Mitchell S; Kable, Scott H
2017-07-07
The photodissociation dynamics of roaming in formaldehyde are studied by comparing quasi-classical trajectory calculations performed on a new potential energy surface (PES) to new and detailed experimental results detailing the CO + H 2 product state distributions and their correlations. The new PES proves to be a significant improvement over the past one, now more than a decade old. The new experiments probe both the CO and H 2 products of the formaldehyde dissociation. The experimental and trajectory data offer unprecedented detail about the correlations between internal states of the CO and H 2 dissociation products as well as information on how these distributions are different for the roaming and transition-state pathways. The data investigated include, for dissociation on the formaldehyde 2 1 4 3 band, (a) the speed distributions for individual vibrational/rotational states of the CO products, providing information about the correlated internal energy distributions of the H 2 product, and (b) the rotational and vibrational distributions for the CO and H 2 products as well as the contributions to each from both the transition state and roaming channels. The agreement between the trajectory and experimental data is quite satisfactory, although minor differences are noted. The general agreement provides support for future use of the experimental techniques and the new PES in understanding the dynamics of photodissociative processes.
Correa, M. A.; Bohn, F.
2018-05-01
We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.
Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations
International Nuclear Information System (INIS)
Zapukhlyak, Myroslav
2008-01-01
The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de
A novel two-level dynamic parallel data scheme for large 3-D SN calculations
International Nuclear Information System (INIS)
Sjoden, G.E.; Shedlock, D.; Haghighat, A.; Yi, C.
2005-01-01
We introduce a new dynamic parallel memory optimization scheme for executing large scale 3-D discrete ordinates (Sn) simulations on distributed memory parallel computers. In order for parallel transport codes to be truly scalable, they must use parallel data storage, where only the variables that are locally computed are locally stored. Even with parallel data storage for the angular variables, cumulative storage requirements for large discrete ordinates calculations can be prohibitive. To address this problem, Memory Tuning has been implemented into the PENTRAN 3-D parallel discrete ordinates code as an optimized, two-level ('large' array, 'small' array) parallel data storage scheme. Memory Tuning can be described as the process of parallel data memory optimization. Memory Tuning dynamically minimizes the amount of required parallel data in allocated memory on each processor using a statistical sampling algorithm. This algorithm is based on the integral average and standard deviation of the number of fine meshes contained in each coarse mesh in the global problem. Because PENTRAN only stores the locally computed problem phase space, optimal two-level memory assignments can be unique on each node, depending upon the parallel decomposition used (hybrid combinations of angular, energy, or spatial). As demonstrated in the two large discrete ordinates models presented (a storage cask and an OECD MOX Benchmark), Memory Tuning can save a substantial amount of memory per parallel processor, allowing one to accomplish very large scale Sn computations. (authors)
Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem
Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.
2016-04-01
This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.
A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies
Energy Technology Data Exchange (ETDEWEB)
Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)
2016-07-01
In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.
International Nuclear Information System (INIS)
Hadek, J.
1999-01-01
The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)
Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei
2015-03-01
Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
International Nuclear Information System (INIS)
Halverson, Thomas; Poirier, Bill
2012-01-01
In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a “weylet” basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality—the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).
Energy Technology Data Exchange (ETDEWEB)
Halverson, Thomas; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)
2012-12-14
In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
International Nuclear Information System (INIS)
Bubelev, E.G.; Kuchin, I.A.
1998-01-01
The necessity of creating mesophysics is motivated on the basis of a general likeness of the description of many phenomena and processes in micro- and macroworld. For a general and detailed investigation of the former in modern high energy physics (HEP), the Absolute (arising from Minkovsky and irrespective of any reference system) universal approach is used. Its two conceptually new branches are non-linear system-dynamic and non-Euclidean evolutionary ones. They are complementary ones and completely adequate to an extreme complexity of directly unobservable HEP objects. Some primary problems of them are briefly made clear on the basis of synergetics principles and HEP's internal Lobachevsky-Euclidean geometry. They are noted as the primary content of the Lobachevsky-Poincare Programme (LPP) the idea of which has been proposed recently for their successive solution
Multi-scale calculation based on dual domain material point method combined with molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-27
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the
International Nuclear Information System (INIS)
Sadeghi, Mahmood; Kalantar, Mohsen
2014-01-01
Highlights: • Defining a DG dynamic planning problem. • Applying a new evolutionary algorithm called “CMAES” in planning process. • Considering electricity price and fuel price variation stochastic conditions. • Scenario generation and reduction with MCS and backward reduction programs. • Considering approximately all of the costs of the distribution system. - Abstract: This paper presents a dynamic DG planning problem considering uncertainties related to the intermittent nature of the DG technologies such as wind turbines and solar units in addition to the stochastic economic conditions. The stochastic economic situation includes the uncertainties related to the fuel and electricity price of each year. The Monte Carlo simulation is used to generate the possible scenarios of uncertain situations and the produced scenarios are reduced through backward reduction program. The aim of this paper is to maximize the revenue of the distribution system through the benefit cost analysis alongside the encouraging and punishment functions. In order to close to reality, the different growth rates for the planning period are selected. In this paper the Covariance Matrix Adaptation Evolutionary Strategy is introduced and is used to find the best planning scheme of the DG units. The different DG types are considered in the planning problem. The main assumption of this paper is that the DISCO is the owner of the distribution system and the DG units. The proposed method is tested on a 9 bus test distribution system and the results are compared with the known genetic algorithm and PSO methods to show the applicability of the CMAES method in this problem
Calculation model of non-linear dynamic deformation of composite multiphase rods
Directory of Open Access Journals (Sweden)
Mishchenko Andrey Viktorovich
2014-05-01
Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.
Evolutionary institutionalism.
Fürstenberg, Dr Kai
Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.
Poulicard, Nils; Pacios, Luis Fernández; Gallois, Jean-Luc; Piñero, Daniel; García-Arenal, Fernando
2016-08-01
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the
Directory of Open Access Journals (Sweden)
Nils Poulicard
2016-08-01
Full Text Available This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin. Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound
Towards a mechanistic foundation of evolutionary theory.
Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt
2017-02-15
Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.
Directory of Open Access Journals (Sweden)
Sayed Ahmed Imran Bellary
2016-01-01
Full Text Available To reduce the total design and optimization time, numerical analysis with surrogate-based approaches is being used in turbomachinery optimization. In this work, multiple surrogates are coupled with an evolutionary genetic algorithm to find the Pareto optimal fronts (PoFs of two centrifugal pumps with different specifications in order to enhance their performance. The two pumps were used a centrifugal pump commonly used in industry (Case I and an electrical submersible pump used in the petroleum industry (Case II. The objectives are to enhance head and efficiency of the pumps at specific flow rates. Surrogates such as response surface approximation (RSA, Kriging (KRG, neural networks and weighted-average surrogates (WASs were used to determine the PoFs. To obtain the objective functions’ values and to understand the flow physics, Reynolds-averaged Navier–Stokes equations were solved. It is found that the WAS performs better for both the objectives than any other individual surrogate. The best individual surrogates or the best predicted error sum of squares (PRESS surrogate (BPS obtained from cross-validation (CV error estimations produced better PoFs but was still unable to compete with the WAS. The high CV error-producing surrogate produced the worst PoFs. The performance improvement in this study is due to the change in flow pattern in the passage of the impeller of the pumps.
International Nuclear Information System (INIS)
Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra
2014-01-01
Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation
Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong
2018-04-10
Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
Energy Technology Data Exchange (ETDEWEB)
Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)
2014-10-28
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.
2014-10-01
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.
Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.
Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A
2015-10-26
Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monte Carlo calculations with dynamical fermions by a local stochastic process
International Nuclear Information System (INIS)
Rossi, P.; Zwanziger, D.
1984-01-01
We develop and test numerically a Monte Carlo method for fermions on a lattice which accounts for the effect of the fermionic determinant to arbitrary accuracy. It is tested numerically in a 4-dimensional model with SU(2) color group and scalar fermionic quarks interacting with gluons. Computer time grows linearly with the volume of the lattice and the updating of gluons is not restricted to small jumps. The method is based on random location updating, instead of an ordered sweep, in which quarks are updated, on the average, R times more frequently than gluons. It is proven that the error in R is only of order 1/R instead of 1/Rsup(1/2) as one might naively expect. Quarks are represented by pseudofermionic variables in M pseudoflavors (which requires M times more memory for each physical fermionic degree of freedom) with an error in M of order 1/M. The method is tested by calculating the self-energy of an external quark, a quantity which would be infinite in the absence of dynamical or sea quarks. For the quantities measured, the dependence on R -1 is linear for R >= 8, and, within our statistical uncertainty, M = 2 is already asymptotic. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra [Damghan Univ., Damghan (Iran, Islamic Republic of)
2014-05-15
Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
International Nuclear Information System (INIS)
Hagel, J.; Moshammer, H.
1988-01-01
In this paper the authors study the on- momentum nonlinear equations of motion for the coupled transverse motion of a single charged particle in a storage ring. The authors seek for the maximum initial linear amplitudes in the two transverse directions x and y which lead to bounded particle motion as t tends to infinity. Although the authors restrict themselves to sextupole fields in this paper, the authors may easily extend the method to any order multipole. The aim of this work is to derive an analytic approximate expression for the dynamical aperture. The authors approach the solutions of x and y by use of a classical secular perturbation theory. Every coefficient of the perturbation series can be expressed as an analytic function of all the lower order coefficients. Although perturbation theory if it is evaluated to certain specific order leads only to an approximation in terms of bounded (trigonometric) functions the authors may derive information about the stability limit by considering the convergency radius of the general perturbation. This is done in the present paper by deriving an approximate analytic expression for the n-th order perturbation contribution of the whole series using only results up to second order. The actual calculations have been performed for the fully two dimensional case but for simplicity the authors shall explain only the one dimensional case of the pure horizontal motion
Investigating dynamic parameters in HWZPR ased on the experimental and calculated results
Energy Technology Data Exchange (ETDEWEB)
Nasrazadani, Zahra; Behfamia, Manochehar; Khosandi, Jamshid; Mirvakili, Mohammad [Reactors Research School, Nuclear Science And Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)
2016-10-15
The neutron decay constant, α, and effective delayed neutron fraction, β{sub eff}, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured α is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, β{sub eff} of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a β{sub eff} value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the β{sub eff} values determined experimentally and by Monte Carlo methods was estimated to be < 4%.
Akhtulov, A. L.
2018-01-01
The questions of construction and practical application of the automation system for the design of components and aggregates for the construction of transport vehicles are considered, taking into account their dynamic characteristics. Based on the results of the studies, a unified method for determining the reactions of bonds of a complex spatial structure is proposed. The technique, based on the method of substructures, allows us to determine the values of the transfer functions taking into account the reactions of the bonds. After the carried out researches it is necessary to note, that such approach gives the most satisfactory results and can be used for calculations of complex mechanical systems of machines and units of different purposes. The directions of increasing the degree of validity of technical decisions are shown, especially in the early stages of design, when the cost of errors is high, with careful thorough working out of all the elements of the design, which is really feasible only on the basis of automation of design and technological work.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
International Nuclear Information System (INIS)
Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.
2014-01-01
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10 6 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
Ibarra, Ignacio L; Melo, Francisco
2010-07-01
Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.
International Nuclear Information System (INIS)
Hoffman, M J H; Claassens, C H
2006-01-01
A density matrix based fictitious electron dynamics method for calculating electronic structure has been implemented within a semi-empirical quantum chemistry environment. This method uses an equation of motion that implicitly ensures the idempotency constraint on the density matrix. Test calculations showed that this method has potential of being combined with simultaneous atomic dynamics, in analogy to the popular Car-Parrinello method. In addition, the sparsity of the density matrix and the sophisticated though flexible way of ensuring idempotency conservation while integrating the equation of motion creates the potential of developing a fast linear scaling method
Directory of Open Access Journals (Sweden)
Cleather Daniel J
2010-11-01
Full Text Available Abstract Background A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. Methods An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. Results Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05. Equally the normalized dispersions of the two methods were small. Conclusions In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in
Czech Academy of Sciences Publication Activity Database
Čertner, Martin; Fenclová, E.; Kúr, P.; Kolář, Filip; Koutecký, P.; Krahulcová, Anna; Suda, Jan
2017-01-01
Roč. 120, č. 2 (2017), s. 303-315 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : cytotype coesxistence * flow cytometry * temporal dynamics Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016
Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda
2012-01-01
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the
Directory of Open Access Journals (Sweden)
Olivier Arnaiz
Full Text Available Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a
Murase, Yohsuke
2010-06-01
Community assembly is studied using individual-based multispecies models. The models have stochastic population dynamics with mutation, migration, and extinction of species. Mutants appear as a result of mutation of the resident species, while migrants have no correlation with the resident species. It is found that the dynamics of community assembly with mutations are quite different from the case with migrations. In contrast to mutation models, which show intermittent dynamics of quasi-steady states interrupted by sudden reorganizations of the community, migration models show smooth and gradual renewal of the community. As a consequence, instead of the 1/f diversity fluctuations found for the mutation models, 1/f2, random-walk like fluctuations are observed for the migration models. In addition, a characteristic species-lifetime distribution is found: a power law that is cut off by a "skewed" distribution in the long-lifetime regime. The latter has a longer tail than a simple exponential function, which indicates an age-dependent species-mortality function. Since this characteristic profile has been observed, both in fossil data and in several other mathematical models, we conclude that it is a universal feature of macroevolution. © 2010 Elsevier Ltd.
Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne
2010-01-01
Community assembly is studied using individual-based multispecies models. The models have stochastic population dynamics with mutation, migration, and extinction of species. Mutants appear as a result of mutation of the resident species, while migrants have no correlation with the resident species. It is found that the dynamics of community assembly with mutations are quite different from the case with migrations. In contrast to mutation models, which show intermittent dynamics of quasi-steady states interrupted by sudden reorganizations of the community, migration models show smooth and gradual renewal of the community. As a consequence, instead of the 1/f diversity fluctuations found for the mutation models, 1/f2, random-walk like fluctuations are observed for the migration models. In addition, a characteristic species-lifetime distribution is found: a power law that is cut off by a "skewed" distribution in the long-lifetime regime. The latter has a longer tail than a simple exponential function, which indicates an age-dependent species-mortality function. Since this characteristic profile has been observed, both in fossil data and in several other mathematical models, we conclude that it is a universal feature of macroevolution. © 2010 Elsevier Ltd.
International Nuclear Information System (INIS)
Wang Huanyou; Xu Hui; Wang Xianchun; Jiang Chunzhi
2009-01-01
The density function perturbation theory (DFPT) is employed to study the lattice dynamics and thermodynamic properties (with quasiharmonic approximation) of zinc-blende BN. First we discuss the structural properties and compare the phonon spectrum with available Raman scattering experiments. Thereafter using the calculated phonon dispersions we obtain the PTV equation of state from the free energy. Our results for the above properties are generally speaking in good agreement with experiments and with similar theoretical calculations. Owing to the anharmonic effect at high temperature, the calculated linear thermal expansion coefficients (CTE) are low to experimental data.
Zhang, Yong; Otani, Akihito; Maginn, Edward J
2015-08-11
Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.
Brás, Natércia F; Fernandes, Pedro A; Ramos, Maria J; Schwartz, Steven D
2018-02-06
Human α-phosphoglucomutase 1 (α-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, α-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human α-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted S N 2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg 2+ ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human α-PGM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
Czech Academy of Sciences Publication Activity Database
Chocholoušová, Jana; Vacek, Jaroslav; Hobza, Pavel
2002-01-01
Roč. 4, - (2002), s. 2119-2122 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : formic acid dimer * ab initio calculations * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.838, year: 2002
Czech Academy of Sciences Publication Activity Database
Straka, Michal; Lantto, P.; Vaara, J.
2008-01-01
Roč. 112, č. 12 (2008), s. 2658-2668 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * theoretical calculations * role of dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008
Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
Ding, Xinqiang; Vilseck, Jonah Z; Hayes, Ryan L; Brooks, Charles L
2017-06-13
λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.
International Nuclear Information System (INIS)
Arthur, D.
1977-01-01
The Lawrence Livermore Laboratory is currently involved in a 1/5 scale testing program on the Mark I BWR pressure suppression system. A key element of the test setup is a pressure vessel that is a 90 0 sector of a torus. Proper performance of the 90 0 torus depends on its structural integrity and structural dynamic characteristics. It must sustain the internal pressurization of the planned tests, and its dynamic response to the transient test loads should be minimal. If the structural vibrations are too great, interpretation of important load cell and pressure transducer data will be difficult. The purpose of the report is to bring together under one cover calculations pertaining to the structural dynamic characteristics and structural integrity of 90 0 torus. The report is divided into the following sections: (1) system description in which the torus and associated hardware are briefly described; (2) structural dynamics in which calculations of natural frequency and dynamic response are presented; and (3) structural integrity in which stress calculations for design purposes are presented; and an appendix which contains an LLL internal report comparing the expected load cell response for a three and four-point supported torus
Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd
2016-08-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.
Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu
2018-01-01
Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.
International Nuclear Information System (INIS)
Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd
2016-01-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)
Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd
2016-01-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587
International Nuclear Information System (INIS)
Higuchi, Yuji; Ishikawa, Takeshi; Ozawa, Nobuki; Chazeau, Laurent; Cavaillé, Jean-Yves; Kubo, Momoji
2015-01-01
Highlights: • We study the different dynamics of dissociation and recombination processes. • Hydrogen at the chain ends collides each other in the recombination process. • Dissociation and recombination processes take different pathway. - Abstract: We investigate the different dynamics of the stress-induced dissociation and recombination reactions in a model of polyethylene by a first-principles molecular dynamics simulation at the B3LYP/6-31g(d) level. The dissociation under external forces acting on the chemical reaction site at 300 K follows the same pathway as the one calculated by the static first-principles method because it has a similar activation barrier to that of the static first-principles calculation. On the other hand, in the recombination process, thermal fluctuations causes collisions between hydrogen atoms at the chain ends. Furthermore, when external forces do not directly act on the chemical reaction site, two different dissociation processes are observed. On the other hand, recombination process is not observed due to rarely contact of the radical carbon. These results indicate that dissociation and recombination dynamics are very different, showing the importance of the dynamic calculation.
International Nuclear Information System (INIS)
Termentzidis, K; Pokropivny, A; Xiong, S-Y; Chumakov, Y; Volz, S; Woda, M; Cortona, P
2012-01-01
We use molecular dynamics and ab-initio methods to predict the thermal and electronic properties of new materials with high figures of merit. The simulated systems are bulk bismuth tellurides with antisite and vacancy defects. Optimizations of the materials under investigation are performed by the SIESTA code for subsequent calculations of force constants, electronic properties, and Seebeck coefficients. The prediction of the thermal conductivity is made by Non-Equilibrium Molecular Dynamics (NEMD) using the LAMMPS code. The thermal conductivity of bulk bismuth telluride with different stoichiometry and with a number of substitution defects is calculated. We have found that the thermal conductivity can be decreased by 60% by introducing vacancy defects. The calculated thermal conductivities for the different structures are compared with the available experimental and theoretical results.
Evolutionary disarmament in interspecific competition.
Kisdi, E; Geritz, S A
2001-12-22
Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.
Fixation Probabilities of Evolutionary Graphs Based on the Positions of New Appearing Mutants
Directory of Open Access Journals (Sweden)
Pei-ai Zhang
2014-01-01
Full Text Available Evolutionary graph theory is a nice measure to implement evolutionary dynamics on spatial structures of populations. To calculate the fixation probability is usually regarded as a Markov chain process, which is affected by the number of the individuals, the fitness of the mutant, the game strategy, and the structure of the population. However the position of the new mutant is important to its fixation probability. Here the position of the new mutant is laid emphasis on. The method is put forward to calculate the fixation probability of an evolutionary graph (EG of single level. Then for a class of bilevel EGs, their fixation probabilities are calculated and some propositions are discussed. The conclusion is obtained showing that the bilevel EG is more stable than the corresponding one-rooted EG.
First principle calculation of structure and lattice dynamics of Lu2Si2O7
Directory of Open Access Journals (Sweden)
Nazipov D.V.
2017-01-01
Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
DEFF Research Database (Denmark)
Longo Martins, Murillo; Eckert, Juergen; Jacobsen, Henrik
2017-01-01
Since potential changes in the dynamics and mobility of drugs upon complexation for delivery may affect their ultimate efficacy, we have investigated the dynamics of two local anesthetic molecules, bupivacaine (BVC, C18H28N2O) and ropivacaine (RVC, C17H26N2O), in both their crystalline forms...
Directory of Open Access Journals (Sweden)
Jeffrey K Noel
2016-01-01
Full Text Available Experimentally derived structural constraints have been crucial to the implementation of computational models of biomolecular dynamics. For example, not only does crystallography provide essential starting points for molecular simulations but also high-resolution structures permit for parameterization of simplified models. Since the energy landscapes for proteins and other biomolecules have been shown to be minimally frustrated and therefore funneled, these structure-based models have played a major role in understanding the mechanisms governing folding and many functions of these systems. Structural information, however, may be limited in many interesting cases. Recently, the statistical analysis of residue co-evolution in families of protein sequences has provided a complementary method of discovering residue-residue contact interactions involved in functional configurations. These functional configurations are often transient and difficult to capture experimentally. Thus, co-evolutionary information can be merged with that available for experimentally characterized low free-energy structures, in order to more fully capture the true underlying biomolecular energy landscape.
Szabó, György; Fáth, Gábor
2007-07-01
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
International Nuclear Information System (INIS)
Oliveira, Andre Felipe da Silva de
2012-01-01
Safety is one of the most important and desirable characteristics in a nuclear plant Natural circulation cooling systems are noted for providing passive safety. These systems can be used as mechanism for removing the residual heat from the reactor, or even as the main cooling system for heated sections, such as the core. In this work, a computational fluid dynamics (CFD) code called CFX is used to simulate the process of natural circulation in a research reactor pool after its shutdown. The physical model studied is similar to the Open Pool Australian Light water reactor (OPAL), and contains the core, cooling pool, reflecting tank, circulation pipes and chimney. For best computing performance, the core region was modeled as a porous medium, where the parameters were obtained from a separately detailed CFD analysis. This work also aims to study the viability of the implementation of Differential Evolution algorithm for optimization the physical and operational parameters that, obeying the laws of similarity, lead to a test section on a reduced scale of the reactor pool.
Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E.; Hong, Chibo; Bell, Robert J.A.; Smirnov, Ivan V.; Reis, Gerald F.; Phillips, Joanna J.; Barnes, Michael; Bollen, Andrew W.; Taylor, Barry S.; Molinaro, Annette M.; Olshen, Adam B.; Song, Jun S.; Berger, Mitchel S.; Chang, Susan M.; Costello, Joseph F.
2014-01-01
The clonal evolution of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast, tumor epigenetic states, including DNA methylation, are reversible and sensitive to the tumor microenvironment, presumably precluding the use of epigenetics to discover tumor phylogeny. Here we examined the spatial and temporal dynamics of DNA methylation in a clinically and genetically characterized cohort of IDH1-mutant low-grade gliomas and their patient-matched recurrences. WHO grade II gliomas are diffuse, infiltrative tumors that frequently recur and may undergo malignant progression to a higher grade with a worse prognosis. The extent to which epigenetic alterations contribute to the evolution of low-grade gliomas, including malignant progression, is unknown. While all gliomas in the cohort exhibited the hypermethylation signature associated with IDH1 mutation, low-grade gliomas that underwent malignant progression to high-grade glioblastoma (GBM) had a unique signature of DNA hypomethylation enriched for active enhancers, as well as sites of age-related hypermethylation in the brain. Genes with promoter hypomethylation and concordant transcriptional upregulation during evolution to GBM were enriched in cell cycle function, evolving in concert with genetic alterations that deregulate the G1/S cell cycle checkpoint. Despite the plasticity of tumor epigenetic states, phyloepigenetic trees robustly recapitulated phylogenetic trees derived from somatic mutations in the same patients. These findings highlight widespread co-dependency of genetic and epigenetic events throughout the clonal evolution of initial and recurrent glioma.
Application of dynamic pseudo fission products and actinides for accurate burnup calculations
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.
1996-09-01
The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)
Oh, W. S.; Yu, D. J.; Davis, T.; Hillis, V.; Waring, T. M.
2017-12-01
One ongoing challenge to socio-hydrology is the problem of generalization: to what extent do common human-water co-evolutions exist across distinct cases and what are underlying mechanisms of these co-evolutions. This problem stems in part from a lack of unifying theories in socio-hydrology, which hinders the explanation and generalization of results between cases in different regions. Theories help an analyst to make assumptions that are necessary to diagnose a specific phenomenon, to explain the general mechanisms of causation, and, thus, to predict future outcomes. To help address the issue, this study introduces two theories that are increasingly used in the fields of sustainability science and social-ecological systems research: robustness-fragility tradeoff (RFTO) and cultural multi-level selection (CMLS). We apply each of these theories to two distinct cases (water management issues in southwest Bangladesh and the Kissimmee River Basin, Florida) and interpret the phenomena of the levee and adaptation effects. CMLS and RFTO focus on complementary aspects of socio-hydrological phenomena. The theory of RFTO, which is mostly about inherent tradeoffs associated with infrastructure improvements, explains how efforts to increase system robustness can generate hidden endogenous risks. CMLS theory, rooted in the broader theory of cultural evolution, concerns how human cultural dynamics can act as an endogenous driver of system change across multiple levels of social organizations. Using the applied examples, we demonstrate that these two theories can provide an effective way to study social-hydrological systems and to overcome the generalization problem. Our work shows that multiple theories can be synthesized to give a richer understanding of diverse socio-hydrological patterns.
International Nuclear Information System (INIS)
Soni, Himadri R.; Mankad, Venu; Gupta, Sanjeev K.; Jha, Prafulla K.
2012-01-01
Highlights: ► We present spin dependent bandstructure, structural and magnetic moment of FeN/CoN. ► The PDC, PHDOS, spin effect on phonons suggests ZB is preferred at ambient pressure. ► Spin calculation offers an opportunity to understand the role of spin on phonons. - Abstract: Using first principles density functional theoretical calculations, the present paper reports a systematic nonspin and spin polarized total energy calculations of the lattice dynamical and a number of other properties such as band structure, structural and magnetic moment of two mononitrides FeN and CoN. The phonon dispersion curves and phonon density of states in the case of FeN and CoN have been determined for the first time and discussed. The structural and dynamical calculations suggest that the zinc blende structure is preferred at ambient pressure for both compounds. The rocksalt FeN has a nonzero magnetic moment while for FeN in zinc blende phase, it is either zero or very small. The zinc blende phase for both compounds is nonmagnetic. The spin calculation offers an intensive opportunity to understand the role of spin on the phonon properties of two mononitrides. Majority of the modes are sensitive to the effect of spin due to the modification of lattice constant. In this work we reveal that spin modifies the interionic interactions and local structure and leads to a flexible lattice which can be used for the functional materials design.
International Nuclear Information System (INIS)
Ferrari, L.D.B.; Amaral, J.A.R. do; Alves, M.C.T.
1984-01-01
An example of dynamic analysis of a heat exchanger subjected to pipe break transient loadings is shown. The contribution of the type of loading and component's model is discussed. Simplified verification methods are also presented. (Author) [pt
Li, Yanling; Zeng, Zhi; Lin, Haiqing
2010-06-01
The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.
International Nuclear Information System (INIS)
Koski, J.A.; Wix, S.D.; Cole, J.K.
1997-09-01
Shipboard fires both in the same ship hold and in an adjacent hold aboard a break-bulk cargo ship are simulated with a commercial finite-volume computational fluid mechanics code. The fire models and modeling techniques are described and discussed. Temperatures and heat fluxes to a simulated materials package are calculated and compared to experimental values. The overall accuracy of the calculations is assessed
Energy Technology Data Exchange (ETDEWEB)
Dai, J.C. [College of Mechanical and Electrical Engineering, Central South University, Changsha (China); School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Hu, Y.P.; Liu, D.S. [School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Long, X. [Hara XEMC Windpower Co., Ltd., Xiangtan (China)
2011-03-15
The aerodynamic loads for MW scale horizontal-axis wind turbines are calculated and analyzed in the established coordinate systems which are used to describe the wind turbine. In this paper, the blade element momentum (BEM) theory is employed and some corrections, such as Prandtl and Buhl models, are carried out. Based on the B-L semi-empirical dynamic stall (DS) model, a new modified DS model for NACA63-4xx airfoil is adopted. Then, by combing BEM modified theory with DS model, a set of calculation method of aerodynamic loads for large scale wind turbines is proposed, in which some influence factors such as wind shear, tower, tower and blade vibration are considered. The research results show that the presented dynamic stall model is good enough for engineering purpose; the aerodynamic loads are influenced by many factors such as tower shadow, wind shear, dynamic stall, tower and blade vibration, etc, with different degree; the single blade endures periodical changing loads but the variations of the rotor shaft power caused by the total aerodynamic torque in edgewise direction are very small. The presented study approach of aerodynamic loads calculation and analysis is of the university, and helpful for thorough research of loads reduction on large scale wind turbines. (author)
International Nuclear Information System (INIS)
Bernholc, J.
1998-01-01
The field of computational materials physics has grown very quickly in the past decade, and it is now possible to simulate properties of complex materials completely from first principles. The presentation has mostly focused on first-principles dynamic simulations. Such simulations have been pioneered by Car and Parrinello, who introduced a method for performing realistic simulations within the context of density functional theory. The Car-Parrinello method and related plane wave approaches are reviewed in depth. The Car-Parrinello method was reviewed and illustrated with several applications: the dynamics of the C 60 solid, diffusion across Si steps, and computing free energy differences. Alternative ab initio simulation schemes, which use preconditioned conjugate gradient techniques for energy minimization and dynamics were also discussed
Evolutionary games under incompetence.
Kleshnina, Maria; Filar, Jerzy A; Ejov, Vladimir; McKerral, Jody C
2018-02-26
The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.
Directory of Open Access Journals (Sweden)
Basso Ernani A.
2001-01-01
Full Text Available Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl carbamate have been measured, for the first time, by the Eliel method, ¹H and 13C dynamic nuclear magnetic resonance (DNMR. The results were compared against those determined by theoretical calculations. By the Eliel method at least five experimentally independent measureables were used in CCl4, CDCl3 and CD3CN. The ¹H and 13C low temperature experiments were performed in CF2Br2/CD2Cl2 . Semiempirical methods MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the HF/STO-3G and HF/6-31G(d,p levels have been performed on the axial and equatorial conformers populations. All applied methods correctly predict the equatorial conformer preference over the axial one. The resulting equatorial preferences determined by NMR data and theoretical calculations are in good agreement.
International Nuclear Information System (INIS)
Ni, Y; Chalopin, Y; Volz, S
2012-01-01
Inter-plane thermal resistance in 5-layer graphene is calculated from equilibrium molecular dynamics (EMD) by calculating the autocorrelation function of temperature difference. Our simulated inter-plane resistance for 5-layer graphene is 4.83 × 10 −9 m 2 K/W. This data is in the same order of magnitude with the reported values from NEMD simulations and Debye model calculations, and the possible reasons for the slight differences are discussed in details. The inter-plane resistance is not dependent on temperature, according to the results of the EMD simulation. Phonon density of states (DOSs) were plotted to better understand the mechanism behind the obtained values. These results provide a better insight in the heat transfer across a few layer graphene and yield useful information on the design of graphene based thermal materials.
Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.
Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V
2016-11-28
Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.
Choice of initial conditions in dynamical calculations of distributions of nuclear fission fragments
International Nuclear Information System (INIS)
Kosenko, G.I.
1993-01-01
The distribution function in the coordinates and momenta for a fissioning system traversing a barrier is determined in terms of Langevin fluctuation-dissipation dynamics. It is shown that this distribution is best described by the Kramers distribution. The equilibrium distribution can be used as the initial condition, provided that the system is in the overdamping regime. 28 refs., 5 figs., 3 tabs
A Simple Molecular Dynamics Lab to Calculate Viscosity as a Function of Temperature
Eckler, Logan H.; Nee, Matthew J.
2016-01-01
A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…
DEFF Research Database (Denmark)
Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik
2016-01-01
to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations...
Annual progress report FY 1977. [Computer calculations of light water reactor dynamics and safety
Energy Technology Data Exchange (ETDEWEB)
Hansen, K.F.; Henry, A.F.
1977-07-01
Progress is summarized in a project directed toward development of numerical methods suitable for the computer solution of problems in reactor dynamics and safety. Specific areas of research include methods of integration of the time-dependent diffusion equations by finite difference and finite element methods; representation of reactor properties by various homogenization procedures; application of synthesis methods; and development of response matrix techniques.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes
International Nuclear Information System (INIS)
Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.
2016-01-01
To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)
International Nuclear Information System (INIS)
Villar Sanchez, T.
2012-01-01
(FDS) is an advanced computational model of calculation of simulation of fire that numerically solves the Navier-Stokes equations in each cell of the mesh in each interval of time, having capacity to calculate accurately all those parameters of fire to NUREG-1805 has a limited capacity. The objective of the analysis is to compare the results obtained with the FDS with those obtained from spreadsheets of NUREG-1805 and deal widespread and realistic study of the propagation of a fire in different areas of NPP Almaraz.
Institute of Scientific and Technical Information of China (English)
王先甲; 何奇龙; 全吉
2017-01-01
Use large group repeated game-replicator dynamics research on consumer groups who are bounded rationality got through imitating and learning to update their strategies supporting or nonsupporting crowdfunding under two scenarios fairness and altruism contribution rule.Established two people mult-strategy evolutionary game dynamic equations.Through analyzing the change of different parameters how to influence on the evolutionary stable equilibrium and the basin of attraction of the system,considering the failure of crowdfunding bringing regrets this paper researched the effects of crowdfunding success from different factors.The study find that under the fair contribution mechanism and without regard to regrets,supporting is the dominant strategy.Considering the failure of crowdfunding bringing regrets and generating negative benefit to consumer,when the target is smaller,the higher of the product quality level,the bigger of consumer's preferences and group benefits,the more beneficial to the crowdfunding evolutionary success.But the increasing of issued shares brings consumer's free-riding behavior,thus it restrains the success of crowdfunding.Under the altruism behavior,the bigger of consumer's preferences and group benefits,the higher of product quality level,the more beneficial to the crowdfunding evolutionary success.When financing target is fixed and the issued shares is increased,free-rider behavior don't increase,instead the success probability of crowdfunding be enhanced.%采用大群体反复博弈-复制动态演化博弈,在公平贡献和利他主义两种情景下,建立了有限理性的消费者群体通过模仿学习不断调整支持众筹和不支持众筹两策略多人博弈的演化系统.通过对不同参数变化对系统演化稳定均衡及吸引域的影响分析,研究了存在消费者后悔度条件下各因素对众筹演化成功的影响机制.研究发现,公平贡献机制下不考虑后悔度,则支持众
Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations
International Nuclear Information System (INIS)
Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.
1979-01-01
The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium
Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B
2013-10-09
expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America's southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations.
International Nuclear Information System (INIS)
Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik
2016-01-01
Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads. (paper)
Molecular dynamics calculation of half-lives for thermal decay of Lennard-Jones clusters
International Nuclear Information System (INIS)
Smith, R.W.
1991-01-01
Molecular dynamics has been used with a Lenard-Jones (6-12) potential in order to study the decay behavior of neutral Argon clusters containing between 12 and 14 atoms. The clusters were heated to temperatures well above their melting points and then tracked in time via molecular dynamics until evaporation of one or more atoms was observed. In each simulation, the mode of evaporation, energy released during evaporation, and cluster lifetime were recorded. Results from roughly 2000 simulation histories were combined in order to compute statistically significant values of cluster half-lives and decay energies. It was found that cluster half-life decreases with increasing energy and that for a given value of excess energy (defined as E=(E tot -E gnd )/n), the 13 atom cluster is more stable against decay than clusters containing either 12 or 14 atoms. The dominant decay mechanism for all clusters was determined to be single atom emission. (orig.)
Calculation Method for Equilibrium Points in Dynamical Systems Based on Adaptive Sinchronization
Directory of Open Access Journals (Sweden)
Manuel Prian Rodríguez
2017-12-01
Full Text Available In this work, a control system is proposed as an equivalent numerical procedure whose aim is to obtain the natural equilibrium points of a dynamical system. These equilibrium points may be employed later as setpoint signal for different control techniques. The proposed procedure is based on the adaptive synchronization between an oscillator and a reference model driven by the oscillator state variables. A stability analysis is carried out and a simplified algorithm is proposed. Finally, satisfactory simulation results are shown.
A contribution to the static and dynamic calculation of research reactor structures
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.; Brito Aghina, L.O. de; Gomes, P.A.
1978-01-01
Some results in the analysis of a research reactor, using the finite element method are presented. The distribution of internal forces is discussed for the conditions of a Borax accident. An special computer automatic program for the static and dynamic analysis of this Kind of reactor buildings was developed. The program may use either plane triangular elements or double-curvature shell elements and allows the analysis of laminated shells, as it the case of concrete containment vessels with steel liners. (Author)
Czech Academy of Sciences Publication Activity Database
Kessler, Jiří; Dračínský, Martin; Bouř, Petr
2013-01-01
Roč. 34, č. 5 (2013), s. 366-371 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : molecular dynamics * clusters * density functional theory * Raman optical activity * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013
Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations
Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng
2018-04-01
The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.
Calculation of the MT25 microtron dynamics and its fast simulation
International Nuclear Information System (INIS)
Krist, Pavel; Chvatil, David; Bila, Jiri
2011-01-01
This paper presents the design of a mathematical model and its fast simulation developed for the setup of the control system of the MT25 microtron, which is a cyclic electron accelerator. This type of accelerator has been controlled manually until now. The mathematical model is based on calculations of the electron motion in the accelerating cavity and vacuum chamber. The simulation diagram was created using the Matlab-Simulink tools. (author)
DYNAMICAL CALCULATIONS OF (K)over-bar AND MULTI-(K)over-bar NUCLEI
Czech Academy of Sciences Publication Activity Database
Gazda, D.; Mareš, Jiří; Friedman, E.; Gal, A.
2009-01-01
Roč. 24, 2-3 (2009), s. 438-441 ISSN 0217-751X. [Conference MESON 2008. Jagiellonian Univ, Cracow, 06.06.2008-10.06.2008] R&D Projects: GA AV ČR IAA100480617 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear RMF calculations * (K)over-bar-nuclear bound states * kaon condensation Subject RIV: BE - Theoretical Physics Impact factor: 0.941, year: 2009
International Nuclear Information System (INIS)
Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu
2016-01-01
Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.
International Nuclear Information System (INIS)
Franchi, M; Ricci, L
2014-01-01
The embedding of time series provides a valuable, and sometimes indispensable, tool in order to analyze the dynamical properties of a chaotic system. To this purpose, the choice of the embedding dimension and lag is decisive. The scientific literature describes several methods for selecting the most appropriate parameter pairs. Unfortunately, no conclusive criterion to decide which method – and thus which embedding pair – is the best has been so far devised. A widely employed quantity to compare different methods is the maximum Lyapunov exponent (MLE) because, for chaotic systems that have explicit analytic representations, MLE can be numerically evaluated independently of the embedding dimension and lag. Within this framework, we investigated the dependence on the calculated MLE on the embedding dimension and lag in the case of three dynamical systems that are also widespreadly used as reference systems, namely the Lorenz, Rössler and Mackey-Glass attractors. By also taking into account the statistical fluctuations of the calculated MLE, we propose a new method to assess which systems provide suitable test benches for the comparison of different embedding methods via MLE calculation. For example we found that, despite of its popularity in this scientific context, the Rössler attractor is not a reliable workbench to test the validity of an embedding method
Directory of Open Access Journals (Sweden)
V. I. Ovchinnikov
2007-01-01
Full Text Available The paper is devoted to the development of measuring device to register dynamic processes of electromagnetic irradiation during the treatment of materials with energy of explosion. Standard units to register main parameters of the explosion do not allow predict and control results of the process. So, to overcome disadvantages of former control units a new one has been developed applying Hall’s sensors. The device developed allows effectively register of the inductive component of the electromagnetic irradiation in wide range of temperature for many shot-time processes.
Energy Technology Data Exchange (ETDEWEB)
Babailov, S. P., E-mail: babajlov@niic.nsc.ru [A. V. Nikolaevs Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Purtov, P. A. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Insitutskaya 3, 630090 Novosibirsk (Russian Federation); Fomin, E. S. [Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 10, 630090 Novosibirsk (Russian Federation)
2016-08-07
An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.
International Nuclear Information System (INIS)
Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi
2009-01-01
In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)
International Nuclear Information System (INIS)
Waegeneers, Nadia; Ruttens, Ann; De Temmerman, Ludwig
2011-01-01
A chain model was developed to calculate the flow of cadmium from soil, drinking water and feed towards bovine tissues. The data used for model development were tissue Cd concentrations of 57 bovines and Cd concentrations in soil, feed and drinking water, sampled at the farms were the bovines were reared. Validation of the model occurred with a second set of measured tissue Cd concentrations of 93 bovines of which age and farm location were known. The exposure part of the chain model consists of two parts: (1) a soil-plant transfer model, deriving cadmium concentrations in feed from basic soil characteristics (pH and organic matter content) and soil Cd concentrations, and (2) bovine intake calculations, based on typical feed and water consumption patterns for cattle and Cd concentrations in feed and drinking water. The output of the exposure model is an animal-specific average daily Cd intake, which is then taken forward to a kinetic uptake model in which time-dependent Cd concentrations in bovine tissues are calculated. The chain model was able to account for 65%, 42% and 32% of the variation in observed kidney, liver and meat Cd concentrations in the validation study. - Research highlights: → Cadmium transfer from soil, drinking water and feed to bovine tissues was modeled. → The model was based on 57 bovines and corresponding feed and soil Cd concentrations. → The model was validated with an independent data set of 93 bovines. → The model explained 65% of variation in kidney Cd in the validation study.
A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA
Institute of Scientific and Technical Information of China (English)
Jing HE; Xikang CHEN; Yong SHI
2006-01-01
China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.
Czech Academy of Sciences Publication Activity Database
Dračínský, Martin; Storch, Jan; Církva, Vladimír; Císařová, I.; Sýkora, Jan
2017-01-01
Roč. 19, č. 4 (2017), s. 2900-2907 ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S; GA ČR GA15-12719S Institutional support: RVO:61388963 ; RVO:67985858 Keywords : helicene * NMR spectroscopy * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry; Physical chemistry (UCHP-M) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2013/cp/c6cp07552e
Calculation of nonstationary gas-dynamic flows with periodic local supply of energy
International Nuclear Information System (INIS)
Mikhailova, N.V.; Myshetskaya, E.E.; Rakhimov, A.T.; Favorskii, A.P.
The paper considers the motion of a flow of gas with local supply of energy periodic in time. Solution of the problem in one-dimensional formulation in the approximation of an ideal nonviscous non-heat-conducting gas is carried out by numerical methods. The possibility of emergence of the flow into a periodic regime is established and the rate of this process is calculated. The character of the periodic structure is investigated in dependence on the frequency of the superimposition of perturbations and the Mach number in unperturbed flow of the gas
Lattice dynamics calculations based on density-functional perturbation theory in real space
Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias
2017-06-01
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.
Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng
2016-05-01
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
Dyachenko, Leonid K.; Benin, Andrey V.
2017-06-01
When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.
Directory of Open Access Journals (Sweden)
Dyachenko Leonid K.
2017-06-01
Full Text Available When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR. Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.
Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios
2015-12-01
We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.
Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi
2017-09-01
First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
Energy Technology Data Exchange (ETDEWEB)
He, Yang [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Chen, Changfeng, E-mail: chen_c_f@163.com [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Yu, Haobo [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Lu, Guiwu [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China)
2017-01-15
Highlights: • The structures of water compact layer on Pt(111) at different temperature were calculated. • The feature of chemical bond between water molecules and Pt (111) surface was discussed with temperature increased. • Temperature dependence of electrical strengths and capacitances of compact layer on Pt (111) surface was calculated. - Abstract: Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The O−H bonds of more water molecules point toward the Pt surface to form Pt−H covalent bonds with increasing temperature, which weaken the corresponding O−H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm{sup 2}, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.
Energy Technology Data Exchange (ETDEWEB)
Musa, Ahmed Y., E-mail: AMUSA6@UWO.CA [Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7 (Canada); Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor (Malaysia); Jalgham, Ramzi T.T.; Mohamad, Abu Bakar [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor (Malaysia)
2012-03-15
Highlights: Black-Right-Pointing-Pointer The inhibition of three phthalazine derivatives was studied. Black-Right-Pointing-Pointer The inhibition efficiency increased in the following order: PTD < PT < PTO. Black-Right-Pointing-Pointer The adsorption energies were calculated using molecular dynamics simulations. Black-Right-Pointing-Pointer Quantum chemical parameters were calculated using the AM1, MNDO and PM3 methods. Black-Right-Pointing-Pointer The adsorption of phthalazine derivatives obeys the Langmuir adsorption isotherm. - Abstract: The abilities of phthalazine derivatives, including phthalazine (PT), phthalazone (PTO) and phthalhydrazide (PTD), to inhibit the corrosion of mild steel in 1 M HCl at 30 Degree-Sign C were studied using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. Theoretical calculations were performed to investigate the electronic structures of the PT derivatives. Our results showed that the inhibition efficiencies of these derivatives improved with increases in concentration. The data also showed that PTD < PT < PTO in terms of the inhibiting efficiency. Theoretical calculations also revealed that PTO is expected to be the best inhibitor among the studied phthalazine derivatives.
Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics
Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide
2017-10-01
Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.
Coupled cluster calculations for static and dynamic polarizabilities of C60
Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.
2008-12-01
New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.
Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics
Directory of Open Access Journals (Sweden)
COELHO L. A. F.
1999-01-01
Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.
Diffusion constant in hot and dense hadronic matter. A hadro-molecular-dynamic calculation
International Nuclear Information System (INIS)
Sasaki, N.; Miyamura, O.; Muroya, S.; Nonaka, C.
2002-01-01
We evaluate baryon/charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 1-2 GeV/A and satisfies detailed balance at low temperatures (T ≤ 200 MeV). For the hot and dense hadronic matter of the temperature range, T = 100 - 200 MeV and baryon number density, n B =0.16 fm -3 - 0.32 fm -3 , charge diffusion constant D gradually increases from 0.5 fmc to 2 fmc with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions. (author)
Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets
International Nuclear Information System (INIS)
Williams, K.A.
1984-01-01
The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced
A dynamic method for charging-up calculations: the case of GEM
Correia, P M M; Azevedo, C D R; Silva, A L M; Veenhof, R; Nemallapudi, Mythra Varun; Veloso, J F C A
2014-01-01
The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulat...
Application of ab initio calculations and molecular dynamics to collagen and brome mosaic virus
Eifler, Jay Quinson
In bio-related research, large proteins are of important interest. We study two such proteins. Collagen is one such protein which forms part of the structural matrix for animals, such as in their bones and teeth. 1JS9 is another protein that is a component of the protein shell of the brome mosaic virus (BMV). And BMV is important for drug delivery and imaging. To better understand the properties of these proteins, quantum mechanically (QM) based results are needed, however computationally feasible methods are also necessary. The Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) method is well-suited for application to such large proteins. However, a new approach to reduce the computational cost is required and this extension to the method we call the Amino-Acid Based Method (AAPM) of OLCAO. The AAPM roughly calculates electronic, self-consistent field (scf) potentials for individual amino-acids with their neighboring amino-acids included as a boundary condition. This allows the costly scf part of the calculation to be skipped out. Additionally, the number of potentials used to describe the how protein i s also minimized. Results for effective charge and bond order are obtained and analyzed for Collagen and preliminary effective charge results are obtained for 1JS9. The effective charge results reproduce those already obtained with other QM based methods but without reduced cost and preserved accuracy that are characteristically different than the formal charges mostly still in use to describe the charge properties of proteins. The bond order results for Collagen nicely reproduce the observed experimentally-derived hydrogen bonding between the individual chains of the collagen triple-helix as well as the observed hydrogen bonding network.
Institute of Scientific and Technical Information of China (English)
Kohji Tashiro
2007-01-01
The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.
A dynamic method for charging-up calculations: the case of GEM
International Nuclear Information System (INIS)
Correia, P M M; Oliveira, C A B; Azevedo, C D R; Silva, A L M; Veloso, J F C A; Veenhof, R; Nemallapudi, M Varun
2014-01-01
The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to exactly simulate the effective gas gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method, which uses a constant step size for avalanches time evolution, is very detailed but slow to compute. The second method instead uses a dynamic step-size that improves the computing time. Good agreement between both methods was achieved. Comparison with experimental results shows that charging-up plays an important role in detectors operation, explaining the time evolution of the gain. However it doesn't seem to be the only responsible for the difference between measurements and Monte Carlo simulations
Dynamics calculation with variable mass of mountain self-propelled chassis
Directory of Open Access Journals (Sweden)
R.M. Makharoblidze
2016-12-01
Full Text Available Many technological processes in the field of agricultural production mechanization, such as a grain crop, planting root-tuber fruits, fertilizing, spraying and dusting, pressing feed materials, harvesting of various cultures, etc. are performed by the machine-tractor units with variable mass of links or processed media and materials. In recent years, are also developing the systems of automatic control, adjusting and control of technological processes and working members in agriculture production. Is studied the dynamics of transition processes of mountain self-propelled chassis with variable mass at real change disconnect or joining masses that is most often used in the function of movement (m(t = ctm(t = ct. Are derived the formulas of change of velocity of movement on displacement of unit and is defined the dependence of this velocity on the tractor and technological machine performance, with taking into account the gradual increase or removing of agricultural materials masses. According to the equation is possible to define a linear movement of machine-tractor unit. According to the obtained expressions we can define the basic operating parameters of machine-tractor unit with variable mass. The results of research would be applied at definition of characteristics of units, at development of new agricultural tractors.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2013-09-05
Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.
Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan
2017-11-29
Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.
International Nuclear Information System (INIS)
Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M
2014-01-01
The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)
Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks
International Nuclear Information System (INIS)
Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.
2002-01-01
We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control
Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio
2009-03-01
A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.
Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin
2014-01-01
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene. PMID:24170493
Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin
2014-02-01
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
Rife Magalis, Brittany; Nolan, David J; Autissier, Patrick; Burdo, Tricia H; Williams, Kenneth C; Salemi, Marco
2017-12-01
A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8 + lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8 + lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8 + cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8 + lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8 + lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8 + lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8 + lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation. IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1
International Nuclear Information System (INIS)
Ito, A.; Kenmotsu, T.; Kikuhara, Y.; Inai, K.; Ohya, K.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.
2009-01-01
Full text: To understand the plasma-wall interaction on divertor plates, we investigate the interaction of hydrogen atoms and carbon materials used in the high heat flux components by the use of the following simulations. Monte-Carlo (MC) method based on binary collision approximation can calculate the sputtering process of hydrogen atoms on the carbon material quickly. Classical molecular dynamics (MD) method employs multi-body potential models and can treat realistic structures of crystal and molecule. The ab-initio method can calculate electron energy in quantum mechanics, which is regarded as realistic potential for atoms. In the present paper, the interaction of the hydrogen and the carbon material is investigated using the multi-scale (MC, MD and ab-initio) methods. The bombardment of hydrogen atoms onto the carbon material is simulated by the ACAT-code of the MC method, which cannot represent the structure of crystal, and the MD method using modified reactive empirical bond order (REBO) potential, which treats single crystal graphite and amorphous carbon. Consequently, we clarify that the sputtering yield and the reflection rate calculated by the ACAT-code agree with those on the amorphous carbon calculated by the MD. Moreover, there are many kinds of REBO potential for the MD. Adsorption, reflection and penetration rates between a hydrogen atom and a graphene surface are calculated by the MD simulations using the two kinds of potential model. For the incident energy of less than 1 eV, the MD simulation using the modified REBO potential, which is based on Brenner's REBO potential in 2002, shows that reflection is dominant, while the most popular Brenner's REBO potential in 1990 shows that adsorption is dominant. This reflection of the low energy injection is caused by a small potential barrier for the hydrogen atom in the modified REBO potential. The small potential barrier is confirmed by the ab-initio calculations, which are hybrid DFT (B3LYP/cc-pVDZ), ab
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao
2015-11-01
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
International Nuclear Information System (INIS)
Klintenberg, M.; Thomas, J.O.; Edvardsson, S.
1998-01-01
Full text: We have previously shown that the use of molecular dynamics (MD) and the inclusion of configuration interaction (CI) effects are important when simulating polarized absorption spectra for rare-earth doped compounds. In this work, we focus on how well the MD approach can account for the temperature dependence of the calculated absorption spectrum for Nd 3+ :YAG (yttrium aluminium garnet), using the standard MD pair-potential of the Born-Mayer-Huggins form. All simulated spectra are compared to the corresponding experimental spectra. The results indicate that the simple pair-potential must be replaced by a many-body potential to describe the motion of the ions sufficiently accurately
International Nuclear Information System (INIS)
Djouder, M.; Kermoun, F.; Mitiche, M. D.; Lamrous, O.
2016-01-01
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.
2018-05-01
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
Barall, Michael
2009-01-01
We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J
2018-05-07
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
International Nuclear Information System (INIS)
Sarma, R.H.; Sarma, M.H.; Umemoto, K.
1990-01-01
1D/2D NMR studies are reported for a [1:1] complex of d(GA 4 T 4 C) 2 and Dst2 (an analogue of distamycin A). Full- Matrix NOESY Simulations, Molecular Mechanics and Molecular Dynamics Calculations are performed to analyze the NMR data. Results show that drug-DNA complex formation is driven by static features like H-bonding and steric interactions in the minor-groove of DNA. As a consequence of drug binding, a non-linear oscillatory mode is activated. In this mode the molecule samples equilibrium structural states of difference degrees of bending. It is noted that these structures belong to three distinctly different energy wells that satisfy the same NMR data. 14 refs., 4 figs., 2 tabs
Dolenc, Jožica; Oostenbrink, Chris; Koller, Jože; van Gunsteren, Wilfred F.
2005-01-01
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding. PMID:15687382
Dolenc, Jozica; Oostenbrink, Chris; Koller, Joze; van Gunsteren, Wilfred F
2005-01-01
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand-solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand-DNA binding.
International Nuclear Information System (INIS)
Erpenbeck, J.J.
1989-01-01
The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion
Energy Technology Data Exchange (ETDEWEB)
Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)
2007-10-15
Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.
García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio
2018-06-07
Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
The trapping of K and Na atoms by a clean W(110) surface. Dynamic trajectory calculations. ch.3
International Nuclear Information System (INIS)
Hurkmans, A.; Overbosch, E.G.; Los, J.
1976-01-01
The fraction of K and Na atoms which are initially trapped by a clean W(110) surface has been measured as a function of incident energy (0.5 < approximately Esub(i) < approximately 15 eV) at several angles of incidence. At the same time the desorption energies Qsub(i) of the trapped potassium and sodium atoms were measured: Qsub(i) = 2.05 +- 0.02 eV and Qsub(i) = 2.60 +- 0.04 eV respectively. The measured trapping probabilities can be described well by Trillings 'partially screened spherical cap' model, except fos the small angles of incidence. Dynamic trajectory calculations were performed for a particle scattered from a diatomic molecule to explain the screening and the descrepancy at normal incidence. The calculations give good quantitative agreement with the measured trapping probability at small angles both for potassium and sodium atoms and show that simultaneous interaction with two adjacent surface atoms affects the trapping particularly at small angles of incidence. (Auth.)
Varlataya, S. K.; Evdokimov, V. E.; Urzov, A. Y.
2017-11-01
This article describes a process of calculating a certain complex information security system (CISS) reliability using the example of the technospheric security management model as well as ability to determine the frequency of its maintenance using the system reliability parameter which allows one to assess man-made risks and to forecast natural and man-made emergencies. The relevance of this article is explained by the fact the CISS reliability is closely related to information security (IS) risks. Since reliability (or resiliency) is a probabilistic characteristic of the system showing the possibility of its failure (and as a consequence - threats to the protected information assets emergence), it is seen as a component of the overall IS risk in the system. As it is known, there is a certain acceptable level of IS risk assigned by experts for a particular information system; in case of reliability being a risk-forming factor maintaining an acceptable risk level should be carried out by the routine analysis of the condition of CISS and its elements and their timely service. The article presents a reliability parameter calculation for the CISS with a mixed type of element connection, a formula of the dynamics of such system reliability is written. The chart of CISS reliability change is a S-shaped curve which can be divided into 3 periods: almost invariable high level of reliability, uniform reliability reduction, almost invariable low level of reliability. Setting the minimum acceptable level of reliability, the graph (or formula) can be used to determine the period of time during which the system would meet requirements. Ideally, this period should not be longer than the first period of the graph. Thus, the proposed method of calculating the CISS maintenance frequency helps to solve a voluminous and critical task of the information assets risk management.
Energy Technology Data Exchange (ETDEWEB)
Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)
2014-08-07
Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy
Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J
2014-08-07
Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the
Exponential Expansion in Evolutionary Economics
DEFF Research Database (Denmark)
Frederiksen, Peter; Jagtfelt, Tue
2013-01-01
This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...
Remembering the evolutionary Freud.
Young, Allan
2006-03-01
Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.
Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard
2016-04-01
The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by
Stinchcombe, John R; Izem, Rima; Heschel, M Shane; McGoey, Brechann V; Schmitt, Johanna
2010-10-01
Trade-offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade-offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across-environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model-fitting, and within-RIL variation prior to eigenanalysis. We detected negative across-environment genetic covariances in intrinsic growth rates, although only under full-light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across-environment genetic variance-covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across-environment genetic covariances in traits simultaneously. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
Laird, Robert A
2018-05-21
Cooperation is a central topic in evolutionary biology because (a) it is difficult to reconcile why individuals would act in a way that benefits others if such action is costly to themselves, and (b) it underpins many of the 'major transitions of evolution', making it essential for explaining the origins of successively higher levels of biological organization. Within evolutionary game theory, the Prisoner's Dilemma and Snowdrift games are the main theoretical constructs used to study the evolution of cooperation in dyadic interactions. In single-shot versions of these games, wherein individuals play each other only once, players typically act simultaneously rather than sequentially. Allowing one player to respond to the actions of its co-player-in the absence of any possibility of the responder being rewarded for cooperation or punished for defection, as in simultaneous or sequential iterated games-may seem to invite more incentive for exploitation and retaliation in single-shot games, compared to when interactions occur simultaneously, thereby reducing the likelihood that cooperative strategies can thrive. To the contrary, I use lattice-based, evolutionary-dynamical simulation models of single-shot games to demonstrate that under many conditions, sequential interactions have the potential to enhance unilaterally or mutually cooperative outcomes and increase the average payoff of populations, relative to simultaneous interactions-benefits that are especially prevalent in a spatially explicit context. This surprising result is attributable to the presence of conditional strategies that emerge in sequential games that can't occur in the corresponding simultaneous versions. Copyright © 2018 Elsevier Ltd. All rights reserved.