WorldWideScience

Sample records for calculated vaporized volume

  1. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  2. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  3. Calculation of the transport and relaxation properties of dilute water vapor

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa

    2009-07-01

    Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.

  4. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  5. A Numerical Approach for Multicomponent Vapor Solid Equilibrium Calculations in Gas Hydrate Formation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new numerical approach has been developed for vapor solid equilibrium calculations and for predicting vapor solid equilibrium constant and composition of vapor and solid phases in gas hydrate formation. Equation of state methods generally do a good job of determining vapor phase properties,but for solid phase it is much more difficult and inaccurate. This proposed new model calculates vapor solid equilibrium constant and vapor and solid phase composition as a function of temperature and partial pressure. The results of this proposed numerical approach, for vapor solid equilibrium, have a good agreement with the available reported data. This new numerical model also has an advantage to tune coefficients, to cover different sets of experimental data accurately.

  6. Considerations on the calculation of volumes in two planning systems

    International Nuclear Information System (INIS)

    The discrepancies in the calculation of the same volume between different planning systems impact on dose-volume histograms and therefore clinical assessment of dosimetry for patients. The transfer, by a local network, tomographic study (CT) and contours of critical organs of patients, between our two planning systems allows us to evaluate the calculation of identical volumes.

  7. NUMERICAL INTEGRATION IN VOLUME CALCULATION OF IRREGULAR ANTICLINES

    OpenAIRE

    Tomislav Malvić; Rajna Rajić; Petra Slavinić; Kristina Novak Zelenika

    2014-01-01

    The volume of geological structures is often calculated by using the definite integral. Though in some cases the integral can be solved analytically, in practice we usually approximate its value by numerical integration techniques. The application of definite integral in volume calculation is illustrated by two examples. The volume of Mount Fuji, the world-known “conic” geomorphological structure, is calculated by analytical integration. Two basic numerical integration methods, that is, the t...

  8. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number

    Institute of Scientific and Technical Information of China (English)

    Xiao-bin ZHANG; Wei ZHANG; Xue-jun ZHANG

    2012-01-01

    The volume of fluid (VOF) formulation is applied to model the combustion process of a single droplet in a hightemperature convective air free stream environment.The calculations solve the flow field for both phases,and consider the droplet deformation based on an axisymmetrical model.The chemical reaction is modeled with one-step finite-rate mechanism and the thcrmo-physica1 properties for the gas mixture are species and temperature dependence.A mass transfer model applicable to the VOF calculations due to vaporization of the liquid phases is developed in consideration with the fluctuation of the liquid surface.The model is validated by examining the burning rate constants at different convective air temperatures,which accord well with experimental data of previous studies.Other phenomena from the simulations,such as the transient history of droplet deformation and flame structure,are also qualitatively accordant with the descriptions of other numerical results.However,a different droplet deformation mechanism for the low Reynolds number is explained compared with that for the high Reynolds number.The calculations verified the feasibility of the VOF computational fluid dynamics (CFD) formulation as well as the mass transfer model due to vaporization.

  9. Vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria calculations for polystyrene plus methyleyclohexane and polystyrene plus cyclohexane solutions

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2006-01-01

    This paper presents the vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria predictions for polystyrene in two theta solvents: cyclohexane and methylcyclohexane. VLE calculations were performed with the Elbro free volume method and a modified version of the PC-SAFT method, as well...... as with three UNIFAC type group contribution models: Entropic Free Volume + UNIFAC VLE 1 coeff., Entropic Free Volume + UNIFAC VLE 2coeff., and Oishi-Prausnitz + UNIFAC VLE 2coeff. Solvent activities were calculated for the polystyrene + cyclohexane and polystyrene + methylcyclohcxane solutions, and compared...

  10. Preconcentrator with high volume chiller for high vapor pressure particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  11. Calculation of the water vapor line intensities for rotational transitions between high-excited energy levels

    Science.gov (United States)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.

    2015-11-01

    The intensities of water vapor in the range of pure rotational transitions were calculated up to high quantum numbers (Jmax ~ 30 and Ka max ~ 25). The diagonalization of the effective rotational Hamiltonian, approximated by Pade-Borel method, is applied to obtain the eigenvectors. The centrifugal distortion perturbations in line intensities were taken into account by the traditional equations for matrix elements of the transformed dipole moment, including eight parameters, and previously developed by authors Pade approximant. Moreover, to conduct the calculations, the rotational wavefunctions of the symmetric rotor molecule were applied. The results were compared with the known theoretical data.

  12. Quantum Monte Carlo calculations of two neutrons in finite volume

    CERN Document Server

    Klos, P; Tews, I; Gandolfi, S; Gezerlis, A; Hammer, H -W; Hoferichter, M; Schwenk, A

    2016-01-01

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial for determining observables from the calculated energies. Using the L\\"uscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.

  13. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas;

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled...... using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...... potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated...

  14. Efficient Error Calculation for Multiresolution Texture-Based Volume Visualization

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Hamann, B; Joy, K I

    2001-10-16

    Multiresolution texture-based volume visualization is an excellent technique to enable interactive rendering of massive data sets. Interactive manipulation of a transfer function is necessary for proper exploration of a data set. However, multiresolution techniques require assessing the accuracy of the resulting images, and re-computing the error after each change in a transfer function is very expensive. They extend their existing multiresolution volume visualization method by introducing a method for accelerating error calculations for multiresolution volume approximations. Computing the error for an approximation requires adding individual error terms. One error value must be computed once for each original voxel and its corresponding approximating voxel. For byte data, i.e., data sets where integer function values between 0 and 255 are given, they observe that the set of error pairs can be quite large, yet the set of unique error pairs is small. instead of evaluating the error function for each original voxel, they construct a table of the unique combinations and the number of their occurrences. To evaluate the error, they add the products of the error function for each unique error pair and the frequency of each error pair. This approach dramatically reduces the amount of computation time involved and allows them to re-compute the error associated with a new transfer function quickly.

  15. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  16. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    International Nuclear Information System (INIS)

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process

  17. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Raquel dalla [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)], E-mail: raqueldc_eng@yahoo.com.br; Cossich, Eneida Sala; Tavares, Celia Regina Granhen [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)

    2008-12-15

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process.

  18. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2015-09-15

    Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  19. Theoretical Calculation of the Real Vapor Pressure of Al during ISM Processing of Ni-xAl (at.pct)(x=25~50) Alloy

    Institute of Scientific and Technical Information of China (English)

    Jingjie GUO; Guizhong LIU; Yanqing SU; Jun JIA; Hengzhi FU

    2004-01-01

    A new model was established to calculate the real vapor pressure of Al in the molten Ni-xAI (at. Pct) (x=25~50)alloy. The effects of the holding time, chamber pressure, mole fraction of Al and melting temperature on the real vapor pressure of Al in the vacuum chamber were analyzed. Because of the impeding effect of the real vapor pressure on the evaporation loss rate, within a short time (less than 10 s), the real vapor pressure tends to a constant value.When the chamber pressure is less than the saturated vapor pressure of Al, the real vapor pressure of Al is equal to the chamber pressure. While when the chamber pressure is higher than the saturated vapor pressure, the real vapor pressure of Al approaches to the saturated vapor pressure of Al of the same condition.

  20. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    Science.gov (United States)

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Quantum Monte Carlo calculations of two neutrons in finite volume

    OpenAIRE

    Klos, P.; Lynn, J. E.; Tews, I.; Gandolfi, S.; Gezerlis, A.; Hammer, H. -W.; Hoferichter, M.; Schwenk, A.

    2016-01-01

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effectiv...

  2. Calculation of ternary Si-Fe-Al phase equilibrium in vacuum distillation by molecular interaction volume model

    Directory of Open Access Journals (Sweden)

    Liu K.

    2014-01-01

    Full Text Available The vacuum distillation of aluminum from Si-Fe-Al ternary alloy with high content of Al is studied by a molecular interaction volume model (MIVM in this paper. The vapor-liquid phase equilibrium of the Si-Fe-Al system in vacuum distillation has been calculated using only the properties of pure components and the activity coefficients. A significant advantage of the model lies in its ability to predict the thermodynamic properties of liquid alloys using only binary infinite dilution activity coefficients. The thermodynamic activities and activity coefficients of components of the related Si-Fe, Si- Al and Fe-Al binary and the Si-Fe-Al ternary alloy systems are calculated based on the MIVM. The computational activity values are presented graphically, and evaluated with the reported experiment data in the literature, which shows that the prediction effect of the proposed model is of stability and reliability.

  3. Volume calculation of the spur gear billet for cold precision forging with average circle method

    Institute of Scientific and Technical Information of China (English)

    Wangjun Cheng; Chengzhong Chi; Yongzhen Wang; Peng Lin; Wei Liang; Chen Li

    2014-01-01

    Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy. For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging, a new theoretical method named average circle method was put forward. With this method, a series of gear billet volumes were calculated. Comparing with the accurate three-dimensional modeling method, the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%, which was in good agreement with the experimental results. Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method. It shows that average circle method possesses a higher calculation accuracy than reference circle method (traditional method), which should be worth popularizing widely in calculation of spur gear billet volume.

  4. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.

    2005-01-01

    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model accura

  5. Solución Matricial de Modelos para Cálculo de Equilibrio Líquido-Vapor Matrix Solution of Models to Calculate Liquid-Vapor Equilibrium

    Directory of Open Access Journals (Sweden)

    José F Orejel-Pajarito

    2008-01-01

    Full Text Available El objetivo de este artículo es demostrar la viabilidad de utilizar modelos termodinámicos de coeficientes de actividad (Wilson, NRTL, UNIQUAC programados con matrices, en lugar de estar programados con ciclos. Se determina la relación de equilibrio líquido-vapor de las mezclas Metanol-Etanol-Benceno y Acetona-Cloroformo-Metanol representados en mapas de curvas de residuo y en mapas de líneas de destilación. Para obtener resultados más confiables y conclusiones objetivas, el estudio fue apoyado con el uso del diseño estadístico de experimentos. La programación con matrices mostró ser mucho más rápida que el modelo cíclico convencional, independiente del tipo de modelo de coeficiente de actividad usado.The objective of this paper is to show the viability of using thermodynamics models of activity coefficients (Wilson, NRTL, UNIQUAC programmed with matrixes, instead of being programmed with cycles. The vapor-liquid equilibrium relation of mixtures Methanol-Ethanol-Benzene and Acetone-Chloroform-Methanol, represented with residue curve maps and distillation lines maps, was calculated. To obtain better solutions and objectives conclusions, the study was been supported with statistical design of experiments. The matrix programming showed to be faster than the conventional cyclic model, independent of the activity coefficient model used.

  6. Diameter structure modeling and the calculation of plantation volume of black poplar clones

    Directory of Open Access Journals (Sweden)

    Andrašev Siniša

    2004-01-01

    Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.

  7. Antarctic ice volume for the last 740 ka calculated with a simple ice sheet model

    NARCIS (Netherlands)

    Oerlemans, J.

    2005-01-01

    Fluctuations in the volume of the Antarctic ice sheet for the last 740 ka are calculated by forcing a simple ice sheet model with a sea-level history (from a composite deep sea δ18O record) and a temperature history (from the Dome C deuterium record). Antarctic ice volume reaches maximum values of a

  8. On the accuracy of HITEMP-2010 calculated emissivities of Water Vapor and Carbon Dioxide

    DEFF Research Database (Denmark)

    Alberti, M.; Weber, R.; Mancini, M.;

    Nowadays, spectral Line-by-Line calculations using either HITRAN or HITEMP data bases are frequently used for calculating gas radiation properties like absorption coefficients or emissivities. Such calculations are computationally very expensive because of the vast number of spectral lines and, t...

  9. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation project quality assessment with the laser scanning technology can be reduced by 70%−90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  10. On the accuracy of HITEMP-2010 calculated emissivities of Water Vapor and Carbon Dioxide

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco;

    2015-01-01

    Line-by-line (LbL) calculations using either HITRAN or HITEMP spectral data bases are often used for predicting gas radiation properties like absorption coefficients or emissivities. Due to the large size of these data bases, calculations are computationally too expensive to be used in regular CF...

  11. A simple and efficient GIS tool for volume calculations of submarine landslides

    Science.gov (United States)

    Völker, David Julius

    2010-10-01

    A numeric tool is presented for calculating volumes of topographic voids such as slump scars of landslides, canyons or craters (negative/concave morphology), or alternatively, bumps and hills (positive/convex morphology) by means of digital elevation models embedded within a geographical information system (GIS). In this study, it has been used to calculate landslide volumes. The basic idea is that a (singular) event (landslide, meteorite impact, volcanic eruption) has disturbed an intact surface such that it is still possible to distinguish between the former (undisturbed) landscape and the disturbance (crater, slide scar, debris avalanche). In such cases, it is possible to reconstruct the paleo-surface and to calculate the volume difference between both surfaces, thereby approximating the volume gain or loss caused by the event. I tested the approach using synthetically generated land surfaces that were created on the basis of Shuttle Radar Topography Mission data. Also, I show the application to two real cases, (1) the calculation of the volume of the Masaya Slide, a submarine landslide on the Pacific continental slope of Nicaragua, and (2) the calculation of the void of a segment of the Fish River Canyon, Namibia. The tool is provided as a script file for the free GIS GRASS. It performs with little effort, and offers a range of interpolation parameters. Testing with different sets of interpolation parameters results in a small range of uncertainty. This tool should prove useful in surface studies not exclusively on earth.

  12. 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate a software tool for non-invasive preoperative volumetric assessment of potential donors in living donated liver transplantation (LDLT). Biphasic helical CT was performed in 56 potential donors. Data sets were post-processed using a non-commercial software tool for segmentation, volumetric analysis and visualisation of liver segments. Semi-automatic definition of liver margins allowed the segmentation of parenchyma. Hepatic vessels were delineated using a region-growing algorithm with automatically determined thresholds. Volumes and shapes of liver segments were calculated automatically based on individual portal-venous branches. Results were visualised three-dimensionally and statistically compared with conventional volumetry and the intraoperative findings in 27 transplanted cases. Image processing was easy to perform within 23 min. Of the 56 potential donors, 27 were excluded from LDLT because of inappropriate liver parenchyma or vascular architecture. Two recipients were not transplanted due to poor clinical conditions. In the 27 transplanted cases, preoperatively visualised vessels were confirmed, and only one undetected accessory hepatic vein was revealed. Calculated graft volumes were 1110±180 ml for right lobes, 820 ml for the left lobe and 270±30 ml for segments II+III. The calculated volumes and intraoperatively measured graft volumes correlated significantly. No significant differences between the presented automatic volumetry and the conventional volumetry were observed. A novel image processing technique was evaluated which allows a semi-automatic volume calculation and 3D visualisation of the different liver segments. (orig.)

  13. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  14. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density....... Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since...

  15. The mass of the {delta} resonance in a finite volume: fourth-order calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoja, Dominik; Rusetsky, Akaki [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn (Germany); Bernard, Veronique [Universite Louis Pasteur, Laboratoire de Physique Theorique (Germany); Meissner, Ulf G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn (Germany); Institut fuer Kernphysik und Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany)

    2009-07-01

    The self-energy of the {delta} resonance in a finite volume is calculated by using chiral effective field theory with explicit spin-3/2 fields. The calculations are performed up-to-and-including fourth order in the small scale expansion and yield an explicit parameterization of the energy spectrum of the interacting {pi}N pair in a finite box in terms of both the quark mass and the box size L. We show that finite-volume corrections are sizable at small quark masses. The values of certain low-energy constants are extracted from fitting to the available data in lattice QCD.

  16. The mass of the Delta resonance in a finite volume fourth-order calculation

    CERN Document Server

    Bernard, V; Meißner, U -G; Rusetsky, A

    2009-01-01

    We calculate the self-energy of the Delta (1232) resonance in a finite volume, using chiral effective field theory with explicit spin-3/2 fields. The calculations are performed up-to-and-including fourth order in the small scale expansion and yield an explicit parameterization of the energy spectrum of the interacting pion-nucleon pair in a finite box in terms of both the quark mass and the box size L. It is shown that finite-volume corrections can be sizeable at small quark masses.

  17. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  18. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min−1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m0) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m0 of 18 analytes were calculated for stopped & mini furnace gas flows. • Experimental

  19. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  20. Evaluation of methods for calculating volume fraction in Eulerian-Lagrangian multiphase flow simulations

    Science.gov (United States)

    Diggs, Angela; Balachandar, S.

    2016-05-01

    The present work addresses numerical methods required to compute particle volume fraction or number density. Local volume fraction of the lth particle, αl, is the quantity of foremost importance in calculating the gas-mediated particle-particle interaction effect in multiphase flows. A general multiphase flow with a distribution of Lagrangian particles inside a fluid flow discretized on an Eulerian grid is considered. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the grid cell for Eulerian-Lagrangian simulations. In Grid-Based (GB) methods the particle volume fraction is first obtained within each grid cell as an Eulerian quantity and then the local particle volume fraction associated with any Lagrangian particle can be obtained from interpolation. The second class of methods presented are Particle-Based (PB) methods, where particle volume fraction will first be obtained at each particle as a Lagrangian quantity, which then can be projected onto the Eulerian grid. Traditionally, the GB methods are used in multiphase flow, but sub-grid resolution can be obtained through use of the PB methods. By evaluating the total error, and its discretization, bias and statistical error components, the performance of the different PB methods is compared against several common GB methods of calculating volume fraction. The standard von Neumann error analysis technique has been adapted for evaluation of rate of convergence of the different methods. The discussion and error analysis presented focus on the volume fraction calculation, but the methods can be extended to obtain field representations of other Lagrangian quantities, such as particle velocity and temperature.

  1. Volume calculation of subsurface structures and traps in hydrocarbon exploration — a comparison between numerical integration and cell based models

    OpenAIRE

    Slavinić Petra; Cvetković Marko

    2016-01-01

    The volume calculation of geological structures is one of the primary goals of interest when dealing with exploration or production of oil and gas in general. Most of those calculations are done using advanced software packages but still the mathematical workflow (equations) has to be used and understood for the initial volume calculation process. In this paper a comparison is given between bulk volume calculations of geological structures using trapezoidal and Simpson’s rule and the ones obt...

  2. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  3. Respiratory influence on left atrial volume calculation with 3D-echocardiography

    DEFF Research Database (Denmark)

    Sørgaard, Mathias; Linde, Jesper J; Ismail, Hafsa;

    2016-01-01

    BACKGROUND: Left atrial volume (LAV) estimation with 3D echocardiography has been shown to be more accurate than 2D volume calculation. However, little is known about the possible effect of respiratory movements on the accuracy of the measurement. METHODS: 100 consecutive patients admitted...... with chest pain were examined with 3D echocardiography and LAV was quantified during inspiratory breath hold, expiratory breath hold and during free breathing. RESULTS: Of the 100 patients, only 65 had an echocardiographic window that allowed for 3D echocardiography in the entire respiratory cycle. Mean...

  4. Chemometric Classification of Unknown Vapors by Conversion of Sensor Array Pattern Vectors to Vapor Descriptors: Extension from Mass-Transducing Sensors To Volume-Transducing Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Wise, Barry M.

    2001-06-28

    A new chemometric method was recently described for classifying unknowns by transforming the vector containing the responses from a multivariate detector to a vector containing descriptors of the detected analyte (Grate et al. 1999). This approach was derived for sensor arrays where each sensor's signal is proportional to the amount of vapor sorbed by a polymer on the sensor surface. In this case, the response is proportional to the partition coefficient, K, and the concentration of the vapor in the gas phase, Cv, where K is the ratio of the concentration of vapor in the sorbent polymer phase, Cs, to Cv.

  5. Large volume splitless injection with concurrent solvent recondensation: keeping the sample in place in the hot vaporizing chamber.

    Science.gov (United States)

    Biedermann, Maurus; Fiscalini, Alessandro; Grob, Koni

    2004-10-01

    An injector liner packed with a plug of glass wool is compared with a laminar and a mini laminar liner for large volume (20-50 microL) splitless injection with concurrent solvent recondensation (CSR-LV splitless injection). Videos from experiments with perylene solutions injected into imitation injectors show that glass wool perfectly arrested the sample liquid and kept it in place until the solvent had evaporated. The sample must be transferred from the needle to the glass wool as a band, avoiding 'thermospraying' by partial solvent evaporation inside the needle. The liquid contacted the liner wall when the band was directed towards it, but from there it was largely diverted to the glass wool. In the laminar liners, part of the liquid remained and evaporated at the entrance of the obstacle, while the other proceeded to the center cavity. Vapors formed in the center cavity drove liquid from the entrance of the obstacle upwards, but the importance of such problems could not be verified in the real injector. Some liquid split into small droplets broke through the obstacle and entered the column. Breakthrough through the laminar liners was confirmed by a chromatographic experiment. An improved design of a laminar liner for large volume injection is discussed as a promising alternative if glass wool causes problems originating from insufficient inertness. PMID:15537071

  6. The enhanced volume source boundary point method for the calculation of acoustic radiation problem

    Institute of Scientific and Technical Information of China (English)

    WANG Xiufeng; CHEN Xinzhao; WANG Youcheng

    2003-01-01

    The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided by Helmholtz equation is enforced in a weighted residual sense over a tetrahedron located on the normal line of the boundary node to replace the coefficient matrices of the system equation. Through the enhanced volume source boundary point analysis of various examples and the sound field of a vibrating rectangular box in a semi-anechoic chamber, it has revealed that the calculating speed of the EVSBPM is more than 10 times faster than that of the VSBPM while it works on the aspects of its calculating precision and stability, adaptation to geometric shape of vibrating body as well as its ability to overcome the non-uniqueness problem.

  7. Calculation of mean dose deposited in expended volume around an ion path

    Institute of Scientific and Technical Information of China (English)

    LiuXiao-Wei; ZhangChun-Xiang

    1998-01-01

    Using the relation of radial dose distributioin which is inverse proportion to suqare of radial distance,and considering angular distribution of secondary electrons,an analytical formula of mean dose deposited in extended volume around an ion is given and the inactivation cross sections of heavy ions are calculated.The results are in reasonable agreement with experimental data.Compared to the numerical integral methods,the method using analytical formulae is straightforward and simple.

  8. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP (RNTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the RNTCP if 1 cm3 of the volume of intersection of the PTV and rectum (Rint) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the RNTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the Rint, and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The RNTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose-response model for

  9. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.;

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed...

  10. A definitive heat of vaporization of silicon through benchmark ab initio calculations on $SiF_{4}$

    CERN Document Server

    Martin, J M L; Martin, Jan M.L.; Taylor, Peter R.

    1999-01-01

    In order to resolve a significant uncertainty in the heat of vaporization of silicon -- a fundamental parameter in gas-phase thermochemistry -- $\\Delta H^\\circ_{f,0}$[Si(g)] has been determined from a thermochemical cycle involving the precisely known experimental heats of formation of SiF_4(g) and F(g) and a benchmark calculation of the total atomization energy (TAE_0) of SiF_4 using coupled-cluster methods. Basis sets up to $[8s7p6d4f2g1h]$ on Si and $[7s6p5d4f3g2h]$ on F have been employed, and extrapolations for residual basis set incompleteness applied. The contributions of inner-shell correlation (-0.08 kcal/mol), scalar relativistic effects (-1.88 kcal/mol), atomic spin-orbit splitting (-1.97 kcal/mol), and anharmonicity in the zero-point energy (+0.04 kcal/mol) have all been explicitly accounted for. Our benchmark TAE_0=565.89 kcal/mol ($\\Delta H^\\circ_{f,298}$[Si(g)]=108.19 \\pm 0.38 kcal/mol): between the JANAF/CODATA value of 106.5 \\pm 1.9 kcal/mol and the revised value proposed by Grev and Schaefer...

  11. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed......-O distances in the N-H…O bond were found as 1.730 and 1.005 Å. The comparable H-O distance in solid ethanoic acid is ~1.011 Å (neutron diffraction). [1] R. W. Berg, A. Riisager & R. Fehrmann, Formation of an ion pair molecule with a single NH+…Cl- hydrogen bond: Raman spectra of 1,1,3,3-Tetramethylguanidin...... of 1,1,3,3-tetramethylguanidinium chloride. The optimized N-H distance in the N-H…Cl bond was 1.099 Å. The H-Cl distance was 1.832 Å to compare with the ~1.27 Å in HCl gas. The bromide behaved similarly [ref 2]. Fig. 2. Not so likely 1-methylimidazolium ethanoate gas molecule. The optimized N-H and H...

  12. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  13. Algorithm for the calculation of a steam generator efficiency; Algoritmo para el calculo de la eficiencia de un generador de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David; Ambriz, Juan Jose; Romero Paredes, Hernando [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    The efficiency calculation of steam generators is not always simple. The purpose of this paper is to propose an algorithm for the calculation of steam generators efficiency, easy to understand and carry out, in the form of a series of steps to be followed. It takes as starting point that the person in charge of applying these calculations has knowledge of the combustion processes and thermodynamic principles that rule such processes. [Espanol] El calculo de la eficiencia de los generadores de vapor no siempre es sencillo, el presente trabajo tiene como objetivo el de proponer un algoritmo de calculo de eficiencia de generadores de vapor, el cual sea facil de entender y de llevar a cabo, en forma de una serie de pasos a seguir. Se toma como punto de partida, que la persona encargada de aplicar estos calculos tenga el conocimiento de los procesos de combustion y principios termodinamicos que rigen tales procesos.

  14. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    Science.gov (United States)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  15. Matching excluded-volume hadron-resonance gas models and perturbative QCD to lattice calculations

    Science.gov (United States)

    Albright, M.; Kapusta, J.; Young, C.

    2014-08-01

    We match three hadronic equations of state at low energy densities to a perturbatively computed equation of state of quarks and gluons at high energy densities. One of them includes all known hadrons treated as point particles, which approximates attractive interactions among hadrons. The other two include, in addition, repulsive interactions in the form of excluded volumes occupied by the hadrons. A switching function is employed to make the crossover transition from one phase to another without introducing a thermodynamic phase transition. A χ2 fit to accurate lattice calculations with temperature 100physically reasonable models include the excluded-volume effect. Not only do they include the effects of attractive and repulsive interactions among hadrons, but they also achieve better agreement with lattice QCD calculations of the equation of state. The equations of state constructed in this paper do not result in a phase transition, at least not for the temperatures and baryon chemical potentials investigated. It remains to be seen how well these equations of state will represent experimental data on high-energy heavy-ion collisions when implemented in hydrodynamic simulations.

  16. Volumic activities measurements and equivalent doses calculation of indoor 222Rn in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelmajid Choukri

    2015-09-01

    Full Text Available Purpose: As a way of prevention, we have measured the volumic activities of indoor 222Rn and we have calculated the corresponding effective dose in some dwellings and enclosed areas in Morocco. Seasonal variation of Radon activities and Relationships between variation of these activities and some parameters such height, depth and type of construction were also established in this work.Methods: The passive time-integrated method of using a solid state nuclear track detector (LR-115 type II was employed. These films, cut in pieces of 3.4 ´ 2.5 cm2, were placed in detector holders and enclosed in heat-scaled polyethylene bags.Results: The measured volumic activities of radon vary in houses, between 31 and 136 Bq/m3 (0.55 and 2.39 mSv/year with an average value of 80 Bq/m3 (1.41 mSv/year. In enclosed work area, they vary between 60 Bq/m3 (0.38 mSv/year in an ordinary area to 1884 Bq/m3 (11.9 mSv/year at not airy underground level of 12 m. the relatively higher volumic activities of 222Rn in houses were measured in Youssoufia and khouribga towns situated in regions rich in phosphate deposits. Measurements at the geophysical observatory of Berchid show that the volumic activity of radon increases with depth, this is most probably due to decreased ventilation. Conclusion: The obtained results show that the effective dose calculated for indoor dwellings are comparable to those obtained in other regions in the word. The risks related to the volumic activities of indoor radon could be avoided by simple precautions such the continuous ventilation. The reached high value of above 1884 Bq/m3 don't present any risk for workers health in the geophysical observatory of Berchid because workers spend only a few minutes by day in the cellar to control and reregister data.

  17. Recording and Calculating Gunshot Sound—Change of the Volume in Reference to the Distance

    Science.gov (United States)

    Nikolaos, Tsiatis E.

    2010-01-01

    An experiment was conducted in an open practice ground (shooting range) regarding the recording of the sound of gunshots. Shots were fired using various types of firearms (seven pistols, five revolvers, two submachine guns, one rifle, and one shotgun) in different calibers, from several various distances with reference to the recording sources. Both, a conventional sound level meter (device) and a measurement microphone were used, having been placed in a fixed point behind the shooting line. The sound of each shot was recorded (from the device). At the same time the signal received by the microphone was transferred to a connected computer through an appropriate audio interface with a pre-amplifier. Each sound wave was stored and depicted as a wave function. After the physic-mathematical analysis of these depictions, the volume was calculated in the accepted engineering units(Decibels or dB) of Sound Pressure Level (SPL). The distances from the recording sources were 9.60 meters, 14.40 m, 19.20 m, and 38.40 m. The experiment was carried out by using the following calibers: .22 LR, 6.35 mm(.25 AUTO), 7.62 mm Tokarev(7,62×25), 7.65 mm(.32 AUTO), 9 mm Parabellum(9×19), 9 mm Short(9×17), 9 mm Makarov(9×18), .45 AUTO, .32 S&W, .38 S&W, .38 SPECIAL, .357 Magnum, 7,62 mm Kalashnikov(7,62×39) and 12 GA. Tables are given for the environmental conditions (temperature, humidity, altitude & barometric pressure), the length of the barrel of each gun, technical characteristics of the used ammunition, as well as for the volume taken from the SLM. The data for the sound intensity were collected after 168 gunshots (158 single shot & 10 bursts). According to the results, a decreasing of the volume, equivalent to the increasing of the distance, was remarked, as it was expected. Values seem to follow the Inverse square Law. For every doubling of the distance from the sound source, the sound intensity diminishes by 5.9904±0.2325 decibels (on average). In addition, we have the

  18. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    Science.gov (United States)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  19. Calculation of the Residual Blood Volume after Acute, Non-Ongoing Hemorrhage Using Serial Hematocrit Measurements and the Volume of Isotonic Fluid Infused: Theoretical Hypothesis Generating Study.

    Science.gov (United States)

    Oh, Won Sup; Chon, Sung-Bin

    2016-05-01

    Fluid resuscitation, hemostasis, and transfusion is essential in care of hemorrhagic shock. Although estimation of the residual blood volume is crucial, the standard measuring methods are impractical or unsafe. Vital signs, central venous or pulmonary artery pressures are inaccurate. We hypothesized that the residual blood volume for acute, non-ongoing hemorrhage was calculable using serial hematocrit measurements and the volume of isotonic solution infused. Blood volume is the sum of volumes of red blood cells and plasma. For acute, non-ongoing hemorrhage, red blood cell volume would not change. A certain portion of the isotonic fluid would increase plasma volume. Mathematically, we suggest that the residual blood volume after acute, non-ongoing hemorrhage might be calculated as 0·25N/[(Hct1/Hct2)-1], where Hct1 and Hct2 are the initial and subsequent hematocrits, respectively, and N is the volume of isotonic solution infused. In vivo validation and modification is needed before clinical application of this model.

  20. Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Model calculation of the physical conditions in a jet exhaust

    Science.gov (United States)

    Platov, Yu. V.; Alpatov, V. V.; Klyushnikov, V. Yu.

    2014-01-01

    Model calculations have been performed for the temperature and pressure of combustion products in the jet exhaust of rocket engines of last stages of Proton, Molniya, and Start launchers operating in the upper atmosphere at altitudes above 120 km. It has been shown that the condensation of water vapor and carbon dioxide can begin at distances of 100-150 and 450-650 m away from the engine nozzle, respectively.

  1. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 1, Calculations, Final design for construction

    International Nuclear Information System (INIS)

    Volume one contains calculations for: embankment design--embankment material properties; Union Carbide site--bedrock contours; vicinity properties--origin of contamination; North Continent and Union Carbide sites contaminated materials--excavation quantities; and demolition debris--quantity estimate

  2. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion.

    Science.gov (United States)

    Kung, J H; Zygmanski, P; Choi, N; Chen, G T Y

    2003-06-01

    The motion of lung tumors from respiration has been reported in the literature to be as large as 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). In Intensity Modulated Radiotherapy (IMRT), while such a margin is necessary, the margin may not be sufficient to avoid unintended high and low dose regions to the interior on moving CTV. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: (a) what is the dose error to a target volume without a gated IMRT treatment? (b) What is an acceptable gating window for such a treatment. In this study, we address these questions by proposing a novel technique for calculating the three-dimensional (3-D) dose error that would result if a lung IMRT plan were delivered without a gated linac beam. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumors were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map phi(x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasiperiodic motion z(t) does not receive phi(x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y) is

  3. Revised Calculated Volumes Of Individual Shield Volcanoes At The Young End Of The Hawaiian Ridge

    Science.gov (United States)

    Robinson, J. E.; Eakins, B. W.

    2003-12-01

    Recent, high-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands allow us to recalculate Bargar and Jackson's [1974] volumes of coalesced volcanic edifices (Hawaii, Maui-Nui, Oahu, Kauai, and Niihau) and individual shield volcanoes at the young end of the Hawaiian Ridge, taking into account subsidence of the Pacific plate under the load of the volcanoes as modeled by Watts and ten Brink [1989]. Our volume for the Island of Hawaii (2.48 x105 km3) is twice the previous estimate (1.13 x105 km3), due primarily to crustal subsidence, which had not been accounted for in the earlier work. The volcanoes that make up the Hawaii edifice (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi) are generally considered to have formed within the past million years and our revised volume for Hawaii indicates that either magma-supply rates are greater than previously estimated (0.25 km3/yr as opposed to 0.1 km3/yr) or that Hawaii's volcanoes have erupted over a longer period of time (>1 million years). Our results also indicate that magma supply rates have increased dramatically to build the Hawaiian edifices: the average rate of the past 5 million years (0.096 km3/yr) is substantially greater than the overall average of the Hawaiian Ridge (0.018km3/yr) or Emperor Seamounts (0.012 km3/yr) as calculated by Bargar and Jackson, and that rates within the past million years are greater still (0.25 km3/yr). References: Bargar, K. E., and Jackson, E. D., 1974, Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor Chain, Jour. Research U.S. Geol. Survey, Vol. 2, No. 5, p. 545-550. Watts, A. B., and ten Brink, U. S., 1989, Crustal structure, flexure, and subsidence history of the Hawaiian Islands, Jour. Geophys. Res., Vol. 94, No. B8, p. 10,473-10,500.

  4. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion

    International Nuclear Information System (INIS)

    The motion of lung tumors from respiration has been reported in the literature to be as large as 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). In Intensity Modulated Radiotherapy (IMRT), while such a margin is necessary, the margin may not be sufficient to avoid unintended high and low dose regions to the interior on moving CTV. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: (a) what is the dose error to a target volume without a gated IMRT treatment? (b) What is an acceptable gating window for such a treatment. In this study, we address these questions by proposing a novel technique for calculating the three-dimensional (3-D) dose error that would result if a lung IMRT plan were delivered without a gated linac beam. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumors were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map Φ(x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasiperiodic motion z(t) does not receive Φ(x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y) is input

  5. Matching Excluded Volume Hadron Resonance Gas Models and Perturbative QCD to Lattice Calculations

    CERN Document Server

    Albright, M; Young, C

    2014-01-01

    We match three hadronic equations of state at low energy densities to a perturbatively computed equation of state of quarks and gluons at high energy densities. One of them includes all known hadrons treated as point particles, which approximates attractive interactions among hadrons. The other two include, in addition, repulsive interactions in the form of excluded volumes occupied by the hadrons. A switching function is employed to make the crossover transition from one phase to another without introducing a thermodynamic phase transition. A chi-square fit to accurate lattice calculations with temperature $100 < T < 1000$ MeV determines the parameters. These parameters quantify the behavior of the QCD running gauge coupling and the hard core radius of protons and neutrons, which turns out to be $0.62 \\pm 0.04$ fm. The most physically reasonable models include the excluded volume effect. Not only do they include the effects of attractive and repulsive interactions among hadrons, but they also achieve b...

  6. In situ measurement of reaction volume and calculation of pH of weak acid buffer solutions under high pressure.

    Science.gov (United States)

    Min, Stephen K; Samaranayake, Chaminda P; Sastry, Sudhir K

    2011-05-26

    Direct measurements of reaction volume, so far, have been limited to atmospheric pressure. This study describes a method for in situ reaction volume measurements under pressure using a variable volume piezometer. Reaction volumes for protonic ionization of weak acid buffering agents (MES, citric acid, sulfanilic acid, and phosphoric acid) were measured in situ under pressure up to 400 MPa at 25 °C. The methodology involved initial separation of buffering agents within the piezometer using gelatin capsules. Under pressure, the volume of the reactants was measured at 25 °C, and the contents were heated to 40 °C to dissolve the gelatin and allow the reaction to occur, and cooled to 25 °C, where the volume of products was measured. Reaction volumes were used to calculate pH of the buffer solutions as a function of pressure. The results show that the measured reaction volumes as well as the calculated pH values generally quite agree with their respective theoretically predicted values up to 100 MPa. The results of this study highlight the need for a comprehensive theory to describe the pressure behavior of ionization reactions in realistic systems especially at higher pressures. PMID:21542618

  7. Calculation of H2O-NH3-CO2 Vapor Liquid Equilibria at High Concentration Conditions

    Institute of Scientific and Technical Information of China (English)

    魏顺安; 张红晶

    2004-01-01

    A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.

  8. Calculating Skempton constant of aquifer from volume strain and water level response to seismic waves at Changping seismic station

    Institute of Scientific and Technical Information of China (English)

    YAN Rui; CHEN Yong; GAO Fu-wang; HUANG Fu-qiong

    2008-01-01

    Based on linear poroelastic theory of ideal poroelastic media, we apply the mathematic expression between pore pressure and volume strain for well-aquifer system to analyzing the observed data of water level and volume strain changes aroused by Sumatra Ms8.7 (determined by China Seismic Networks Center) seismic waves at Changping, Beijing, station on December 26, 2004 from both time and frequency domain. The response coefficients of water level fluctuation to volume strain are also calculated when seismic waves were passing through confined aquifer. A method for estimating Skempton constant B is put forward, which provide an approach for understanding of the characteristics of aquifer.

  9. A comparison of clear-sky OLR between CERES measurements and model calculations and the dependence of OLR on temperature and water vapor

    Science.gov (United States)

    Dessler, A.; Yang, P.; Solbrig, J.; Lee, J.; Minschwaner, K.

    2007-12-01

    We compare nighttime clear-sky outgoing longwave radiation (OLR) from a model calculation against measurements from the Clouds and the Earth's Radiant Energy System (CERES) data set. Our model calculation is driven by profiles of temperature and water vapor from the Atmospheric Infrared Sounder (AIRS). Using several different radiative transfer models, we find an offset between the model and measurements, with the model tending to predict higher OLR by about 5 watts per square meter. Although this can be explained by uncertainties in the data and model, it is also possible that there is some missing process in the model. We also explore how the atmosphere regulates OLR by looking at the gradients between the dry subtropics and the moist convective regions. We see how changes in water and temperature oppose each other, and how changes in water begin to dominate around 299 K, where the so-called supergreenhouse effect occurs.

  10. Considerations on the calculation of volumes in two planning systems; Consideraciones sobre el calculo de volumenes en dos sistemas de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tenedor Alonso, S.; Rincon Perez, M.; Penedo Cobos, J. M.; Garcia Castejon, M. A.

    2011-07-01

    The discrepancies in the calculation of the same volume between different planning systems impact on dose-volume histograms and therefore clinical assessment of dosimetry for patients. The transfer, by a local network, tomographic study (CT) and contours of critical organs of patients, between our two planning systems allows us to evaluate the calculation of identical volumes.

  11. Calculation of Volume Properties for Saturated Vapour by Using the Modified Truncated Virial Equation

    Institute of Scientific and Technical Information of China (English)

    JingshanTong; GuanghuaGao

    1995-01-01

    In this paper,a molecular gaaregation function which represents the degree of molecular aggregation is derived based on statistical mechanic method.Then,a trucated virial equation is modified by the molecular aggregation theory.THe propsed extended equation of state gives good representation of the PVT properties of sturated vapors for some strong polar fluids including water,alcohols and carboxylic acid etc.

  12. [Automatic calculation of left ventricular volume and ejection fraction from gated myocardial perfusion SPECT--basic evaluation using phantom].

    Science.gov (United States)

    Kinoshita, Y; Nanbu, I; Tohyama, J; Ooba, S

    1998-02-01

    We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with 99mTc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated.

  13. Automatic calculation of left ventricular volume and ejection fraction from gated myocardial perfusion SPECT. Basic evaluation using phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Yoshimi; Nanbu, Ichirou [Nagoya Daini Red Cross Hospital (Japan); Tohyama, Junko; Ooba, Satoru

    1998-02-01

    We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with {sup 99m}Tc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p<0.05). The tracing of the defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated. (author)

  14. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 2, Calculations, Final design for construction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Volume two contains calculations for: embankment design--slope stability analysis; embankment design--excavation stability; embankment design--settlement and cover cracking analysis; radon barrier design--statistical analysis of ra-226 concentrations for North Continent and Union Carbide sites; radon barrier design--RAECOM input data; radon barrier design--design thickness; and cover design--frost penetration depth.

  15. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  16. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T.; Imanishi, H.; Nishida, K.; Yamashita, H.; Hiroyasu, H.; Kaneda, K. [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  17. Expanded Lever Rule for Phase Volume Fraction Calculation of High-Strength Low-Alloy Steel in Thermal Simulation

    Science.gov (United States)

    Lei, Xuanwei; Huang, Jihua; Chen, Shuhai; Zhao, Xingke

    2016-06-01

    The principle of the lever rule on the dilatation curve and its application to the corresponding differential dilatation curve were introduced in a nonoverlapped two-phase continuous cooling process. The lever rule was further expanded in the case of an overlapped two-phase process. The application of the expanded lever rule was based on the approximate symmetry treatment on the differential dilatation curve, which shows reasonably both on the theoretical calculation and in the experimental results. High-strength low-alloy steels were thermal simulated with Gleeble 3500. The transformed phase volume fractions in different cooling processes were calculated by the expanded lever rule and metallography analysis. The results showed the expanded lever rule could calculate reliable phase volume fractions as metallography analysis.

  18. Calculation of the rockfall scar volume distribution using a Terrestrial Laser Scanner in the Montsec Area (Eastern Pyrenees, Spain)

    Science.gov (United States)

    Domènech, Guillem; Mavrouli, Olga; Corominas, Jordi; Abellán, Antonio

    2014-05-01

    Magnitude-frequency relations are a key issue when evaluating the rockfall hazard. It is a common practice to calculate them using databases of past events. However, in some cases, they are not available or complete. Alternatively, the analysis of the scar volume distribution on the wall face provides useful information on the slope's rockfall activity. The Montsec range, located in the Eastern Pyrenees, Spain, is a limestone cliff from upper cretaceous. In some parts, clear evidences of rockfall activities are present: Large recent rockfall scars are distinguished by their orange colour in comparison with grey non active surfaces on the slope face. To identify the scars and analyse their volume distribution, a methodology has been carried out (Santana et al. 2011) which is based on the elaboration of data from a high resolution Digital Elevation Model (DEM) obtained with Terrestrial Laser Scanner (TLS). This methodology requires a point cloud of the slope and it includes the following steps: a) identification of discontinuity sets b) generation of discontinuity surfaces c) calculation of areas of the exposed discontinuity surfaces and rockfall scar heights, and d) calculation of the rockfall scar volume distribution. Three discontinuity sets were identified on the point cloud. To generate the discontinuity surfaces, SEFL software was used. The input data for accepting that two neighbouring points of the point cloud belong to the same surface, was a minimum spacing of 0.4m. The resulting planes were visually checked. Assuming that the discontinuities of set 1 preserve the basal shape of the rockfall scars and the altitude is parallel to the discontinuities of set 2, the volume can be calculated as the product of the area of surfaces of set 1 with the length of the surfaces of set 2 using the afore mentioned SEFL software. Areas were found to follow a Lognormal distribution and lengths a Pearson6 one. The volume calculation was then made probabilistically by means

  19. Calcul statistique du volume des blocs matriciels d'un gisement fissuré The Statistical Computing of Matrix Block Volume in a Fissured Reservoir

    Directory of Open Access Journals (Sweden)

    Guez F.

    2006-11-01

    Full Text Available La recherche des conditions optimales d'exploitation d'un gisement fissuré repose sur une bonne description de la fissuration. En conséquence il est nécessaire de définir les dimensions et volumes des blocs matriciels en chaque point d'une structure. Or la géométrie du milieu (juxtaposition et formes des blocs est généralement trop complexe pour se prêter au calcul. Aussi, dans une précédente communication, avons-nous dû tourner cette difficulté par un raisonnement sur des moyennes (pendages, azimuts, espacement des fissures qui nous a conduits à un ordre de grandeur des volumes. Cependant un volume moyen ne peut pas rendre compte d'une loi de répartition des volumes des blocs. Or c'est cette répartition qui conditionne le choix d'une ou plusieurs méthodes successives de récupération. Aussi présentons-nous ici une méthode originale de calcul statistique de la loi de distribution des volumes des blocs matriciels, applicable en tout point d'un gisement. La part de gisement concernée par les blocs de volume donné en est déduite. La connaissance générale du phénomène de la fracturation sert de base au modèle. Les observations de subsurface sur la fracturation du gisement en fournissent les données (histogramme d'orientation et d'espacement des fissures.Une application au gisement d'Eschau (Alsace, France est rapportée ici pour illustrer la méthode. The search for optimum production conditions for a fissured reservoir depends on having a good description of the fissure pattern. Hence the sizes and volumes of the matrix blocks must be defined at all points in a structure. However, the geometry of the medium (juxtaposition and shapes of blocks in usually too complex for such computation. This is why, in a previous paper, we got around this problem by reasoning on the bases of averages (clips, azimuths, fissure spacing, and thot led us to an order of magnitude of the volumes. Yet a mean volume cannot be used to explain

  20. Metodología de cálculo de la eficiencia térmica de generadores de vapor Methodology to calculate thermal efficiency of steam boilers

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2008-07-01

    Full Text Available Se desarrolló un método matemático determinístico de procesamiento de registros experimentales, aplicable a un sistema generador de vapor-precalentador de aire en estado estacionario, que opere con uno o dos combustibles simultáneamente, para determinar la eficiencia térmica del mismo y la eficiencia con la que se oxida el combustible, como así también el rendimiento del intercambiador de calor. La mecánica de procesamiento se basa en la resolución de los balances de materia y energía sobre los diferentes equipos que conforman el sistema. Esta metodología es aplicable a aquellos generadores de vapor que empleen, como combustible, bagazo, gas natural o ambos (caldera mixta. Se ilustran, como ejemplos de aplicación, los resultados del cálculo de la eficiencia térmica de diferentes generadores de vapor para cada tipo de combustible procesado, empleando para ello datos de diversos ensayos experimentales. La resolución de los balances de materia y energía en una caldera que quema bagazo, dio como resultado un rendimiento térmico del 53,2% y un índice de generación de 1,38 kg de vapor/ kg de bagazo. Para una caldera cuyo combustible es gas natural, se obtuvo un rendimiento térmico del 76,7% y un índice de generación de 9,8 kg de vapor/ Nm³ de gas natural. Para una caldera que quema en forma simultánea bagazo y gas natural, se determinó un rendimiento del 68,3% y un índice de generación de 1,87 kg de vapor/ kg de bagazo equivalente. Como validación de esta metodología, se contrastan estos valores de eficiencia con los obtenidos según el código propuesto por la American Society of Mechanical Engineers (ASME.A deterministic mathematical method for processing experimental data, applied to a steam generator-air heater system in stationary state which operates with one or two fuels simultaneously, was developed to determine the thermal of the system, as well as fuel combustion and heat exchanger efficiency. The methodology is

  1. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 4

    International Nuclear Information System (INIS)

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following design calculations: Cooling load in pump pit 241-AY-102; Pressure relief seal loop design; Process building piping stress analysis; Exhaust skid maximum allowable leakage criteria; and Recirculation heat, N509 duct requirements

  2. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-30

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following design calculations: Cooling load in pump pit 241-AY-102; Pressure relief seal loop design; Process building piping stress analysis; Exhaust skid maximum allowable leakage criteria; and Recirculation heat, N509 duct requirements.

  3. Calculation of Intercepted Volume of Sewer Overflows: a Model for Control of Nonpoint Pollution Sources in Urban Areas

    Institute of Scientific and Technical Information of China (English)

    S. C. Choi; D. I. Jung; C. H. Won; J. M. Rim

    2006-01-01

    The authors discovered large differences in the characteristics of overflows by the calculation of 1) intercepting volume of overflows for sewer systems using SWMM model which takes into consideration the runoff and pollutants from rainfalls and 2) the intercepted volume in the total flow at an investigation site. The intercepting rate at the investigation point of CSOs showed higher values than the SSDs. Based on the modeling of the receiving water quality after calculating the intercepting amount of overflows by considering the characteristics of outflows for a proper management of the overflow of sewer systems with rainfalls, it is clear that the BOD decreased by 82.9%-94.0% for the discharge after intercepting a specific amount of flows compared to the discharge from unprocessed overflows.

  4. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1

    International Nuclear Information System (INIS)

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing

  5. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing.

  6. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  7. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.

    Science.gov (United States)

    Grate, J W; Kaganove, S N; Bhethanabotla, V R

    1998-01-01

    Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties. PMID:21644612

  8. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  9. Project W-320, 241-C-106 sluicing civil/structural calculations, Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-24

    The structural skid supporting the Process Building and equipment is designed based on the criteria, codes and standards, referenced in the calculation. The final members and the associated elements satisfy the design requirements of the structure. Revision 1 incorporates vendor data for the weight of the individual equipment components. The updated information does not affect the original conclusion of the calculation, since the overall effect is a reduction in the total weight of the equipment and a nominal relocation of the center of gravity for the skid assembly.

  10. [Cotyla quid? On the early history of late medieval medical volume calculations].

    Science.gov (United States)

    Bergmann, Axel

    2005-01-01

    As can be made evident chiefly by their comparative numerical examination, the Egyptian pyramids (the step pyramids being excluded for the present purpose) have been, from the beginning up to the Egyptian fashion in early Imperial Rome, designed and built with the additional intention of physically manifesting a volume of pi x 10k x (average value) 0.96824 cm3, where k is either a positive integer or zero, and where pi is a short product, following very restrictive formation rules which to some extent are traceable in the papyrus Rhind, of prime numbers. Conceptually (but not really as to the Hin at least) this establishes the capacity units 1 [2]Heqat = 9682.4 cm3 and 1 Hin = 484.12 cm3 already for the Old Kingdom. It is shown further that the Attic Medimnos as introduced in the course of finishing Solon's reforms is identical with the Egyptian volume system's standard unification: pisigma = 2 x 3 x 5 x 7 x 11 x 23, and k = 0, so that 1 Medimnos = about 51443 cm3. Accordingly and by means of some adjacent considerations a Kotyle / Cotyla of 269 cm3 +/- 1 cm3 is established for the Hellenistic, early Arabic, and Medieval Latin medicine. PMID:16425844

  11. Calculation Model of Vapor Compress Flash Seawater Desalination Equipment%压汽闪蒸法海水淡化装置的工艺计算模型

    Institute of Scientific and Technical Information of China (English)

    侴乔力; 金从卓; 束鹏程

    2011-01-01

    Among the modem seawater desalination methods, this article firstly analyzes and compares and induces the questions of the second vapor condensing latent heat loss of the open heat process in multi-stage flash and multi-effect distillation, and the questions of producing dirty and corrosion in distillation, and the questions of seawater pretreatment and unstable product water quality in reverse-osmosis. Then this article synthesizes their merits and proposes for the first time the newest and the best and integrated vapor compress flash seawater desalination method, in witch a flash with the best product water quality is driven by a vapor compress with the highest heat-power efficiency, with technical superiorities such as the lowest investment cost and independent flash operation and modularization combination production and so on. This method is mature and comprehensive as a result of integrated technology, its equipments run safely and reliably, and it will certainly replace each existing method gradually as a result of its remarkable technology and economy, unify the seawater desalination market, and lead the seawater desalination revolution I This artic has set up the calculation model of vapor compress flash seawater desalination equipment.%压汽闪蒸法海水淡化装置可规避现有海水淡化方法(多级闪蒸法和多效蒸馏法)中,在开路热焓过程中二次蒸汽的凝结潜热损失问题;蒸馏法的结垢与腐蚀问题;反渗透法的海水前处理与产品水质不稳定问题,从而实现海水淡化方法的最优技术整合:提供一种由热功效率最高的压汽法,来驱动产品水质最好的闪蒸法,这样一种全新、集成的海水淡化工艺;并兼具投资成本最低、独立闪蒸操作、模块化组合生产等主要技术优势.由于集成技术的成熟而全面,装置运行安全而可靠,必将以卓越的技术、经济性,逐步取代现有各种方法,统一海水淡化市场,引导海水淡

  12. Project W-320, 241-C-106 sluicing electrical calculations, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.

  13. Project W-320, 241-C-106 sluicing electrical calculations, Volume 2

    International Nuclear Information System (INIS)

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system

  14. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2

    Science.gov (United States)

    Johnson, Kenneth L.; White, K. Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  15. Calculated neutron KERMA factors based on the LLNL ENDL data file. Volume 27

    International Nuclear Information System (INIS)

    Neutron KERMA factors calculated from the LLNL ENDL data file are tabulated for 15 composite materials and for the isotopes or elements in the ENDL file from Z = 1 to Z = 29. The incident neutron energies range from 1.882 x 10-5 to 20. MeV for the composite materials and from 1.30 x 10-9 to 20. MeV for the isotopes and elements

  16. A finite volume method for calculating transonic potential flow around wings from the pressure minimum integral

    Science.gov (United States)

    Eberle, A.

    1978-01-01

    Analysis of the pressure minimum integral in the calculation of three-dimensional potential flow around wings makes it possible to use non-rectangular mesh networks for distributing the three-dimensional potential into discrete points. The method is comparatively easily expanded to the treatment of realistic airplane configurations. Shock-pressure affected pressure distributions on any wings are determined with accuracy using this method.

  17. Weather data for simplified energy calculation methods. Volume IV. United States: WYEC data

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

    1984-08-01

    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities using Weather Year for Energy Calculations (WYEC) source weather data. Considerable overlap is present in cities (21) covered by both the TRY and WYEC data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

  18. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  19. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    Science.gov (United States)

    Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik

    2016-09-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.

  20. A FORTRAN code for the calculation of probe volume geometry changes in a laser anemometry system caused by window refraction

    Science.gov (United States)

    Owen, Albert K.

    1987-01-01

    A computer code was written which utilizes ray tracing techniques to predict the changes in position and geometry of a laser Doppler velocimeter probe volume resulting from refraction effects. The code predicts the position change, changes in beam crossing angle, and the amount of uncrossing that occur when the beams traverse a region with a changed index of refraction, such as a glass window. The code calculates the changes for flat plate, cylinder, general axisymmetric and general surface windows and is currently operational on a VAX 8600 computer system.

  1. Weather data for simplified energy calculation methods. Volume II. Middle United States: TRY data

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

    1984-08-01

    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 22 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

  2. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  3. Nonlinear dynamic fluid-structure interaction calculations with coupled finite element and finite volume programs

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.W.; Kashiwa, B.A.; Meier, R.W. [Los Alamos National Lab., NM (United States); Bishop, S. [US Army Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA (United States)

    1994-08-01

    Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.

  4. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...... of photoemission spectra from W single crystals. The nondirect as well as the direct models for bulk photoemission processes are investigated. The emission from the three low-index surfaces (100), (110), and (111) exhibits strong dependence on direction and acceptance cone. According to the present band model.......e., emission of those electrons which are excited in a single-step process from initial states near the surface to final states outside the crystal. The electrons that are emitted from the surface in directions perpendicular to the crystal planes carry information on the one-dimensional surface density...

  5. Total flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release.

    Science.gov (United States)

    Epstein, Michael; Fauske, Hans K

    2007-08-25

    The top-hat jet/plume model has recently been employed to obtain simple closed-form expressions for the mass of fuel in the flammable region of a vapor "cloud" produced by an axisymmetric (round) continuous-turbulent jet having positive or negative buoyancy [1]. The fuel release may be a gas or a volatile liquid. In this paper, the top-hat analysis is extended to obtain closed-form approximate expressions for the total mass (fuel+entrained air) and volume of the flammable region of a release cloud produced by either a round or a plane (two-dimensional) buoyant jet. These expressions lead to predicted average fuel concentrations in the flammable regions of the release clouds which, when compared with the stoichiometric concentration, serve as indicators of the potential severity of release cloud explosions. For a fixed release mass, the combustion overpressure following ignition of a hydrogen/air cloud is anticipated to be significantly lower than that due to ignition of a hydrocarbon/air cloud. The predicted average hydrogen concentration within the flammable region of the release cloud is below the lower detonability limit. The facility with which the expressions can be used for predictions of combustion overpressures is illustrated for propane releases and deflagrations in a closed compartment. PMID:17363152

  6. Calculation of area-averaged vertical profiles of the horizontal wind velocity from volume-imaging lidar data

    Science.gov (United States)

    Schols, J. L.; Eloranta, E. W.

    1992-01-01

    Area-averaged horizontal wind measurements are derived from the motion of spatial inhomogeneities in aerosol backscattering observed with a volume-imaging lidar. Spatial averaging provides high precision, reducing sample variations of wind measurements well below the level of turbulent fluctuations, even under conditions of very light mean winds and strong convection or under the difficult conditions represented by roll convection. Wind velocities are measured using the two-dimensional spatial cross correlation computed between successive horizontal plane maps of aerosol backscattering, assembled from three-dimensional lidar scans. Prior to calculation of the correlation function, three crucial steps are performed: (1) the scans are corrected for image distortion by the wind during a finite scan time; (2) a temporal high pass median filtering is applied to eliminate structures that do not move with the wind; and (3) a histogram equalization is employed to reduce biases to the brightest features.

  7. CALCULATION OF DELTA I = 3/2 KAON WEAK MATRIX ELEMENTS INCLUDING TWO-PION INTERACTION EFFECTS IN FINITE VOLUME.

    Energy Technology Data Exchange (ETDEWEB)

    YAMAZAKI, T.

    2006-07-23

    We calculate {Delta}I = 3/2 kaon decay matrix elements using domain wall fermions and the DBW2 gauge action at one coarse lattice spacing corresponding to a{sup -1} = 1.3 GeV. We employ the Lellouch and Luescher formula and its extension for non-zero total momentum to extract the infinite volume, center-of-mass frame decay amplitudes. The decay amplitudes obtained from the methods correspond to those from the indirect method with full order chiral perturbation theory. We confirm that the result is consistent with the previous result calculated with H-parity (anti-periodic) boundary condition by investigating the relative momentum dependence. We evaluate the decay amplitude ReA{sub 2} at the physical point by a chiral extrapolation with a polynomial function of m{sub {pi}}{sup 2} and the relative momentum as well as the {Delta}I = 3/2 electroweak penguin contributions to {var_epsilon}{prime}/{var_epsilon}. We found that the result of ReA{sub 2} reasonably agrees with the experiment.

  8. CT- and MRI-based volumetry of resected liver specimen: Comparison to intraoperative volume and weight measurements and calculation of conversion factors

    International Nuclear Information System (INIS)

    Objective: To compare virtual volume to intraoperative volume and weight measurements of resected liver specimen and calculate appropriate conversion factors to reach better correlation. Methods: Preoperative (CT-group, n = 30; MRI-group, n = 30) and postoperative MRI (n = 60) imaging was performed in 60 patients undergoing partial liver resection. Intraoperative volume and weight of the resected liver specimen was measured. Virtual volume measurements were performed by two readers (R1,R2) using dedicated software. Conversion factors were calculated. Results: Mean intraoperative resection weight/volume: CT: 855 g/852 mL; MRI: 872 g/860 mL. Virtual resection volume: CT: 960 mL(R1), 982 mL(R2); MRI: 1112 mL(R1), 1115 mL(R2). Strong positive correlation for both readers between intraoperative and virtual measurements, mean of both readers: CT: R = 0.88(volume), R = 0.89(weight); MRI: R = 0.95(volume), R = 0.92(weight). Conversion factors: 0.85(CT), 0.78(MRI). Conclusion: CT- or MRI-based volumetry of resected liver specimen is accurate and recommended for preoperative planning. A conversion of the result is necessary to improve intraoperative and virtual measurement correlation. We found 0.85 for CT- and 0.78 for MRI-based volumetry the most appropriate conversion factors.

  9. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  10. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  11. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  12. Cell Volume Effect on the Ferroelectric Stability of Perovskite Oxides PbTiO3 and BaTiO3 from First Principle Calculation

    Institute of Scientific and Technical Information of China (English)

    王渊旭; 王春雷

    2003-01-01

    Electronic structure of ferroelectric PbTiO3 and BaTiO3 is calculated by the full potential linearized augmented plane wave method. The total energy as a function of the displacement of Ti-cation is obtained for PbTiO3 and BaTiO3 at different cell volumes. At experimental cell volume, Ti-displacement lowers the total energy and the ferroelectricity is stable. When the cell volume is reduced to 90%, total energy is increased with Ti-displacement and ferroelectricity will disappear. The cell volume effect is also confirmed by comparison of the density of states of Ti and O at different cell volumes.

  13. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  14. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    International Nuclear Information System (INIS)

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  15. The Issue of Calculating the Final Temperature of the Products of Rapid Exothermic Chemical Reactions with Significant Energy Release in a Closed Volume

    Directory of Open Access Journals (Sweden)

    Lazarev V.

    2016-02-01

    Full Text Available The theoretical problem solved in this article is the calculation of thermodynamic parameters such as final temperature, distribution of the liquid and dry saturated vapour phases of the substance that are considered to be in thermodynamic equilibrium, and pressure of the system of several reaction products after adding to the system a certain amount of heat or the thermal effect released during rapid exothermic reaction in a closed volume that occurs so fast that it can be considered to be adiabatic, and when the volume of liquid reagents is several orders of magnitude less than the volume of the reactor. The general multi-substance problem is reduced to a theoretical problem for one substance of calculation thermodynamic parameters of system after adding a certain amount of heat that gives theoretically rigorous isochoric calculation. In this article, we substantiate our view that isochoric pass of calculation is more robust compared to seemingly more natural isobaric pass of calculation, if the later involves quite not trivial calculation of the adiabatic compression of a two-phase system (liquid – dry saturated vapour that can pass itself into another kind of state (liquid – wet saturated vapour, which requires, apparently, more complex descriptions compared with isochoric calculation because the specific heat capacity of wet saturated vapour can be negative.

  16. Utility of Quantitative 99mTc-MAA SPECT/CT for 90yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach

    Directory of Open Access Journals (Sweden)

    Etienne Garin

    2011-01-01

    Full Text Available Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere. Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error <6% for volumes ≥16 cm3 and reproductive (interobserver agreement = 0.9. In the case report, 99mTc-MAA SPECT/CT identified a large liver volume, not previously identified with angiography, which was shown to be vascularized after selective MAA injection into an arterial branch, resulting in a large modification in the activity of Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization.

  17. Volume of pulmonary lobes and segments in chronic obstructive pulmonary diseases calculated using newly developed three-dimensional software

    International Nuclear Information System (INIS)

    The aim of this study was to measure the volume of each pulmonary segment by volumetric computed tomography (CT) data using a newly developed three-dimensional software application and to identify the differences between those with chronic obstructive pulmonary disease (COPD) and controls. CT scans of 11 COPD patients and 16 controls were included. The volume of each pulmonary segment was measured by each of two operators to evaluate the reproducibility of the software. This measured volume was then divided by the total lung volume to revise individual variations. Volumes of the right (rt) S2, rt S5, left (lt) S1+S2, lt S3, and lt S5 were significantly larger in COPD patients than in controls (P<0.05). Regarding the ratio of the volume of each pulmonary segment per total lung volume, the areas of rt S2 and lt S1+S2 were significantly larger in COPD patients than in controls (P<0.05), whereas lt S10 was significantly smaller in COPD patients than in controls (P<0.05). We measured the volume of each pulmonary segment based on volumetric CT data using this software. In addition, we demonstrated that the upper lung volume of COPD subjects was larger than that of controls, whereas the lower lung volumes were almost the same. (author)

  18. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  19. Calculating alveolar capillary conductance and pulmonary capillary blood volume: comparing the multiple- and single-inspired oxygen tension methods.

    Science.gov (United States)

    Ceridon, Maile L; Beck, Kenneth C; Olson, Thomas P; Bilezikian, Jordan A; Johnson, Bruce D

    2010-09-01

    Key elements for determining alveolar-capillary membrane conductance (Dm) and pulmonary capillary blood volume (Vc) from the lung diffusing capacity (Dl) for carbon monoxide (DlCO) or for nitric oxide (DlNO) are the reaction rate of carbon monoxide with hemoglobin (thetaCO) and the DmCO/DlNO relationship (alpha-ratio). Although a range of values have been reported, currently there is no consensus regarding these parameters. The study purpose was to define optimal parameters (thetaCO, alpha-ratio) that would experimentally substantiate calculations of Dm and Vc from the single-inspired O2 tension [inspired fraction of O2 (FiO2)] method relative to the multiple-FiO2 method. Eight healthy men were studied at rest and during moderate exercise (80-W cycle). Dm and Vc were determined by the multiple-FiO2 and single-FiO2 methods (rebreathe technique) and were tabulated by applying previously reported thetaCO equations (both methods) and by varying the alpha-ratio (single-FiO2 method) from 1.90 to 2.50. Values were then compared between methods throughout the examined alpha-ratios. Dm and Vc were critically dependent on the applied thetaCO equation. For the multiple-FiO2 method, Dm was highly variable between thetaCO equations (rest and exercise); the range of Vc was less widespread. For the single-FiO2 method, the thetaCO equation by Reeves and Park (1992) combined with an alpha-ratio between 2.08 and 2.26 gave values for Dm and Vc that most closely matched those from the multiple-FiO2 method and were also physiologically plausible compared with predicted values. We conclude that the parameters used to calculate Dm and Vc values from the single-FiO2 method (using DlCO and DlNO) can significantly influence results and should be evaluated within individual laboratories to obtain optimal values.

  20. 球积术案例及其分析%Cases and analysis of calculating the volume of the sphere

    Institute of Scientific and Technical Information of China (English)

    曲安京; 冯振举; 赵继伟

    2011-01-01

    目的 以数学史上的4种球积术为例,说明数学史在中学数学教学中应用的意义.方法 案例研究和比较分析.结果 4种历史上的球积术方法体现出两种数学传统下数学家对相同问题的不同处理,对其在数学课堂的适当应用既可以更好地增进学生对具体知识的理解,也可以提高学生的数学修养.结论 开发数学史的教学案例,并将其有效地应用于数学教学中,对于数学教育目标的实现具有重要帮助.%Aim To illustrate the effect and significance of the application of the history of mathematics to mathematical class of middle schools. Methods Case study and comparative analysis. Results The 4 historical methods of calculating the volume of the sphere indicate mathematician's different treatment to a same problem under two different mathematical traditions. The proper application of these methods to mathematical class will not only strengthen students' understanding of concrete knowledge, but also improve their mathematical accomplishment.Conclusion It will be greatly helpful for realizing the target of mathematical education that HPM cases are constructed and applied effectively to mathematical class.

  1. Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes

    International Nuclear Information System (INIS)

    Volume property is the necessary thermodynamic property in the design and operation of the CO2 capture and storage system (CCS). Because of their simple structures, cubic equations of state (EOS) are preferable to be applied in predicting volumes for engineering applications. This paper evaluates the reliabilities of seven cubic EOS, including PR, PT, RK, SRK, MPR, MSRK and ISRK for predicting volumes of binary CO2 mixtures containing CH4, H2S, SO2, Ar and N2, based on the comparisons with the collected experimental data. Results show that for calculations on the volume properties of binary CO2 mixtures, PR and PT are generally superior to others for all of the studied mixtures. In addition, it was found that the binary interaction parameter has clear effects on the calculating accuracy of an EOS in the volume calculations of CO2 mixtures. In order to improve the accuracy, kij was calibrated for all of the EOS regarding the gas and liquid phases of all the studied binary CO2 mixtures, respectively.

  2. Preoperative volume calculation of the hepatic venous draining areas with multi-detector row CT in adult living donor liver transplantation: impact on surgical procedure

    Energy Technology Data Exchange (ETDEWEB)

    Frericks, Bernd B.J. [Hanover Medical School, Departments of Radiology and Surgery, Hannover (Germany); University of Berlin, Department of Radiology, Berlin (Germany); Charite - University Medicine Berlin, Department of Radiology and Nuclear Medicine, Berlin (Germany); Kirchhoff, Timm D.; Shin, Hoen-Oh; Stamm, Georg; Merkesdal, Sonja; Abe, Takehiko; Galanski, Michael [Hanover Medical School, Departments of Radiology and Surgery, Hannover (Germany); Hanover Medical School, Department of Diagnostic Radiology, Hannover (Germany); Schenk, Andrea; Peitgen, Heinz-Otto [Hanover Medical School, Departments of Radiology and Surgery, Hannover (Germany); MeVis - Center for Medical Diagnostic Systems and Visualization, Bremen (Germany); Klempnauer, Juergen [Hanover Medical School, Departments of Radiology and Surgery, Hannover (Germany); Hanover Medical School, Department of Visceral- and Transplantation Surgery, Hannover (Germany); Nashan, Bjoern [Hanover Medical School, Departments of Radiology and Surgery, Hannover (Germany); Hanover Medical School, Department of Visceral- and Transplantation Surgery, Hannover (Germany); Dalhousie University, Multi Organ Transplant Program, Halifax, Nova Scotia (Canada)

    2006-12-15

    The purpose was to assess the volumes of the different hepatic territories and especially the drainage of the right paramedian sector in adult living donor liver transplantation (ALDLT). CT was performed in 40 potential donors of whom 28 underwent partial living donation. Data sets of all potential donors were postprocessed using dedicated software for segmentation, volumetric analysis and visualization of liver territories. During an initial period, volumes and shapes of liver parts were calculated based on the individual portal venous perfusion areas. After partial hepatic congestion occurring in three grafts, drainage territories with special regard to MHV tributaries from the right paramedian sector, and the IRHV were calculated additionally. Results were visualized three-dimensionally and compared to the intraoperative findings. Calculated graft volumes based on hepatic venous drainage and graft weights correlated significantly (r=0.86,P<0.001). Mean virtual graft volume was 930 ml and drained as follows: RHV: 680 ml, IRHV: 170 ml (n=11); segment 5 MHV tributaries: 100 ml (n=16); segment 8 MHV tributaries: 110 ml (n=20). When present, the mean aberrant venous drainage fraction of the right liver lobe was 28%. The evaluated protocol allowed a reliable calculation of the hepatic venous draining areas and led to a change in the hepatic venous reconstruction strategy at our institution. (orig.)

  3. An Investigation into the Performance, Solution Strategies and Difficulties in Middle School Students' Calculation of the Volume of a Rectangular Prism

    Science.gov (United States)

    Tekin-Sitrava, Reyhan; Isiksal-Bostan, Mine

    2014-01-01

    This qualitative study examined middle school students' performance, solution strategies, difficulties and the underlying reasons for their difficulties in calculating the volume of a rectangular prism. The data was collected from 35 middle school students (6th, 7th and 8th grade students) enrolled in a private school in Istanbul, Turkey. The…

  4. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO2-O2 system. In the model, krypton and xenon in very low concentrations are combined with the CO2-O2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  5. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles.

    Directory of Open Access Journals (Sweden)

    Inseon Ryoo

    Full Text Available PURPOSE: To evaluate the usefulness of dynamic susceptibility contrast (DSC enhanced perfusion MR imaging in predicting major genetic alterations in glioblastomas. MATERIALS AND METHODS: Twenty-five patients (M:F = 13∶12, mean age: 52.1±15.2 years with pathologically proven glioblastoma who underwent DSC MR imaging before surgery were included. On DSC MR imaging, the normalized relative tumor blood volume (nTBV of the enhancing solid portion of each tumor was calculated by using dedicated software (Nordic TumorEX, NordicNeuroLab, Bergen, Norway that enabled semi-automatic segmentation for each tumor. Five major glioblastoma genetic alterations (epidermal growth factor receptor (EGFR, phosphatase and tensin homologue (PTEN, Ki-67, O6-methylguanine-DNA methyltransferase (MGMT and p53 were confirmed by immunohistochemistry and analyzed for correlation with the nTBV of each tumor. Statistical analysis was performed using the unpaired Student t test, ROC (receiver operating characteristic curve analysis and Pearson correlation analysis. RESULTS: The nTBVs of the MGMT methylation-negative group (mean 9.5±7.5 were significantly higher than those of the MGMT methylation-positive group (mean 5.4±1.8 (p = .046. In the analysis of EGFR expression-positive group, the nTBVs of the subgroup with loss of PTEN gene expression (mean: 10.3±8.1 were also significantly higher than those of the subgroup without loss of PTEN gene expression (mean: 5.6±2.3 (p = .046. Ki-67 labeling index indicated significant positive correlation with the nTBV of the tumor (p = .01. CONCLUSION: We found that glioblastomas with aggressive genetic alterations tended to have a high nTBV in the present study. Thus, we believe that DSC-enhanced perfusion MR imaging could be helpful in predicting genetic alterations that are crucial in predicting the prognosis of and selecting tailored treatment for glioblastoma patients.

  6. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  7. The use of stochastic method for the calculation of liquid-vapor multicomponent equilibrium and the contribution of groups theory for the evaluation of fugacity coefficient; Uso de um metodo estocastico para calculo do equilibrio liquido-vapor de sistemas multicomponentes e avaliacao de uma abordagem por contribuicao de grupos para o calculo do coeficiente de fugacidade

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rafaelly L.; Oliveira, Jackson A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Rojas, Leopoldo O.A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)

    2008-07-01

    This work has the main objective of evaluating the mathematical model developed by Jaubert e Mutelet (2004) in terms of the prediction capacity for the calculation of the vapor-liquid equilibrium (VLE). This model is based on Peng-Robinson equation of state (EOS) and it considers the binary interaction parameters (Kij(T)) estimated by a contribution group method and dependent of the temperature. The model proposed by Jaubert e Mutelet (2004), named PPR78 (Predictive Peng-Robinson), was implemented in this work by using the Fortran language. An optimization approach based on the stochastic algorithm of Particle Swarm Optimization (PSO) was used in order to calculate the vapor-liquid equilibrium. Simulations were accomplished for several binary systems and the results were concordant with some experimental data of the investigated systems. However, for some systems different from those presented by Jaubert and Mutelet (2004), the model presented low prediction capacity. In spite of the great demand of computational performance, the algorithm PSO demonstrated robustness during the calculation of VLE and it assured convergence in most of the cases. (author)

  8. Influence of the choice of parameters of the TAC in the calculation of volumes for different planners; Influencia de la eleccion de los parametros del TAC en el calculo de volumenes para distintos planificadores

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Mazon, J.; Raba Diez, J. L.; Vazquez Rodriguez, J. A.; Pacheco Baldor, M. T.; Mendiguren Santiago, M. A.

    2011-07-01

    In the Protocol for the control treatment planning systems with ionizing radiation of the proposed SEFM tests to verify proper operation of the calculation in the evaluation of DVH (Dose Volume Histogram). The calculation of the volume that makes a planner may have important implications because it can trigger an overestimation of the dose or otherwise. We present a comparison of the calculation of volumes estimated with 4 different planners.

  9. 炼油厂酸性水溶液体系汽液平衡关联计算与分析%Calculation and Analysis for Vapor-Liquid Equilibrium of Sour Aqueous Solution System in the Refinery

    Institute of Scientific and Technical Information of China (English)

    廖昌建; 齐先志; 刘忠生; 朴勇

    2013-01-01

      系统分析了弱电解质水溶液 NH3-CO2-H2S-H2O 四元体系汽液平衡理论,建立了本体系汽液相平衡计算模型,为炼油厂酸性水储罐小呼吸排放气量的计算提供了依据。并在此基础上,研究了弱电解质溶液中组分浓度、H2S/NH3摩尔比和温度对酸性水溶液NH3-H2S-H2O-空气平衡体系的影响,研究表明弱电解质溶液中组分浓度和H2S/NH3摩尔比的增加以及温度的升高,均能导致体系汽相分压增加,增大酸性气体排放量。%The vapor-liquid equilibrium (VLE) of NH3-CO2-H2S-H2O system was analyzed comprehensively. The calculating model for the vapor-liquid equilibrium was established, which can provide a base for calculating the small breathing emission from sour water tanks in the refinery. Based on the model, effects of concentration of weak electrolyte, H2S/NH3 molar ratio and temperature on the VLE of NH3-H2S-H2O system were investigated. Results indicate that the increase of the concentration of weak electrolyte, H2S/NH3 molar ratio and temperature can all contribute to the increase of the vapor pressure, thus promote the emission of sour gas.

  10. Relationship between renal volume calculated by using multislice computed tomography and glomerular filtration rate calculated by using the Cockcroft-Gault and modification of diet in renal disease equations in living kidney donors.

    Science.gov (United States)

    Adibi, Atoosa; Mortazavi, Mojgan; Shayganfar, Azin; Kamal, Sima; Azad, Roya; Aalinezhad, Marzieh

    2016-01-01

    It is essential to ascertain the state of health and renal function of potential kidney donors before organ removal. In this regard, one of the primary steps is to estimate the donor's glomerular filtration rate (GFR). For this purpose, the modification of diet in renal disease (MDRD) and the Cockcroft-Gault (CG) formulas has been used. However, these two formulas produce different results and finding new techniques with greater accuracy is required. Measuring the renal volume from computed tomography (CT) scan may be a valuable index to assess the renal function. This study was conducted to investigate the correlation between renal volume and the GFR values in potential living kidney donors referred to the multislice imaging center at Alzahra Hospital during 2014. The study comprised 66 subjects whose GFR was calculated using the two aforementioned formulas. Their kidney volumes were measured by using 64-slice CT angiography and the correlation between renal volume and GFR values were analyzed using the Statistical Package for the Social Science software. There was no correlation between the volume of the left and right kidneys and the MDRD-based estimates of GFR (P = 0.772, r = 0.036, P = 0.251, r = 0.143, respectively). A direct linear correlation was found between the volume of the left and right kidneys and the CG-based GFR values (P = 0.001, r = 0.397, P kidney volume derived from multislice CT scan can help predict the GFR value in kidney donors with normal renal function. The limitations of our study include the small sample size and the medium resolution of 64-slice multislice scanners. Further studies with larger sample size and using higher resolution scanners are warranted to determine the accuracy of this method in potential kidney donors. PMID:27424682

  11. SU-E-T-634: Analysis of Volume Based GYN HDR Brachytherapy Plans for Dose Calculation to Organs At Risk(OAR)

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M; Li, C; White, M; Davis, J [Joe Arrington Cancer Center, Lubbock, TX (United States)

    2014-06-15

    Purpose: We have analyzed the dose volume histogram of 140 CT based HDR brachytherapy plans and evaluated the dose received to OAR ; rectum, bladder and sigmoid colon based on recommendations from ICRU and Image guided brachytherapy working group for cervical cancer . Methods: Our treatment protocol consist of XRT to whole pelvis with 45 Gy at 1.8Gy/fraction followed by 30 Gy at 6 Gy per fraction by HDR brachytherapy in 2 weeks . The CT compatible tandem and ovoid applicators were used and stabilized with radio opaque packing material. The patient was stabilized using special re-locatable implant table and stirrups for reproducibility of the geometry during treatment. The CT scan images were taken at 3mm slice thickness and exported to the treatment planning computer. The OAR structures, bladder, rectum and sigmoid colon were outlined on the images along with the applicators. The prescription dose was targeted to A left and A right as defined in Manchester system and optimized on geometry . The dosimetry was compared on all plans using the parameter Ci.sec.cGy-1 . Using the Dose Volume Histogram (DVH) obtained from the plans the doses to rectum, sigmoid colon and bladder for ICRU defined points and 2cc volume were analyzed and reported. The following criteria were used for limiting the tolerance dose by volume (D2cc) were calculated. The rectum and sigmoid colon doses were limited to <75Gy. The bladder dose was limited to < 90Gy from both XRT and HDR brachytherapy. Results: The average total (XRT+HDRBT) BED values to prescription volume was 120 Gy. Dose 2cc to rectum was 70Gy +/− 17Gy, dose to 2cc bladder was 82+/−32 Gy. The average Ci.sec.cGy-1 calculated for the HDR plans was 6.99 +/− 0.5 Conclusion: The image based treatment planning enabled to evaluati volume based dose to critical structures for clinical interpretation.

  12. An analytic solution for calculating the beam intensity profiles useful to irradiate target volumes with bi-concave outlines

    Energy Technology Data Exchange (ETDEWEB)

    De Neve, W.; Derycke, S.; De Wagter, C. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde

    1995-12-01

    A heuristic planing procedure allowing to obtain a 3-dimensional conformal dose distribution in radiotherapy for target volumes with a bi-concave or multi-concave shape has been developed. The described method is tested on a phantom simulating a pelvic target, described by Brahme.

  13. Calculation of the Two-Dimensional Airflow in Facial regions and Nasal Cavity Using an Unstructured Finite Volume Solver

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    In this short report we demonstrate the feasibility of using Computational Fluid Dynamics (CFD) for studying the flow in facial regions and nasal cavity. A two-dimensional unstructured finite volume flow solver is used. For modelling the turbulence we use a standard k - ε model....

  14. Predictive equations for total lung capacity and residual volume calculated from radiographs in a random sample of the Michigan population.

    OpenAIRE

    Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K.; Miller, A

    1992-01-01

    BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: T...

  15. 某型低温液体运输车绕片式增压器汽化量计算%Calculation of the Vaporization of a type of Cryogenic Liquid Tanker Winding Chip Turbocharger

    Institute of Scientific and Technical Information of China (English)

    席玮; 李永双

    2015-01-01

    In view of the development of the new company for a certain type of cryogenic liquid transport vehicle using self pressurizing principle for truck, with conventional fin type supercharger design needs a large space, insufficient vaporization; therefore for such products of turbocharger structure improvement, its structure is changed into a winding type structure, but the winding type supercharger calculation of common heat transfer calculation is particularly complex, large calculation error; the product using the third law of thermodynamics on the heat transfer area calculation, simplified calculation process, and according to the actual use of corresponding correction coefficients, calculated results can meet the need of practical.%针对我公司新开发的某型低温液体运输车运用自增压原理进行卸车,用常规的翅片式增压器进行设计需要的空间大,汽化量不足;因此对此类产品进行了增压器结构的改型,将其结构改为绕片式结构,但绕片式增压器的计算用普通换热方式进行计算特别复杂,计算误差较大;本文对该类产品运用热力学第三定律对其换热的面积进行计算校核,简化计算过程,并且根据实际使用情况得到相应的修正系数,计算出的结果能够实际满足需要。

  16. 二氧化碳与2-丁醇二元体系在高压下的亨利系数和偏摩尔体积性质计算%Calculation of Henry's coefficient and partial molar volume of carbon dioxide in 2-butanol at elevated pressures

    Institute of Scientific and Technical Information of China (English)

    田爱琴; 孙洪博; 陈文涛; 王琳

    2012-01-01

    Based on vapor-liquid phase equilibria data for CO2+2-butanol binary system from 323K to 353K by constant-volume visual high-pressure cell, the solubility model of CO2 in 2-butanol was established with Krichevsky-Kasarnovsky equation. Henry's coefficients and partial molar volumes of CO2 at infinite dilution were calculated. Meanwhile, Partial molar volumes of CO2 and 2-butanol at equilibrium were calculated from partial molar volumes properties together with Peng-Robinson equation of state and Van der Waals-2 mixed rule. The results showed that Henry's coefficients and partial molar volumes of CO2 at infinite dilution were both the function of temperature, and Henry's coefficients decreased with temperature. The partial molar volumes of CO2 at infinite dilution were negative and the magnitudes decreased with temperature. The calculated effects of partial molar volumes of vapor and liquid phase at equilibrium showed that the partial molar volumes of CO2 and 2-butanol in liquid phase were positive, but in vapor the partial molar volumes of CO2 were negative and the partial molar volumes of 2-butanol were positive. The research provided theoretical basis for deciding supercritical extraction conditions and instructing industrial production.%利用固定体积可视高压釜测量出的在323 K~353 K温度范围内的CO2与2-丁醇二元体系在高压下的汽液相平衡数据,根据Krichevsky-Kasarnovsky方程建立了CO2在液相中的溶解度模型,得到了该二元体系在高压下的亨利系数和CO2在无限稀释溶液中的偏摩尔体积等性质.同时根据偏摩尔体积性质和Peng-Robinson状态方程及Van der Waals-2混合规则来计算该体系在平衡状态下的气、液相的偏摩尔体积.结果表明CO2在2-丁醇中的亨利系数和CO2在无限稀释溶液中的偏摩尔体积均为温度的函数,CO2在2-丁醇中的亨利系数随温度的升高而降低.CO2在无限稀释溶液中的偏摩尔体积(V)1∞在研究温度下均为

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  18. The Issue of Calculating the Final Temperature of the Products of Rapid Exothermic Chemical Reactions with Significant Energy Release in a Closed Volume

    Science.gov (United States)

    Lazarev, V.; Geidmanis, D.

    2016-02-01

    The theoretical problem solved in this article is the calculation of thermodynamic parameters such as final temperature, distribution of the liquid and dry saturated vapour phases of the substance that are considered to be in thermodynamic equilibrium, and pressure of the system of several reaction products after adding to the system a certain amount of heat or the thermal effect released during rapid exothermic reaction in a closed volume that occurs so fast that it can be considered to be adiabatic, and when the volume of liquid reagents is several orders of magnitude less than the volume of the reactor. The general multi-substance problem is reduced to a theoretical problem for one substance of calculation thermodynamic parameters of system after adding a certain amount of heat that gives theoretically rigorous isochoric calculation. In this article, we substantiate our view that isochoric pass of calculation is more robust compared to seemingly more natural isobaric pass of calculation, if the later involves quite not trivial calculation of the adiabatic compression of a two-phase system (liquid - dry saturated vapour) that can pass itself into another kind of state (liquid - wet saturated vapour), which requires, apparently, more complex descriptions compared with isochoric calculation because the specific heat capacity of wet saturated vapour can be negative. The solved theoretical problem relates to a practical problem that has been a driver for our research as part of a design of the reactor of the titanium reduction from magnesium and titanium tetrachloride supplied into atmosphere of the reactor at high temperatures when both reagents are in gaseous state. The reaction is known to be exothermic with a high thermal effect, and estimate of the final temperature and pressure of the products of reaction, for instance, designing the reactor allows eliminating the possibility of the reaction products to penetrate backwards into supply tracts of the reagents

  19. Precision ozone vapor pressure measurements

    Science.gov (United States)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  20. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft3/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft3/min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  1. RESEARCH METHODS OF SATURATED VAPOR PRESSURE AND EXPERIMENTAL INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-02-01

    Full Text Available The static method is the most common, because it is applicable for measuring SVP of substances in wide ranges of temperatures and pressures. The essence of the method consists in measuring of vapor pressure in equilibrium with its liquid at a given temperature. Dynamic method is based on measurement of the boiling point of the liquid at a certain pressure. Saturation method of moving gas used in the case when the SVP does not exceed a few mm Hg. The method consists the following: the liquid is passed through the inert gas and saturated with vapor of liquids and then it flows into a cooler where the absorbed vapors are condensed. Knowing the amount of absorbed liquid and gas, as well as their molecular weight, allow us calculate saturated vapor pressure of the liquid. Knudsen effusion method is applicable for the measurement of very low pressures (up to 100 Pa. This method consists in researching of depending between the pressure and volume of saturated steam at a constant temperature. At the point of saturation an isotherm should have a break and turn into a straight line. Chromatographic method is based on complete chromatographic analysis of liquid and calculating the sum of partial pressures of all mixture components. Also, the article has a description of existing experimental installation for these researches and their advantages and disadvantages compared with each other

  2. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  3. Vapor fraction distribution within pipelines and channels

    International Nuclear Information System (INIS)

    Three-dimensional distribution of vapor volumetric fractions in subcooled boiling is analyzed for circular tubes and rectangular channels. The model is based on three major assumptions: 1) vapor bubble mation is controlled by diffusion due to flow turbulence; 2) the diffusion coefficient and bubble velocity are constant within the channel cross-section as well as the coolant temperature; 3) the vapor bubble generation and condensation rates are calculated according to one-dimensional models. The vapor void distribution is obtained from an analytical solution of the vapor bubble diffusion equation with a simplified approximation of subcooling profile. A method of boundary conditions formulation for the diffusin equation is also presented

  4. On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water

    CERN Document Server

    Liu, P; Berne, B J; Liu, Pu; Harder, Edward

    2003-01-01

    We propose a general methodology for calculating the self-diffusion tensor from molecular dynamics for a liquid with a liquid-gas or liquid-solid interface. The standard method used in bulk fluids, based on computing the mean square displacement as a function of time and extracting the asymptotic linear time dependence from this, is not valid for systems with interfaces or for confined fluids. The method proposed here is based on imposing virtual boundary conditions on the molecular system and computing survival probabilities and specified time correlation functions in different layers of the fluid up to and including the interfacial layer. By running dual simulations, one based on MD and the other based on Langevin dynamics, using the same boundary conditions, one can fit the Langevin survival probability at long times to the MD computed survival probability, thereby determining the diffusion coefficient as a function of distance of the layers from the interface. We compute the elements of the diffusion tens...

  5. Spray Evaporation in Turbulent Flow: Numerical Calculations and Detailed Experiments by Phase-Doppler Anemometry Évaporation de brouillard en flux turbulent : calculs numériques et expériences détaillées par anémometrie de phase-Doppler

    Directory of Open Access Journals (Sweden)

    Sommerfeld M.

    2006-11-01

    Full Text Available The present paper concerns experiments and numerical calculations of an isopropyl-alcohol spray evaporating in a co-flowing turbulent heated air flow. The measurements provided detailed inlet and boundary conditions for the numerical calculations and allowed the validation of the numerical method and models. Phase-Doppler anemometry was used in order to obtain the spatial change of the droplet size distribution and the correlation between droplet size and velocity throughout the flow field. Additionally, a reliable method based on the detection of the signal amplitudes was applied to determine the droplet mass flux. By integration of the droplet mass flux profiles, the global evaporation rates could be determined for different flow conditions. Numerical calculations of the evaporating spray were performed by the Eulerian / Lagrangian approach. The modelling of droplet evaporation is briefly reviewed prior to the description of the applied numerical models and methods. Calculations for a single phase flow showed good agreement with the experiments. Also for all of the droplet phase properties reasonable agreement with the experiments could be achieved and the global evaporation rates agreed well with the measurements. Cet article expose en détail les expériences et les calculs concernant l'évaporation d'isopropanol pulvérisé dans un flux d'air chaud turbulent. Les mesures ont fourni le détail des conditions initiales et des conditions limites pour les calculs numériques ; elles ont également permis de valider la méthode et le modèle. L'anémométrie de phase-Doppler a permis de définir la modification spatiale de la distribution des dimensions de gouttelettes ainsi que la corrélation entre dimension et vitesse des gouttelettes, dans l'ensemble du champ d'écoulement. De plus, une méthode fiable fondée sur la détection des amplitudes de signal a été appliquée afin de déterminer le débit massique des gouttelettes. L

  6. Vapor extractor

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G.A.; Bronder, L.R.

    1924-10-21

    A vapor extractor is described comprising a conveyer having compartments open at their top and bottom sides for a material to be conveyed, a plate forming a support for the conveyer and its compartments, means to move the conveyer over the plate with the material in the compartments, the movements of the conveyer forming ridges in the material that project above the walls of the compartments and means to remove the peaks of the ridges and thereby distribute the material composing the ridges into the bottom portion of the conveyer.

  7. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, Guido [Human Motor Control Section, NINDS, NIH, Bethesda, MD (United States)

    2003-11-21

    The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equationstarting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.

  8. 封冻期流量推求方法的探讨%Exploration for volume calculation method in the freezing period

    Institute of Scientific and Technical Information of China (English)

    刘国锋; 李周明; 苍学深

    2001-01-01

    封冻期径流成分按补给来源分主要以地下水补给为主。根据地下水退水的一般规律,提出了针对天然河道封冻期流量推求方法的建议。在一般情况下,中小河流稳定封冻期流量推求应以实测流量过程线法为主。%Based on the supplying resources,ground water was considered as the primary resource to the main runoff in the freezing period.According to the general pattern of ground water lowering,this paper suggested a volume calculation method in the natural river courses in the freezing period.The result showed that the measured volume“Course Line” method should be generally taken as the primary one in calculation of the stable volume of the medium-and small-size rivers during the freezing period.

  9. Monte Carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine

    International Nuclear Information System (INIS)

    Isothermal-isobaric Monte Carlo calculations were used to obtain predictions of the elastic coefficients and derived engineering moduli and Poisson ratios for crystalline hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The elastic coefficients were computed using the strain fluctuation formula due to Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)]. Calculations were performed as a function of temperature (218 K≤T≤333 K) and hydrostatic pressure (0 GPa≤p≤4 GPa). The predicted values of the moduli and Poisson ratios under ambient conditions are in accord with general expectations for molecular crystals and with a very recent, unpublished determination for RDX. The moduli exhibit a sensitive pressure dependence whereas the Poisson ratios are relatively independent of pressure. The temperature dependence of the moduli is comparable to the precision of the results. However, the crystal does exhibit thermal softening for most pressures. An additional product of the calculations is information about the pressure-volume-temperature (pVT) equation of state. We obtain near-quantitative agreement with experiment for the case of hydrostatic compression and reasonable, but not quantitative, correspondence for thermal expansion. The results indicate a significant dependence of the thermal expansion coefficients on hydrostatic pressure. (c) 2000 American Institute of Physics

  10. MEASURED DENSITIES, REFRACTIVE INDICES, EXCESS MOLAR VOLUMES AND DEVIATIONS CALCULATED FROM MOLAR REFRACTION OF THE BINARY MIXTURE OF ETHANOL + 1-NONANOL AND TERNARY MIXTURE ETHANOL + 1-NONANOL + WATER AT 293.15 K

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2000-03-01

    Full Text Available Densities, and refractive indices were measured for the binary system ethanol + 1-nonanol and ternary system ethanol + 1-nonanol + water at 293.15 K. The excess molar volumes, and the deviations molar refraction were calculated for binary and ternary system. Redlich-Kister type equation was fitted to the excess molar volumes and, the deviations from a mole fraction average of the molar refraction, and the values of coefficients were calculated

  11. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M. [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses

  12. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor; Ab initio-Berechnung der Wechselwirkungspotentiale von Helium, Neon und Methan sowie theoretische Untersuchungen zu ihren thermophysikalischen Eigenschaften und denen von Wasserdampf

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, Robert

    2009-06-16

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  13. Value of the fraction of ejection and the end-diastolic volume of the left ventricle calculated by means of Gated-Spect

    International Nuclear Information System (INIS)

    Aim: The fraction of ejection is one of the predictions factors more important after a acute heart attack and is essential its calculation in these patients. On the other hand the existence of residue ischemia is a basic information to predict the evolution and to decide the treatment about this pathology. The use of the Gated-Spect can contribute of simultaneous form both information. Our aim was to evaluate the utility of the fraction of ejection and of the volume end-diastolic of the left ventricle calculated by means of Gated-Spect as well as the relation that exists with the fact of the existence of scar in this images. Materials and Methods: 34 patients were studied (27 men and 7 women) sent to our service for accomplishment of Spect of myocardium perfusion for suspicion it diagnoses of heart attack of myocardium for present at least 2 of 3 clinical classic criteria (typical clinic, alterations ECG and increase enzymatic), to that was realized heart Gated-Spect with 925 MBq of Tc99-tetrofosmin after pharmacological stimulation with adenosine and 2 days later Spect with 333 MBq of the same tracer for acquisition of base images. Results: All the patients presented faults of perfusion fixed assimilable to zones of scar, finding in 13 of them certain degree of reversibility that was indicating existence of residue ischemia. The average of fraction of ejection was of 36.62% . Dividing by groups the fraction of ejection in the scar without ischemia ensued from 32.33% and in the scar with ischemia from 43.54%, being the difference between both groups significant statistically (P=0.003). For the volume end-diastolic the average belonged to 141.97 ml being divided in 157.90 ml for the pure scar and 116.23 ml for the scar with ischemia being this difference also significant (P=0.04) the relation is verified likewise between fraction of ejection and volume telediastolico with Pearson's coefficient between both variables of-0.79. Conclusion: According to our results the

  14. Vaporization heat of niobium pentafluoride

    International Nuclear Information System (INIS)

    Literary data on vapor composition above niobium pentafluoride are analyzed and incorrectness of the value of vaporization heat of NbF5 monomeric molecules, given in the Glushko reference book, is shown. Heat capacities of NbF5 gas for monomeric, two-dimensional, three-dimensional and four-dimensional NbF5 molecules are estimated and the vaporization heats of monomeric and polymeric forms at the melting temperature (in kJ/mol): 79.3(5.0)-NbF5, 71.0(6.7)-(NbF5)2, 53.9(4.6)-(NbF5)3, 44.5(6.7)-(NbF5)4, are calculated

  15. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  16. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  17. An assessment of reactor vessel integrity under in-vessel vapor explosion loads

    International Nuclear Information System (INIS)

    A safety assessment of reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The core melt relocation parameters were chosen within the ranges of phsically realizable bounds. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. Then, the calculated strain results and the established failure criteria were used in determining the failure probability of the lower head. In the explosion analyses, it it shown that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform pre-mixture bounding calculations. Strain analyses show that the vapor explosion-induced lower head failure is not possible under the present framework of assessment. The result of static analysis using the conservative explosion-end pressure of 50 MPa also supports the conclusion. It is recommended, however, that an assessment of fracture mechanics for preexisting cracks be also considered to obtain a more concrete conclusion. (author)

  18. Measurement and calculation of excess molar enthalpy and vapor-liquid equilibrium for alkanolamine-water%有机醇胺-水体系混合热和气液平衡的测定与计算

    Institute of Scientific and Technical Information of China (English)

    张瑞蕾; 李晗; 史红波; 密建国; 陈健

    2012-01-01

    As the absorbents of acid gases, aqueous alkanolamines are extensively applied in the separation process of gas mixtures. A new alkanolamine absorbent with high absorption rate and strong absorptive capacity is particularly important for the development of the carbon dioxide capture technology. Since the thermodynamic properties of alkanolamines correlate directly to their absorption performance, a preliminary understanding of these properties is necessary. The molar excess enthalpies for (2-ethylamino) ethanol ( EAE) in water were measured with C-80 calorimeter at 303. 15, 323. 15 K and over the entire range of mole fractions. The isobaric vapor liquid equilibrium (VLE) data were also measured for the EAE-water binary system ranged from 30 kPa to 100 kPa by using equilibrium vessel. The nonrandom two-liquid ( NRTL) model was used and its parameters were simultaneously fitted using HE and VLE data. The calculation results are in good agreement with the experimental data, showing that the present thermodynamic model can be reliably used for the calculation of absorption processes. The model is also helpful for the choice of new absorbents, evaluation of absorption capability, and optimization of absorption processes.%作为酸性气体吸收剂,醇胺水溶液在气体混合物分离过程中被广泛应用.选择吸收速率高、吸收能力强的新型醇胺吸收剂,对于二氧化碳捕获技术发展尤为重要.醇胺水溶液对二氧化碳的吸收性能与其热力学性质直接相关,因此对于新型吸收剂的选择,必须首先确定体系的气液平衡和溶解热等重要热力学性质.文章利用C-80微量热仪在全浓度范围内,测定了303.15,323.15 K下2-乙氨基乙醇和水的混合热,并用沸点仪测量了30-100kPa条件下该体系的气液平衡数据,用非随机双流体NRTL方程关联计算了混合热和气液平衡数据,并给出了方程模型参数.气液平衡和混合热数据的拟合结果和实验值能很好地

  19. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  20. Liquid-Vapor Argon Isotope Fractionation from the Triple Point to the Critical Point

    DEFF Research Database (Denmark)

    Phillips, J. T.; Linderstrøm-Lang, C. U.; Bigeleisen, J.

    1972-01-01

    are compared at the same molar volume. The isotope fractionation factor α for 36Ar∕40Ar between liquid and vapor has been measured from the triple point to the critical temperature. The results are compared with previous vapor pressure data, which cover the range 84–102°K. Although the agreement is within...... twice the statistical scatter of the present data, the present results for the lnα are systematically 5% lower than calculations from vapor pressure data. It is shown that T2 lnα is a linear function of (ρc−ρg), the density difference between the liquid and vapor, in the range 84–120°K......The statistical thermodynamic treatment of the equilibrium between a nonideal liquid mixture of isotopes and a vapor phase is extended to include isotope effects on the equation of state of the gas. The result is particularly simple when the isotopic partition functions in a given phase...

  1. Polar Mohr diagram method and its application in calculating the shear displacements of general shear zones with volume loss--With the Sangshuyuanzi ductile shear zone as an example

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The main problem,in determining the shear displacement of a general shear zone with volume change using the available formula,is that it is hard to know the initial angle between the planes (or lines) in the plane of shear.A planar deformation analysis of this kind of ductile shear zone is carried out with the polar Mohr diagram.If the volume change is induced by homogeneous contraction in the Z direction of the shear zone,there are sufficient conditions for constructing a polar Mohr diagram regardless of sequence of the simple shear and volume change.Therefore,the angle between a line and the shear direction before and after the deformation can be measured.Making use of these lines the shear strain and the volume change can be calculated and the shear displacement can be determined.

  2. Polar Mohr diagram method and its application in calculating the shear displacements of general shear zones with volume loss——With the Sangshuyuanzi ductile shear zone as an example

    Institute of Scientific and Technical Information of China (English)

    李海; 郭召杰; 刘瑞洵; 刘树文; 张志诚

    2000-01-01

    The main problem, in determining the shear displacement of a general shear zone with volume change using the available formula, is that it is hard to know the initial angle between the planes (or lines) in the plane of shear. A planar deformation analysis of this kind of ductile shear zone is carried out with the polar Mohr diagram. If the volume change is induced by homogeneous contraction in the Z direction of the shear zone, there are sufficient conditions for constructing a polar Mohr diagram regardless of sequence of the simple shear and volume change. Therefore, the angle between a line and the shear direction before and after the deformation can be measured. Making use of these lines the shear strain and the volume change can be calculated and the shear displacement can be determined.

  3. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  4. Right atrial volume calculated by multi-detector computed tomography. Useful predictor of atrial fibrillation recurrence after pulmonary vein catheter ablation

    International Nuclear Information System (INIS)

    We investigated whether right atrial (RA) volume could be used to predict the recurrence of atrial fibrillation (AF) after pulmonary vein catheter ablation (CA). We evaluated 65 patients with paroxysmal AF (mean age, 60+10 years, 81.5% male) and normal volunteers (57±14 years, 41.7% male). Sixty-four-slice multi-detector computed tomography was performed for left atrial (LA) and RA volume estimations before CA. The recurrence of AF was assessed for 6 months after the ablation. Both left and right atrial volumes were larger in the AF patients than the normal volunteers (LA: 99.7+33.2 ml vs. 59.7+17.4 ml; RA: 82.9+35.7 ml vs. 43.9+12 ml; P100 ml) for predicting the recurrence of AF was 81.3% in 13 of 16 patients with AF recurrence, and the specificity was 69.4% in 34 of 49 patients without recurrence. The sensitivity with large RA volumes (>87 ml) was 81.3% in 13 of 16 patients with AF recurrence, and the specificity was 75.5% in 37 of 49 patients without recurrence. RA volume is a useful predictor of the recurrence of AF, similar to LA volume. (author)

  5. Stratospheric water vapor feedback

    OpenAIRE

    A. E. Dessler; Schoeberl, M. R.; Wang, T.; S. M. Davis; K. H. Rosenlof

    2013-01-01

    We show observational evidence for a stratospheric water vapor feedback—a warmer climate increases stratospheric water vapor, and because stratospheric water vapor is itself a greenhouse gas, this leads to further warming. An estimate of its magnitude from a climate model yields a value of +0.3 W/(m2⋅K), suggesting that this feedback plays an important role in our climate system.

  6. Calculation of H2O-NH3-CO2 Vapor Liquid Equilibria at High Concentration Conditions%高浓度H2O-NH3-CO2体系汽液平衡计算

    Institute of Scientific and Technical Information of China (English)

    魏顺安; 张红晶

    2004-01-01

    A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃,pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.

  7. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX; Calculo de dosis absorbida en volumenes esfericos alrededor del Mammosite utilizando el codigo de simulacion Monte Carlo MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2008-07-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  8. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 2: Supplemental system design and maintenance document

    Science.gov (United States)

    Anderson, L. R.; Miller, R. D.

    1979-01-01

    The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.

  9. Metal vapor condensation under high pressure (mercury vapor to 500 psia). [Heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S.; Bonilla, C.F.

    1975-01-01

    Mercury vapor up to 500 psia was condensed outside a cylindrical tube in both horizontal and vertical positions. Results show consistently low heat transfer coefficients compared to Nusselt's theory. Two auxiliary mercury vapor condensers downstream of the boiler vent were used to control and safeguard the system. Constantan wires were spot welded on the surface inside the test condenser tube. The heat flux ranged from 20,000 to 45,000 Btu/h-ft/sup 2/ and the temperature differences between vapor and condensing wall from 6 to 50/sup 0/F. The condensation heat transfer coefficients, ranging from 850 to 3,500 Btu/h-/sup 0/F-ft/sup 2/, are only about 3 to 9 percent of those predicted by Nusselt's theory. Due to the positive pressure in the system for most test runs, the chance of any in-leakage of noncondensable gases into the boiler is extremely small. Since no substantial change of heat transfer rate resulted from wide variations in the heat load on the reflux condenser at some specific heat flux on the test condenser tube, the low heat transfer rate of mercury vapor condensation was not due to the presence of any non-condensable gas. The test data for high vapor pressure up to 500 psia reveal that the heat transfer coefficient is independent of the vapor pressure level. The condensation coefficients calculated based on kinetic theory are much smaller than unity and decreasewith vapor pressure. It is hypothesized that dimer content in the metal vapor phase might behave as non-condensable or semi-condensable gas and create a diffusional barrier at the vapor-liquid interface near the condensate film. This dimer vapor could be the main cause of interfacial resistance during metal vapor condensation process. 41 figures, 7 tables, 58 references. (DLC)

  10. Estimation of vapor composition and vapor pressure of alcohols and hydrocarbons binary systems

    International Nuclear Information System (INIS)

    The objective of this study were to apply the coordination state theory to assosiated systems, especially to estimate vapor pressure and vapor composition of alcohols and hydrcarbons binary systems. To achieve these objectives, a computer programme in Q. basic language was used to compute vapor composition and vapor pressure of may alcohols and hydrcarbons binary systems. The systems studied were methane- methanol, methane- n-propanol, n-pentane - n-propanol, ethanol- cyclohexane, ethanol- isooctane, n-pentane - ethanol, methanol - benzene, n-propanol- benzene, ethane- ethanol and ethane- n-propanol. The calculated VLE values were compared with experimental data using standard deviation. The values calculated agree, in general, with the experimental ones. Variations were observed among certain cases where phase seperation may occur.(Author)

  11. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  12. Variant of a volume-of-fluid method for surface tension-dominant two-phase flows

    Indian Academy of Sciences (India)

    G Biswas

    2013-12-01

    The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed in water at near critical pressure for different degrees of superheat using combined levelset and volume-of fluid (CLSVOF) method. The effect of superheat on the frequency of bubble formation was analyzed. A deviation from the periodic bubble release is observed in the case of superheat of 20 K in water. The vapor-jet-like columnar structure is observed. Effect of heat flux on the slender vapor column has also been explained.

  13. Stratospheric water vapor feedback.

    Science.gov (United States)

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  14. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to Tb) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol−1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of TB = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of TB = (549.1 ± 0.1) K is also estimated by extrapolation

  15. Calculation of difference in heat capacities at constant pressure and constant volume with the aid of the empirical Nernst and Lindemann equation

    Science.gov (United States)

    Leontev, K. L.

    1981-07-01

    An expression is obtained for heat capacity differences of materials at a constant pressure and volume, on the basis of the rigorous thermodynamic equation (Kittel, 1976), and by using the Grueneisen law (Kikoin and Kikoin, 1976) of constancy of the ratio of the cubic expansion coefficient to the molar heat capacity. Conditions are determined, where the empirical Nernst and Lindemann (Filippov, 1967) equation is regarded as rigorous.

  16. 三种热效应激光汽化兼热杀癌的理论计算与应用方法讨论%The theoretical calculations of vaporizing and heat-killing therapy of cancer with the three thermal-effect lasers and discussion on the applied methods

    Institute of Scientific and Technical Information of China (English)

    田晓明; 冯永振

    2001-01-01

    本文根据激光汽化兼热杀癌肿瘤的理论模型〔1,2〕,对三种常见热效应激光进行了理论计算和结果对比,讨论了在较大汽化域情况下尽可能减少照射治疗时间的应用方法和措施,为激光治疗较大肿瘤提供具体理论参考数据。%Based on the theoretical models of vaporizing and heat-killing therapy of cancer with laser,the theoretical calculations of three common thermal-effect lasers have been made,and the results are shown and compared in this paper.We discuss on the applied methods to get the irradiating time as short as possible under more large vaporizing area.These theoretical calculated data will be valuable for reference.

  17. Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume; Determination de l'incertitude statistique optimale pour realiser un calcul de dose dans le volume cible en utilisant la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Isambert, A.; Lefkopoulos, D. [Institut Gustave-Roussy, Medical Physics Dept., 94 - Villejuif (France); Brualla, L. [NCTeam, Strahlenklinik, Universitatsklinikum Essen (Germany); Benkebil, M. [DOSIsoft, 94 - Cachan (France)

    2010-04-15

    Purpose of study Monte Carlo based treatment planning system are known to be more accurate than analytical methods for performing absorbed dose estimation, particularly in and near heterogeneities. However, the required computation time can still be an issue. The present study focused on the determination of the optimum statistical uncertainty in order to minimise computation time while keeping the reliability of the absorbed dose estimation in treatments planned with electron-beams. Materials and methods Three radiotherapy plans (medulloblastoma, breast and gynaecological) were used to investigate the influence of the statistical uncertainty of the absorbed dose on the target volume dose-volume histograms (spinal cord, intra-mammary nodes and pelvic lymph nodes, respectively). Results The study of the dose-volume histograms showed that for statistical uncertainty levels (1 S.D.) above 2 to 3%, the standard deviation of the mean dose in the target volume calculated from the dose-volume histograms increases by at least 6%, reflecting the gradual flattening of the dose-volume histograms. Conclusions This work suggests that, in clinical context, Monte Carlo based absorbed dose estimations should be performed with a maximum statistical uncertainty of 2 to 3%. (authors)

  18. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    Science.gov (United States)

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  19. Urania vapor composition at very high temperatures

    International Nuclear Information System (INIS)

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO2, UO3, and UO2+) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  20. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  1. 基于 Flash 平台下的钢筋工程量计算--以框架梁为例%Reinforced Concrete Construction Volume Calculation Based on Flash Platform:Taking Frame Girder as an Example

    Institute of Scientific and Technical Information of China (English)

    李云春; 李敬民; 马文杰; 王瑞; 陈双红

    2013-01-01

      在工程造价工作中,有关钢筋工程量的枯燥的平法表示法和繁琐的计算往往令初学者望而生畏,甚至失去了学习的兴趣。本文主要通过 Flash 强大的动画演示功能和内置的 AcionScript 脚本语言,以一根框架梁为例,将平淡无奇的钢筋平法图形像动画一样生动、形象地展示出来,并配以文字说明与计算方法,让钢筋工程量计算的学习变得简单易学,并较大程度地增强学习者的学习兴趣。%In the administration of engineering cost, students often have difficulties in P -method expression and cumbersome calculations of reinforced concrete construction volume, even lost interest in learning. Taking a frame girder as an example, the paper shows the P-method figure through Flashi and built-in AcionScript scripting language, with a text description and calculation methods; it makes calculation of reinforced concrete construction volume simply and easy, and enhances students ' interest in learning.

  2. Calculation of NARM's Equilibrium with Peng-Robinson Equation of State

    Institute of Scientific and Technical Information of China (English)

    LI Tingxun; GUO Kaihua; WANG Ruzhu; FAN Shuanshi

    2001-01-01

    The liquid molar volumes of nonazeotropic refrigerant mixtures (NARM), calculated with Peng Robinson (PR)equation, were compared with vapor -liquid equilibrium experimental data in this paper. Provided with coreaction coefficient kij, the discrepancies of liquid molar volume data for R22+Rl14 and R22+R142b using PR equation are 7.7% and 8.1% , respectively. When HBT (Hankinson-Brobst-Thomson) equation was joined with PR equation, the deviations are reduced to less than 1.5% for both R22+Rl14 and R22+R142b.

  3. DISTRIBUTION OF WATER VAPOR IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J = 5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to AV2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large AV. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations of comparing measured water-vapor column densities with such traditional cloud tracers as 13CO or C18O. These results also support cloud models that incorporate freeze out of molecules as a critical component in determining the depth-dependent abundance of water vapor.

  4. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  5. Available forest biomass for new energetic and industrial prospects. Part 1: analysis and synthesis of existing studies compiled at the international level. Part 2: volume calculations. Part 3: economic part. Final report

    International Nuclear Information System (INIS)

    Motivated by new energetic constraints and the interest of biomass, the authors report a bibliographical survey of studies concerning the evaluation of the available forest biomass. They comment the geographical and time distribution of the identified and compiled studies. They analyse their different topics. Then, they discuss the various field hypotheses, discuss and comments various resource assessment methodologies. They comment the resource the French forest can be, present a synthesis of the available resource at the regional level according to the different studies. They propose a review of some technical-economical aspects (costs, energy cost, price evolutions, improvement of the wood-energy mobilization). The second part proposes a whole set of volume calculations for different forest types (clusters or plantations of trees, copses, sawmills products), for industry and household consumption. It discusses the available volumes with respect to accessibility, additional available volumes, and possible improvements. The third part analyses, comments and discusses the wood market and wood energetic uses, and the possible supply curves for wood energetic uses by 2016

  6. 含掺合料混凝土水化产物体积分数计算及其影响因素%Calculation of concrete with mineral admixture hydration products volume fraction and its influential factors

    Institute of Scientific and Technical Information of China (English)

    吴福飞; 董双快; 宫经伟; 陈亮亮; 李东生; 侍克斌

    2016-01-01

    Powers theory proposes calculation method for the pure volume of cement hydration products, which does not apply to calculate the volume of cementitious materials with mineral admixture. The formula of cementitious materials volume was proposed that based on the basic principles of cement and mineral admixture hydration, and the proposed method of reliability was verified by the results of Powers theoretical model and volume fraction of cement hydration products. On this basis, the factor such as water-cement ratio, the ratio of admixture and types was further researched for the volumes of cementitious materials hydration products. Mixture in test were designed 2 water-cement ratio (0.30 and 0.40, respectively), two content (20% and 60%, respectively) of mineral admixture, and 3 kinds of mineral admixture (lithium slag, fly ash and steel slag, respectively), forming paste that was stirred according with the designed ratio in 5 mL centrifuge tube in a blender and curing to 1, 7, 14, 28, 60 and 90 d in curing room (temperature was (20±1)℃, humidity was not less than 95%), and then testing reaction extent of cement and mineral admixture (such as fly ash, steel slag. lithium slag) according with the chemical bound water and HCl dissolution method. The results showed that hydration extent of lithium slag, fly ash and steel slag at 28d decreased by 46.63%, 69.56% and 74.82% (P<0.05) when mineral admixture content varied from 20% to 60% and water-cement ratio was 0.30. Hydration extent of cement at 28 d was increased by 7.25% when water-cement ratio increased from 0.30 to 0.40. When mineral admixture content varied from 20% to 60%, hydration extent of lithium slag, fly ash and steel slag at 28 d increased by 24.14% 18.56%, 17.61% and 8.84%, 12.21%, and 29.37% (P<0.05), respectively. In contrast, the influence of the mineral admixture content was bigger than water-cement ratio for the hydration extent of composite cementitious materials. In different water-cement ratio

  7. Experimental measurement of the solubility of bismuth phases in water vapor from 220 deg. C to 300 deg. C: Implications for ore formation

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Jason M. [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States); Wood, Scott A., E-mail: swood@uidaho.edu [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States)

    2009-04-15

    Preliminary measurements were carried out of the solubility of the O{sub 2-}buffering assemblage bismuth + bismite (Bi{sub 2}O{sub 3}) in aqueous liquid-vapor and vapor-only systems at temperatures of 220, 250 and 300 deg. C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid-vapor experiments at 220 deg. C yielded Bi concentrations ({+-}1{sigma}) in the condensed liquid of 0.22 {+-} 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 {+-} 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 deg. C were in the same range as those at 220 deg. C, whereas those at 300 deg. C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 deg. C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations ({+-}1{sigma}) of Bi in the vapor-only solubility experiments at 220 deg. C were 235 {+-} 78 mg/L for an initial water volume of 0.5 mL, and at 300 deg. C were 56 {+-} 30 mg/L and 33 {+-} 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity. The experiments reported here suggest that significant Bi transport is possible in the vapor phase. Comparison of the liquid-vapor

  8. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  9. 制冷剂汽液两相区音速的计算与分析%Calculation and Analysis of Sound Velocity in Vapor-liquid Two-phase Refrigerant Flow

    Institute of Scientific and Technical Information of China (English)

    王艳庭; 张华

    2011-01-01

    Sound velocity of fluid is important thermodynamic parameter. But viewing from the existing literature, there is a lack of sound velocity data. This paper presents the calculation of sound velocity for the adiabatic two-phase flow of refrigerant through capillary tube based on homogenous equilibrium model. According to the definition of sound velocity a=√δρ/δρ and Martin-Hou equation of state the sound velocity is obtained using the finite difference method. The sound velocities of three refrigerants, R22, R134a, R744, have been calculated in this paper. The calculation results have been validated by published experimental data and showed fair agreement with the experimental data with an error band of 4%. According to the calculated two-phase sound velocity data, the sonic curves were drawn in the pressure-enthalpy diagram. The data and curves show that the sound velocity increases with the entropy at the same pressure. From the triple point pressure sound velocity on the isentropic curve increases firstly and then decreases. Sound velocity on the isenthalpic curve decreases monotonically for R134a and R744. But the sound velocity of R22 increases firstly then decreases.%流体的音速是流体重要的热力学参数,从现有文献看,制冷剂两相区的音速数据缺乏.采用均相流模型,从马丁-侯状态方程出发,根据绝热音速的定义α=√(e)p/(e)pad,利用有限差分方法得到了常用的制冷剂R22、R134a、R744两相区的等熵绝热音速数据,并用文献中的两相区音速实验结果对其进行了验证,表明两者音速误差在4%以内.根据计算出的两相区音速数据,利用相关软件在lgp-h图里面绘制了等音速线,对两相区音速数据进行了分析讨论.数据显示相同压力下,随着熵值的增大,音速值逐渐变大;自三相点压力至饱和压力等熵线上的音速会出现先增大后减小的现象;等焓线上的音速,R134a、R744单调递减,R22先增大后减小.

  10. Calculation of Departure from Nucleate Boiling Ratio (DNBR) minimum for accident analysis of main steam line break at Angra-1; Calculo do minimo DNBR para analise do acidente de ruptura da linha principal de vapor em Angra-1

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Marcio Dornellas [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). E-mail: mdorne@eletronuclear.gov.br

    2000-07-01

    The maintenance costs, the operational problems and the failures possibilities of the boron injection system, composed by pumps, valves, heated lines and the boron injection tank, make this tank removal or the boron concentration reduction advisable for Angra 1 Power Plant. The main accident from chapter XV of the final safety analysis report affected by this modification is the main steam line break. It is necessary the interaction of the areas of Accidents and Transients Analysis (RETRAN 02/Mod 5.1 code), Neutronics (APA System) and Thermohydraulics (COBRA IIIC/MIT) to analyse this accident. The present Angra 1 boron concentration is 20000 ppm and it could be reduced to 2000 ppm as a result of the present study. The Departure from Nucleate Boiling Ratio (DNBR) is the restrictive parameter of this accident, which is calculated from the initials and boundary conditions obtained from the Transients and Accidents Analysis and Neutronics areas. (author)

  11. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  12. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  13. CONSTRUCTION OF EXPERIMENTAL INSTALLATION FOR RESEARCHING OF DENSITY AND SATURATED VAPOR PRESSURE (SVP OF PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-03-01

    Full Text Available The most important physical properties that characterize the substance are density and saturated vapor pressure (SVP. These parameters are required for the development of new technical processes in the petroleum and chemical industries, design of pipelines, pumping and fuel equipment, etc. Existing methods for calculating of density near and on the saturation lines are imperfect, and finding of the analytic dependence of SVP of petroleum products from all defining parameters associated with great difficulties. The purpose of present work is an experimental research and development of methods for calculating the density (specific volume near and on saturation lines, and saturated vapor pressure of gasoline straight-run fraction derived from petroleums from three fields: Mangyshlaksky, Trinity-Anastasevsky and West Siberian. The choice of objects for research is due to the necessity of creating methods for calculating of density and SVP of oils obtained from various hydrocarbon group composition petroleums. Area of state parameters in the present work by temperature (20 ÷ 320°C and pressure (0,03 ÷ 30 MPa provides the ability to research gasoline fractions to supercritical regions. Measurement of density and SVP of petroleum fractions performed with help of a specially created for this purpose experimental installation

  14. A computational model for reliability calculation of steam generators from defects in its tubes; Um modelo computacional para o calculo da confiabilidade de geradores de vapor a partir de defeitos em seus tubos

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Paulo C.M.; Melo, P.F. Frutuoso e [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    Nowadays, probability approaches are employed for calculating the reliability of steam generators as a function of defects in their tubes without any deterministic association with warranty assurance. Unfortunately, probability models produce large failure values, as opposed to the recommendation of the U.S. Code of Federal Regulations, that is, failure probabilities must be as small as possible In this paper, we propose the association of the deterministic methodology with the probabilistic one. At first, the failure probability evaluation of steam generators follows a probabilistic methodology: to find the failure probability, critical cracks - obtained from Monte Carlo simulations - are limited to have length's in the interval defined by their lower value and the plugging limit one, so as to obtain a failure probability of at most 1%. The distribution employed for modeling the observed (measured) cracks considers the same interval. Any length outside the mentioned interval is not considered for the probability evaluation: it is approached by the deterministic model. The deterministic approach is to plug the tube when any anomalous crack is detected in it. Such a crack is an observed one placed in the third region on the plot of the logarithmic time derivative of crack lengths versus the mode I stress intensity factor, while for normal cracks the plugging of tubes occurs in the second region of that plot - if they are dangerous, of course, considering their random evolution. A methodology for identifying anomalous cracks is also presented. (author)

  15. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.

    Science.gov (United States)

    Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A

    2014-10-21

    The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method.

  16. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  17. Flow Rate Calculation in the Auto Air Leakage Volume Test System Based on Constant Pressure Method%基于恒压法的汽车整车漏风量测试系统流量计算

    Institute of Scientific and Technical Information of China (English)

    李亚; 赵鑫; 李振亮; 许玮

    2013-01-01

    An auto air leakage volume test system based on constant pressure method was designed. Using standard orifice plate as throttle device,after testing some original data such as the differential pressure between both sides of the throttle device,temperature of the dry-bulb and the wet-bulb,and so on,the auto air leakage volume can be calculated. The formulas and methods involved were demonstrated in detail and the experiment was designed based on an analysis of the measurement theory. According to the result of the experiment,this method proved stable and reliable and can satisfy the requirement of the measurement.%  设计了基于恒压法的汽车整车漏风量测试系统。采用标准孔板作为节流件,通过测量节流件上下游的压力差、干球温度和湿球温度等基础数据,经过计算可得到整车漏风量。在分析测量原理的基础上,详细给出了计算漏风量的公式和方法,并进行了实验。实验结果表明,该计算方法稳定可靠,可满足测量要求。

  18. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  19. FEATURES OF WATER VAPOR TRANSPORT OF TYPHOON DAN (9914)

    Institute of Scientific and Technical Information of China (English)

    DENG Guo; ZHOU Yu-shu; YU Zhan-jiang

    2006-01-01

    The 2.5°×2.5°gridded ECMWF reanalysis data are used to diagnose the genesis, development and dissipation of typhoon Dan by calculated stream function, velocity potential and vapor budget. It is shown in the result that when typhoon Dan moved westwards, water vapor mainly came from the eastern and western boundaries, with most of it was transferred by the easterly flow south of the western North Pacific subtropical high; after Dan swerved northwards, water vapor mainly came from western boundary of the typhoon, and the vapor came from the South China Sea and the Indian Ocean. The transfer of water vapor was mainly concentrated on the mid-lower troposphere, especially the level of 925hPa, at which the most intensive transfer belt was located. During the different period of typhoon Dan, there was great water vapor change as indicated by stream function, velocity potential and vapor budget, which suggest the importance of water vapor in the development of typhoon Dan.

  20. Excess liquid in heat-pipe vapor spaces

    Science.gov (United States)

    Eninger, J. E.; Edwards, D. K.

    1977-01-01

    A mathematical model is developed of excess liquid in heat pipes that is used to calculate the parameters governing the axial flow of liquid in fillets and puddles that form in vapor spaces. In an acceleration field, the hydrostatic pressure variation is taken into account, which results in noncircular meniscus shapes. The two specific vapor-space geometries considered are circular and the 'Dee-shape' that is formed by a slab wick in a circular tube. Also presented are theoretical and experimental results for the conditions under which liquid slugs form at the ends of the vapor spaces. These results also apply to the priming of arteries.

  1. Computer simulated rate processes in copper vapor lasers

    Science.gov (United States)

    Harstad, K. C.

    1980-01-01

    A computer model for metal vapor lasers has been developed which places emphasis on the change of excited state populations of the lasant through inelastic collisions and radiative interaction. Also included are an energy equation for the pumping electrons and rate equations for laser photon densities. Presented are results of calculations for copper vapor with a neon buffer over a range of conditions. General agreement with experiments was obtained.

  2. Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor

    Science.gov (United States)

    Schulte, Kevin L.; Simon, John; Roy, Abhra; Reedy, Robert C.; Young, David L.; Kuech, Thomas F.; Ptak, Aaron J.

    2016-01-01

    We report the development of a computational fluid dynamics (CFD) model of a dual chamber hydride vapor phase epitaxial (HVPE) growth reactor. Uniformity of reactant concentrations in the growth stream, transient reactor flows, and cross doping between the two growth chambers, all factors critical to the deposition of uniform, low defect semiconductor layers, were modeled. Simulation results were generated by solving the fundamental continuity, momentum and energy equations over a discretized reactor volume by a finite volume analysis with the aid of CFD-ACE+ commercial software. We demonstrated uniformity of the vapor composition within ±1% across the substrate, achieved due to specific features of the reactor design. Small compositional non-uniformity (±2% absolute) in In1-xGaxP layers grown in our reactor was correlated with calculated temperature non-uniformity across the substrate. Gas switching was modeled and the transient time predicted by the model was confirmed by measurement of doping transients in a sample grown in the reactor. Lastly the gas curtains that chemically isolate the reactor chambers were modeled and the results were compared to experimental data for cross doping between the chambers. As an example, we demonstrate, based on insight from the model, that our HVPE reactor is suitable for the deposition of GaAs PV devices. CFD modeling is a critical tool for the scale up of laboratory level processes to industrial levels.

  3. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  4. 富氧燃煤锅炉烟气再循环方式选择与水分平衡计算%Mode Selection of Flue Gas Recirculation and Balance Calculation of Water Vapor Content for Oxy-Coal Combustion Boilers

    Institute of Scientific and Technical Information of China (English)

    阎维平; 董静兰; 马凯

    2011-01-01

    Taking the 300 MW oxy-coal combustion boiler as an object of study,the water vapor content in flue gas and the auxiliary power consumption were calculated and compared,at different modes of secondary flue gas recirculation,with the flue gas dehydrated by DCC method or dehydrated and desulphurized by FGD+DCC process.Results show that when the flue gas is merely dehydrated by DCC,if dehydration is not applied in the secondary flue gas recirculation,the volumetric fraction of water vapor in flue gas from oxy-coal combustion system will be 10%-15% higher than that from air combustion;if dehydration is applied in the secondary flue gas recirculation,the former one will be 3% higher than the latter one.Whereas in a FGD+DCC arrangement,when both desulphurization and dehydration are applied in the secondary flue gas recirculation,the water vapor content in flue gas will be slightly higher than that only DCC is used and no dehydration is adopted in the secondary flue gas recirculation.At a recirculating water temperature of 30 ℃,the volumetric fraction of water vapor at DCC outlet is about 4.28%.The total power consumption of fan reaches the minimum under single DCC condition at the mode of dry flue gas recirculation.%在不同的二次烟气再循环方式下,以300 MW富氧燃烧锅炉机组为例,对分别采用直接接触式冷却器(DCC)进行烟气脱水和湿式脱硫(FGD)与DCC串联进行烟气脱硫及脱水的富氧燃烧系统详细计算并比较了烟气中水蒸气体积分数的变化,并计算和比较了各种布置方式下的风机功耗.结果表明:单独采用DCC脱水情况下,锅炉烟气水蒸气体积分数比空气燃烧方式下高10%-15%;二次循环烟气脱水时,锅炉烟气中的水蒸气含量比空气燃烧方式下高约3%;FGD与DCC串联布置时的锅炉流通烟气水蒸气含量略高于采用单独DCC时二次循环烟气脱水的水蒸气含量;电厂循环水温度为30℃时,DCC出口烟气理

  5. Corollary from the Exact Expression for Enthalpy of Vaporization

    Directory of Open Access Journals (Sweden)

    A. A. Sobko

    2011-01-01

    Full Text Available A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic parameters at the critical point.

  6. The theoretical analysis of the Fog removal in the LNG Ambient Vaporizer

    Science.gov (United States)

    Lee, T.; Lee, D.; Jeong, H.; Chung, H.

    2015-09-01

    The fog removal process is one of the important process in LNG Ambient Vaporizer. In this study we carried out theoretical study of the fog removal process in LNG Ambient Vaporizer. The LNG Ambient Vaporizer in Incheon area was used in our study. The fog temperature and the required energy produced from air fan to remove fog in LNG Ambient Vaporizer were calculated using average temperature of Incheon area in 2012 by Psychometruc Chart method. As a result we can be remove fog in LNG Ambient Vaporizer using Enthalpy[kW] energy in summer season and Enthalpy[kW] in winter season respectively.

  7. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent;

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  8. New class of compounds have very low vapor pressures

    Science.gov (United States)

    Angell, C. A.; Gruen, D. M.

    1967-01-01

    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids.

  9. Electrical installation calculations

    CERN Document Server

    Watkins, AJ

    2006-01-01

    Designed to provide a step by step guide to successful application of the electrical installation calculations required in day to day electrical engineering practice, the Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike.Now in its seventh edition, Volume 1 has been fully updated to meet the requirements of the 2330 Level 2 Certificate in Electrotechnical Technology from City & Guilds, and will also prove a vi

  10. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  11. Calculation and analysis of hydrogen volume concentrations in the vent pipe rigid proposed for NPP-L V; Calculo y analisis de concentraciones volumetricas de hidrogeno en el tubo de venteo rigido propuesto para la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz I, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In 2012 was modeled of primary and secondary container of the nuclear power plant of Laguna Verde (NPP-L V) for the CFD Gas-Flow code. These models were used to calculate hydrogen volume concentrations run release the reactor building in case of a severe accident. The results showed that the venting would produce detonation conditions in the venting level (level 33) and flammability at ground level of reload. One of the solutions to avoid reaching critical concentrations (flammable or detonable) inside the reactor building and thus safeguard the contentions is to make a rigid venting. The rigid vent is a pipe connected to the primary container could go to the level 33 of the secondary container and style fireplace climb to the top of the reactor building. The analysis of hydrogen transport inside the vent pipe can be influenced by various environmental criteria and factors vent, so a logical consequence of the 2012 analysis is the analysis of the gases transport within said pipe to define vent ideal conditions. For these evaluations the vent pipe was modeled with a fine mesh of 32 radial interior nodes and a coarse mesh of 4 radial interior nodes. With three-dimensional models were realized calculations that allow observing the influence of heat transfer in the long term, i.e. a complete analysis of exhaust (approx. 700 seconds). However, the most interesting results focus on the first milliseconds, when the H{sub 2} coming from the atmosphere of the primary container faces the air in the vent pipe. These first milliseconds besides allowing evaluating the detonation criteria in great detail in the different tubular sections similarly allow evaluating the pressure wave that occurs in the pipe and that at some point slows to the fluid on the last tubular section and could produce a detonation inside the pipe. Results are presented for venting fixed conditions, showing possible detonations into the pipe. (Author)

  12. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  13. Computation of infrared cooling rates in the water vapor bands

    Science.gov (United States)

    Chou, M.-D.; Arking, A.

    1980-01-01

    A fast and accurate method is developed for calculating the infrared radiative terms due to water vapor - specifically, the atmospheric cooling rates. The accuracy is achieved by avoiding the constraints of band models and working directly with the absorption coefficient, which is a function of temperature and pressure as well as wavenumber. The method is based on calculation of an equivalent water vapor amount between atmospheric pressure levels and a table look-up procedure. Compared to line-by-line calculations, the present method has errors up to 4% of the maximum cooling rate. The use of a scaling factor, based on the far-wing approximation, limits the applicability of the method to the troposphere and lower stratosphere, where the line wings are responsible for most of the radiative cooling associated with water vapor.

  14. Water vapor retrieval from OMI visible spectra

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-01-01

    optimization of retrieval windows and parameters. The Air Mass Factor (AMF is calculated using look-up tables of scattering weights and monthly mean water vapor profiles from the GEOS-5 assimilation products. We convert from SCD to Vertical Column Density (VCD using the AMF and generate associated retrieval averaging kernels and shape factors. Our standard water vapor product has a median SCD of ~ 1.3 × 1023 molecule cm−2 and a median relative uncertainty of ~ 11% in the tropics, about a factor of 2 better than that from a similar OMI algorithm but using narrower retrieval window. The corresponding median VCD is ~ 1.2 × 1023 molecule cm−2. We have also explored the sensitivities to various parameters and compared our results with those from the Moderate-resolution Imaging Spectroradiometer (MODIS and the Aerosol Robotic NETwork (AERONET.

  15. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  16. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    OpenAIRE

    Jan Havlík; Tomáš Dlouhý

    2015-01-01

    This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC) inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The...

  17. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  18. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  19. Calculation and Analysis of Lumped Parameter of Volume Conduction Model%体导电能量传递模型集总参数的计算与分析

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 唐治德; 谢小慧; 陈小梅

    2012-01-01

    研究生物医学体内植入器件能量供应优化方法,为了优化体导电系统效能,利用皮肤电特性高效地向体内植入器件提高能量.提出体导电能量传递系统体外采用圆形柱体阵列电极,将皮肤电极单元等效为多导体系统,建立了流经各电极的电流与电压的导纳矩阵关系,并用欧姆定律与电磁场原理相结合的方法计算出皮肤电极单元的集总参数.通过比较集总参数,得到圆形柱体阵列电极较圆形柱体电极具有更优的阻抗分配,能够提高体导电电流传递效率.利用有限元软件仿真了圆形柱体阵列电极皮肤单元的电流传递,证明效率能达50%以上.%In order to optimize Volume Conduction system, we used the electrical characteristics of skin to transfer energy to the implanted device efficiently, treated the skin-electrodes of volume conductive as multi-conductor sys-tem , and established the admittance matrix to show the relationship between voltage and current. Ohm's law and elec-tromagnetic field theory were used to calculate the lumped parameter of skin-electrodes unit. Through comparing cir-cular cylinder electrode with circular cylinder arrenging-electrodes' lumped parameter, it can be concluded that cir-cular cylinder arranging-electrodes has better impedance distribution, higher energy transfer efficiency. Finally, fi-nite element software FEMlab3.3 was used to simulate the efficiency of circular cylinder array electrode-skin unit, and it can reach above 50%.

  20. Electron transport analysis in water vapor

    Science.gov (United States)

    Kawaguchi, Satoru; Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori

    2016-07-01

    A reliable set of electron collision cross sections for water vapor, including elastic, rotational, vibrational, and electronic excitation, electron attachment, and ionization cross sections, is estimated by the electron swarm method. In addition, anisotropic electron scattering for elastic and rotational excitation collisions is considered in the cross section set. Electron transport coefficients such as electron drift velocity, longitudinal diffusion coefficient, and effective ionization coefficient are calculated from the cross section set by Monte Carlo simulation in a wide range of E/N values, where E and N are the applied electric field and the number density of H2O molecules, respectively. The calculated transport coefficients are in good agreement with those measured. The obtained results confirm that the anisotropic electron scattering is important for the calculation at low E/N values. Furthermore, the cross section set assuming the isotropic electron scattering is proposed for practical use.

  1. Transurethral bipolar plasmakinetic resection combined with 2 μm laser vaporization in the treatment of larger-volumed benign prostate hyperplasia%经尿道等离子双极电切联合2μm激光汽化治疗大体积良性前列腺增生

    Institute of Scientific and Technical Information of China (English)

    廖乃凯; 俞建军; 徐月敏; 乔勇; 陈忠; 胡晓勇; 宋鲁杰; 李超

    2012-01-01

    目的 探讨经尿道等离子双极电切(Bipolar plasmakinetic resection of the prostate,PKRP)联合2 μm激光汽化治疗大体积前列腺增生的安全性和有效性.方法 分别用PKRP及PKRP联合2 μm激光汽化治疗80 g以上BPH患者各148例和136例, 比较两组的手术时间、切除组织量、术后血红蛋白变化、膀胱冲洗时间、留置尿管时间、住院时间及手术并发症发生率和疗效.结果PKRP联合2μm激光汽化组手术前后血红蛋白变化较PKRP组小,手术时间、术后膀胱冲洗、留置尿管及住院时间明显缩短,术后继发性出血、输血及尿路刺激症状发生率降低,两者差异具有统计学意义(P<0.05).两组术中切除组织量、术后尿道狭窄、暂时性尿失禁及逆行射精发生率比较差异均无统计学意义(P>0.05).术后随访半年,两组患者术后残余尿量、IPSS评分、生活质量评分及最大尿流率术后均较术前明显改善,差异具有统计学意义(P<0.05),但两组间的改善程度差异无显著意义(P>0.05).结论采用经尿道等离子双极电切联合2μm激光汽化术治疗良性前列腺增生,充分发挥了PKRP和2μm激光汽化的优势,出血更少,速度更快,效果较好,是大体积良性前列腺增生较为理想的微创治疗选择.%Objective To investigate the effectiveness and safety of transurethral bipolar pla'smakinetic resection of the prostate (PKRP), or combined with 2 urn laser vaporization in the treatment of larger-volumed benign prostate hyperplasia. Methods A total of 284 patients with the prostate heavier than 80g were included in this study. Out of them, 136 patients were treated by PKRP combined with 2 nm laser vaporization and the other 148 by PKRP. All the patients were followed up to compare the duration of operation, resected weight, hemoglobin change, duration of irrigation, catheterization, and hospitalization, complications and clinic effectiveness of the two groups. Results

  2. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  3. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  4. High temperature vapor pressure of pure plutonium

    International Nuclear Information System (INIS)

    High temperature vapor pressure measurements have been made on pure plutonium metal by the Knudsen effusion technique. The reported experimental results extend into the transition region between molecular and viscous or hydrodynamic flow. Under the conditions used, linearity was observed up to temperatures in excess of 2200 K where pressures approaching 100 Pa were measured. The results over the temperature range 1724--2219 K yield log10P/sub Pu/(Pa) = (9.735 +- 0.105) -17066 +- 208/T and the enthalpy and entropy of vaporization and the standard deviations therein are ΔH0/sub v/(Pu,1975 K) =326.78 +- 3.97 kJ mol-1, ΔS0/sub v/(Pu,1975 K) =90.54 +- 2.01 J K-1 mol-1. Based on the most recently available free energy functions for plutonium liquid and gas, the values of the standard enthalpy of vaporization calculated via second- and third-law methods are ΔH0/sub v/(II, Pu,298 K) =344.14 +- 3.97 kJ mol-1, ΔH0/sub v/(III, Pu,298 K) =341.67 +- 1.26 kJ mol-1. Single crystal tungsten containers were used to hold the charge of plutonium and proved to be very satisfactory in alleviating problems of liquid metal creep and liquid/cell interactions normally encountered with actinides held at high temperatures for long periods

  5. Prediction of Shanmei Reservoir Region's Pollution Status and Calculation of Pollution Volume into Reservoir in 2011%山美库区2011年污染物预测与入库量计算

    Institute of Scientific and Technical Information of China (English)

    林加兴

    2011-01-01

    针对山美水库库区污染物问题,对库区2011年污染物入库量进行初步计算得出流域污染物入库量及主要污染源,建议采取工程治理措施和非工程措施相结合的方法削减入库污染负荷,供山美水库流域水源地水污染防治实施参考。并能通过实施水生态系统保护与修复技术工程的建设,解决目前危害水源地安全的重大问题,推动山美水库水源地保护工作的全面开展。%Aimed at the pollutant discharge status of Shanmei Reservoir, the pollutant volume into the reservoir area in 2011 is calculated primarily, and some problems about the basin pollution are put forward, then the suggestions are proposed that the methods combining the engineering measures with non-engineering measures are used for reducing the pollution load into the reservoir, which could provide references for the reservoir's water resource pollution controlling. At the same time, through carrying out the aquatic ecosystem protection and remedying project, the serious problems of harming the security of water sources could be solved, and the water source protection job for Shamnei Reservoir could be promoted comprehensively.

  6. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  7. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  8. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  9. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    Science.gov (United States)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  10. Tank vapor characterization project - headspace vapor characterization of Hanford Waste Tank 241-C-107: Second comparison study results from samples collected on 3/26/96

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  11. Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-07-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  12. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.; Pool, K.H.; Evans, J.C. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  13. Tank vapor characterization project: Headspace vapor characterization of Hanford Waste Tank 241-S-102: Second comparison study results from samples collected on 04/04/96

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.J. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  14. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  15. VAPOR SHIELD FOR INDUCTION FURNACE

    Science.gov (United States)

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  16. Vapor Pressure, Vaporization Enthalpy, Standard Enthalpy of Formation and Standard Entropy of n-Butyl Carbamate

    Institute of Scientific and Technical Information of China (English)

    Zuoxiang Zeng⁎; Zhihong Yang; Weilan Xue⁎; Xiaonan Li

    2014-01-01

    The vapor pressures of n-butyl carbamate were measured in the temperature range from 372.37 K to 479.27 K and fitted with Antoine equation. The compressibility factor of the vapor was calculated with the Virial equation and the second virial coefficient was determined by the Vetere model. Then the standard enthalpy of vaporization for n-butyl carbamate was estimated. The heat capacity was measured for the solid state (299.39–324.2 K) and liquid state (336.65–453.21 K) by means of adiabatic calorimeter. The standard en-thalpy of formationΔfHϴ[crystal (cr),298.15 K] and standard entropy Sϴ(crystal,298.15 K) of the sub-stance were calculated on the basis of the gas-phase standard enthalpy of formationΔfHϴ(g,298.15 K) and gas-phase standard entropy Sϴ(g,298.15 K), which were estimated by the Benson method. The results are acceptable, validated by a thermochemical cycle.

  17. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995

    International Nuclear Information System (INIS)

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-A-101 (Tank A-101) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed in Table 1. Detailed descriptions of the analytical results appear in the text

  18. A stratospheric water vapor feedback

    Science.gov (United States)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-12-01

    Variations in stratospheric water vapor play a role in the evolution of our climate. We show here that variations in water vapor since 2004 can be traced to tropical tropopause layer (TTL) temperature perturbations from at least three processes: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the troposphere. The connection between stratospheric water vapor and the temperature of the troposphere implies the existence of a stratospheric water vapor feedback. We estimate the feedback in a chemistry-climate model to have a magnitude of +0.3 W/m2/K, which could be a significant contributor to the overall climate sensitivity. About two-thirds of the feedback comes from the extratropical stratosphere below ~16 km (the lowermost stratosphere), with the rest coming from the stratosphere above ~16 km (the overworld).

  19. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  20. MEMS Calculator

    Science.gov (United States)

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  1. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Thermodynamic functions of the gaseous species, thermodynamic functions of the condensed phase, and an oxygen-potential model have been combined to calculate the vapor pressures and vapor compositions in equilibrium with condensed-phase UO/sub 2-x/ for 1500 less than or equal to T less than or equal to 6000 K and 0 less than or equal to x less than or equal to 0.5. A method for extending the oxygen-potential model of Blackburn to the liquid region has been derived and evaluated. New thermodynamic functions of the UO2 condensed phase have been derived from the best available data, including the heat capacity recommended by Fink

  2. Vapor deposition of hardened niobium

    Science.gov (United States)

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  3. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...... complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested....

  4. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  5. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  6. Water-vapor source shift of Xinjiang region during the recent twenty years

    Institute of Scientific and Technical Information of China (English)

    Dai Xingang; Li Weijing; Ma Zhuguo; Wang Ping

    2007-01-01

    The aim of this paper is to investigate the climate water-vapor sources of Xinjiang region and their shifts during the past 20 years. First, the principle and steps are roughly regulated to seek the water-vapor sources. Second, the climate stationary water-vapor transport in troposphere is calculated to distinguish where the water vapor comes from by ERA-40 reanalysis. In addition, the collocation between the transport and the atmospheric column water vapor content is analyzed. The results show that the major vapor comes from the west side of Xinjiang for mid-month of seasons, apart from July while the water vapor comes from the north or northwest direction. The water vapor sources are different for different seasons, for example, the Caspian Sea and Mediterranean are the sources in January and April, the North Atlantic and the Arctic sea in July, and the Black Sea and Caspian Sea in October, respectively. In recent ten years more water vapor above Xinjiang comes from the high latitudes and the Arctic sea with global warming, and less from Mediterranean in comparison with the case of 1973-1986. In fact, the air over subtropics becomes dry and the anomalous water vapor transport direction turns to west or southwest during 1987-2000. By contrast, the air over middle and high latitudes is warmer and wetter than 14 years ago.

  7. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  8. PECULIARITIES OF THE IDEALIZED CYCLES OF VAPOR COMPRESSOR REFRIGERATING MACHINES

    OpenAIRE

    Вассерман, А. А.; Лавренченко, Г. К.; Слынько, А. Г.

    2014-01-01

    Efficiency of the idealized cycles of vapor compressor refrigerating machines with adiabatic or isothermal compression of refrigerantwas investigated. To these cycles concern cycles with adiabatic compression of steam without regeneration (S-cycle) and with limiting regeneration (SR-cycle), and also with isothermal compression and limiting regeneration (T-cycle). Three characteristics of cycles are compared: refrigerating coefficient of performance e, specific-volume cooling capacity qv and t...

  9. Vaporization kinetics of Sb2S3 in argon fluid

    Institute of Scientific and Technical Information of China (English)

    杨勇; 华一新

    2003-01-01

    The vaporization kinetics of antimony trisulfide in argon fluid was studied with thermogravimetry at 873- 1 173 K. A theoretical model was developed to calculate the overall rate constant and the mass transfer coefficient ingas phase. The experimental results show that the vaporization rate is enhanced with increasing temperature and ar-gon flow-rate. The evaporation rate is mainly controlled by mass transport in the gas phase. The apparent activationenergy for the process is found to be 55.54 kJ/mol. It is demonstrated that the mass transfer coefficient in gas phaseis decreased with increasing temperature.

  10. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  11. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  12. Vaporization of Deforming Droplets

    Science.gov (United States)

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  13. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  14. Fundamental studies of chemical vapor deposition diamond growth processes

    International Nuclear Information System (INIS)

    We are developing laser spectroscopic techniques to foster a fundamental understanding of diamond film growth by hot filament chemical vapor deposition (CVD). Several spectroscopic techniques are under investigation to identify intermediate species present in the bulk reactor volume, the thin active volume immediately above the growing film, and the actual growing surface. Such a comprehensive examination of the overall deposition process is necessary because a combination of gas phase and surface chemistry is probably operating. Resonantly enhanced multiphoton ionization (REMPI) techniques have been emphasized. A growth rector that permits through-the-substrate gas sampling for REMPI/time-of-flight mass spectroscopy has been developed. 7 refs., 2 figs

  15. THE STABILITY OF VAPOR CONDENSATION EQUILIBRIUM

    OpenAIRE

    SHIMIN ZHANG

    2005-01-01

    The system must get across an energy peak of unstable equilibrium during the condensation of pure vapor; as the supersaturated extent of vapor increases and the temperature decreases, the energy peak shortens and vapor condensation becomes easier. The system must get across an energy peak of unstable equilibrium first, and then get into an energy valley of stable equilibrium during the condensation of impure vapor; as the partial pressure of vapor decreases, the energy peak becomes taller, th...

  16. Stage 2 vapor recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W.H.; Strock, D.J.; Butkovich, M.S.; Hartman, H.B.

    1993-05-25

    A vapor recovery system is described, comprising: a set of elongated underground storage tanks, each storage tank containing a different grade of gasoline; vent pipes; a series of dispensing units; fuel flow lines; vapor return lines; an array of fuel pumps for pumping gasoline from said storage tanks to said dispenser units; an elongated condensate liquid pickup tube; an elongated inner spout providing a fuel conduit and having an outer tip defining a fuel outlet for discharging gasoline into a filler pipe of a motor vehicle tank during fueling; an outer spout assembly; extending into and engaging said spout-receiving socket, said outer spout assembly comprising an outer spout providing a vapor return conduit and defining apertures providing a vapor inlet spaced from said fuel outlet for withdrawing, removing, and returning a substantial amount of gasoline vapors emitted during said fueling; an elongated liquid sensing tube; a manually operable level; a flow control valve assembly; an automatic shutoff valve assembly; and a venturi sleeve assembly positioned in said venturi sleeve receiving chamber.

  17. The Lithium Vapor Box Divertor

    Science.gov (United States)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  18. Change law of real vapor pressure of Al element in Ti- x Al ( x =25~50) melt during ISM process

    Institute of Scientific and Technical Information of China (English)

    刘贵仲; 苏彦庆; 郭景杰; 丁宏升; 贾均; 傅恒志

    2002-01-01

    A new model was established to calculate the real vapor pressure of the Al element in the molten Ti- x Al ( x =25~50,mole fraction,%) alloy.The effects of the holding time,chamber pressure,mole fraction of Al and melting temperature on the real vapor pressure of Al element in the vacuum chamber were analyzed.Because of the impeding effect of the real vapor pressure on the evaporation loss rate,within a short time (less than 10 s),the real vapor pressure tends to a constant value.When the chamber pressure is less than the saturated vapor pressure of the Al component,the real vapor pressure of Al is equal to the chamber pressure.While when the chamber pressure is larger than the saturated vapor pressure,the real vapor pressure is equal to the saturated vapor pressure of the Al element of the same condition.

  19. Benzene vapor recovery and processing

    International Nuclear Information System (INIS)

    The National Emissions Standards for Hazardous Air Pollutants, or NESHAPs, have provided a powerful motivation for interest in, and attention to, benzene vapor emissions in recent times. Benzene and its related aromatics are volatile organic compounds (VOCs), which marks them for surveillance as potential contributors to air pollution. In addition, benzene is a suspected carcinogen, which applies a special urgency to its control. The regulations governing the control of benzene emissions were issued as Title 40, Code of Federal Regulations, Part 61, subpart Y (Storage Vessels); subpart BB (Transfer Operations); and subpart FF (Waste Operations). These regulations specify very particular emission reduction guidelines for various generating sources. The problem in the hydrocarbon processing industry is to identify significant sources of benzene vapors in plants, and then to collect and process these vapors in an environmentally acceptable manner. This paper discusses various methods for collecting benzene fumes in these facilities

  20. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  1. Influence of soil properties on vapor-phase sorption of trichloroethylene.

    Science.gov (United States)

    Bekele, Dawit N; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-04-01

    Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (Rt), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (VR), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with VR show that a unit increase in clay fraction results in higher sorption of TCE (VR) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils. PMID:26686522

  2. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  3. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  4. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  5. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  6. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols

    International Nuclear Information System (INIS)

    Highlights: • Physical and osmotic properties of [HMim][TfO] in alcohols are reported. • Apparent molar properties and osmotic coefficients were obtained. • Apparent molar volumes were fitted using a Redlich–Meyer type equation. • The osmotic coefficients were modeled with the Extended Pitzer and the MNRTL models. -- Abstract: In this work, density for the binary mixtures of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate in alcohols (1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol) was measured at T = 323.15 K and atmospheric pressure. From this property, the corresponding apparent molar volumes were calculated and fitted to a Redlich–Meyer type equation. For these mixtures, the osmotic and activity coefficients, and vapor pressures of these binary systems were also determined at the same temperature using the vapor pressure osmometry technique. The experimental osmotic coefficients were modeled by the Extended Pitzer model of Archer. The parameters obtained in this correlation were used to calculate the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures

  7. Burnout calculation

    International Nuclear Information System (INIS)

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended

  8. Integrated system for production of neutronics and photonics calculational constants. Volume XVI. Tabular and graphical presentation of 175 neutron group constants derived from the LLL evaluated neutron data library (ENDL)

    International Nuclear Information System (INIS)

    As of February 3, 1975, 175 neutron group constants had been derived from the Evaluated Nuclear Data Library (ENDL) at LLL. In this volume, tables and graphs of the constants are presented along with the conventions used in their preparation. (U.S.)

  9. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Directory of Open Access Journals (Sweden)

    Christian Lanz

    Full Text Available Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot and total CBD (CBDtot in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3% and CBD (≥ 94.6%. The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  10. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  11. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  12. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  13. Reliability calculations

    International Nuclear Information System (INIS)

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  14. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2004-01-01

    efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. The Köhler theory calculations performed with different types of models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A parameterisation for the osmotic coefficient of macromolecular substances has been derived from an osmotic pressure virial equation. For its application only the density and molar mass of the substance have to be known or estimated, and it is fully compatible with traditional volume additivity models for salt mixtures.

  15. Chemical vapor deposition coating for micromachines

    Energy Technology Data Exchange (ETDEWEB)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  16. Remote sensing of water vapor features

    Science.gov (United States)

    Fuelberg, Henry E.

    1991-01-01

    The three major objectives of the project are outlined: (1) to describe atmospheric water vapor features as functions of space and time; (2) to evaluate remotely sensed measurements of water vapor content; and (3) to study relations between fine-scale water vapor fields and convective activity. Data from several remote sensors were used. The studies used the GOES/VAS, HIS, and MAMS instruments have provided a progressively finer scale view of water vapor features.

  17. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl4 is used in Pu recovery from aqueous streams.)

  18. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material

    Science.gov (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo

    2013-03-01

    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  19. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  20. Phosphorescence emission and excited states of 3- and 4-hydroxybenzaldehyde vapors

    Science.gov (United States)

    Itoh, Takao

    2014-01-01

    Emission spectra of 3- and 4-hydroxybenzaldehyde vapors have been measured along with the excitation and absorption spectra. It is inferred from the temperature dependence of the phosphorescence spectrum that the phosphorescence of 4-hydroxybenzaldehyde vapor originates from the T2(n, π*) state. In the case of 3-hydroxybenzaldehyde vapor, the emission is shown to consist of that of 3-hydroxybenzaldehyde and benzaldehyde vapors, with the latter molecule being generated as the result of photochemical decomposition of 3-hydroxybenzaldehyde. The interpretation of the emission spectrum of 3-hydroxybenzaldehyde is different from that reported previously. The rotational isomer responsible for appearance of the phosphorescence of 3-hydroxybenzaldehyde vapor is suggested based on DFT calculation and emission spectral data.

  1. Vapor Pressure Measurements in a Closed System

    Science.gov (United States)

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  2. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    Science.gov (United States)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-08-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  3. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    Directory of Open Access Journals (Sweden)

    M. R. Schoeberl

    2013-04-01

    Full Text Available The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011 is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  4. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    Directory of Open Access Journals (Sweden)

    M. R. Schoeberl

    2013-08-01

    Full Text Available The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011 is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  5. Investigating the Droplet Formation in a Nucleonic Vapor

    CERN Document Server

    Ogul, R

    2003-01-01

    The droplet formation in a supersaturated vapor which may occur during the expansion of an excited blob of nuclear matter in the metastable region at subnuclear densities is investigated. The free energy change accompanying the formation of a drop is calculated as a function of droplet radius for various saturation ratios on the basis of Fisher's model. The results are related to the experimental data

  6. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    OpenAIRE

    Schoeberl, M. R.; A. E. Dessler; Wang, T.

    2013-01-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel o...

  7. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    OpenAIRE

    Schoeberl, M. R.; A. E. Dessler; Wang, T.

    2013-01-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is v...

  8. Volumes of chain links

    CERN Document Server

    Kaiser, James; Rollins, Clint

    2011-01-01

    Agol has conjectured that minimally twisted n-chain links are the smallest volume hyperbolic manifolds with n cusps, for n at most 10. In his thesis, Venzke mentions that these cannot be smallest volume for n at least 11, but does not provide a proof. In this paper, we give a proof of Venzke's statement. The proof for n at least 60 is completely rigorous. The proof for n between 11 and 59 uses a computer calculation, and can be made rigorous for manifolds of small enough complexity, using methods of Moser and Milley. Finally, we prove that the n-chain link with 2m or 2m+1 half-twists cannot be the minimal volume hyperbolic manifold with n cusps, provided n is at least 60 or |m| is at least 8, and we give computational data indicating this remains true for smaller n and |m|.

  9. 基于C#编译研究温度对水处理出水量影响计算软件的开发%Development of a Program for Calculation of the Inlfuence of Temperature on Water Treatment Discharge Volume Based on C#

    Institute of Scientific and Technical Information of China (English)

    王历历

    2015-01-01

    This study focused on development of a program for calculation of the impact of temperature on water treatment discharge volume. Through collection and record of data, the statistical regression method was utilized to obtain the correlation function curve between the reverse-osmosis membrane temperature and water discharge volume of the water treatment system. Then, the program was compiled for calculation of the water treatment discharge volume under different temperature by using C# advanced programming language. The program could provide the necessary basis for the hospital to procure water treatment equipment and evaluate the replacement time of reverse-osmosis membrane.%本研究设计一个程序软件,用于计算血液透析中温度对水处理出水量的影响。通过数据采集与记录,使用统计回归方法得出水处理系统反渗透膜温度与出水量的几种函数关系曲线,利用C#高级程序编译语言,编写不同温度下水处理出水量的计算程序软件。该软件为医院采购水处理设备与评估反渗膜的更换时间提供必要的数据支持。

  10. Active Hydrazine Vapor Sampler (AHVS)

    Science.gov (United States)

    Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.

    1993-01-01

    The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.

  11. Vapor stabilizing surfaces for superhydrophobicity

    Science.gov (United States)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  12. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  13. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  14. Equilibrium solubilities of iodine vapor in water

    International Nuclear Information System (INIS)

    Equilibrium solubilities of iodine vapor in water were measured by introducing iodine vapor, in equilibrium with solid iodine, into water and by circulating it in a closed system, and Henry's law constants were determined. Equilibrium distributions of iodine vapor between a gas phase and an aqueous phase were also measured by another method, and partition coefficients were determined. The solubilities of iodine vapor in water estimated from both the Henry's law constants and the partition coefficients are compared with those of solid iodine reported in the literature. Thermodynamic parameters for the hydration of iodine vapor are evaluated experimentally. (author)

  15. An integrity assessment for reactor lower head under in vessel vapor explosion loads

    International Nuclear Information System (INIS)

    The purpose of this study is to assess the integrity of the ICI nozzle in lower head of reactor vessel (PWR) under in vessel vapor explosion loads. The premixing and explosion calculations were performed using TRACERII code. Transient analysis using ANSYS code was performed to calculate strains under explosion pressures imposed on the lower head inner wall. The calculated strain results and the established failure criteria were used in determining the failure probability of the lower head. Strain analyses show that the vapor explosion induced lower head failure is not possible under the present framework of assessment

  16. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    Science.gov (United States)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  17. Vaporization of In2Te3(s)

    International Nuclear Information System (INIS)

    The vaporization chemistry of In2Te3(s) was studied by the computerautomated simultaneous Knudsen-effusion and torsion-effusion method, by high-temperature mass spectrometry, and by ancillary methods. The first absolute measurements of the vapor pressure of In2Te3 are reported. In2Te3(s) vaporized incongruently in the temperatue range 701-889 K and produced Te2(g) and a solid-solution, (Xsub(In)=0.42 and Xsub(Te)=0.58). The standard enthalpy of the reaction at 298 K, ΔH0 (298 K) by the third-law method was 136.0 +- 0.3 kJ/mol of vapor. The above solid solution vaporized incongruently and produced in InTe(s) and a vapor which consisted of Te2(g) and In2Te(g). InTe(s) vaporized congruently in the range 701-887 K and produded Te2(g) and In2Te(g); the third-law ΔH0sub(ν) (298 K) was 201.5 +- 1.0 kJ/mol. These results were at variance with the literature on vaporization of In2Te3(s) where both congruent vaporization and incongruent vaporization to give InTe(s) are separately reported. Further, InTe(s) was reported to vaporize incongruently. These differences are discussed. (Author)

  18. Resistances for heat and mass transfer through a liquid–vapor interface in a binary mixture

    NARCIS (Netherlands)

    Glavatskiy, K.S.; Bedeaux, D.

    2010-01-01

    In this paper we calculate the interfacial resistances to heat and mass transfer through a liquid–vapor interface in a binary mixture. We use two methods, the direct calculation from the actual nonequilibrium solution and integral relations, derived earlier. We verify, that integral relations, being

  19. An atmospheric radiative-convective model with interactive water vapor transport and cloud development

    OpenAIRE

    HUMMEL, JOHN R.; KUHN, WILLIAM R.

    2011-01-01

    In the present generation of radiative-convective models, clouds are assigned specific levels or temperatures that do not change during the course of the calculations. In addition, a single water vapor distribution is used for the “mean atmosphere” instead of separate distributions for the clear sky and cloudy sky atmospheres. We present results from a one-dimensional radiative-convective model that includes interactive water vapor transport and predicts cloud altitudes and thicknesses. The ...

  20. Analysis on Gravitational Effect o Nonlinear Diffusion System of Vapor Molecules in A Heat Pipe

    OpenAIRE

    ETORI, Kanji

    1986-01-01

    A nonlinear diffusion equation with a diffusion coefficient depending on number density of diffusing particles affected by gravity is approximately solved in a steady state. Characteristic properties of vapor molecules in a heat pipe are analyzed as diffusion process of Brownian particles. In order to explain the nonlinear shifts from a linear diffusion system in conventional theories, the expectation values and the variance of number density of vapor molecules are calculated by using the the...

  1. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    OpenAIRE

    Peng Jiang; Shirong Ye; Dezhong Chen; Yanyan Liu; Pengfei Xia

    2016-01-01

    GPS has become a very effective tool to remotely sense precipitable water vapor (PWV) information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorol...

  2. SURFACE VOLUME ESTIMATES FOR INFILTRATION PARAMETER ESTIMATION

    Science.gov (United States)

    Volume balance calculations used in surface irrigation engineering analysis require estimates of surface storage. These calculations are often performed by estimating upstream depth with a normal depth formula. That assumption can result in significant volume estimation errors when upstream flow d...

  3. Simulation of cryogenic liquid flows with vapor bubbles

    Science.gov (United States)

    De Jong, Frederik J.; Sabnis, Jayant S.

    1991-01-01

    Liquid flows in rocket engine components (such as bearings, seals, and pumps) often involve the formation of vapor bubbles due to local superheating of the fluid (either boiling or cavitation). Under the present effort, an analysis has been developed for liquid flows with vapor bubbles, based on a combined Eulerian-Lagrangian technique, in which the continuous (liquid) phase is treated by solving a system of Eulerian conservation equations, while the discrete (vapor bubble) phase is dealt with by integrating Lagrangian equations of motion in computational coordinates. Vapor bubbles of changing size can be accommodated easily by this analysis, and models for the simulation of bubble formation, growth, and motion have been included. The effect of bubble motion and other bubble processes on the continuous (liquid) phase has been accounted for by appropriate bubble mass, momentum, and energy interchange source terms in the Eulerian conservation equations. To demonstrate the viability of the resulting procedure, the cavitating flow of liquid oxygen through a simplified model of a labyrinth seal has been successfully calculated.

  4. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    Science.gov (United States)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  5. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    Science.gov (United States)

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature. PMID:27425628

  6. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  7. Spatio-temporal variability of water vapor investigated by lidar and FTIR vertical soundings above Mt. Zugspitze

    Directory of Open Access Journals (Sweden)

    H. Vogelmann

    2014-11-01

    Full Text Available Water vapor is the most important greenhouse gas and its spatio-temporal variability strongly exceeds that of all other greenhouse gases. However, this variability has hardly been studied quantitatively so far. We present an analysis of a five-year period of water vapor measurements in the free troposphere above Mt. Zugspitze (2962 m a.s.l., Germany. Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV, recorded with a solar Fourier Transform InfraRed (FTIR spectrometer on the summit of Mt. Zugspitze and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL at the Schneefernerhaus research station. The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. The SD of differences between both instruments σIWV calculated for varied subsets of data serves as a measure of variability. The different subsets are based on various spatial and temporal matching criteria. Within a time interval of 20 min, the spatial variability becomes significant for horizontal distances above 2 km, but only in the warm season (σIWV = 0.35 mm. However, it is not sensitive to the horizontal distance during the winter season. The variability of IWV within a time interval of 30 min peaks in July and August (σIWV > 0.55 mm, mean horizontal distance = 2.5 km and has its minimum around midwinter (σIWV 5 km. The temporal variability of IWV is derived by selecting subsets of data from both instruments with optimal volume matching. For a short time interval of 5 min, the variability is 0.05 mm and increases to more than 0.5 mm for a time interval of 15 h. The profile variability of water vapor is determined by analyzing subsets of water vapor profiles recorded by

  8. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed.

  9. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.;

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat...

  10. Performances of electrically heated microgroove vaporizers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An electrically heated microgroove vaporizer was proposed. The vaporizer mainly comprised an outer tube, an inner tube and an electrical heater cartridge. Microgrooves were fabricated on the external surface of the inner tube by micro-cutting method,which formed the flow passage for fluid between the external surface of the inner tube and the internal surface of the outer tube.Experiments related to the temperature rise response of water and the thermal conversion efficiency of vaporizer were done to estimate the influences of microgroove's direction, feed flow rate and input voltage on the performances of the vaporizer. The results indicate that the microgroove's direction dominates the vaporizer performance at a lower input voltage. The longitudina lmicrogroove vaporizer exhibits the best performances for the temperature rise response of water and thermal conversion efficiency of vaporizer. For a moderate input voltage, the microgroove's direction and the feed flow rate of water together govern the vaporizer performances. The input voltage becomes the key influencing factor when the vaporizer works at a high input voltage, resulting in the similar performances of longitudinal, oblique and latitudinal microgroove vaporizers.

  11. Geochemical reactions during biodegradation/vapor-extraction remediation of petroleum contamination in the vadose zone

    International Nuclear Information System (INIS)

    Hydrocarbon concentrations in soil water and vapor are generally used to evaluate the progress of biodegradation and vapor extraction of petroleum contamination in the unsaturated zone. This study shows that changes in the inorganic composition of vadose zone water samples can be used to evaluate the reactions that occur in the unsaturated zone during such a remediation effort. Chemical analyses were completed on water samples collected from alluvial sediments contaminated with diesel fuel and gasoline at the Gallatin Farmers Cenex, Belgrade, Montana. The samples were collected from 7 suction lysimeters for 3 months after fertilization, but before vapor extraction, and then for 6 months following the start of vapor extraction. The geochemical reaction progress code SOLMINEQ.88 is used to calculate the aqueous equilibria in the samples and to simulate possible reaction pathways. Reduction in TPH and BTEX concentrations indicated that biodegradation of the petroleum began after fertilization, prior to vapor extraction, and continued after the start of vapor extraction. SO4-2, HCO3-, pH, and PCO2 show large systematic variations with both time and depth. These variations are independent of evaporation, mixing, sample extraction time, and soil moisture content and thus appear to be a direct consequence of bioremediation and vapor extraction. PCO2 is found to be a measure of the effectiveness of vapor extraction. The chemical mass transfer calculations also show that if vapor extraction occurs alone removing CO2 from solution without coupling of a process to buffer the solution pH, large amounts of carbonate minerals could precipitate, significantly reducing sediment permeability. These data suggest that analyses of inorganic compounds in lysimeter samples can be used to evaluate geochemical changes during vadose zone remediation and can be used to improve remediation design

  12. 第一性原理研究Pt-Zr系统中化合物的生成焓/体模量与原子体积的线性相关性%Linear correlations of formation enthalpies/bulk modules and atomic volumes observed in Pt-Zr compounds by ab initio calculation

    Institute of Scientific and Technical Information of China (English)

    白雪; 李家好; 戴叶; 柳百新

    2013-01-01

    118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.%通过第一性原理的计算方法,研究118种不同结构的Pt-Zr中间化合物,并选取相关的物理性能,如结构稳定性、晶格常数、生成焓、弹性常数以及体模量等进行计算。根据计算得出的生成焓信息,绘制Pt-Zr系统的基态能量曲线。计算得到的物理相关信息为未来的热力学计算和原子尺度模拟提供基础数据。在选取的 Pt-Zr化合物中,存在两组线性相关关系:生成焓与原子体积成正线性相关,而体模量与原子体积成负线性相关关系。

  13. TO PURGE OR NOT TO PURGE? VOC CONCENTRATION CHANGES DURING LINE VOLUME PURGING

    Science.gov (United States)

    Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this s...

  14. Atomic vapor laser isotope separation

    Science.gov (United States)

    Paisner, J. A.

    1988-07-01

    Atomic Vapor Laser Isotope Separation (AVLIS) is a general and powerful technique applicable to many elements. A major present application to the enrichement of uranium for lightwater power reactor fuel has been under development at the Lawrence Livermore National Laboratory since 1973. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet future U.S. needs for the internationally competitive production of uranium separative work. Major features of the AVLIS process will be discussed with consideration of the process figures of merit.

  15. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  16. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  17. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  18. Vapor film collapse triggered by external pressure pulse and the fragmentation of melt droplet in FCIs

    Institute of Scientific and Technical Information of China (English)

    LIN Qian; TONG Lili; CAO Xuewu; KRIVENTSEV Vladimir

    2008-01-01

    The fragmentation process of high-temperature molten drop is a key factor to determine the ratio heat transferred to power in FCIs,which estimates the possible damage degree during the hypothetical severe accident in the nuclear reactors.In this paper,the fragmentation process of melt droplet in FCIs is investigated by theoretic analysis.The fragmentation mechanism is studied when an external pressure pulse applied to a melt droplet,which is surrounded by vapor film.The vapor film collapse which induces fragmentation of melt droplet is analyzed and modeled.And then the generated pressure is calculated.The vapor film collapse model is introduced to fragmentation correlation,and the predicted fragment size is calculated and compared with experimental data.The result shows that the developed model can predict the diameter of fragments and can be used to calculate the fragmentation process appreciatively.

  19. A nonisothermal emissivity and absorptivity formulation for water vapor

    Science.gov (United States)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  20. Experimental Study on Vapor Pressure of HFC—134a

    Institute of Scientific and Technical Information of China (English)

    Ming-ShanZhu; Yi-DongFu; 等

    1992-01-01

    As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K,A total of 43 measurement data were measured during the experiment which was conducted on a high precision pVTx test apparatus designed by the authors with slight modifications,Uncertainties of temperature was ±10mK and of pressure was±500Pa,purity of sample was either 99.95wt%,or 99.98wt%,Data resulting from this experiment matched closely with the newest data published internationalyy,Compared to our porposed equation for calculating vapor pressure of HFC-134a,the RMS deviation cfexperimental data was only 0.0531%,showing relatively high precision.

  1. Control structure selection for vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohong; Li, Shaoyuan [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Shandong Jianzhu Univ., Jinan (China). School of Information and Electrical Engineering; Cai, Wenjian; Ding, Xudong [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2013-07-01

    A control structure selection criterion which can be used to evaluate the control performance of different control structures for the vapor compression refrigeration cycle is proposed in this paper. The calculation results of the proposed criterion based on the different reduction models are utilized to determine the optimized control model structure. The effectiveness of the criterion is verified by the control effects of the model predictive control (MPC) controllers which are designed based on different model structures. The response of the different controllers applied on the actual vapor compression refrigeration system indicate that the best model structure is in consistent with the one obtained by the proposed structure selection criterion which is a trade-off between computation complexity and control performance.

  2. Simulation of Water Vapor Condensation in a Partly Closed Structure: The Influence of the External Conditions of Temperature and Humidity

    OpenAIRE

    Batina, Jean; Peyrous, René

    2013-01-01

    Our aim is to determine the more significant parameters acting on the water vapor condensation in a partly closed structure, submitted to external constraints (temperature and humidity) which induce convective movements and thermal variations inside. These constraints locally lead to condensation of the water vapor, initially contained in the air of the volume and/or on the walls. The inside bottom wall is remained dry. Condensed water quantities depend on: (1) dimensions of the structure, (2...

  3. Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

    International Nuclear Information System (INIS)

    A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 μL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 μg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations (N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.

  4. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-109: Results from samples collected on 06/04/96

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Thomas, B.L.; Evans, J.C. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-109 (Tank S-109) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  5. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-S-107: Results from samples collected on 06/18/96

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.L. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-107 (Tank S-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National. Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  6. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-BX-105: Results from samples collected on 04/24/96

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.; Evans, J.C.; Pool, K.H. [and others

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-BX-105 (Tank BX-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  7. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995

    International Nuclear Information System (INIS)

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text

  8. Tank Vapor Characterization Project. Headspace vapor characterization of Hanford Waste Tank AX-102: Results from samples collected on June 27, 1995

    International Nuclear Information System (INIS)

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-AX-102 (Tank AX-102) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. Detailed descriptions of the analytical results appear in the text

  9. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    to measure swelling pressure in a constant relative humidity environment. A relative humidity was created using salt solutions. The total volume of compacted bentonite was maintained constant during absorption process. Change of swelling pressure with elapsed time and influences of suction value are discussed in this study. In addition, unconfined compression tests were conducted for compacted bentonite with three difference suction values. Deformation of both height and diameter for samples due to change of suction were measured before shear tests. It was observed that all samples were occurred large cracks at failure condition. The shear strengths were determined from stress and strain curves Sodium bentonite was in for this test program. The specimen was statically compacted in rigid steel mold. The modified SWCC apparatus was used for soil-water characteristic curve from 0 kPa to 450 kPa in matric suction ranges. The modified SWCC apparatus consist of a triaxial chamber, air apply system, basement with ceramic filter, drain measurement system and consolidation pressure loading system. The ceramic filter had an air entry value of 500 kPa. Absorption was allowed from the top surface portion of compacted bentonite during swelling under constant volume condition. The swelling pressure was measured over two months. After swelling pressure equilibrium, the SWCC test was performed using axis-translation technique. The vertical deformation and drainage of bentonite were measured during applying ambience positive air pressure. Degree of saturation of compacted bentonite was calculated with suctions. The vapor pressure technique was conducted for high soil suction ranges. The range is from 2.8 MPa to 296 MPa corresponding to from RH 98 % to RH 11 %. The diameter and height of compacted bentonite were directly measured for determination of degree of saturation. The swelling pressure tests were conducted using newly swelling pressure test apparatus. The apparatus consisted

  10. Mechanisms regulating tropical tropospheric water vapor

    Science.gov (United States)

    Dessler, A. E.; Minschwaner, K.

    2005-12-01

    We have analyzed tropical water vapor measurements made in the mid and upper troposphere by the Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. We compare the water vapor measurements to a simple trajectory simulation of water vapor, and show reasonable agreement. We conclude, in agreement with previous work, that the large-scale circulation is primarily responsible for the distribution of water vapor. By interpreting disagreements between AIRS and the model as being caused by processes not represented in the model, such as detailed microphysics, we can begin to get some idea of where in the atmosphere these missing processes are important.

  11. Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets

    International Nuclear Information System (INIS)

    In order to evaluate the performance of a new power generation system in which the generator is driven by the fuel vapor turbine, the pyrolysis characteristics and the compositions of pyrolyzed fuel mixture are experimentally studied. An algorithm is developed for the calculation of isentropic enthalpy drop of fuel vapor using a real gas model based on the SRK (Soave–Redlich–Kwong) equation of state. Fuel vapor is a variable mixture of fuel and its cracking products at different temperatures and pressures, making its physical properties variable. The working capacity of fuel vapor is dramatically enhanced in the pyrolysis reaction process. Benefiting from the high enough working capacity, the fuel vapor turbine still has enough power to drive a generator in addition to a fuel pump. The low-grade heat energy absorbed by fuel is transformed into high-grade mechanical/electrical energy by this system to achieve better energy utilization. Evaluation results indicate that this thermodynamic power generation system can be operated in a wide range of temperature to support the off-design operation of a scramjet. - Highlights: • An energy recovery and power generation system with fuel vapor turbine on scramjet. • An algorithm for isentropic enthalpy drop of fuel vapor using a real gas model. • Significant increase in power generation capacity caused by pyrolysis of fuel. • About 100 kJ kg−1 power generation obtained at a turbine expansion ratio of 5

  12. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture di...

  13. Device for the detection of acid vapors and particularly hydrofluoric acid vapors

    International Nuclear Information System (INIS)

    This device concerns the detection of acid vapors contained in a gaseous environment which have to be controlled. It uses a detector with a calorimetric material. It can be used to detect acid vapors, but it detects particularly hydrofluoric acid vapors. In nuclear industry, this device can detect hydrofluoric acid from UF6, even at high temperature. (TEC)

  14. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  15. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  16. Influence of Copper Vapor on Low-Voltage Circuit Breaker Arcs During Stationary and Moving States

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a "double vortex" near the electrodes.

  17. Calculations of turbulent separated flows

    Science.gov (United States)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.

  18. Pulmonary ground-glass nodules: In vivo repeatability of automated volume and density calculations with MDCT%肺磨玻璃结节多层CT自动体积和密度测量的可重复性研究

    Institute of Scientific and Technical Information of China (English)

    王建卫; 唐威; 吴宁

    2012-01-01

    Objective The objective of our study was to evaluate the in vivo reproducibility of automated volume and density calculations of pulmonary ground-glass nodules with MDCT. Methods Thirty-five subjects with 46 persistent pulmonary ground-glass nodules (GGN) between 5 and 20 mm in diameter were enrolled in this prospective study. Two same MDCT data sets were obtained for each nodule on separate breath-holds during the same session. The repeated scan only covered the GGNs instead of the whole lung. The volume and density of each nodule were calculated by commercial available automated software. Repeatability was evaluated only in well segmented cases by Bland-Altman's approach. Results Automated volume and density calculations were succeeded with good segmentation in 78. 3% (36/46) nodules with both the two MDCT data sets. The 95% limits of agreement were 0. 984(0. 802. 1. 167)for nodule volume and 0. 996(0. 946. 1. 046)for nodule density. Conclusion \\A volume variation of greater than 27% and a density variation of greater than 7% for pulmonary GGNs between 5 and 20 mm confirmed by follow-up CT can be sure that a nodule is actually growing in volume or in density.%目的 利用多层CT对肺磨玻璃结节(ground-glass nodule,GGN)自动体积、密度测量的可重复性进行研究,为该技术的进一步临床应用提供参考.方法 对35名患者共计46个直径5~20mm持续存在的GGN进行重复2次多层CT扫描,第二次扫描范围仅覆盖结节附近区域.利用商用软件自动计算GGN体积和密度,选择对测量结果进行一致性分析.统计学方法采用Bland-Alrman方法.结果 两组数据GGN自动体积和密度测量均成功且结节分割比较完美的占78.3% (36/46),体积测量值95%一致性界限为0.984(0.802,1.167),密度测量值95%一致性界限为0.996(0.946,1.046).结论 对于大多数GGN自动体积、密度测量的可重复性很好,体积增加27%、密度增加7%可以确认GGN的生长.

  19. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  20. Soil vapor extraction with dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, N.R. [Univ. of Waterloo, Ontario (Canada)

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  1. Renormalized Volume

    CERN Document Server

    Gover, A Rod

    2016-01-01

    For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...

  2. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  3. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  4. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    2011-01-01

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine, N,N-diethylethano

  5. Probing temperature during laser spot welding from vapor composition and modeling

    Science.gov (United States)

    He, X.; DebRoy, T.; fürschbach, P. W.

    2003-11-01

    Measurement of weld pool temperature during laser spot welding is a difficult task because of the short pulse duration, often lasting only a few milliseconds, highly transient nature of the process, and the presence of a metal vapor plume near the weld pool. This article describes recent research to estimate weld pool temperatures experimentally and theoretically. Composition of the metal vapor from the weld pool was determined by condensing a portion of the vapor on the inner surface of an open ended quartz tube which was mounted perpendicular to the sample surface and coaxial with the laser beam. It was found that iron, chromium, and manganese were the main metallic species in the vapor phase. The concentrations of Fe and Cr in the vapor increased slightly while the concentration of Mn in the vapor decreased somewhat with the increase in power density. The vapor composition was used to determine an effective temperature of the weld pool. A transient, three-dimensional numerical heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy was used to calculate the temperature and velocity fields in the weld pool as a function of time. The experimentally determined geometry of the spot welds agreed well with that determined from the computed temperature field. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. Because of the short process duration and other serious problems in the direct measurement of temperature during laser spot welding, estimating approximate values of peak temperature from metal vapor composition is particularly valuable.

  6. Probing temperature during laser spot welding from vapor composition and modeling

    International Nuclear Information System (INIS)

    Measurement of weld pool temperature during laser spot welding is a difficult task because of the short pulse duration, often lasting only a few milliseconds, highly transient nature of the process, and the presence of a metal vapor plume near the weld pool. This article describes recent research to estimate weld pool temperatures experimentally and theoretically. Composition of the metal vapor from the weld pool was determined by condensing a portion of the vapor on the inner surface of an open ended quartz tube which was mounted perpendicular to the sample surface and coaxial with the laser beam. It was found that iron, chromium, and manganese were the main metallic species in the vapor phase. The concentrations of Fe and Cr in the vapor increased slightly while the concentration of Mn in the vapor decreased somewhat with the increase in power density. The vapor composition was used to determine an effective temperature of the weld pool. A transient, three-dimensional numerical heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy was used to calculate the temperature and velocity fields in the weld pool as a function of time. The experimentally determined geometry of the spot welds agreed well with that determined from the computed temperature field. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. Because of the short process duration and other serious problems in the direct measurement of temperature during laser spot welding, estimating approximate values of peak temperature from metal vapor composition is particularly valuable

  7. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  8. Vapor pressures of the fluorinated telomer alcohols--limitations of estimation methods.

    Science.gov (United States)

    Stock, Naomi L; Ellis, David A; Deleebeeck, Lisa; Muir, Derek C G; Mabury, Scott A

    2004-03-15

    The influence of the unique, physical properties of poly- and perfluorinated chemicals on vapor pressure was investigated. Vapor pressures of a suite of fluorinated telomer alcohols (FTOHs) (CF3(CF2)nCH2CH2OH, where n = 3, 5, 7, or 9) were measured using the boiling point method and ranged from 144 to 992 Pa. Comparison of experimental and literature values indicate that perfluorocarbons (CF3(CF2)nCF3, where n = 0-6) and fluorinated telomer alcohols have vapor pressures equal to or greater than that of their hydrogen analogues. These chemically counterintuitive results can be explained by the unique geometry of poly- and perfluorinated chemicals--in particular the stiff, helical perfluorinated chain and the significant intramolecular hydrogen bonding of the FTOHs. The majority of models investigated for the estimation of vapor pressure did not compensate for this unique geometry and consistently underpredicted the vapor pressures of the FTOHs. Calculation of partitioning constants using both experimental and estimated vapor pressures indicate that both the Antoine and Modified Grain models, and to a lesser degree the Mackay model, are insufficiently accurate for estimating the vapor pressures of the FTOHs, particularly the longer chain FTOHs. Future models should consider parameters such as geometry, strength, and location of intramolecular hydrogen bonds and otherfunction groups in the molecule in order to improve vapor pressure estimation accuracy. It appears likely that the unique molecular geometry of the FTOHs influences not only their vapor pressure but also other physical properties and hence environmental fate and dissemination.

  9. Vapor-barrier Vacuum Isolation System

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  10. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems. PMID:27463696

  11. Microbial growth with vapor-phase substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany); Wick, Lukas Y., E-mail: lukas.wick@ufz.de [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2011-04-15

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil. - Research highlights: > Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene. > Bacteria influence NAPH vapor-phase concentration gradients at centimeter-scale. > Microbial growth on vapor-phase naphthalene is inversely correlated to its source. > Bacteria are good biofilters for gas-phase NAPH emanating from contaminated sites. - Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene and effectively influence vapor-phase naphthalene concentration gradients at the centimeter scale.

  12. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  13. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    Science.gov (United States)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2004-02-01

    efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. The Köhler theory calculations performed with different types of models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A parameterisation for the osmotic coefficient of macromolecular substances has been derived from an osmotic pressure virial equation. For its application only the density and molar mass of the substance have to be known or estimated, and it is fully compatible with traditional volume additivity models for salt mixtures.

  14. Development of a simplified model for droplet vaporization

    Directory of Open Access Journals (Sweden)

    Xiao Helin

    2016-01-01

    Full Text Available Droplet vaporization is an essential sub-process of fuel spray in diesel engines,which has important effects on combustion and emissions performance. Development of a simplified droplet vaporization model is necessary to simulate gas mixture formation in cylinder for lower computational costs, and it is also applicable in practical multi-dimension spray calculations for diesel engines. An empirical exponential equation is introduced in this paper to approximate the internal temperature profile of droplet instead of solving the partial differential equation for temperature distribution. Results indicate that the computational cost has been reduced by almost thirty percent in total. Also, the concept of effective diffusion is introduced by using an enlarged diffusivity to take account of the effect of internal circulations inside droplets. The calculated result of the simplified evaporation model has been compared with that of the infinite diffusivity model and one-dimensional model respectively. It shows that the calculation precision of the simplified model is among those two models.

  15. Simulation of stratospheric water vapor and trends using three reanalyses

    Science.gov (United States)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-07-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is extended to the 1979-2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi 100 hPa temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The trajectory models' lower northern high latitude stratosphere tends to be dry because too little methane-derived water descends from the middle stratosphere. Using the MLS tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The trajectory model reproduces the observed reduction in the amplitude of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade-1 trend in water vapor both at mid-latitudes and in the tropics.

  16. Simulation of stratospheric water vapor and trends using three reanalyses

    Directory of Open Access Journals (Sweden)

    M. R. Schoeberl

    2012-03-01

    Full Text Available The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011 is extended to the 1979–2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA are concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The models' lower stratospheres tend to be dry at high northern latitudes because of too little methane-derived water appears to be descending from the middle stratosphere. Using the tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The models tend to reproduce the observed weakening of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade−1 trends in water vapor both at mid-latitudes and in the tropics.

  17. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF3COOCH2CH3) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R2) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  18. RADTRAN 4: User guide. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K S [Sandia National Labs., Albuquerque, NM (United States); Kanipe, F L [GRAM, Inc., Albuquerque, NM (United States)

    1992-01-01

    RADTRAN 4 is used to evaluate radiological consequences of incident-free transportation, as well as the radiological risks from vehicular accidents occurring during transportation. This User Guide is Volume 3 in a series of four volume of the documentation of the RADTRAN 4 computer code for transportation risk analysis. The other three volumes are Volume 1, the Executive Summary; Volume 2, the Technical Manual; and Volume 4, the Programmer`s Manual. The theoretical and calculational basis for the operations performed by RADTRAN 4 are discussed in Volume 2. Throughout this User Guide the reader will be referred to Volume 2 for detailed discussions of certain RADTRAN features. This User Guide supersedes the document ``RADTRAN III`` by Madsen et al. (1983). This RADTRAN 4 User Guide specifies and describes the required data, control inputs, input sequences, user options, program limitations, and other activities necessary for execution of the RADTRAN 4 computer code.

  19. Numerical study of cesium effects on negative ion production in volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Niitani, Eiji [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    Effects of cesium vapor injection of H{sup -} production in a tandem negative ion source are studied numerically as a function of plasma parameters. Model calculation is done by solving a set of particle balance equations in a steady-state hydrogen discharge plasmas. Here, the results which focus on gas pressure and electron temperature dependences of H{sup -} volume production are presented and discussed. With including H{sup -} surface production processes caused by both H atoms and positive hydrogen ions, enhancement of H{sup -} production and pressure dependence of H{sup -} production observed experimentally are well reproduced in the model. To enhance H{sup -} production, however, so-called electron cooling is not so effective if plasma parameters are initially optimized with the use of magnetic filter. (author)

  20. THE PENETRATION OF VESICANT VAPORS INTO HUMAN SKIN.

    Science.gov (United States)

    Nagy, S M; Golumbic, C; Stein, W H; Fruton, J S; Bergmann, M

    1946-07-20

    forearm at a rate of about 1.4 gamma per cm.(2) per minute (temperature 21-23 degrees C.; relative humidity 46 per cent). This value was found to hold in experiments in which H vapor was applied for 3 to 30 minute intervals, thus indicating that the permeability of the skin to H vapor is not altered during a 30 minute exposure. Agitation of the H vapor by fanning did not result in any measurable increase in the rate of penetration. Two of the volunteers were Negroes; the permeability of their skin to H vapor did not differ appreciably from that found for the other subjects. When human skin is exposed to air saturated with EBA vapor, the vesicant penetrates at the rate of 2.8 gamma per cm.(2) per minute (temperature 22 degrees C., relative humidity 50 to 52 per cent). The amount of EBA penetrated is linear with exposure time for exposure periods of 5 to 20 minutes. Under similar conditions, it was found that TBA penetrates at a rate of about 0.18 gamma per cm.(2) per minute (temperature 22-23 degrees C.; relative humidity 45 to 48 per cent). This value was found to hold in experiments in which TBA vapor was applied for 30 to 60 minute intervals. The amount of TBA penetrated is linear with exposure time. In the case of benzyl-H, a linear relationship between the amount lost from the penetration cup and exposure time was also observed but the plot did not pass through the origin. It is suggested that this anomaly is due to retention on the skin surface of an appreciable quantity of benzyl-H as a result of rapid physical adsorption or chemical combination with a constituent of the skin. The rate of penetration of benzyl-H may be calculated from the slope of the plot and is found to be 0.35 gamma per cm.(2) per minute (temperature 22 degrees C., relative humidity 55 to 60 per cent). The results with ethyl-H showed great variation among individual subjects and no satisfactory value for the rate of penetration can be given as yet. Measurements were also made of the rate of

  1. What do the CMIP5 models tell us about the water vapor feedback?

    Science.gov (United States)

    Dessler, A. E.

    2012-12-01

    The water vapor feedback refers to the process whereby an initial warming of the planet, caused for example by an increase in atmospheric greenhouse gas abundance, causes an increase in the specific humidity of the atmosphere. Because water vapor is itself a greenhouse gas, the increase in specific humidity causes additional warming. In this talk, I will show calculations of the magnitude of the feedback in the CMIP5 models in response to long-term global warming and short-term interannual variations. The differences in the feedbacks is related to differences in the pattern of surface warming for these different climate variations — in particular, the amount of tropical warming vs. the amount of extratropical warming. I'll also show that calculations based on alternative decompositions that combine temperature and water vapor feedbacks show better agreement vs. observations.

  2. Cs2 ‘diffuse bands’ emission from superheated cesium vapor

    Science.gov (United States)

    Pichler, G.; Makdisi, Y.; Kokaj, J.; Thomas, N.; Mathew, J.; Beuc, R.

    2016-07-01

    Thermal emission from superheated cesium vapor was studied to very high temperatures from 700 °C to 1000 °C. This was performed in the vapor condition only and with no liquid cesium present in the all-sapphire cell. We observed a number of atomic and molecular spectral features simultaneously in emission and absorption, especially peculiar thermal emission of cesium dimer diffuse bands (2 3Πg → a 3∑u + transitions) around 710 nm coexisting with absorption bands around first resonance lines at 852 and 894 nm. We performed appropriate calculations of the diffuse band emission profiles and compared them with measured profiles. We also performed absorption measurements and compared observed diffuse band profiles with calculated ones. Possible applications of the observed phenomena will be discussed in terms of the solar energy conversion using dense cesium vapor.

  3. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  4. Surface retention capacity calculation

    Science.gov (United States)

    David, Vaclav; Dostal, Tomas

    2010-05-01

    Flood wave transformation in the floodplain is the phenomenon which is researched within interdisciplinary project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase. The project focuses on broad range of floodplain ecosystem services and mitigation of flooding is one of them. Despite main influence on flood wave transformation is due to flow retardation, retention in surface depressions within floodplain has been analyzed to get better overview of whole transformation process. Detail digital relief model (DRM) has been used for given purposes to be able to analyze terrain depressions volumes. The model was developed with use of stereophotogrammetric evaluation of airborne images with high resolution of 10 cm. It was essential for purposes of presented analysis not to apply pit removal routines which are often used for generation of DRM for hydrological modelling purposes. First, the methodology of analysis was prepared and tested on artificial surface. This surface was created using random raster generation, filtration and resampling with final resolution of 1000 x 1000 units and height of maximum 10 units above datum. The methodology itself is based on analysis of areas inundated by water at different elevation levels. Volume is than calculated for each depression using extraction of terrain elevations under corresponding water level. The method was then applied on the area of Lužnice River floodplain section to assess retention capacity of real floodplain. The floodplain had to be cut into sections perpendicular to main river orientation for analyses as the method was tested for square shaped area without any significant inclination. Results obtained by mentioned analysis are presented in this paper. Acknowledgement Presented research was accomplished within national project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase, nr. QH82078. The project is funded by Ministry of Agriculture of

  5. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    Science.gov (United States)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  6. HENRY'S LAW CALCULATOR

    Science.gov (United States)

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  7. Differential absorption radar techniques: water vapor retrievals

    Science.gov (United States)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  8. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States); Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  9. Minivoids in the Local Volume

    CERN Document Server

    Tikhonov, A V

    2006-01-01

    We consider a sphere of 7.5 Mpc radius, which contains 355 galaxies with accurately measured distances, to detect the nearest empty volumes. Using a simple void detection algorithm, we found six large (mini)voids in Aquila, Eridanus, Leo, Vela, Cepheus and Octans, each of more than 30 Mpc^3. Besides them, 24 middle-size "bubbles" of more than 5 Mpc^3 volume are detected, as well as 52 small "pores". The six largest minivoids occupy 58% of the considered volume. Addition of the bubbles and pores to them increases the total empty volume up to 75% and 81%, respectively. The detected local voids look like oblong potatoes with typical axial ratios b/a = 0.75 and c/a = 0.62 (in the triaxial ellipsoide approximation). Being arranged by the size of their volume, local voids follow power law of volumes-rankes dependence. A correlation Gamma-function of the Local Volume galaxies follows a power low with a formally calculated fractal dimension D = 1.5. We found that galaxies surrounding the local minivoids do not differ...

  10. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    Science.gov (United States)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  11. The vapor pressure of iron pentacarbonyl

    Science.gov (United States)

    Gilbert, A. G.; Sulzmann, K. G. P.

    1974-01-01

    Vapor pressure measurements have been made on pure iron pentacarbonyl between +31 and -19 C. The experimental results may be expressed by the logarithm of pressure (mm Hg) to the base 10 equals -(2096.7 K/T) + 8.4959, which corresponds to a heat of vaporization for the liquid carbonyl of delta H ? (9.588 plus or minus 0.12) kcal/mole. This result confirms and extends the earlier measurements made by Trautz and Badstuebner between 0 and 140 C. The need for careful purification of commercially available iron pentacarbonyl is emphasized, particularly for establishing the correct vapor pressure below 45 C.

  12. On the abdominal pressure volume relationship

    OpenAIRE

    Mulier, Jan Paul; Dillemans, Bruno; Crombach, Mark; Missant, Carlo; Sels, Annabel

    2009-01-01

    Abstract: During insufflation of the abdomen to create a pneumoperitoneum for laparoscopy, both intra abdominal pressure and insufflated volume can be measured and are used to calculate the abdominal pressure-volume relationship. First, an accurate, linear relationship was identified using a mathematical model with an elastance, E, or its reciprocal the compliance C and with a pressure at zero volume, PV0. This function was stable and could be used to describe the abdominal characteristics of...

  13. Evaluation of Heat Transfer Coefficients During the Water Vapor Condensation Contained in the Flue Gas

    OpenAIRE

    Bespalov Victor; Bespalov Vladimir; Melnikov Denis

    2016-01-01

    Is shown the influence of the heat transfer coefficient from the wet flue gas to the heat exchange surface on the overall heat transfer coefficient in the gas-air heat exchanger with the water vapor condensation. Experimental data are compared with calculations based on the mathematical model of the condensing heat exchanger.

  14. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  15. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  16. Line parameter validation using ground-based solar occultation measurements: Water vapor--A case study

    NARCIS (Netherlands)

    Veihelmann, B.; Maurellis, A.N.; Smith, K.M.; Tolchenov, R.N.; Tennyson, J.; Zande, W.J. van der

    2007-01-01

    Water vapor spectroscopy data for the 720 nm absorption band (4[nu] polyad) are validated in the context of atmospheric radiative transfer calculations. We validate line parameters from the HITRAN-2000 database and from the ULB-UFR-BIRA database which have been used for the 2004 release of HITRAN. F

  17. Effective mode volumes for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, Cole; Hughes, Stephen

    2011-01-01

    definition of an effective mode volume is ambiguous and not applicable. Instead, we propose an alternative effective mode volume which can be easily evaluated based on the mode calculation methods typically applied in the literature and which is directly applicable to a much wider range of physical systems....

  18. Thermodynamic Properties and Transport Coefficients of Nitrogen,Hydrogen and Helium Plasma Mixed with Silver Vapor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue; CUI Xinglei; CHEN Mo; ZHAI Guofu

    2016-01-01

    Species composites of Ag-N2,Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy.Thermodynamic properties and transport coefficients of nitrogen,hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data.The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on thc case of pure nitrogen plasma.The influences of the silver vapor concentration on composites,thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas.Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts.

  19. Vapor-liquid equilibria for acetone + chloroform + methanol and constituent binary systems at 101. 3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Hiaki, Toshihiko (Nihon Univ., Chiba (Japan). Dept. of Industrial Chemistry); Kurihara, Kiyofumi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1994-10-01

    Vapor-liquid equilibria (VLE) and azeotropic data, which are useful for the design and operation of separation processes, have been observed for many systems. Isobaric vapor-liquid equilibria for acetone + chloroform + methanol and for the constituent binary systems chloroform + methanol and chloroform + acetone were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental data were correlated with the extended Redlich-Kister and Wilson equations. The data were best correlated and completely calculated for the ternary and three binary azeotropic data using the extended Redlich-Kister equation.

  20. Water Vapor and Cloud Formation in the TTL: Simulation Results vs. Satellite Observations

    Science.gov (United States)

    Wang, T.; Dessler, A. E.; Schoeberl, M. R.

    2012-12-01

    Driven by analyzed winds and temperatures, a domain-filling forward trajectory model is used to simulate water vapor and clouds in the tropical tropopause layer (TTL). During this Lagrangian model calculations, excess water vapor is instantaneously removed from the parcel to keep the relative humidity with respect to ice from exceeding a specified (super) saturation level. The occurrences of dehydration serve as an indication of where and when clouds form. During the simulation, simple parameterizations for convective moistening through ice lofting and temperature perturbations from gravity waves are also included. Our simulations produce water vapor mixing ratios close to that observed by the Aura Microwave Limb Sounder (MLS). The results are consistent with the biases of reanalysis tropical tropopause temperature, which confirms the dominant role of the cold-point temperatures for regulating the water vapor abundances in the stratosphere. The simulation of cloud formation agrees with the patterns of cirrus distributions from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). It demonstrates that trajectory calculations driven by analyzed winds and temperatures can produce reasonable simulations of water vapor and cloud formation in the TTL.

  1. Isobaric vapor-liquid equilibrium for methyldichlorosilane dimethyldichlorosilane-benzene system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The elucidation of vapor-liquid equilibrium (VLE) of the halogenated silane was necessary for the production of silicon derivatives, especially for methylvinyldichlorosilane, due to the lack of the relevant reports. Isobaric VLE for the system methyldichlorosilane-dimethyldichlorosilane-benzene and isobaric VLE of the three binary systems were measured with a new pump-ebulliometer at the pressure of 101.325 kPa. These binary compositions of the equilibrium vapor were calculated according to the Q function of molar excess Gibbs energy by the indirect method and the resulted VLE data agreed well with the thermodynamic consistency. Moreover, the experimental data were correlated with the Wilson, NRTL, Margules and van Laar equations by means of the least-squares fit, the acquired optimal interaction parameters were fitted to experimental vapor-liquid equilibrium data for binary systems. The binary parameters of Wilson equation were also used to calculate the bubble point temperature and the vapor phase composition for the ternary mixtures without any additional adjustment. The predicted vapor-liquid equilibrium for the ternary system was in a good agreement with the experimental results. The VLE of binary and multilateral systems provided essential theory for the production of the halogenated silane.

  2. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  3. Chiroptical Spectroscopy in the Vapor Phase

    Science.gov (United States)

    Lahiri, Priyanka; Long, Benjamin D.; Wiberg, Kenneth B.; Vaccaro, Patrick H.

    2011-06-01

    Electromagnetic radiation propagating through an isotropic chiral medium experiences a complex index of refraction that differs in both real (in-phase) and imaginary (in-quadrature) parts for the right-circular and left-circular polarization states that define the helicity basis. The resulting phenomena of circular birefringence (CB) and circular dichroism (CD) lead to observable effects in the form of dispersive rotation and absorptive elliptization for an impinging beam of plane-polarized light, which commonly are measured under conditions of nonresonant and resonant excitation, respectively. This talk will discuss ongoing efforts designed to elucidate the provenance of electronic optical activity under complementary solvated and isolated conditions, with the latter vapor-phase work made possible by our continuing development of Cavity Ring-Down Polarimetry (CRDP). Molecules of interest include the rigid bicyclic ketone (1R,4R)-norbornenone, where the spatial arrangement of distal alkene and carbonyl moeities gives rise to extraordinarily large specific rotation (CB) parameters that are predicted incongruously by different quantum-chemical methods; the monoterpene constitutional isomers (S)-2-carene and (S)-3-carene, which display surprisingly distinct chiroptical properties; and conjugated ketones such as (S)-verbenone, where CD probes of weak π*←n absorption bands have been performed at vibronic resolution. The disparate nature of gas-phase and condensed-phase optical activity will be highlighted, with complementary ab initio calculations serving to elucidate the structural, chemical, and electronic origins of observed behavior. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, J. Opt. Soc. Am. B 19, 125 (2002) P. H. Vaccaro, ``Chapter 1.II.10: Optical Rotation and Intrinsic Optical Activity'' in Comprehensive Chiroptical Spectroscopy, N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, eds. (John Wiley and Sons, Inc

  4. 46 CFR 69.65 - Calculation of volumes.

    Science.gov (United States)

    2010-10-01

    ... buoyancy) are reasonably available, Simpson's first rule may be applied using those sections. (2) If the... is of conventional design with faired lines, Simpson's first rule may be applied using a number...

  5. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt); Modelado del ciclo de vapor de Laguna Verde con el codigo PEPSE a condiciones de potencia termica actualmente licenciada (2027 MWt)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J., E-mail: miguel.castaneda01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Veracruz (Mexico)

    2011-11-15

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  6. Rubidium "whiskers" in a vapor cell

    CERN Document Server

    Balabas, M V; Sushkov, A O

    2006-01-01

    Crystals of metallic rubidium are observed ``growing'' from paraffin coating of buffer-gas-free glass vapor cells. The crystals have uniform square cross-section, $\\approx 35 \\mu$m on the side, and reach several mm in length.

  7. E-Cigarettes Emit Toxic Vapors

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160107.html E-Cigarettes Emit Toxic Vapors: Study Levels depend on ... findings could be important to both makers of e-cigarettes and regulators who want to reduce the ...

  8. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line...

  9. Remote sensing of water vapor features

    Science.gov (United States)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  10. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  11. External fuel vaporization study, phase 1

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  12. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    Science.gov (United States)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  13. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  14. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    Science.gov (United States)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  15. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    Science.gov (United States)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  16. Vapor Hydrogen Peroxide Sterilization Certification

    Science.gov (United States)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  17. Modelling vaporous cavitation on fluid transients

    OpenAIRE

    Shu, Jian-Jun

    2014-01-01

    A comprehensive study of the problem of modelling vaporous cavitation in transmission lines is presented. The two-phase homogeneous equilibrium vaporous cavitation model which has been developed is compared with the conventional column separation model. The latter predicts unrealistically high pressure spikes because of a conflict arising from the prediction of negative cavity sizes if the pressure is not permitted to fall below the vapour pressure, or the prediction of negative absolute pres...

  18. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer

    2012-10-01

    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  19. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    Science.gov (United States)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  20. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles

    Science.gov (United States)

    Aster, Ellen M.; Wallace, Paul J.; Moore, Lowell R.; Watkins, James; Gazel, Esteban; Bodnar, Robert J.

    2016-09-01

    Melt inclusions record valuable information about pre-eruptive volatile concentrations of melts. However, a vapor bubble commonly forms in inclusions after trapping, and this decreases the dissolved CO2 concentration in the melt (glass) phase in the inclusion. To quantify CO2 loss to vapor bubbles, Raman spectroscopic analysis was used to determine the density of CO2 in bubbles in melt inclusions from two Cascade cinder cones near Mt. Lassen and two Mexican cinder cones (Jorullo, Parícutin). Using analyses of dissolved CO2 and H2O in the glass in the inclusions, the measured CO2 vapor densities were used to reconstruct the original dissolved CO2 contents of the melt inclusions at the time of trapping. Our results show that 30-90% of the CO2 in a melt inclusion is contained in the vapor bubble, values similar to those found in other recent studies. We developed a model for vapor bubble growth to show how post-entrapment bubbles form in melt inclusions as a result of cooling, crystallization, and eruptive quenching. The model allows us to predict the bubble volume fraction as a function of ΔT (the difference between the trapping temperature and eruptive temperature) and the amount of CO2 lost to a bubble. Comparison of the Raman and modeling methods shows highly variable agreement. For 10 of 17 inclusions, the two methods are within ± 550 ppm CO2 (avg. difference 290 ppm), equivalent to ±~300 bars uncertainty in estimated trapping pressure for restored inclusions. Discrepancies between the two methods occur for inclusions that have been strongly affected by post-entrapment diffusive H+ loss, because this process enhances bubble formation. For our dataset, restoring the CO2 lost to vapor bubbles increases inferred trapping pressures of the inclusions by 600 to as much as 4000 bars, highlighting the importance of accounting for vapor bubble formation in melt inclusion studies.

  1. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  2. Prediction of enthalpy and standard Gibbs energy of vaporization of haloaromatics from atomic properties.

    Science.gov (United States)

    Monte, M J S; Almeida, A R R P; Liebman, J F

    2015-11-01

    Halogenated benzenes form a class of pollutants with a huge number of members - 1504 distinct benzene compounds, where one or more hydrogen atoms are replaced by halogens, may exist theoretically. This study presents a user friendly method for accurate prediction of vapor pressures and enthalpies of vaporization, at 298.15 K, of any mono or poly halobenzene compound. The derived equations for the prediction of those vaporization properties depend just on the number of each constituent halogen atom. This is a consequence of the absence of intramolecular interactions between the halogen atoms, revealed after examining vaporization results of ca. 40 halogenated benzenes. In order to rationalize the estimation equations, the contribution of the halogen atoms for the referred to above properties of vaporization was decomposed into two atomic properties - the volume and electron affinity. Extension of the applicability of the estimation method to substituted benzenes containing other substituent groups beyond halogen atoms as well as to some polycyclic aromatic species was tested with success.

  3. Vapor condensation onto a non-volatile liquid drop

    Energy Technology Data Exchange (ETDEWEB)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada)

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the core of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.

  4. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude. PMID:17902946

  5. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  6. Bioeffects due to acoustic droplet vaporization

    Science.gov (United States)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  7. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  8. 程序升温大体积进样和解卷积气相色谱-质谱法测定蔬菜水果中32种农药残留量%Combination of programmable temperature vaporizer-large volume injection gas chromatography-mass spectrometry and automated mass spectral deconvolution and identification system for the determination of 32 pesticides in fruits and vegetables

    Institute of Scientific and Technical Information of China (English)

    曹赵云; 牟仁祥; 吴俐; 林晓燕; 朱智伟; 陈铭学

    2014-01-01

    建立了蔬菜、水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯等32种农药的气相色谱-质谱( GC-MS)检测方法。样品经乙腈提取,石墨碳黑串联丙氨基固相萃取柱净化,采用程序升温大体积进样,GC-MS 全扫描模式采集,结合解卷积技术定性分析,内标法定量。分别对程序升温和大体积进样等条件进行了研究,并考察了方法选择性和耐用性。在最优条件下,32种农药的响应值与浓度呈良好的线性关系( r>0.995),各农药的方法检出限为2.0~5.0μg/kg,以菠菜、四季豆和黄瓜为代表基质,进行3个水平(0.010~0.50 mg/kg)的加标回收试验( n=6),回收率为65.2%~120.3%,相对标准偏差( RSD)为4.1%~22.3%。该方法快速、灵敏、可靠、耐用,能满足蔬菜、水果中多类多残留痕量分析的要求。%An analytical method was developed for the simultaneous determination of 32 pesti-cides including organophosphorus, organochlorine, pyrethroid and carbamate pesticides in fruits and vegetables using gas chromatography-mass spectrometry( GC-MS). The sample was extracted with acetonitrile,and the organic layer was cleaned up with ENVI-Carb and LC-NH 2 cartridges. A large volume of 20 μL purified solution was injected into the GC system using pro-grammable temperature vaporizer( PTV). The mass spectrometric detection was operated with full scan mode. The automated mass spectral deconvolution and identfication system( AMDIS) and an isotopic internal standard were used for the qualitative and quantitative determination of the 32 pesticides,respectively. The conditions for PTV-large volume injection were studied. Furthermore,the selectivity and durability of the method were also assessed. Under the opti-mized conditions,the experimental results showed that all the linearities were good within their test ranges,with correlation coefficients more than 0. 995,and the method detection

  9. Falcon series data report: 1987 LNG vapor barrier verification field trials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.C.; Cederwall, R.T.; Chan, S.T.; Ermak, D.L.; Koopman, R.P.; Lamson, K.C.; McClure, J.W.; Morris, L.K.

    1990-06-01

    A series of five Liquefied Natural Gas Spills up to 66 m{sup 3} in volume were performed on water within a vapor barrier structure at Frenchman Flat on the Nevada Test Site as a part of a joint government/industry study. This data report presents a description of the tests, the test apparatus, the instrumentation, the meteorological conditions, and the data from the tests. 16 refs., 27 figs., 8 tabs.

  10. Nonradioactive Environmental Emissions Chemical Source Term for the Double Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    Energy Technology Data Exchange (ETDEWEB)

    MAY, T.H.

    2000-04-21

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated.

  11. Tank Vapor Characterization Project: Tank 241-BY-108 temporal study headspace gas and vapor characterization results from samples collected on September 10, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.463% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.940% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  12. Tank Vapor Characterization Project: Tank 241-BX-103 headspace gas and vapor characterization results from samples collected on August 1, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S.; Edwards, J.A. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from headspace of waste storage tank 241-BX-103 (Tank BX-103) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-103 headspace, determined to be present at approximately 0.385% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.633% if the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  13. Tank 241-BY-108 fifth temporal study: Headspace gas and vapor characterization results from samples collected on January 30, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Olsen, K.B. [and others

    1997-09-01

    This report presents the results from analyses of samples taken from tile headspace of waste storage tank 241-B-108 (Tank BY - 108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) and analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 0.888% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.979% of tile LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  14. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  15. Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B. [and others

    1997-07-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  16. Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

    1997-08-01

    This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  17. Tank 241-BX-104 third temporal study: Headspace gas and vapor characterization results from samples collected on February 6, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Hayes, J.C. [and others

    1997-09-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.178 % of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.458% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  18. Tank Vapor Characterization Project: Tank 241-BX-106 headspace gas and vapor characterization results from samples collected on August 15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Edwards, J.A.; Julya, J.L. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-106 (Tank BX-106) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan. Ammonia was the principal flammable constituent of the Tank BX-106 headspace, determined to be present at approximately 0.031% of it lower flammability limit (LFL). Total headspace flammability was estimated to be <0.143% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  19. Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Mitroshkov, A.V.; Evans, J.C.; Hayes, J.C. [and others

    1997-09-01

    This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0.

  20. Tank Vapor Characterization Project: Tank 241-C-107 temporal study headspace gas and vapor characterization results from samples collected on September 5, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Edwards, J.A.; Silvers, K.L. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 1.405% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.519% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  1. Tank 241-C-107 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 7, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.C.; Pool, K.H.; Evans, J.C. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 3.233% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.342% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  2. Tank 241-BX-104 fourth temporal study: Headspace gas and vapor characterization results from samples collected on April 7, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Mitroshkov, A.V.; Hayes, J.C.; Evans, J.C. [and others

    1997-09-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-04 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.208% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.536% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  3. Tank vapor characterization project: Tank 241-BY-101 headspace gas and vapor characterization results from samples collected on August 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-101 (Tank BY-101) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Total non-methane organic compounds (TNMOCs) were the principal flammable constituent of the Tank By-101 headspace, determined to be present at approximately 0.136% of the LFL. Averaged measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  4. Tank 241-BY-108 fourth temporal study: Headspace gas and vapor characterization results from samples collected on November 14, 1997. Tank vapor characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Olsen, K.B. [and others

    1997-07-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected nonradioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.390% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.830% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  5. Tank Vapor Characterization Project: Tank 241-BX-111 headspace gas and vapor characterization results from samples collected on August 27, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Sklarew, D.S. Edwards, J.A. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-111 (Tank BX-111) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Ammonia was the principal flammable constituent of the Tank BX-111 headspace, determined to be present at approximately 0.042 of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.157% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  6. Tank Vapor Characterization Project: Tank 241-BX-104 headspace gas and vapor characterization results from samples collected on August 22, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Julya, J.L. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analyses plan (SAP). Total non-methane organic compounds was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.310% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.784% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  7. Tank Vapor Characterization Project: Tank 241-C-107 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 17, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 2.825% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.935% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  8. Tank Vapor Characterization Project: Tank 241-BX-102 headspace gas and vapor characterization results from samples collected on July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B. Edwards, J.A. [and others

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-102 (Tank BX-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and and analysis plan. Ammonia and TNMOCs were the principal flammable constituents of the Tank BX-102 headspace, each determined to be present at approximately 0.002% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.107% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  9. Tank 241-BX-104 fourth temporal study: Headspace gas and vapor characterization results from samples collected on April 7, 1997. Tank vapor characterization project

    International Nuclear Information System (INIS)

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-04 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.208% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.536% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  10. Tank Vapor Characterization Project: Tank 241-C-107 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 17, 1996

    International Nuclear Information System (INIS)

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 2.825% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.935% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  11. Tank 241-C-107 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 7, 1997. Tank vapor characterization project

    International Nuclear Information System (INIS)

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 3.233% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.342% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  12. Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project

    International Nuclear Information System (INIS)

    This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0

  13. Tank 241-BY-108 fifth temporal study: Headspace gas and vapor characterization results from samples collected on January 30, 1997. Tank vapor characterization project

    International Nuclear Information System (INIS)

    This report presents the results from analyses of samples taken from tile headspace of waste storage tank 241-B-108 (Tank BY - 108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) and analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 0.888% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.979% of tile LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  14. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    International Nuclear Information System (INIS)

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  15. Exposure Time Calculator for Immersion Grating Infrared Spectrograph: IGRINS

    OpenAIRE

    Le, Huynh Anh N.; Pak, Soojong; Jaffe, Daniel T.; Kaplan, Kyle; Lee, Jae-Joon; Im, Myungshin; Seifahrt, Andreas

    2015-01-01

    We present an exposure-time calculator (ETC) for the Immersion Grating Infrared Spectrograph (IGRINS). The signal and noise values are calculated by taking into account the telluric background emission and absorption, the emission and transmission of the telescope and instrument optics, and the dark current and read noise of the infrared detector arrays. For the atmospheric transmission, we apply models based on the amount of precipitable water vapor along the line of sight to the target. The...

  16. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  17. Distillation Calculations with a Programmable Calculator.

    Science.gov (United States)

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  18. Digital calculations of engine cycles

    CERN Document Server

    Starkman, E S; Taylor, C Fayette

    1964-01-01

    Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var

  19. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  20. Role of radiation in vapor shielding of first wall during disruption

    International Nuclear Information System (INIS)

    An initially ablated vapor may provide an important radiation shield to reduce the heat load and the further ablation of the Be divertor strike plate during an ITER disruption. Thus, we investigate the role of line emission in Be at relevant temperatures and densities. For an ion density of 1018 cm-3 (1024 m-3), we calculate that there is significant line emission and re-absorption in the temperature range from 3 to 10 eV. The re-absorption limits the line emission that strikes the plate. Line transfer calculations coupled with detailed atomic modeling predict that lines contribute 10-50% of the impinging plate radiation. We note that because of this effect, previous calculations using multi-group radiation transfer may under-estimate the vapor shielding for these ITER-relevant parameters. ((orig.))

  1. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    Energy Technology Data Exchange (ETDEWEB)

    Factorovich, Matías H.; Scherlis, Damián A. [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina); Molinero, Valeria [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  2. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers

    Science.gov (United States)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-06-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor amplifiers, a comprehensive physical model with a cyclic iterative approach for calculating the three-dimensional temperature distribution of the vapor cell is established. Taking into account heat generation, thermal conductivity and convection, the excitation of the alkali atoms to high electronic levels, and their losses due to ionization in the gain medium, the thermal features and output characteristics have been simultaneously obtained. The results are in good agreement with those of the measurement in a static rubidium vapor amplifier. Influences of gas velocity on radial and axial temperature profiles are simulated and analyzed. The results have demonstrated that thermal problems in gaseous gain medium can be significantly reduced by flowing the gain medium with sufficiently high velocity.

  3. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  4. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  5. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  6. Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  7. Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at T = (298 to 573) K and pressures up to 30 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Cibulka, Ivan, E-mail: ivan.cibulka@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Simurka, Lukas; Hnedkovsky, Lubomir [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Bolotov, Alexander [Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008 (Russian Federation)

    2011-07-15

    Research highlights: > In this study we examine standard molar volumes of aqueous cyclic ketones. > State parameters of measurements were (298 to 573) K and pressures up to 30 MPa. > Differences in behavior of monoketones and cyclohexane-1,4-dione were observed. > Group contribution method was designed and examined. - Abstract: Density data for dilute aqueous solutions of four cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone, and cyclohexane-1,4-dione) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were close to the saturated vapor pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Contributions of the molecular structural segments (methylene and carbonyl groups) to the standard molar volume were also evaluated and analyzed.

  8. Ab initio molar volumes and Gaussian radii.

    Science.gov (United States)

    Parsons, Drew F; Ninham, Barry W

    2009-02-12

    Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766

  9. Autistic Savant Calendar Calculators.

    Science.gov (United States)

    Patti, Paul J.

    This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…

  10. High volume production of nanostructured materials

    Science.gov (United States)

    Ripley, Edward B.; Morrell, Jonathan S.; Seals, Roland D.; Ludtka, Gerard M.

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  11. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-08-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  12. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-04-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different datasets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of travelling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown, a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  13. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    Science.gov (United States)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  14. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  15. Possible seasonal variability of mesospheric water vapor

    Science.gov (United States)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  16. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    Science.gov (United States)

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  17. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Research highlights: → (Vapor + liquid) equilibria of three (CO2 + C5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  18. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  19. Ocular complications of malfunctioning mercury vapor lamps.

    Science.gov (United States)

    Thun, M J; Altman, R; Ellingson, O; Mills, L F; Talansky, M L

    1982-11-01

    We report an outbreak of keratoconjunctivitis and skin erythema caused by ultraviolet radiation from a damaged high-intensity mercury vapor lamp. Twenty-six persons became ill after using a basketball court; symptoms included conjunctivitis (100%), skin erythema (54%), and punctate keratitis (19%). This outbreak is one of 37 similar episodes involving at least 629 persons reported to the Food and Drug Administration since 1969. Physicians should be aware that damaged high-intensity mercury vapor lamps are a continuing public health problem with substantial morbidity. Measures to prevent such occurrences are suggested. PMID:7181332

  20. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  1. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  2. SPARC-IGAC Symposium on Climate-Chemistry Interactions. Climate Feedback by Water Vapor in the Tropical Upper Troposphere

    Science.gov (United States)

    Dessler, A. E.; Minschwaner, K.

    2003-01-01

    The strong greenhouse forcing by atmospheric water vapor is expected to play an important role in shaping the direction of any future changes in climate. We present calculations that provide a new perspective on the sensitivity of upper tropospheric water vapor to changes in surface temperature. Equilibrium states of our atmospheric model show unambiguously that as the surface warms, changes in the vertical distribution and temperature of detraining air parcels from tropical convection lead to higher water vapor mixing ratios in the upper troposphere. However, the increase in mixing ratio is not as large as the increase in saturation mixing ratio due to warmer environmental temperatures, so that the relative humidity decreases. Our analysis suggests that models that maintain a fixed relative humidity are likely overestimating the magnitude of the water vapor feedback.

  3. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    data were reviewed. Water vapor sorption measurements were then applied to two hardened cement pastes and one model porous material MCM-41. The specific surface area was calculated based on different equations accounting for multilayer adsorption and the PSD was analyzed from both the absorption...... and the desorption isotherms for comparison: The calculated specific surface area was quite dependent on which equation is considered for multilayer adsorption. For the studied hardened cement pastes, three characteristic peaks were found in the calculated PSD curves from the desorption isotherms with corresponding...

  4. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2003-09-01

    , but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets.

    The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. Besides these surface and kinetic effects, proteins and comparable organic macromolecules may also influence the thermodynamic properties of the aqueous bulk solution (solubilities, vapor pressures, and chemical equilibria, e.g. for the decomposition and evaporation of NH4NO3.

    The observed effects should be taken into account in the analysis of data from laboratory experiments and field measurements and in the modelling of aerosol processes involving water vapor and particles with complex composition. They can strongly influence experimental results, and depending on ambient conditions they may also play a significant role in the atmosphere (deliquescence, efflorescence, and CCN activation of particles. In fact, irregular hygroscopic growth curves similar to the ones observed in this study have recently been reported from H-TDMA experiments with water-soluble organics extracted from real air particulate matter and with humic-like substances.

    The Köhler theory calculations performed with different models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct

  5. BUSCA-JUN91. Reference manual for the calculation of radionuclide scrubbing in water pools

    International Nuclear Information System (INIS)

    BUSCA models the decontamination of a bubble as it rises through a water pool. The bubble may contain a mixture of non-condensable gases, steam, iodine vapor and aerosol particles. The bubble thermal-hydraulics are modelled as well as the removal of soluble vapour and aerosol contaminants. The code was originally developed at SRD (part of the UK Atomic Energy Authority) during the mid 1980's. A description of an early version of the code was presented in Reference. Since then, the code has been further enhanced by collaboration within the European Pool Scrubbing Group and additional mechanisms included in its calculations. In particular, PSI (Paul Scherrer Institute, Wuerenlingen) has converted the original FACSIMILE code into FORTRAN and added different bubble initial volume, geometry and bubble rise speed options, UPM (Universidad Politecnica de Madrid) has added the bubble breakup modelling and SRD has added the cluster and plume features. This report describes the BUSCA code version JUN91 which treats the bubble hydrodynamics and removal of aerosol particles and soluble gas in an attempt to calculate the decontamination factor (mass in/mass out), including its input and output requirements. It must be stressed that the development of BUSCA is an on-going project. Currently SRD and PSI have added additional models in their own versions. (orig.)

  6. Volume of a laser-induced microjet

    Science.gov (United States)

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  7. Revised Dalton's method for calculation of thermodynamic properties of unsaturated humid air and gas mixture after combustion in humid air turbine cycle

    International Nuclear Information System (INIS)

    The article applies Revised Dalton's method for calculation of thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of unsaturated humid air and gas mixture after combustion in humid air turbine cycle. The research temperature range is from 280 K to 1600 K and pressure range from 0.1 MPa to 5 MPa. “Improvement Factor” and “Cutting Off Temperature” for unsaturated humid air are explored in depth. Two “Improvement Factor” formulas are proposed. The discovery of the changing trends of “Improvement Factors” reveals the fundamental behaviors of dry air and water vapor in unsaturated humid air. Another discovery is “Cutting Off Temperature”. It is a crucial temperature point, above which the interaction of dissimilar molecules may be omitted. Revised Dalton's method may also be applied to gas mixture after combustion. The thermodynamic properties of unsaturated humid air and gas mixture after combustion are calculated by the Revised Dalton's method. The average error of Revised Dalton's method is within 0.1% compared to experimental data. - Highlights: • Revised Dalton's Model is suitable to unsaturated humid air and gas mixture after combustion. • Two “Improvement Factor” formulas are proposed for unsaturated humid air. • Changing trends of “Improvement Factors” reveal fundamental behaviors of dry air and water vapor in gas mixture. • When temperature exceeds “Cutting Off Temperature”, interactions between dissimilar molecules may be omitted. • This method deviates from experimental data less than 0.1%

  8. Evaluation of right ventricular volumes measured by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møgelvang, J; Stubgaard, M; Thomsen, C;

    1988-01-01

    Right ventricular volumes were determined in 12 patients with different levels of right and left ventricular function by magnetic resonance imaging (MRI) using an ECG gated multisection technique in planes perpendicular to the diastolic position of the interventricular septum. Right ventricular...... stroke volume was calculated as the difference between end-diastolic and end-systolic volume and compared to left ventricular stroke volume and to stroke volume determined simultaneously by a classical indicator dilution technique. There was good agreement between right ventricular stroke volume...... determined by MRI and by the indicator dilution method and between right and left ventricular stroke volume determined by MRI. Thus, MRI gives reliable values not only for left ventricular volumes, but also for right ventricular volumes. By MRI it is possible to obtain volumes from both ventricles...

  9. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Science.gov (United States)

    Zhukhovitskii, D. I.

    2016-05-01

    The vapor-liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  10. Interpretation of TOVS Water Vapor Radiances Using a Random Strong Line Model

    CERN Document Server

    Soden, B J; Soden, Brian J.; Bretherton, Francis P.

    1995-01-01

    This study illustrates the application of a random strong line (RSL) model of radiative transfer to the interpretation of satellite observations of the upwelling radiation in the 6.3 micron water vapor absorption band. The model, based upon an assemblage of randomly overlapped, strongly absorbing, pressure broadened lines, is compared to detailed radiative transfer calculations of the upper (6.7 micron) tropospheric water vapor radiance and demonstrated to be accurate to within ~ 1.2 K. Similar levels of accuracy are found when the model is compared to detailed calculations of the middle (7.3 micron) and lower (8.3 micron) tropospheric water vapor radiance, provided that the emission from the underlying surface is taken into account. Based upon these results, the RSL model is used to interpret TOVS-observed water vapor radiances in terms of the relative humidity averaged over deep layers of the upper, middle, and lower troposphere. We then present near-global maps of the geographic distribution and climatolog...

  11. Upper limits for absorption by water vapor in the near-UV

    Science.gov (United States)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-02-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10-26 cm2 molecule-1 at our instrument resolution. For a typical, indicative slant column density of 4×1023 cm2, we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths.

  12. FINITE VOLUME METHOD FOR DETERMINING THE NATURAL CHARACTERISTICS OF STRUCTURES

    OpenAIRE

    N. FALLAH

    2013-01-01

    In this paper a finite volume based formulation is developed to calculate the structural natural characteristics including the natural frequencies and the critical buckling loads of slender beam/beam-columns in which the shear effects are taken into account. For natural frequency calculations, both shear effects and rotational inertia effects are considered. In this finite volume based approach, the equilibrium equations of control volumes are expressed and used with the boundary conditions t...

  13. Effect of the vapor phase on the salinity of halite-bearing aqueous fluid inclusions estimated from the halite dissolution temperature

    Science.gov (United States)

    Steele-MacInnis, Matthew; Bodnar, Robert J.

    2013-08-01

    Salinities of aqueous fluid inclusions are commonly determined by measuring the temperatures of dissolution of solid phases (daughter minerals) during heating. The vapor bubble is, in most cases, considered to have no mass and to have no effect on the bulk salinity, owing to the low density of the vapor. In the present study we test the assumption that the vapor bubble can be ignored when estimating salinity based on the halite dissolution temperature. The errors in bulk salinity that result from neglecting the vapor bubble are generally less than ˜1.5 wt.% NaCl, and errors of this magnitude occur only when there is a large difference between the halite dissolution temperature and the vapor disappearance temperature (e.g., halite dissolution at ˜450 °C and vapor bubble disappearance at 800 °C) or, stated differently, when the vapor bubble occupies a significant volume fraction of the inclusion at the temperature of halite disappearance. In most cases errors are less than 0.5 wt.% NaCl. Salinity estimated based on Tm,H can be adjusted to account for the contribution of H2O from the vapor phase, using an empirical relationship describing the proportion of liquid in the inclusion at Tm,H as a function of the difference between Th,LV and Tm,H.

  14. Headspace vapor characterization of Hanford waste tank 241-U-108: Results from samples collected on 8/29/95

    International Nuclear Information System (INIS)

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-108 (Tank U-108) at the Hanford Site in Washington State. The results described in the report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC

  15. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  16. Personal Finance Calculations.

    Science.gov (United States)

    Argo, Mark

    1982-01-01

    Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)

  17. Low-pressure, chemical vapor deposition polysilicon

    Science.gov (United States)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  18. Microbial growth with vapor-phase substrate

    NARCIS (Netherlands)

    Hanzel, J.; Thullner, M.; Harms, H.; Wick, L.Y.

    2011-01-01

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and

  19. New Medical Applications Of Metal Vapor Lasers

    Science.gov (United States)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  20. Vaporization of synthetic fuels. Final report. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  1. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  2. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ..., or from the American Society for Testing and Materials (ASTM), 1916 Race Street, Philadelphia, PA... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a) Introduction—(1) Background and purpose. (i) Volatilization, the evaporative loss of a chemical, depends...

  3. 75 FR 65151 - Marine Vapor Control Systems

    Science.gov (United States)

    2010-10-21

    ... Act notice regarding our public dockets in the January 17, 2008 issue of the Federal Register (73 FR... Coast Guard regulations (final rule, 55 FR 25396; June 21, 1990) relating to facility and vessel vapor... Systems; Proposed Rule #0;#0;Federal Register / Vol. 75 , No. 203 / Thursday, October 21, 2010 /...

  4. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.

    Science.gov (United States)

    Ma, Jie; Yan, Guangxu; Li, Haiyan; Guo, Shaohui

    2016-03-01

    This study conducted one-at-a-time (OAT) sensitivity and uncertainty analysis for a numerical vapor intrusion model for nine input parameters, including soil porosity, soil moisture, soil air permeability, aerobic biodegradation rate, building depressurization, crack width, floor thickness, building volume, and indoor air exchange rate. Simulations were performed for three soil types (clay, silt, and sand), two source depths (3 and 8m), and two source concentrations (1 and 400 g/m(3)). Model sensitivity and uncertainty for shallow and high-concentration vapor sources (3m and 400 g/m(3)) are much smaller than for deep and low-concentration sources (8m and 1g/m(3)). For high-concentration sources, soil air permeability, indoor air exchange rate, and building depressurization (for high permeable soil like sand) are key contributors to model output uncertainty. For low-concentration sources, soil porosity, soil moisture, aerobic biodegradation rate and soil gas permeability are key contributors to model output uncertainty. Another important finding is that impacts of aerobic biodegradation on vapor intrusion potential of petroleum hydrocarbons are negligible when vapor source concentration is high, because of insufficient oxygen supply that limits aerobic biodegradation activities. PMID:26619051

  5. Vapor shielding models and the energy absorbed by divertor targets during transient events

    Energy Technology Data Exchange (ETDEWEB)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Pshenov, A. A.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I. [National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation)

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding

  6. Water Vapor in an Unexpected Location

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    The protoplanetary disk around DoAr 44 is fairly ordinary in most ways. But a recent study has found that this disk contains water vapor in its inner regions the first such discovery for a disk of its type.Drying Out DisksDoAr 44 is a transitional disk: a type of protoplanetary disk that has been at least partially cleared of small dust grains in the inner regions of the disk. This process is thought to happen as a result of dynamical interactions with a protoplanet embedded in the disk; the planet clears out a gap as it orbits.A schematic of the differences between a full protoplanetary disk, a pre-transitional disk, and a transitional disk. [Catherine Espaillat] Classical protoplanetary disks surrounding young, low-mass stars often contain water vapor, but transitional disks are typically dry no water vapor is detected from the disk inner regions. This is probably because water vapor is easily dissociated by far-UV radiation from the young, hot star. Once the dust is cleared out from the inner regions of the disk, the water vapor is no longer shielded from the UV radiation, so the disk dries out.Enter the exception: DoAr 44. The disk in this system doesnt have a fully cleared inner region, which labels it pre-transitional. Its composed of an inner ring out to 2 AU, a cleared gap between 2 and 36 AU, and then the outer disk. What makes DoAr 44 unusual, however, is that its the only disk with a large inner gap known to harbor detectable quantities of water vapor. The authors of this study ask a key question: where is this water vapor located?Unusual SystemLed by Colette Salyk (NOAO and Vassar College), the authors examined the system using the Texas Echelon Cross Echelle Spectrograph, a visiting instrument on the Gemini North telescope. They discovered that the water vapor emission originates from about 0.3 AU the inner disk region, where terrestrial-type planets may well be forming.Both dust-shielding and water self-shielding seem to have protected this water

  7. The Structure and Thermodynamics of Alkali Halide Vapors.

    Science.gov (United States)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  8. Flexible Mental Calculation.

    Science.gov (United States)

    Threlfall, John

    2002-01-01

    Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…

  9. Vapor pressures of acetylene at low temperatures

    Science.gov (United States)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  10. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  11. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  12. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham;

    2013-01-01

    cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...

  13. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  14. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  15. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), J; David Allison (NOEMAIL), D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  16. Visualiztion of Unsteady Gas/Vapor Expansion Flows

    Institute of Scientific and Technical Information of China (English)

    G.H.Schnerr; S.Adam

    1997-01-01

    High speed expansion flows of pure vapors or gas/vapor mixtures are important to many technichl applications,e.g.to steam turbines,jet engines,and for safety control of pressurized power plants.The sudden cooling of the fluid flow leads to condensation and nonequilibrium two-phase flow with instabilities and periodic shock formation at mean frequencies of about 1kHz.Modelling and control of this dynamical problem is not only important with respect to erosion,it also may cause flutter excitation and serious demolition of technical facilities.In numerical simulations,the time dependent 2-D Euler equations coupled to four equations describing the process of homogeneous nucleation and droplet growth are solved by a MUSCL-type finite volume method.The results are compared with experiments carried out in an atmosphe\\ric supersonic wind tunnel.By application of this numerical method to inernal tlows(nozzles)we found different modes of instabilities including bifurcations.At the stability limit a sharp frequency minimum was found for symmetric oscillations in slender nozzles.It separates oscillation modes where the oncoming subsonic flow remains unchanged from the oscillatory state where a shock monotonically moves upstream into the oncoming flow.For different nozzles we detected a new unsymmetric oscillation mode with a complex system of upstream moving oblique shocks.Here the frequency curve shows the typical structure of a bifurcation problem,which is definitely not controlled by viscous effects but by instabilities of the interaction of flow and phase transition process.

  17. Pressure Profile Calculation with Mesh Ewald Methods.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2016-09-13

    The importance of calculating pressure profiles across liquid interfaces is increasingly gaining recognition, and efficient methods for the calculation of long-range contributions are fundamental in addressing systems with a large number of charges. Here, we show how to compute the local pressure contribution for mesh-based Ewald methods, retaining the typical N log N scaling as a function of the lattice nodes N. This is a considerable improvement on existing methods, which include approximating the electrostatic contribution using a large cutoff and the, much slower, Ewald calculation. As an application, we calculate the contribution to the pressure profile across the water/vapor interface, coming from different molecular layers, both including and removing the effect of thermal capillary waves. We compare the total pressure profile with the one obtained using the cutoff approximation for the calculation of the stresses, showing that the stress distributions obtained using the Harasima and Irving-Kirkwood path are quite similar and shifted with respect to each other at most 0.05 nm. PMID:27508458

  18. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    Science.gov (United States)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of

  19. Estimation of Equilibrated Vapor Concentrations Using the UNIFAC Model for the Tetrachloroethylene-Chlorobenzene System.

    Science.gov (United States)

    Ishidao, Toru; Ishimatsu, Sumiyo; Hori, Hajime

    2016-03-01

    Equilibrated vapor concentrations at 25°C of the tetrachloroethylene-chlorobenzene system were obtained in the presence of air to establish a method for estimating vapor concentrations in work environments where multicomponent organic solvents are used. The experimental data were correlated by introducing activity coefficients calculated by the UNIFAC (Universal Quasichemical Functional Group Activity Coefficient) model. There were four interaction parameters between groups in this solution system, and three had already been determined.However, the fourth parameter--the interaction parameter between ACCl and Cl-(C=C) groups--remains unknown. Therefore, this parameter was determined by a nonlinear least-squares method to obtain the best fit for the experimental data. The calculated values were found to be in good agreement with the experimental values.

  20. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    CERN Document Server

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...