Density functional theory calculations of defect and fission gas properties in U-Si fuels
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-03
Accident tolerant fuels (ATF) are being developed in response to the Fukushima Daiichi accident in Japan. One of the options being pursued is U-Si fuels, such as the U_{3}Si_{2} and U_{3}Si_{5} compounds, which benefit from high thermal conductivity (metallic) compared to the UO_{2} fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for U-Si fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap. The present study investigates point defect and fission gas properties in U_{3}Si_{2}, which is one of the main fuel candidates, using density functional theory (DFT) calculations. Based on a few assumption regarding entropy contributions, defect and fission diffusivities are predicted. Even though uranium silicides have been shown to amorphize easily at low temperature, we assume that U_{3}Si_{2} remains crystalline under the conditions expected in Light Water Reactors (LWRs). The temperature and dose where amorphization occurs has not yet been well established.
Microscopic Calculations of 240Pu Fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W; Gogny, D
2007-09-11
Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Fission Product Decay Heat Calculations for Neutron Fission of 232Th
Son, P. N.; Hai, N. X.
2016-06-01
Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.
Multi-modal calculations of prompt fission neutrons from 238U(n, f) at low induced energy
Institute of Scientific and Technical Information of China (English)
ZHENG Na; ZHONG Chun-Lai; FAN Tie-Shuan
2011-01-01
Properties of prompt fission neutrons from 238U(n,f) are calculated for incident neutron energies below 6 MeV using the multi-modal model,including the prompt fission neutron spectrum,the average prompt fission neutron multiplicity,and the prompt fission neutron multiplicity as a function of the fission fragment mass v(A) (usually named “sawtooth” data) The three most dominant fission modes are taken into account.The model parameters are determined on the basis of experimental fission fragment data.The predicted results are in good agreement with the experimental data.
The MCEF code for nuclear evaporation and fission calculations
Energy Technology Data Exchange (ETDEWEB)
Deppman, A.; Pina, S.R. de; Likhachev, V.P.; Mesa, J. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Tavares, O.A.P.; Duarte, S.B.; Oliveira, E.C. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Arruda-Neto, J.D.T. [Universidade Santo Amaro (UNISA), SP (Brazil); Rodriguez, O. [Instituto Superior de Ciencias y Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2001-11-01
We present an object oriented algorithm, written in the Java programming language, which performs a Monte Carlo calculation of the evaporation-fission process taking place inside an excited nucleus. We show that this nuclear physics problem is very suited for the object oriented programming by constructing two simple objects: one that handles all nuclear properties and another that takes care of the nuclear reaction. The MCEF code was used to calculate important results for nuclear reactions, and here we show examples of possible uses for this code. (author)
Fission yield calculation using toy model based on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Directory of Open Access Journals (Sweden)
Kaplan Abdullah
2015-01-01
Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.
Correlation measurements of fission-fragment properties
Directory of Open Access Journals (Sweden)
Oberstedt A.
2010-10-01
Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.
Fission decay properties of ultra neutron-rich uranium isotopes
Indian Academy of Sciences (India)
L Satpathy; S K Patra; R K Choudhury
2008-01-01
The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.
Fission life-time calculation using a complex absorbing potential
Directory of Open Access Journals (Sweden)
Scamps Guillaume
2016-01-01
Full Text Available A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
Fission life-time calculation using a complex absorbing potential
Scamps, Guillaume
2015-01-01
A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
Uncertainties in fission-product decay-heat calculations
Energy Technology Data Exchange (ETDEWEB)
Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)
1997-03-01
The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)
Fission products, activity calculation of spent-fuel
Energy Technology Data Exchange (ETDEWEB)
Souka, N.; El-Hakiem, M.N.
1981-01-01
This work is a scrutiny of the activity of burned up fuel elements of the ET-RR-1. A knowledge of this activity as well as its decay with time is quite helpful in shielding calculations related to construction purposes of hot facilities. The present treatment is based on a knowledge of: fuel composition, percentage burnup, and fission yields of produced isotopes. Cooling periods ranging from 1 hr to 10 years were considered.
Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.
2013-12-01
Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Directory of Open Access Journals (Sweden)
Lemaître J.-F.
2013-12-01
Full Text Available Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Decay characteristics of fission products and summation calculation
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Tadashi [Faculty of Engineering, Musashi Institute of Technology, Tokyo (Japan)
1999-02-01
This paper reviews the decay characteristics of fission products on the viewpoint of summation calculation. The fission products (FPs) are accumulated in the operating power reactors. As they are neutron-rich at the time of scission, they undergo successive beta decays toward stable nuclides. To grasp the quantity of an arbitrary nuclide, fission yields, decay constants and blanching ratios of the nuclide in the same decay chain ( a mass chain of the fixed mass is sufficient) must be known. As a neutron capture increases the mass, and release of a delayed neutron decreases the mass, capture cross sections and delayed neutron emitting ratios are also required. If these values of all FP are known, the quantities such as time dependent decay heat and the delayed neutron fraction can be calculated by summation of the contribution of the nuclides. A computer code ORIGEN-2 is a typical example to compute these quantities. The more important than computer code is the data library for summation calculation which includes physical constants such as fission yields, decay constants, blanching ratio, beta and gamma energy emitted at a beta decay, delayed neutron emitting ratios, and neutron capture cross sections for more than 1000 FP nuclides. They are realized in JNDC FP Decay Data Library-Version 2 of Japan, JEF-2 by western European countries, and ENDF/B-VI of USA. The early versions (until early 80's) of these full-scale libraries showed worse agreement with experiment than the old libraries based on approximations and estimates. The application of the gross theory to beta-decay' to short-lived FPs could solve the problem. The above disagreement is explained by having dropped of high excitation levels of short lived daughter nuclides. This is called as Pandemonium Problem. The summation calculation for the gamma ray spectrum succeeded to predict the experimental value by correcting theoretical spectrum. However, there remains still an underestimate for cooling
Fission properties for r-process nuclei
Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G
2011-01-01
We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...
Fission and Properties of Neutron-Rich Nuclei
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I
Development of Calculation Code for Fission Product and Corrosion Product in PWR’s Primary Loop
Institute of Scientific and Technical Information of China (English)
XU; Zhi-long; WAN; Hai-xia; SHAO; Jing; WU; Xiao-chun; LI; Long; LIU; Xing-min; KE; Guo-tu
2015-01-01
With the basis of study on generation,release and migration of fission product,calculation model for each of the above processes was developed,and calculation method for source term of PWR fission products was established.Study on source term of corrosion product in primary loop was been done.Based on the study of corrosion,
Calculation of Fission Observables Through Event-by-Event Simulation
Energy Technology Data Exchange (ETDEWEB)
Randrup, J; Vogt, R
2009-06-04
The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.
Calculation of Prompt Fission Neutron Spectrum for 233U（n, f） Reaction by Semi-empirical Method
Institute of Scientific and Technical Information of China (English)
CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan
2013-01-01
The prompt fission neutron spectra for neutron-induced fission of 233U for low energy neutron(below 6 MeV)are calculated using the nuclear evaporation theory with a semi-empirical method,in which the partition of the total excitation energy between the fission fragments for the nth+233U fission
Calculation of Prompt Fission Neutron Spectra for ~(235)U (n,f)
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The prompt fission neutron spectra for neutron-induced fission of 235U at En<5 MeV are calculated using the nuclear evaporation theory with a semi-empirical model, in which the non-constant temperature and the constant temperature related to the Fermi gas model
Fission cross section calculations of actinides with EMPIRE code
Energy Technology Data Exchange (ETDEWEB)
Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.
2010-04-30
The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.
New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications
Möller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.
2008-05-01
The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space (ɛ2, V3, V4, V6,) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV. We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from 70Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ``immersion'' technique.
Directory of Open Access Journals (Sweden)
Porta A.
2016-01-01
Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.
2016-03-01
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Fission product inventory calculation by a CASMO/ORIGEN coupling program
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)
Calculation of prompt fission neutron spectra for 235U(n,f)
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Jing; JIA Min; TAO Xi; QIAN Jing; LIU Ting-Jin; SHU Neng-Chuan
2012-01-01
The prompt fission neutron spectra for the neutron-induced fission of 235U at En ＜ 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model,in which the nonconstant and constant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well.For the n(thermal)+235U reaction,the average nuclear temperature of the fission fragment,and the probability distribution of the nuclear temperature,are discussed and compared with the Los Alamos model.The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra
Energy Technology Data Exchange (ETDEWEB)
Katakura, J. (Japan Atomic Energy Research Inst., Tokai-mura, Naka-gun, Ibaraki-ken (Japan)); England, T.R. (Los Alamos National Lab., NM (United States))
1991-11-01
Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.
Investigation of the diffusion of atomic fission products in UC by density functional calculations
Energy Technology Data Exchange (ETDEWEB)
Bévillon, Émile, E-mail: emile.bevillon@yahoo.fr [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France); Ducher, Roland; Barrachin, Marc; Dubourg, Roland [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France)
2013-03-15
Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO{sub 2} by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.
Investigation of the diffusion of atomic fission products in UC by density functional calculations
Bévillon, Émile; Ducher, Roland; Barrachin, Marc; Dubourg, Roland
2013-03-01
Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO2 by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.
Institute of Scientific and Technical Information of China (English)
郑娜; 钟春来; 樊铁栓
2012-01-01
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.
Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.
Energy Technology Data Exchange (ETDEWEB)
Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.
1999-02-17
Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Semi-empirical Calculation for Yield of 240Pu Spontaneous Fission
Institute of Scientific and Technical Information of China (English)
SHU; Neng-chuan; LIU; Li-le; CHEN; Xiao-song; LIU; Ting-jin; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing
2012-01-01
<正>The spontaneous fission yield has important implication in the nuclear engineering. This work used semi-empirical model to calculate its chain yield, the result shows good agreement with the measured data. There are only 3 sets of measured data, and only too gave the chain yields and cumulative yields, covering 17 chains. It is not enough to satisfy the requirement of users. So it is needed to use theoretical model to calculate the chain yield without measured data.
Usang, M. D.; Ivanyuk, F. A.; Ishizuka, C.; Chiba, S.
2016-10-01
Nuclear fission is treated by using the Langevin dynamical description with macroscopic and microscopic transport coefficients (mass and friction tensors), and it is elucidated how the microscopic (shell and pairing) effects in the transport coefficients, especially their dependence on temperature, affects various fission observables. We found that the microscopic transport coefficients, calculated by linear response theory, change drastically as a function of temperature: in general, the friction increases with growing temperature while the mass tensor decreases. This temperature dependence brings a noticeable change in the mass distribution and kinetic energies of fission fragments from nuclei around 236U at an excitation energy of 20 MeV. The prescission kinetic energy decreases from 25 MeV at low temperature to about 2.5 MeV at high temperature. In contrast, the Coulomb kinetic energy increases as the temperature increases. Interpolating the microscopic transport coefficients among the various temperatures enabled our Langevin equation to use the microscopic transport coefficients at a deformation-dependent local temperature of the dynamical evolution. This allowed us to compare directly the fission observables of both macroscopic and microscopic calculations, and we found almost identical results under the conditions considered in this work.
Thermal Fission Rate Calculated Numerically by Particles Multi-passing over Saddle Point
Institute of Scientific and Technical Information of China (English)
LIU Ling; BAO Jing-Dong
2004-01-01
Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and firstoverpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point,and the former approaches the results at the scission point.
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2010-10-01
Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.
Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok
2005-05-01
The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A
Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference
Hamilton, J. H.; Phillips, W. R.; Carter, H. K.
The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
Directory of Open Access Journals (Sweden)
Ramos D.
2016-01-01
Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...
Calculation for fission decay from heavy ion reactions at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Fraenkel, Z. (Weizmann Institute of Science, 76100 Rehovot (Israel))
1992-02-01
A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Gabriel, T.A.; Bishop, B.L.; Wiffen, F.W.
1979-08-01
In order to plan radiation damage experiments in fission reactors keyed toward fusion reactor applications, it is necessary to have available for these facilities displacement per atom (dpa) and gas production rates for many potential materials. This report supplies such data for the elemental constituents of alloys of interest to the United States fusion reactor alloy development program. The calculations are presented for positions of interest in the HFIR, ORR, and EBR-II reactors. DPA and gas production rates in alloys of interest can be synthesized from these results.
Delayed neutron spectra and their uncertainties in fission product summation calculations
Energy Technology Data Exchange (ETDEWEB)
Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)
1997-03-01
Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)
Directory of Open Access Journals (Sweden)
Zakari-Issoufou A.-A.
2014-03-01
Full Text Available β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the ν¯$\\bar \
Energy Technology Data Exchange (ETDEWEB)
Jo, Yu Gwon; Cho, Nam Zin [KAIST, Daejeon (Korea, Republic of)
2014-10-15
The OLG iteration scheme uses overlapping regions for each local problem solved by continuous-energy MC calculation to reduce errors in inaccurate boundary conditions (BCs) that are caused by discretization in space, energy, and angle. However, the overlapping region increases computational burdens and the discretized BCs for continuous-energy MC calculation result in an inaccurate global p-CMFD solution. On the other hand, there also have been several studies on the direct domain decomposed MC calculation where each processor simulates particles within its own domain and exchanges the particles crossing the domain boundary between processors with certain frequency. The efficiency of this method depends on the message checking frequency and the buffer size. Furthermore, it should overcome the load-imbalance problem for better parallel efficiency. Recently, fission and surface source (FSS) iteration method based on banking both fission and surface sources for the next iteration (i.e., cycle) was proposed to give exact BCs for non overlapping local problems in domain decomposition and tested in one-dimensional continuous-energy reactor problems. In this paper, the FSS iteration method is combined with a source splitting scheme to reduce the load imbalance problem and achieve global variance reduction. The performances are tested on a two dimensional continuous-energy reactor problem with domain-based parallelism and compared with the FSS iteration without source splitting. Numerical results show the improvements of the FSS iteration with source splitting. This paper describes the FSS iteration scheme in the domain decomposition method and proposes the FSS iteration combined with the source splitting based on the number of sampled sources, reducing the load-imbalance problem in domain-based parallelism and achieving global variance reduction.
Calculation of 239Pu fission observables in an event-by-event simulation
Energy Technology Data Exchange (ETDEWEB)
Vogt, R; Randrup, J; Pruet, J; Younes, W
2010-03-31
The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.
Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane
Directory of Open Access Journals (Sweden)
Afshin Taghva Manesh
2017-02-01
Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.
Energy Technology Data Exchange (ETDEWEB)
Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)
1997-03-01
The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc
2014-04-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Directory of Open Access Journals (Sweden)
Panebianco Stefano
2014-04-01
Full Text Available Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Energy Technology Data Exchange (ETDEWEB)
Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)
2014-07-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)
Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei
Ramayya, A V; ICFN5
2014-01-01
These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.
Monte-Carlo Hauser-Feshbach simulations of prompt fission gamma-ray properties
Stetcu, Ionel; Talou, Patrick; Kawano, Toshihiko; Jandel, Marian
2014-09-01
Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the DANCE facility at LANSCE. Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the
Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors
Energy Technology Data Exchange (ETDEWEB)
Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science
1997-07-01
There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)
Program calculation of thermodynamic properties
Gill, Walter; Filho, Fernando Fachini; Ribeirodeoliveira, Ronaldo
1986-12-01
The determination of the thermodynamic properties are examined through the basic equations such as: state equation (Beattie-Bridgeman Form), saturation pressure equation, specific heat constant pressure or constant volume equation, and specific volume or density of liquid equation.
Energy Technology Data Exchange (ETDEWEB)
Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)
2002-01-01
SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi
2016-01-01
\\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...
Indian Academy of Sciences (India)
M Balasubramaniam; K R Vijayaraghavan; C Karthikraj
2015-09-01
We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.
Energy Technology Data Exchange (ETDEWEB)
Hudritsch, W.W.; Smith, P.D.
1977-11-01
The one-dimensional computer program PADLOC is designed to analyze steady-state and time-dependent plateout of fission products in an arbitrary network of pipes. The problem solved is one of mass transport of impurities in a fluid, including the effects of sources in the fluid and in the plateout surfaces, convection along the flow paths, decay, adsorption on surfaces (plateout), and desorption from surfaces. These phenomena are governed by a system of coupled, nonlinear partial differential equations. The solution is achieved by (a) linearizing the equations about an approximate solution, employing a Newton Raphson iteration technique, (b) employing a finite difference solution method with an implicit time integration, and (c) employing a substructuring technique to logically organize the systems of equations for an arbitrary flow network.
Fission-fragment properties in 238U(n ,f ) between 1 and 30 MeV
Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.; Hambsch, F.-J.; Bryś, T.; Vidali, M.
2016-11-01
The fragment mass and kinetic energy in neutron-induced fission of 238U has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy (TKE ¯) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the TKE ¯ data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.
Duarte, S B; Guzmán, F; Di Marco, A; García, F; Rodríguez, O; Gonçalves, M
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the effective liquid drop model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer (VMAS) and Werner-Wheeler's inertia coefficient (WW). The calculated half lives of ground-state to ground-state transitions for proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. These comparisons show that the ELDM is a very efficient model to describe these different decay processes in a same, unified, theoretical framework. A table listing the predicted half-life values, tau sub c , is presented for all possible cases of spontaneous nuclear breakup such that -7.30 -17.0, where tau is the total half life of the parent nucleus.
Energy Technology Data Exchange (ETDEWEB)
Fabritsiev, S.A. [D.V. Efremov Institute, St. Petersburg (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others
1995-04-01
The objective of this study is to evaluate the properties of several copper alloys following fission reactor irradiation at ITER-relevant temperatures of 80 to 200{degrees}C. This study provides some of the data needed for the ITER research and development Task T213. These low temperature irradiations caused significant radiation hardening and a dramatic decrease in the work hardening ability of copper and copper alloys. The uniform elongation was higher at 200{degree}C compared to 100{degree}C, but still remained below 1% for most of the copper alloys.
Fifty years of nuclear fission: Nuclear data and measurements series
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.
Recent studies to improve release properties from thick isotope separator on-line fission targets
Lau, C; Verney, D; Bajeat, O; Ibrahim, F; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Hosni, F; Lefort, H; Le Blanc, F; Müller, A C
2003-01-01
In the framework of the PARRNe program (Production d'Atomes Radioactifs Riches en Neutrons) of IPN Orsay, various techniques are currently used to characterize the release properties of elements of interest from a UC//X target. On-line studies have been carried out with two plasma ion sources: a Nier-Bernas and a hot plasma ISOLDE- type (the ISOLDE collaboration kindly supplied us a MK5 ion source for these studies). In parallel, the analysis of the chemical and structure properties of some UC//X samples as function of heating conditions has been carried out. Such data are essential to determine optimal conditions for the production of isotopes by the isotope separator on-line (ISOL) technique. First results are presented here for Kr and Ag. Investigations for other kinds of fission targets are planned.
Directory of Open Access Journals (Sweden)
Minato Futoshi
2016-01-01
Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei
Energy Technology Data Exchange (ETDEWEB)
Shaughnessy, Dawn A. [Univ. of California, Berkeley, CA (United States)
2000-01-01
Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. ^{242}Es was produced via the ^{233}U(^{14}N,5n)^{242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of ^{242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (P_{DF}) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the ^{233}U(^{14}N,xn)^{247-x}Es and ^{233}U^{(15N,xn)}^{248-x}Es reactions were measured for ^{243}Es, ^{244}Es and ^{245}Es at projectile energies between 80 MeV and 100 MeV.
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)
Directory of Open Access Journals (Sweden)
Thakur Meenu
2015-01-01
Full Text Available The reaction mechanism of 19F + 232Th and 28Si + 232Th systems populating the near-super-heavy compound nuclei 251Es and 260Rf respectively are investigated using neutron multiplicity as a probe. The prescission neutron multiplicities of these compound nuclei are calculated at different excitation energies using a statistical model code. These calculations are performed using the Bohr-Wheeler transition state fission width as well as the dissipative dynamical fission width based on the Kramers’ prescription. For 19F + 232Th system, the measured yield of pre-scission is compared with the statistical model calculations for the decay of a compound nucleus in the excitation energy range of 54-90 MeV. The comparison between the measured and the calculated values indicates that the Bohr-Wheeler fission width underestimates the pre-scission neutron yield and a large amount of dissipation strength is required to reproduce the experimental pre-scission neutron multiplicities. The excitation energy dependence of the fitted values of the dissipation coefficient is also discussed. In addition, exploratory statistical model calculations of pre-scission neutron multiplicity for the 28Si + 232Th system are presented in the above range of excitation energy.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2009-10-25
Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic
Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100
Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M
2015-01-01
This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.
SPARC-90: A code for calculating fission product capture in suppression pools
Energy Technology Data Exchange (ETDEWEB)
Owczarski, P.C.; Burk, K.W. (Pacific Northwest Lab., Richland, WA (United States))
1991-10-01
This report describes the technical bases and use of two updated versions of a computer code initially developed to serve as a tool for calculating aerosol particle retention in boiling water reactor (BWR) pressure suppression pools during severe accidents, SPARC-87 and SPARC-90. The most recent version is SPARC-90. The initial or prototype version (Owczarski, Postma, and Schreck 1985) was improved to include the following: rigorous treatment of local particle deposition velocities on the surface of oblate spherical bubbles, new correlations for hydrodynamic behavior of bubble swarms, models for aerosol particle growth, both mechanistic and empirical models for vent exit region scrubbing, specific models for hydrodynamics of bubble breakup at various vent types, and models for capture of vapor iodine species. A complete user's guide is provided for SPARC-90 (along with SPARC-87). A code description, code operating instructions, partial code listing, examples of the use of SPARC-90, and summaries of experimental data comparison studies also support the use of SPARC-90. 29 refs., 4 figs., 11 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-07-01
Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...
Pomorski, Krzysztof; Ivanyuk, Fedir A
2016-01-01
The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi; Pei, J. C.
2016-08-01
Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.
Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M
The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.
Energy Technology Data Exchange (ETDEWEB)
Blink, J.A.
1985-03-01
In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs.
Modelling the widths of fission observables in GEF
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2013-03-01
Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.
A Covalently Linked Tetracene Trimer: Synthesis and Singlet Exciton Fission Property.
Liu, Heyuan; Wang, Rui; Shen, Li; Xu, Yanqing; Xiao, Min; Zhang, Chunfeng; Li, Xiyou
2017-02-03
A linear tetracene trimer linked by phenyl groups has been prepared for the first time. The triplet quantum yield formed via intramolecular singlet fission can reach up to 96% in this trimer, which is enhanced significantly compared with that in the dimer. This can be attributed to the stronger electronic coupling between tetracene subunits and more delocalized excitons in the trimer.
Energy Technology Data Exchange (ETDEWEB)
Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Wagner, John C [ORNL; Bowen, Douglas G [ORNL
2015-09-01
The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k_{eff}) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k_{eff} calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.
Numerical calculations of magnetic properties of nanostructures
Kapitan, Vitalii; Nefedev, Konstantin
2015-01-01
Magnetic force microscopy and scanning tunneling microscopy data could be used to test computer numerical models of magnetism. The elaborated numerical model of a face-centered lattice Ising spins is based on pixel distribution in the image of magnetic nanostructures obtained by using scanning microscope. Monte Carlo simulation of the magnetic structure model allowed defining the temperature dependence of magnetization; calculating magnetic hysteresis curves and distribution of magnetization on the surface of submonolayer and monolayer nanofilms of cobalt, depending on the experimental conditions. Our developed package of supercomputer parallel software destined for a numerical simulation of the magnetic-force experiments and allows obtaining the distribution of magnetization in one-dimensional arrays of nanodots and on their basis. There has been determined interpretation of magneto-force microscopy images of magnetic nanodots states. The results of supercomputer simulations and numerical calculations are in...
Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report
Energy Technology Data Exchange (ETDEWEB)
Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.
1980-01-01
It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited.
Purification and functional properties of the membrane fissioning protein CtBP3/BARS.
Valente, Carmen; Spanò, Stefania; Luini, Alberto; Corda, Daniela
2005-01-01
The fissioning protein CtBP3/BARS is a member of the CtBP transcription corepressor family of proteins. The characterization of this fissioning activity of CtBP3/BARS in both isolated Golgi membranes and in intact cells has indicated that the CtBP family includes multifunctional proteins that can act both in the nucleus and in the cytoplasm. The fissiogenic activity of CtBP3/BARS has a role in the fragmentation of the Golgi complex during mitosis and during intracellular membrane transport. This was demonstrated using a number of approaches and reagents, which are discussed in the following text, and which include recombinant proteins and mutants, antibodies, protein overexpression, RNA interference, antisense oligonucleotides, cell permeabilization, and electron miscroscopy, together with biochemical assays such as that for ADP-ribosylation.
The calculation of thermodynamic properties of molecules
DEFF Research Database (Denmark)
van Speybroeck, Veronique; Gani, Rafiqul; Meier, Robert Johan
2010-01-01
such quantities by computation are quantum mechanical methods and group contribution methods. Although a lot of progress was made over the last decade, for the majority of chemical species we are still quite a bit away from what is often referred to as chemical accuracy, i.e.1 kcal mol-1. Currently, for larger...... molecules the combination of group contribution methods with group additive values that are determined with the best available computational ab initio methods seems to be a viable alternative to obtain thermodynamic properties near chemical accuracy. New developments and full use of existing tools may lead...
Renormalization-group calculation of excitation properties for impurity models
Yoshida, M.; Whitaker, M. A.; Oliveira, L. N.
1990-05-01
The renormalization-group method developed by Wilson to calculate thermodynamical properties of dilute magnetic alloys is generalized to allow the calculation of dynamical properties of many-body impurity Hamiltonians. As a simple illustration, the impurity spectral density for the resonant-level model (i.e., the U=0 Anderson model) is computed. As a second illustration, for the same model, the longitudinal relaxation rate for a nuclear spin coupled to the impurity is calculated as a function of temperature.
General Description of Fission Observables: GEF Model Code
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)
2016-01-15
consistent with the collective enhancement of the level density. The exchange of excitation energy and nucleons between the nascent fragments on the way from saddle to scission is estimated according to statistical mechanics. As a result, excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment in the superfluid regime. This description reproduces some rather peculiar observed features of the prompt-neutron multiplicities and of the even-odd effect in fission-fragment Z distributions. For completeness, some conventional descriptions are used for calculating pre-equilibrium emission, fission probabilities and statistical emission of neutrons and gamma radiation from the excited fragments. Preference is given to simple models that can also be applied to exotic nuclei compared to more sophisticated models that need precise empirical input of nuclear properties, e.g. spectroscopic information. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that complies with the needs for applications in nuclear technology without specific adjustments to measured data of individual systems. The GEF executable runs out of the box with no need for entering any empirical data. This unique feature is of valuable importance, because the number of systems and energies of potential significance for fundamental and applied science will never be possible to be measured. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated.
Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.; Malvagi, F.
2014-06-01
Pile-oscillation experiments are performed in the MINERVE reactor at the CEA Cadarache to improve nuclear data accuracy. In order to precisely calculate small reactivity variations (experiments, a reference calculation need to be achieved. This calculation may be accomplished using the continuous-energy Monte Carlo code TRIPOLI-4® by using the eigenvalue difference method. This "direct" method has shown limitations in the evaluation of very small reactivity effects because it needs to reach a very small variance associated to the reactivity in both states. To answer this problem, it has been decided to implement the exact perturbation theory in TRIPOLI-4® and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4® is described. To illustrate the effciency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the "direct" estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the "direct" method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high precision. Other applications of
Measurement of fission products β decay properties using a total absorption spectrometer
Directory of Open Access Journals (Sweden)
Zakari-Issoufou A.-A.
2013-12-01
Full Text Available In a nuclear reactor, the β decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyväskylä with a Total Absorption Spectrometer (TAS in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented.
Energy Technology Data Exchange (ETDEWEB)
Lee, C.E.; Apperson, C.E. Jr.; Foley, J.E.
1976-10-01
The report describes an analytic containment building model that is used for calculating the leakage into the environment of each isotope of an arbitrary radioactive decay chain. The model accounts for the source, the buildup, the decay, the cleanup, and the leakage of isotopes that are gas-borne inside the containment building.
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1978-01-01
The systematics of the low energy fission of the fermium isotopes is studied considering half-lives, masss division, kinetic-energy release, and accompanying prompt neutron emission. It is shown that the low energy fission of the fermium isotopes is a microcosm of the fission process, exhibiting a wide range of half lives, mass and kinetic energy distributions and varying neutron emission. The trends in the fermium isotopes are considered. 23 references. (JFP)
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Interactive calculations of thermodynamics properties of minerals in VLab
Kelly, N.; da Silveira, P. R.; Wentzcovitch, R. M.
2009-12-01
We have developed a page within the VLab web site from which calculations of thermodynamics properties of minerals can be performed interactively. Previously published first principles calculations based on qhasiharmonic theory by our group have produced pressure dependent vibrational density of states (VDOSs). These calculations were costly and the essential information they produced, the VDOSs, are now stored on a database. They can be used to regenerate published results or calculate thermodynamics properties using specific user entered information (pressure and temperature range and grids, equation of state type, etc). Results are presented in numerical or graphics format (Gnuplot 4.2.2) that are interactively customized and downloadable. All codes behind the Web container are written in Java.
Research on Nuclear Reaction Network Equation for Fission Product Nuclides
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra
Hidden systematics of fission channels
Directory of Open Access Journals (Sweden)
Schmidt Karl-Heinz
2013-12-01
Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy
Using electron microscopy to calculate optical properties of biological samples
Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K.; Szleifer, Igal; Backman, Vadim
2016-01-01
The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy...
The spacing calculator software—A Visual Basic program to calculate spatial properties of lineaments
Ekneligoda, Thushan C.; Henkel, Herbert
2006-05-01
A software tool is presented which calculates the spatial properties azimuth, length, spacing, and frequency of lineaments that are defined by their starting and ending co-ordinates in a two-dimensional (2-D) planar co-ordinate system. A simple graphical interface with five display windows creates a user-friendly interactive environment. All lineaments are considered in the calculations, and no secondary sampling grid is needed for the elaboration of the spatial properties. Several rule-based decisions are made to determine the nearest lineament in the spacing calculation. As a default procedure, the programme defines a window that depends on the mode value of the length distribution of the lineaments in a study area. This makes the results more consistent, compared to the manual method of spacing calculation. Histograms are provided to illustrate and elaborate the distribution of the azimuth, length and spacing. The core of the tool is the spacing calculation between neighbouring parallel lineaments, which gives direct information about the variation of block sizes in a given category of structures. The 2-D lineament frequency is calculated for the actual area that is occupied by the lineaments.
Chang, G. S.; Lillo, M. A.
2009-08-01
-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
Fission modelling with FIFRELIN
Energy Technology Data Exchange (ETDEWEB)
Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)
2015-12-15
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for
Fission modelling with FIFRELIN
Litaize, Olivier; Serot, Olivier; Berge, Léonie
2015-12-01
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the
Calculation of tin atomic data and plasma properties.
Energy Technology Data Exchange (ETDEWEB)
Morozov, V.; Tolkach, V.; Hassanein, A.
2005-08-26
This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.
Using electron microscopy to calculate optical properties of biological samples.
Wu, Wenli; Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K; Szleifer, Igal; Backman, Vadim
2016-11-01
The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2003-07-01
The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.
Direct method for calculating temperature-dependent transport properties
Liu, Yi; Yuan, Zhe; Wesselink, R. J. H.; Starikov, Anton A.; van Schilfgaarde, Mark; Kelly, Paul J.
2015-06-01
We show how temperature-induced disorder can be combined in a direct way with first-principles scattering theory to study diffusive transport in real materials. Excellent (good) agreement with experiment is found for the resistivity of Cu, Pd, Pt (and Fe) when lattice (and spin) disorder are calculated from first principles. For Fe, the agreement with experiment is limited by how well the magnetization (of itinerant ferromagnets) can be calculated as a function of temperature. By introducing a simple Debye-like model of spin disorder parameterized to reproduce the experimental magnetization, the temperature dependence of the average resistivity, the anisotropic magnetoresistance, and the spin polarization of a Ni80Fe20 alloy are calculated and found to be in good agreement with existing data. Extension of the method to complex, inhomogeneous materials as well as to the calculation of other finite-temperature physical properties within the adiabatic approximation is straightforward.
Bloch, F.; Staub, H.
1943-08-18
Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951
Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)
Institute of Scientific and Technical Information of China (English)
2001-01-01
The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.
Intrinsic energy partition in fission
Directory of Open Access Journals (Sweden)
Mirea M.
2013-03-01
Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.
Simulative calculation of bromo-polystyrene mechanical properties
Wang Chao; Tang Yong Jian
2002-01-01
The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed
Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.
Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael
2015-08-04
The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Greck, Peter
2012-11-26
We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Long fiber polymer composite property calculation in injection molding simulation
Jin, Xiaoshi; Wang, Jin; Han, Sejin
2013-05-01
Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.
DEFF Research Database (Denmark)
Christiansen, Steen Ledet
; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...
Savchenko, I. V.; Lezhnin, S. I.; Mosunova, N. A.
2015-06-01
Recent years have seen an essentially increased interest in studying the properties of liquid lead, which is primarily connected with the possibility of using it as coolant in nuclear power installations, first of all, in reactors based on fission of heavy nuclei by fast neutrons. The article presents an analysis of published data on the thermophysical and kinetic properties of lead in liquid state, the results of which served as a basis for selecting and recommending correlations to be used in carrying out scientific and engineering calculations. A general assessment of the state of experimental investigations into the thermophysical properties of liquid lead is presented. The presented value of lead solidification temperature is the maximally reliable one. The data on the boiling temperature, melting and vaporization enthalpies, and saturated vapor pressure have been determined with satisfactory accuracy. The published data on the liquid lead heat capacity differ considerably from each other; therefore, the recommended values should be experimentally checked and determined more exactly. The available experimental data on surface tension density, volumetric expansion coefficient, sound velocity, viscosity, and thermal conductivity do not cover the entire range of liquid phase existence temperatures. The temperature region above 1200 K and the crystal-liquid phase transition region are the least studied ones. Additional investigations of these properties in the above-mentioned temperature intervals are necessary. The question about the influence of impurities on the thermophysical properties of lead still remains to be answered and requires experimental investigations.
Effect of nuclear viscosity on fission process
Energy Technology Data Exchange (ETDEWEB)
Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa
1989-02-01
According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.
Monte Carlo calculations of the properties of solid nitromethane
Rice, Betsy M.; Trevino, Samuel F.
1991-09-01
Pairwise additive potential energy functions for H-O, H-H, and O-O intermolecular interactions are presented; methods by which these functions were developed are discussed, and preliminary Monte Carlo calculations of the crystal lattice parameters using these functions are presented. The results indicate that these potential energy functions correctly reproduce the lattice parameters measured by neutron diffraction at 4.2 K, ambient pressure, and at pressures below 1.0 GPa, room temperature. It is our intention in this and future work to obtain sufficient information concerning the intermolecular interactions between molecules of nitromethane (CH3NO2) in order to produce, via computer simulation, a reliable equation of state and other related properties in the condensed phase. For this purpose, substantial experimental investigations have been performed in the past on several properties of the crystal. For the present study, the most important of these are the determination of the crystal structure at ambient pressure, from 4.2 K to 228 K (Trevino, Prince, and Hubbard 1980) and neutron spectroscopic determination of the rotational properties of the methyl group (Trevino and Rymes 1980; Alefeld et al. 1982; Cavagnat et al. 1985).
Application of the dinuclear system model to fission process
Directory of Open Access Journals (Sweden)
Andreev A. V.
2016-01-01
Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.
Collective spectra along the fission barrier
Directory of Open Access Journals (Sweden)
Pigni M. T.
2012-12-01
Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.
Plicht, J. van der; Harakeh, M.N.; van der Woude, Adriaan; David, P.; Debrus, J.; Janszen, H.; Schulze, J.
1981-01-01
The fission probabilities and angular distributions of the fission fragments for the (α, α'f) reaction on 232Th and 238U at a bombarding energy of 120 MeV have been measured from about 4 to 14 MeV excitation energy. Evidence for sub-barrier resonances has been found, the negative parity ones occurri
Calculation of the radiative properties of photosynthetic microorganisms
Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard
2015-08-01
A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively
Calculation of nonlinear optical properties of molecular clusters
Energy Technology Data Exchange (ETDEWEB)
Yartsev, V. M.; Marcano O, A. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)
2001-03-01
Effects of electronic correlation and electron-intramolecular vibration coupling on the non-linear optical properties are studied. The Hubbard Hamiltonian is used for explicit treatment of electronic correlation in molecular dimmer. The static polarizability and the static second hyper polarizability {gamma} are calculated and their dependences on the model parameters are analyzed. The role of interaction between ion-radical complexes is considered within the model of two parallel dimers. [Spanish] Se estudian los efectos de correlacion y el acoplamiento del electron con las vibraciones moleculares sobre las propiedades opticas no lineales de agregados moleculares. Se utiliza un hamiltoniano de tipo Hubbard para el tratamiento explicito de la correlacion electronica en un dimero molecular. Se calculan la polarizabilidad estatica {alpha} y la hiperpolarizabilidad de segundo orden {gamma} al igual que se analizan sus dependencias de los parametros del modelo. Se estudia ademas el papel de la interaccion entre complejos ino-radical dentro del modelo de dos dimeros paralelos.
Energy Technology Data Exchange (ETDEWEB)
Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)
2009-06-15
Nuclear fuel cladding is the first barrier used to confine the fuel and the fission products produced during irradiation. Zirconium alloys are used for this purpose due to their remarkable neutron transparency, together with their good mechanical properties at operational temperatures. Consequently, it is very important to be able to characterize the mechanical response of the irradiated cladding. The mechanical behaviour of the material can be modelled as elastoplastic with different stress-strain curves depending on the direction: radial, hoop or longitudinal direction. The ring tensile test has been proposed to determine the mechanical properties of the cladding along the hoop direction. The initial test consisted of applying a force inside the tube, by means of two half cylinders. Later Arsene and Bai [1,2] modified the experimental device to avoid tube bending at the beginning of the test. The same authors proposed a numerical method to obtain the stress-strain curve in the hoop direction from the experimental load versus displacement results and a given friction coefficient between the loading pieces and the sample [3]. This method has been used by different authors [4] with slight modifications. It is based on the existence of two universal curves under small strain hypothesis: the first correlating the hoop strain and the displacement of the loading piece and the second one correlating the hoop stress and the applied load. In this work, a new method to determine the mechanical properties of the cladding from the ring tensile test results is proposed. Non-linear geometry is considered and an iterative procedure is proposed so universal curves are not needed. A stress-strain curve is determined by combining numerical calculations with experimental results in a convergent loop. The two universal curves proposed by Arsene and Bai [3] are substituted by two relationships, one between the equivalent plastic strain in the centre of the specimen ligament and the
Ab initio calculations of yttrium nitride: structural and electronic properties
Energy Technology Data Exchange (ETDEWEB)
Zerroug, S.; Ali Sahraoui, F. [Universite Ferhat Abbas, Laboratoire d' Optoelectronique et Composants, Departement de Physique, Setif (Algeria); Bouarissa, N. [King Khalid University, Department of Physics, Faculty of Science, P.O. Box 9004, Abha (Saudi Arabia)
2009-11-15
Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at {proportional_to}134 GPa. Besides, a transition from an indirect ({gamma}-X) bandgap semiconductor to a direct (X-X) one is predicted at pressure of {proportional_to}84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors. (orig.)
Fission dynamics within time-dependent Hartree-Fock: boost-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...
Energy Partition in n+233U Fission Reaction
Institute of Scientific and Technical Information of China (English)
CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan
2012-01-01
<正>The partition of the total excitation energy between the fission fragments for the n+233U fission reactions are analyzed with a semi-empirical model, and it is a key point for calculating the prompt fission neutron spectrum, and it is still a long-standing problem for nuclear fission, and attracts more and more attention. With the available experimental data, such as the average total number of emitted neutrons, the
Fission mode analysis of the reaction {sup 237}Np(n,f) - possibilities and perspectives
Energy Technology Data Exchange (ETDEWEB)
Siegler, P. [Joint Research Centre, Geel (Belgium). Geel Establishment
1996-03-01
Fission fragment properties for the reaction {sup 237}Np(n,f) have been measured at the Van de Graaff Laboratory of the IRMM. Using a double gridded ionization chamber the mass, kinetic energy and the angular distribution for both fission fragments could be determined simultaneously for an incident neutron energy range from E{sub n}=0.3 MeV upto E{sub n}=5.5 MeV. Complete datasets have been acquired for 13 different neutron energies covering sub barrier fission as well as fission in the plateau region. A detailed analysis of the fragment distributions and the respective momenta has been carried out, checking the coherence against the excitation energy of the compound nucleus. The consideration of multi-modal fission offers an improved possibility for the description of the fragment distributions backed up by theoretical calculations on the basis of the multi-model random-neck rupture model of Brosa, Grossmann and Mueller. The changes of the fission fragment properties under investigation are completely described and an interpretation of the findings is presented. (author)
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
Thorium-uranium fission radiography
Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.
1976-01-01
Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.
SPIDER Progress Towards High Resolution Correlated Fission Product Data
Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team
2014-09-01
The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.
Inclusive spectra of hadrons created by color tube fission; 1, Probability of tube fission
Gedalin, E V
1997-01-01
The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.
Fusion-fission study at IUAC: Recent results
Pullanhiotan, Sugathan
2016-10-01
Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.
On current ambiguity in the interpretation of fission at intermediate excitation energy
Directory of Open Access Journals (Sweden)
C. Schmitt
2014-10-01
Full Text Available Various approaches are currently used to interpret experimental data on fission. We critically examine a wide set of observables measured for fission of Po206,210 nuclei at medium excitation energy, and illustrate the ambiguity in current analysis. Dynamical calculations based on the four-dimensional Langevin equation using a macroscopic potential energy landscape are performed, and found to consistently describe available measurements. This observation calls into question the robustness of recent analysis based on statistical-model calculations and concluding, on the contrary, to substantial shell effects at the fission saddle point in Po206,210. The inconsistency in interpretation reached by the two approaches shows that, depending on the system, the conclusion can be strongly model-dependent. Although this may not be surprising, it emphasizes the today still limited reliability of firmly extracting fundamental nuclear properties from customary analysis.
On current ambiguity in the interpretation of fission at intermediate excitation energy
Energy Technology Data Exchange (ETDEWEB)
Schmitt, C., E-mail: schmitt@ganil.fr [Grand Accélérateur National d' Ions Lourds, CEA/DSM–CNRS/IN2P3, 14076 Caen (France); Mazurek, K. [The Niewodniczański Institute of Nuclear Physics – PAN, 31-342 Kraków (Poland); Nadtochy, P.N. [Omsk State University, Department of Theoretical Physics, 644077 Omsk (Russian Federation)
2014-10-07
Various approaches are currently used to interpret experimental data on fission. We critically examine a wide set of observables measured for fission of {sup 206,210}Po nuclei at medium excitation energy, and illustrate the ambiguity in current analysis. Dynamical calculations based on the four-dimensional Langevin equation using a macroscopic potential energy landscape are performed, and found to consistently describe available measurements. This observation calls into question the robustness of recent analysis based on statistical-model calculations and concluding, on the contrary, to substantial shell effects at the fission saddle point in {sup 206,210}Po. The inconsistency in interpretation reached by the two approaches shows that, depending on the system, the conclusion can be strongly model-dependent. Although this may not be surprising, it emphasizes the today still limited reliability of firmly extracting fundamental nuclear properties from customary analysis.
Energy Technology Data Exchange (ETDEWEB)
Bonneau, L
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)
Koh, Meng-Hock; Bonneau, L.; Quentin, P.; Hao, T. V. Nhan; Wagiran, Husin
2017-01-01
Background: For a long time, fission barriers of actinide nuclei have been mostly microscopically calculated for even-even fissioning systems. Calculations in the case of odd nuclei have been performed merely within a so-called equal-filling approximation (EFA) as opposed to an approach taking explicitly into account the time-reversal-breaking properties at the mean-field level—and for only one single-particle configuration. Purpose: We study the dependence of the fission barriers on various relevant configurations (e.g., to evaluate the so-called specialization energy). In addition, we want to assess the relevance of the EFA approach as a function of the deformation, which has been already found for the ground-state deformation. Methods: Calculations within the Hartree-Fock plus BCS approach with self-consistent particle blocking have been performed by using the SkM* Skyrme effective interaction in the particle-hole channel and a seniority force in the particle-particle channel. Axial symmetry has been imposed throughout the whole fission path while the intrinsic parity symmetry has been allowed to be broken in the outer fission barrier region. Results: Potential-energy curves have been determined for six different configurations in 235U and four in 239Pu. Inner and outer fission barriers have been calculated along with some spectroscopic properties in the fission isomeric well. These results have been compared with available data. The influence of time-reversal-breaking mean fields on the solutions has been investigated. Conclusions: A sizable configuration dependence of the fission barrier (width and height) has been demonstrated. A reasonable agreement with available systematic evaluations of fission-barrier heights has been found. The EFA approach has been validated at the large elongations occurring at the outer-barrier region.
Relativistic Band Calculation and the Optical Properties of Gold
DEFF Research Database (Denmark)
Christensen, N Egede; Seraphin, B. O.
1971-01-01
The energy band structure of gold is calculated by the relativistic augmented-plane-wave (RAPW) method. A nonrelativistic calculation is also presented, and a comparison between this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects are of the same order...... of magnitude as the gaps (approximately 1 eV). Various integrated functions, density of states, joint density of states, and energy distributions of joint density of states are derived from the RAPW calculation. These functions are used in an interpretation of photoemission and static reflectance measurements....... It is shown that the photoemission results are extremely well described in terms of a model assuming all transitions to be direct whereas a nondirect model fails. The ε2 profile calculated in a crude model assuming constant matrix elements matches well the corresponding experimental results. The calculated...
Modeling Fission Product Sorption in Graphite Structures
Energy Technology Data Exchange (ETDEWEB)
Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission
Report on simulation of fission gas and fission product diffusion in UO_{2}
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
2016-07-22
In UO_{2} nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO_{2} under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe_{U3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe_{U3O} cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe_{U3O} cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher
Report on simulation of fission gas and fission product diffusion in UO_{2}
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
2016-07-22
In UO_{2} nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO_{2} under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe_{U3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe_{U3O} cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe_{U3O} cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher
Fission induced by nucleons at intermediate energies
Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto
2014-01-01
Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.
Evolution of isotopic fission-fragment yields with excitation energy
Directory of Open Access Journals (Sweden)
Bazin D.
2012-07-01
Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.
MCNP6 Fission Multiplicity with FMULT Card
Energy Technology Data Exchange (ETDEWEB)
Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory
2012-06-18
With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.
Structural and electronic properties of perylene from first principles calculations.
Fedorov, I A; Zhuravlev, Y N; Berveno, V P
2013-03-07
The electronic structure of crystalline perylene has been investigated within the framework of density functional theory including van der Waals interactions. The computations of the lattice parameters and cohesive energy have good agreement with experimental values. We have also calculated the binding distance and energy of perylene dimers, using different schemes, which include van der Waals interactions.
Classic Calculations of Static Properties of the Nucleons revisited
Nasrallah, N F
2016-01-01
Classic calculations of the magnetic moments mu_p and mu_n of the nucleons using the traditional exponential kernel show instability with respect to variations of the Borel mass as well as arbitrariness with respect to the choice of the onset of perturbative QCD. The use of a polynomial kernel, the coefficients of which are determined by the masses of the nucleon resonances stabilizes the calculation and provides much better damping of the unknown contribution of the nucleon continuum. The method is also applied to the evaluation of the coupling gA of proton to the axial current and to the strong part of the neutron-proton mass difference Delta M_np. All these quantities depend sensitively on the value of the 4-quark condensate and the value ~ 1.5^2 reproduces the experimental results.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake
2016-05-01
We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.
Computer program for calculating thermodynamic and transport properties of fluids
Hendricks, R. C.; Braon, A. K.; Peller, I. C.
1975-01-01
Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.
Transport properties of boron nanotubes investigated by ab initio calculation
Institute of Scientific and Technical Information of China (English)
Guo Wei; Hu Yi-Bin; Zhang Yu-Yang; Du Shi-Xuan; Gao Hong-Jun
2009-01-01
We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory(DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequi-librium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.
Calculations of the thermodynamic properties of metallurgical solutions
Blander, Milton
Predictive theories for metallurgical solutions are important precursors for computer software in chemical and extractive metallurgy. A limited selection of concepts useful for slags and other ionic systems will be discussed, and include the quasichemical theory, the conformal ionic solution theory, and polymer theory. We emphasize theories which usefully predict solution properties of multicomponent ionic systems, such as silicates and molten salts, to illustrate the range of possible uses.
Nuclear fission problem and Langevin equation
Directory of Open Access Journals (Sweden)
M Sakhaee
2011-12-01
Full Text Available A combined dynamical and statistical model for fission was employed in our calculation. There is no doubt that a Langevin description plus a Monte Carlo treatment of the evaporation processes provide the most adequate dynamical description. In this paper, we would consider a strongly shaped dependent friction force and we use the numerical method rather than the analytical one. The objective of this article is to calculate the time dependent fission widths of the 224Th nucleus. The fission widths were calculated with both chaos-weighted wall friction (CWWF and wall friction (WF dissipations. The calculations are repeated for 100000 trajectories. The result was compared to the others' work. We use nuclear elongation coordinate with time and it is necessary to repeat the small steps many times to improve the accuracy.
Fission half-lives of super-heavy nuclei in a microscopic approach
Warda, M
2012-01-01
A systematic study of 160 heavy and super-heavy nuclei is performed in the Hartree-Fock-Bogoliubov approach with the finite range and density dependent Gogny force with the D1S parameter set. We show calculations in several approximations: with axially symmetric and reflexion symmetric wave functions, with axially symmetric and non-reflexion symmetric wave functions and finally some representative examples with triaxial wave functions are also discussed. Relevant properties of the ground state and along the fission path are thoroughly analyzed. Fission barriers, Q$_\\alpha$-factors and lifetimes with respect to fission and $\\alpha$-decay as well as other observables are discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies provide a very good agreement with the experimental data.
Molecular Structure, Theoretical Calculation and Thermodynamic Properties of Tebuconazole
Institute of Scientific and Technical Information of China (English)
MA Haixia; SONG Jirong; HUANG Ting; LU Xingqiang; XU Kangzhen; SUN Xiaohong
2009-01-01
Single crystals of 5-(4-chlorophenyl)-2,2-dimethyl-3-(1,2,4-triazol-1-ylmethyl)-pentom-3-ol (tebuconazole) were obtained in toluene. The single-crystal X-ray diffraction studies showed that it crystallized in the monoclinic system, with space group P2(1)/c and crystal parameters of a= 1.1645(1) nm, b= 1.6768(2) nm, c= 1.7478(2) nm,β=92.055(2)°, Dc= 1.199 g/cm3, Z=4 and F(000)= 1312. Density functional theory (DFT) B3LYP was employed to optimize the structure and calculate the frequencies of tebuconazole. The calculated geometrical parameters are close to the corresponding experimental ones. The specific heat capacity of the title compound was determined with continuous Cp mode of a mircocalorimeter. In the determining temperature range from 283 to 353 K, the special heat capacity of the title compound presents good linear relation with temperature. Using the determined relation-ship of Cp with temperature T, thermodynamic functions (enthalpy, entropy and Gibbs free energy) of the title compound between 283 and 353 K, relative to the standard temperature 298.15 K, were derived through thermody-namic relationship.
Negative Pion Induced Fission with Heavy Target Nuclei
Institute of Scientific and Technical Information of China (English)
G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad
2011-01-01
We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.
Ab initio Calculations of Optical Properties of Clusters
Shinde, Ravindra
2016-01-01
We have performed systematic large-scale all-electron correlated calculations on boron Bn, aluminum Aln and magnesium Mgn clusters (n=2--5), to study their linear optical absorption spectra. Several possible isomers of each cluster were considered, and their geometries were optimized at the coupled-cluster singles doubles (CCSD) level of theory. Using the optimized ground-state geometries, excited states of different clusters were computed using the multi-reference singles-doubles configuration interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. These CI wavefunctions were used to compute the transition dipole matrix elements connecting the ground and various excited states of different clusters, eventually leading to their linear absorption spectra. The convergence of our results with respect to the basis sets, and the size of the CI expansion was carefully examined. Isomers of a given cluster show a distinct signature spectrum, indicating a strong structure p...
Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics
Farget, F; Delaune, O; Tarasov, O B; Derkx, X; Schmidt, K -H; Amthor, A M; Audouin, L; Bacri, C -O; Barreau, G; Bastin, B; Bazin, D; Blank, B; Benlliure, J; Caceres, L; Casarejos, E; Chibihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Grevy, S; Jurado, B; Kamalou, O; Lemasson, A; Lukyanov, S; Mittig, W; Morrissey, D J; Navin, A; Pereira, J; Perrot, L; Rejmund, M; Roger, T; Saint-Laurent, M -G; Savajols, H; Schmitt, C; Sherill, B M; Stodel, C; Taieb, J; Thomas, J -C; Villari, A C
2012-01-01
During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragmen...
Institute of Scientific and Technical Information of China (English)
MA, Xiu-Fang; XIAO, Ji-Jun; HUANG, Hui; JU, Xue-Hai; LI, Jin-Shan; XIAO, He-Ming
2006-01-01
Molecular dynamics (MD) method was used to simulate 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) coated with fluorine containing polymers. The mechanical properties and binding energies of PBXs were obtained. It was found that when the number of chain monomers of fluorine containing polymers was the same, the elasticity of TATB/F2314 was increased more greatly than others and the binding energy of TATB/F2311 was the largest among four PBXs. Detonation heat and velocity of such four PBXs were calculated according to theoretical and empirical formulas. The results show that the order of detonation heat is TATB＞TATB/PVDF＞TATB/F2311 ＞TATB/F2314＞TATB/PCTFE while the order of detonation velocity is TATB/PVDF＜TATB/F2311 ＜TATB/F2314＜TATB/PCTFE＜TATB.
Energy Technology Data Exchange (ETDEWEB)
Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
Revision of the JENDL FP Fission Yield Data
Directory of Open Access Journals (Sweden)
Katakura Jun-ichi
2016-01-01
Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.
Dynamic simulation of flash drums using rigorous physical property calculations
Directory of Open Access Journals (Sweden)
F. M. Gonçalves
2007-06-01
Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.
Energy from nuclear fission an introduction
De Sanctis, Enzo; Ripani, Marco
2016-01-01
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...
Chemical Property Calculation through JavaScript and Applications in QSAR
Directory of Open Access Journals (Sweden)
Hanqing Wu
1999-02-01
Full Text Available The inorganic property (I and organic property (O values of general organic groups are re-proposed here. Both I and O values of drug and biological molecules or groups can be calculated based on their common group values. The calculation can be performed easily on-line through JavaScript. Similar calculation can be done for the drug and biological molecular group electronegativity (X according to the author's published paper. The calculation of lipophilicity (ÃÂ€ or logP parameter of (macromolecules (like proteins can also be performed on-line through JavaScript. Two equations expressed with I and O are provided here to define the hydrophobicity of each amino acid. The correlations of inorganic property and organic property values with other parameters are also discussed. These calculated parameters combined with other parameters can be used for QSAR studies in some drug molecules.
Examining fine potential energy effects in high-energy fission dynamics
Mazurek, K.; Schmitt, C.; Nadtochy, P. N.; Kmiecik, M.; Maj, A.; Wasiak, P.; Wieleczko, J. P.
2013-11-01
The potential energy surface plays a decisive role in nuclear fission. Together with inertia and viscosity, it influences the trajectory of the system, and the properties of the fission fragments result from the puzzling interplay between static and dynamical effects. A careful study on the influence of the parametrization of the potential energy landscape in heavy-ion-induced fission is performed. Dynamical calculations are done within the stochastic Langevin approach in a three-dimensional deformation space. Various prescriptions of the potential energy surface are considered, probing two different Liquid Drop models and the deformation dependence of the Wigner/congruence energy. A wide set of observables, including cross sections, particle multiplicities, and integral, as well as isotopic and isobaric, distributions of fission and evaporation products, is analyzed. Nuclei close to the Businaro-Gallone point are confirmed to be well suited for investigating the Liquid Drop parametrization, while the influence of the deformation-dependent Wigner/congruence energy is difficult to demonstrate unambiguously in fission at high excitation energies.
Recent studies in heavy ion induced fission reactions
Choudhury, R. K.
2001-08-01
Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to
Energy Technology Data Exchange (ETDEWEB)
Galy, J
1999-09-01
As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)
Recent progress in lattice calculations of properties of open-charm mesons
Mohler, Daniel
2015-01-01
Recent progress in lattice calculations of properties of open-charm mesons, both regular and exotic, is reviewed, with an emphasis on spectroscopy. After reviewing recent calculations of excited state energy levels I will discuss progress in extracting hadronic masses and widths of charmed states from Lattice QCD simulations including low-lying scattering channels directly, to determine phase shift data and bound state/ resonance properties. With regard to other properties results from recent calculations of the $DD^*\\pi$ and $DD\\rho$, $D^*D^*\\rho$ couplings are presented. Beyond regular mesons, searches for explicitly exotic (tetraquark) states are also reviewed.
Fission Measurements with Dance
Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.
2008-08-01
Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.
Rosenbloom, Alyssa Blair
In this thesis, we accomplish two goals: 1) we develop a novel two color photoactivatable light microscopy (PALM) method for imaging in mammalian cells and 2) we explore our original biological question and discern the structural properties of the Drp1 helical ring during fission. We established that mitochondrial membranes can be distinguished with the available photoactivatable fluorescent protein mEos2. However, we were not able to use any of the published photoactivatable and photoswitchable green fluorescent proteins, predominantly because of an inability to identify individual fluorescent events due to rapidity of the photoswitiching. Based on published crystal structures, we created novel Dronpa variants with increasing steric hindrance around the chromophore, likely partially inhibiting the isomerization. We replaced Val157 with isoleucine, leucine, or phenyalanine. DronpaV157F showed no fluorescence and was discarded. DronpaV157I and DronpaV157L showed photoswitchable green fluorescence, with individual fluorescent events that were more easily discerned. DronpaV157L in particular had bright fluorescent events that were well separated when imaged in mammalian cells at 20 Hz. We named this new variant rsKame. Using PALM we successfully imaged rsKame expressed and localized to the mammalian mitochondrial inner membrane. With the novel photoswitchable fluorescent protein, rsKame, available, we returned to the development of a novel two color PALM method. We chose PAmCherry1 as the partner for rsKame since PAmCherry1 has distinct and well separated excitation/emission spectra from rsKame and is not activated by low 405 nm laser power density. We first imaged rsKame with 405 nm activation at (0.61 mW/mm2) and 488 nm activation/excitation (5.87 W/mm 2) to completion. We then imaged PAmCherry1 with increasing 405 nm activation (0.6-6.0 W/mm2) and 561 nm excitation (22 W/mm 2). With the novel PALM imaging method, we labeled the inner and outer mitochondrial
A new approach to prompt fission neutron TOF data treatment
Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.
Alpha decay from fission isomeric states
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Ivascu, M. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))
1981-07-01
Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (Art. Fys.; 36: 343 (1967)) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.
混合堆增殖钍基燃料组件中子学分析%Neutronics Calculation of Fusion-Fission Hybrid Breeding Thorium Fuel Assembly
Institute of Scientific and Technical Information of China (English)
马续波; 陈义学; 全国萍; 王悦; 韩静茹; 陆道纲
2012-01-01
A preliminary comparative study of the physical properties among 17×17 fuel assembly in PWRs for prototype between uranium assembly and hybrid breeding thorium-based assembly has been investigated respectively using the DRAGON software. The parameters such as fuel temperature coefficient, moderator temperature coefficient and that variation as a function of operation period have been investigated. Results show that the neutron properties of uranium-based assembly and hybrid breeding thorium-based assembly are similitude, but MA mass of hybrid breeding thorium-based assembly is evidently less than those of the uranium assembly.%采用压水堆17×17燃料组件模型,用燃料组件参数计算程序DRAGON分别对混合堆增殖钍燃料组件和全铀组件的中子学特性进行了研究,分析组件的燃料温度系数、慢化剂温度系数及其与燃耗的关系.计算结果表明,混合堆增殖钍燃料组件和全铀组件的中子特性相似,但钍燃料组件中的乏燃料组件中的次锕系核素(MA)的含量明显减少.
Angular Anisotropy of the Fission Fragments in the Dinuclear System Mo del
Institute of Scientific and Technical Information of China (English)
T. M. Shneidman; A. V. Andreev; C. Massimi; M. T. Pigni; G. Vannini; A. Ventura; S. G. Zhou
2015-01-01
A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system (DNS) model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the angular distribution of fission fragments for the neutron–induced fission of 239Pu.
Characterization of the scission point from fission-fragment velocities
Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A
2015-01-01
The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...
EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N
1995-01-01
High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon yi
Balan, Etienne; Lazzeri, M.; Mauri, F.; Calas, G.
2007-01-01
We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemi...
Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system
Zhou, Z.; Yang, Y.; Xu, H.
2011-10-01
This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.
Spontaneous fission of the heaviest elements
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1989-04-01
Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.
First principles calculations of the structural and electronic properties of(CdSe)n clusters
Institute of Scientific and Technical Information of China (English)
WANG Xin-qiang; CHEN Yong
2004-01-01
The structural and electronic properties of (CdSe)n(1≤n≤5) clusters are calculated using density functional theory within the pseudopotential and generalized gradient approximations. The calculated binding energies and highest occupied molecular orbitallowest unoccupied molecular orbital gaps are compared with those obtained within local density approximation.
Energy Technology Data Exchange (ETDEWEB)
Deleuze, M.S.; Pickup, B.T.; Wilton, D.J.
2000-04-05
The authors present the theory of the electron propagator perturbed by an external electric field and show how it can be used to calculate a variety of one-electron linear response properties that are accurate through second order in electron correlation. Some illustrative calculations are discussed.
First-principle Calculation of the Properties of Ti3SiC2
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained.The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.
Energy Technology Data Exchange (ETDEWEB)
Dai, Wei [Hubei Univ. of Education, Wuhan (China). Dept. of Physics and Electronics; Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Fluid Physics; Song, Jin-Fan; Wang, Ping; Lu, Cheng; Lu, Zhi-Wen [Nanyang Normal Univ. (China). Dept. of Physics; Tan, Xiao-Ming [Ludong Univ., Yantai (China). Dept. of Physics
2011-10-15
A theoretical investigation on structural and elastic properties of zinc sulfide semiconductor under high pressure is performed by employing the first-principles method based on the density functional theory. The calculated results show that the transition pressure P{sub t} for the structural phase transition from the B3 structure to the B1 structure is 17.04 GPa. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations. (orig.)
Calculation of the thermodynamic properties of liquid Ag–In–Sb alloys
Directory of Open Access Journals (Sweden)
DRAGANA ZIVKOVIC
2006-03-01
Full Text Available The results of calculations of the thermodynamic properties of liquid Ag–In–Sb alloys are presented in this paper. The Redlich–Kister–Muggianu model was used for the calculations. Based on known thermodynamic data for constitutive binary systems and available experimental data for the investigated ternary system, the ternary interaction parameter for the liquid phase in the temperature range 1000–1200 K was determined. Comparison between experimental and calculated results showed their good mutual agreement.
Optical, elastic and thermal properties of ZB-AlN semiconductor from first-principle calculations
Kumar, V.; Singh, Bhanu P.; Chandra, Satish
2016-12-01
The optical, elastic and thermal properties of zincblende aluminium nitride have been studied. The refractive index, absorption coefficient, reflectivity, dielectric constant, extinction coefficient, and energy-loss spectrum have been calculated using the pseudo-potential method under density functional theory at different pressures. The heat capacity, Debye temperature and phonon frequencies have been calculated using CASTEP code at 0 GPa. The elastic stiffness constants, bulk modulus, Young's modulus, shear modulus and pressure derivatives of elastic constants have also been calculated. The calculated results are compared with the available experimental and theoretical data. Reasonably good agreement has been found between them.
All-electron versus pseudopotential calculation of optical properties: the case of GaAs
Energy Technology Data Exchange (ETDEWEB)
Monachesi, P.; Marini, A.; Onida, G.; Palummo, M.; Sole, R. del [Tor Vergata Univ., Rome (Italy). Dipt. di Fisica
2001-03-16
The reliability of the widespread practice of calculating the optical properties of solids using pseudo wavefunctions instead of the true electron wavefunctions has been tested in the case of bulk GaAs. Pseudopotential calculations of the imaginary part of the dielectric function - where the matrix elements of the momentum operator are calculated between pseudo wavefunctions - have been compared with all-electron full-potential linear muffin-tin orbital calculations where the true wavefunctions are used. No evidence has been found of differences due to the different sets of wavefunctions employed in the two approaches. (orig.)
Brownian shape motion: Fission fragment mass distributions
Directory of Open Access Journals (Sweden)
Sierk Arnold J.
2012-02-01
Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.
1D Burnup Calculation of Fusion-Fission Hybrid Energy Reactor%聚变-裂变混合能源堆一维计算模型燃耗分析
Institute of Scientific and Technical Information of China (English)
李茂生; 师学明; 伊炜伟
2012-01-01
Fusion-fission hybrid energy reactor is driven by Tokamak fusion source for energy production. Its subcritical zone uses the natural uranium as fuel and water as coolant. The neutron multiplication constant keff, energy multiplication factor M and tritium breeding ratio TBR of the ID hybrid energy reactor model were calculated by transport burnup code MCORGS. The neutron spectrum and nuclear density changing as a function of time show the characteristics of the hybrid energy reactors, which differs from the hybrid reactor for breed nuclear fuel and for spent fuel transmutation. The definition and results may be a reference to the other conceptual analysis.%聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力.利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化.通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点.本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据.
Doiron, Charles; Hencken, Kai
2013-09-01
Computational fluid-dynamic simulations nowadays play a central role in the development of new gas circuit breakers. For these simulations to be reliable, a good knowledge of the pressure and temperature-dependence of the thermodynamic and transport properties of ionized gases is required. A key ingredient in the calculation of thermodynamic properties of thermal plasmas is the calculation of the chemical equilibrium composition of the gas. The general-purpose, open-source software toolkit Cantera provides most functionality required to carry out such thermodynamic calculations. In this contribution, we explain how we tailored Cantera specifically to calculate material properties of plasmas. The highly modular architecture of this framework made it possible to add support for Debye-Hückel non-ideality corrections in the calculation of the chemical equilibrium mixture, as well as to enable the calculation of the key transport parameters needed in CFD-based electric arc simulations: electrical and thermal conductivity, viscosity, and diffusion coefficients. As an example, we discuss the thermodynamic and transport properties of mixtures of carbon dioxide and copper vapor.
Directory of Open Access Journals (Sweden)
Elso Manuel Cruz Cruz
2010-11-01
Full Text Available Background: The side chains attached to the 7-amino cephalosporanic acid, the structural basis of cephalosporin, condition its molecular properties and cause differences in its pharmacological action. Molecular modeling contributes to further knowledge about this relationship. Objective: To calculate structural and electronic properties of five cephalosporins: cephradine, cephalexin, cefadroxil, cefprozil and ceftobiprole. Methods: A theoretical study using quantum mechanics methods to model the structure and electronic properties of the cephalosporins listed above was conducted. Molecular geometries were optimized with semi-empirical calculations, according to the parameterized number three model. The molecular properties were calculated following the density functional theory. The densities of atomic charges and the frontier orbitals were analyzed. Comparisons were established to measure the effect of substituents on the properties of the beta-lactam ring. All calculations were run on personal computers belonging to the Medical Sciences University of Las Tunas, from November 2009 to March 2010. Results: The structural parameters of the beta-lactam ring do not change as a result of changes in the side chains. The ring has a marked tendency to planarity. The ceftobiprole is different from the rest of the cephalosporins in the spatial disposition of the side chain, which facilitates access to the carbonyl carbon. There are no significant variations in the charge densities, especially in the positive charge of this carbon. Conclusions: The structure and electronic properties of the beta-lactam ring have no significant changes among modeled cephalosporins. The three dimensional structure of ceftobiprole favors a higher reactivity.
Monte Carlo simulation based toy model for fission process
Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma
2016-09-01
Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.
Late Time Emission of Prompt Fission Gamma Rays
Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B
2016-01-01
The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...
Evaluation of Nuclear Fission Barrier Parameters for 17 Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
As well know that modern nuclear installations and applications have reached a high degree of sophistication. The effective safe and economical design of these technologies require detailed and reliable design calculations. The accuracy of these calculations is largely determined by the accuracy of the basic nuclear and atomic input parameters. In order to meet the needs on high energy fission cross section, fission spectra in waste disposal, transmutation, radioactive beams physics and so on, 17 nuclei fission barrier parameters were collected from the literature based on different experiments and
Prompt fission neutron emission: Problems and challenges
Directory of Open Access Journals (Sweden)
Hambsch F.-J.
2013-12-01
Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.
Dissipative dynamics in quasi-fission
Oberacker, V E; Simenel, C
2014-01-01
Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Directory of Open Access Journals (Sweden)
A. J. A. Smith
2014-08-01
Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for lognormal distributions of black carbon fractal aggregates and return extinction cross sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross sections and the asymmetry parameter can be obtained to within 3%.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Smith, A. J. A.; Grainger, R. G.
2014-02-01
Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.
First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.
Bandura, Andrei V; Evarestov, Robert A
2012-07-05
The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory.
Determination of fission gas yields from isotope ratios
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg
1983-01-01
This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....
A Simple Practical Method for Calculating the Calorimetric Properties of Combustion Gas
1980-01-01
The simplified formulae are proposed for the enthalpy and the entropy of combustion gas constituents, by treating each gas constituent as semi-ideal gas. Based on these formulae, there is shown the practical method for calculating directly the calorimetric properties of combustion gas and the adiabatic combustion temperature. This method allows one to analyse the heat processes of combustion gas within the error approvable for practical use and also with practical simplicity. Some calculated ...
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.
2017-03-01
The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.
Uncertainties analysis of fission fraction for reactor antineutrino experiments using DRAGON
Ma, X B; Chen, Y X; Zhong, W L; An, F P
2014-01-01
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulation to predict reactor rates. First, DRAGON was developed to calculate the fission rates of the four most important isotopes in fissions,235U,238U,239Pu and141Pu, and it was validated for PWRs using the Takahama benchmark. The fission fraction calculation function was validated through comparing our calculation results with MIT's results. we calculate the fission fraction of the Daya Bay reactor core, and compare its with those calculated by the commercial reactor simulation program SCIENCE, which is used by the Daya Bay nuclear power plant, and the results was consist with each other. The uncertainty of the antineutrino flux by the fission fraction was studied, and the uncertainty of the antineutrino flux by the fission fraction simulation is 0.6% per core for Daya Bay antineutrino experiment.
Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert; Dickerson, Patricia; Gong, Bowen; Peralta, Pedro
2016-08-01
Diffusion of fission gases in UO2 is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO2 microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by "bottlenecks" in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale.
First-Principles Calculations for Thermodynamic Properties of Perovskite-Type Superconductor MgCNi
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; LI Zhe; CHEN Xiang-Rong; CAI Ling-Cang; JING Fu-Qian
2008-01-01
The ground state properties and equation of state of the non-oxide perovskite-type superconductor MgCNi,3 are investigated by first-principles calculations based on the plane-wave basis set with the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for exchange and correlation, which agree well with both theoretical calculations and experiments. Some thermodynamic properties including the heat capacity, the thermal expansion coefficient and the Gruneisen parameter for perovskite structure MgCNi,3 are obtained.
Electronic, vibrational and related properties of group IV metal oxides by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Leite Alves, H.W. [Departamento de Ciencias Naturais, Universidade Federal de Sao Joao del Rei, C.P. 110, Sao Joao del Rei, MG 36301-160 (Brazil)], E-mail: hwlalves@ufsj.edu.br; Silva, C.C. [Departamento de Ciencias Naturais, Universidade Federal de Sao Joao del Rei, C.P. 110, Sao Joao del Rei, MG 36301-160 (Brazil); Lino, A.T. [Departamento de Fisica, Universidade Federal de Uberlandia, C.P. 593, Uberlandia, MG 38400-902 (Brazil); Borges, P.D. [Departamento de Engenharia de Telecomunicacoes, Uniao Educacional de Minas Gerais, Uberlandia, MG 38411-113 (Brazil); Scolfaro, L.M.R. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, Sao Paulo, SP 05315-970 (Brazil); Silva, E.F. da [Departamento de Fisica, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, PE 50670-901 (Brazil)
2008-11-30
We present our theoretical results for the structural, electronic, vibrational and optical properties of MO{sub 2} (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure.
Specific fission J-window and angular momentum dependence of the fission barrier
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi
1997-04-01
A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.
De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.
1980-10-01
Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.
Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals
Bokotey, O. V.
2016-05-01
This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.
Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona
2016-09-01
In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Osborne, Andrew G
2016-01-01
Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...
Mancera, L; Takeuchi, N
2003-01-01
We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.
Forecast of Piezoelectric Properties of Crystalline Materials from First Principle Calculation
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure were treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principle calculation opens a door to the search and design of new piezoelectric material. Further application of first principle calculation to forecast the whole piezoelectric properties was also discussed.
Macroscopic-microscopic calculations of ground state properties of superheavy nuclei
Institute of Scientific and Technical Information of China (English)
ZHI Qi-jun; Mao Ying-chen; REN Zhong-zhou
2006-01-01
We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94-118.The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data.The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and M(o)ller's are made.It is found that the calculated results also agree with M(o)ller's results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF)model and from Skyrme-Hatree-Fock(SHF) model.In addition,half-lives,deformations and shape coexistence are also investigated.The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.
Applications of Event-by-Event Fission Modeling with FREYA
Directory of Open Access Journals (Sweden)
Vogt R.
2012-02-01
Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.
Energy Technology Data Exchange (ETDEWEB)
Laget, M
2007-10-15
While the existence of an island of stability beyond Z=110 is theoretically acquired, the location of this island ranges from Z=114 to Z=126 depending on models. In this work, the stability of super-heavy nuclei is probed through the study of their fission time. The chosen experimental method, the crystal blocking method, is sensitive to the presence of possible long time components in the fission time distribution which indicates a fission mechanism occurring after the formation of a compound nucleus. The blocking dips were therefore constituted for the various products of the reaction U{sup 238} + Ni (6.6 MeV/A) {yields} 120, the experimental set-up allowing us to clearly identify and select the reaction mechanisms. The comparison of the blocking dip constituted for quasi-elastic scattering events with the one obtained for the fission fragments of a Z=120, combined with the study of kinematical properties of these fission fragments, give evidences of the existence of very long fission times (> 10{sup -18} s) only compatible with a fusion-fission mechanism implying a non vanishing fission barrier height for Z=120. The second part outlines microscopic calculations of fission barrier heights, carried out in the framework of the finite temperature of the Hartree-Fock-Bogoliubov (HFB) theory. Because of the progressive vanishing of the pairing correlation with T, which happens differently at the ground state and at the top of the barrier, B{sub f} first grows until T {approx_equal} 0.8 MeV before dropping with T owing to shell-effects damping with temperature. (author)
Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.
Autschbach, Jochen; Srebro, Monika
2014-08-19
Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the
Charged particle-induced nuclear fission reactions – Progress and prospects
Indian Academy of Sciences (India)
S Kailas; K Mahata
2014-12-01
The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.
Fission Product Library and Resource
Energy Technology Data Exchange (ETDEWEB)
Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-29
Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.
Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations
Directory of Open Access Journals (Sweden)
Han Han
2015-12-01
Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.
Jensen, L; van Duijnen, PT; Snijders, JG
2003-01-01
A discrete solvent reaction field model for calculating frequency-dependent molecular linear response properties of molecules in solution is presented. The model combines a time-dependent density functional theory (QM) description of the solute molecule with a classical (MM) description of the discr
Determination of properties for the calculation of aqueous thin film drying
Energy Technology Data Exchange (ETDEWEB)
Mintzlaff, J.
2001-09-01
This paper deals with the determination of various properties required for the numerical calculation of the thin film drying of a water based varnish applied on paper. Experimental and analytical methods which provide the activity of water in paper and in a water based varnish, and the diffusion coefficient of water in this varnish are presented. (orig.)
Perlov, A.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I.
2004-01-01
An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme a
First-Principles Calculation of the Optical Properties of an Amphiphilic Cyanine Dye Aggregate
Haverkort, Frank; Stradomska, Anna; Vries, Alex H. de; Knoester, Jasper
2014-01-01
Using a first-principles approach, we calculate electronic and optical properties of molecular aggregates of the dye amphi-pseudoisocyanine, whose structures we obtained from molecular dynamics (MD) simulations of the self-aggregation process. Using quantum chemistry methods, we translate the struct
Elastic and thermal properties of silicon compounds from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering
2016-11-01
The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.
Elastic and Thermal Properties of Silicon Compounds from First-Principles Calculations
Hou, Haijun; Zhu, H. J.; Cheng, W. H.; Xie, L. H.
2016-07-01
The structural and elastic properties of V-Si (V3Si, VSi2, V5Si3, and V6Si5) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Debye temperature of V-Si compounds have been calculated.
First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide
Institute of Scientific and Technical Information of China (English)
ZHU Zun-Lue; FU Hong-Zhi; SUN Jin-Feng; LIU Yu-Fang; SHI De-Heng; XU Guo-Liang
2009-01-01
The first-principles plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the equilibrium lattice parameters,six independent elastic constants,bulk moduli,thermal expansions and heat capacities of MoSi2.The quasi-harmonic Debye model,using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method,is applied to the study of the elastic properties,thermodynamic properties and vibrational effects.The calculated zero pressure elastic constants are in overall good agreement with the experimental data.The calculated heat capacities and the thermal expansions agree well with the observed values under ambient conditions and those calculated by others.The results show that the temperature has hardly any effect under high pressure.
LDA+ U calculation of structural and thermodynamic properties of Ce2O3
Zhu, Bo; Cheng, Yan; Niu, Zhen-Wei; Zhou, Meng; Gong, Min
2014-08-01
We investigated the structure and thermodynamic properties of the hexagonal Ce2O3 by using LDA+ U scheme in the frame of density functional theory (DFT), together with the quasi-harmonic Debye model. The obtained lattice constants, bulk modulus, and the insulating gap agree well with the available experimental data. We successfully yielded the temperature dependence of bulk modulus, volume, thermal expansion coefficient, Debye temperature, specific heat as well as the entropy at different U values. It is found that the introduction of the U value cannot only correct the calculation of the structure but also improve the accurate description of the thermodynamic properties of Ce2O3. When U = 6 eV the calculated volume (538 Bohr3) at 300 K agrees well with the experimental value (536 Bohr3). The calculated entropy curve becomes more and more close to the experimental curve with the increasing U value.
Discoveries of isotopes by fission
Indian Academy of Sciences (India)
M Thoennessen
2015-09-01
Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
ISOLDE experiment explores new territory in nuclear fission
CERN Bulletin
2011-01-01
An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question. Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...
First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride
Institute of Scientific and Technical Information of China (English)
XU Guo-Liang; CHEN Jing-Dong; XIA Yao-Zheng; LIU Xue-Feng; LIU Yu-Fang; ZHANG Xian-Zhou
2009-01-01
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the bulk modulus, thermal expansion coefficient and heat capacity of LAB6. The quasi-harmonic Debye model, using a set of total energy versus volume obtained with the plane-wave pseudopotential method, is applied to the study of the thermal properties and vibrational effects. We analyse the bulk modulus of LaB6 up to 150OK. The elastic properties calculations show that our system is mechanically stable. For the heat capacity and the thermal expansion, significant differences in properties are observed above 30OK. The calculated zero pressure bulk modulus is in good agreement with the experimentai data. Moreover,the Debye temperatures are determined from the non-equilibrium Gibbs functions and compared to available data.
Internet calculations of thermodynamic properties of substances: Some problems and results
Ustyuzhanin, E. E.; Ochkov, V. F.; Shishakov, V. V.; Rykov, S. V.
2016-11-01
Internet resources (databases, web sites and others) on thermodynamic properties R = (p,T,s,...) of technologically important substances are analyzed. These databases put online by a number of organizations (the Joint Institute for High Temperatures of the Russian Academy of Sciences, Standartinform, the National Institute of Standards and Technology USA, the Institute for Thermal Physics of the Siberian Branch of the Russian Academy of Sciences, etc) are investigated. Software codes are elaborated in the work in forms of “client functions” those have such characteristics: (i) they are placed on a remote server, (ii) they serve as open interactive Internet resources. A client can use them for a calculation of R properties of substances. “Complex client functions” are considered. They are focused on sharing (i) software codes elaborated to design of power plants (PP) and (ii) client functions those can calculate R properties of working fluids for PP.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-01
We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.
Calculated Changes in the Elastic Properties of MgCNi3 at the Superconducting Transition
Directory of Open Access Journals (Sweden)
R. Abd-Shukor
2013-01-01
Full Text Available We calculated the elastic properties of MgCNi3 at the superconducting transition ( using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity ( is expected at . The step discontinuities at the transition temperature indicated the importance of lattice changes to the superconducting mechanism of MgCNi3. The Debye temperature was calculated to be 460 K. The electron-phonon coupling constants calculated in the weak and strong coupling limits of the BCS theory and the van Hove scenario showed that MgCNi3 is a moderately strong coupled superconductor.
First-principles calculations atomic structure and elastic properties of Ti-Nb alloys
Timoshevskii, A N; Ivasishin, O M
2011-01-01
Elastic properties of Ti based \\beta-alloy were studied by the method of the model structure first principle calculations. Concentrational dependence of Young modulus for the binary \\beta-alloy Ti-Nb was discovered. It is shown that peculiarities visible at 15-18% concentrations can be related to the different Nb atoms distribution. Detailed comparison of the calculation results with the measurement results was done. Young modulus for the set of the ordered structures with different Nb atoms location, which simulate triple \\beta-alloys Ti-29.7%Zr-18.5%Nb and Ti-51.8%Zr-18.5%Nb have been calculated. The results of these calculations allowed us to suggest the concentration region for single-phase ternary \\beta-phase alloys possessing low values of Young's modulus.
Ab-initio calculations of electronic structure and optical properties of TiAl alloy
Hussain, Altaf; Sikandar Hayat, Sardar; Choudhry, M. A.
2011-05-01
The electronic structures and optical properties of TiAl intermetallic alloy system are studied by the first-principle orthogonalized linear combination of atomic orbitals method. Results on the band structure, total and partial density of states, localization index, effective atomic charges, and optical conductivity are presented and discussed in detail. Total density of states spectra reveal that (near the Fermi level) the majority of the contribution is from Ti-3d states. The effective charge calculations show an average charge transfer of 0.52 electrons from Ti to Al in primitive cell calculations of TiAl alloy. On the other hand, calculations using supercell approach reveal an average charge transfer of 0.48 electrons from Ti to Al. The localization index calculations, of primitive cell as well as of supercell, show the presence of relatively localized states even above the Fermi level for this alloy. The calculated optical conductivity spectra of TiAl alloy are rich in structures, showing the highest peak at 5.73 eV for supercell calculations. Calculations of the imaginary part of the linear dielectric function show a prominent peak at 5.71 eV and a plateau in the range 1.1-3.5 eV.
Physical Properties of Phenol Compound: Semi-empirical Calculation of Substituent Effects [Part One
Directory of Open Access Journals (Sweden)
Ammar A. Ibrahim
2009-01-01
Full Text Available Problem statement: Physical properties of phenol compound such as steric energy, charge of oxygen, ionization potential, dipole moment, LUMO and bond length have been calculated. Approach: All molecular geometries were minimized by quantum mechanic especially at (AM1 method was used to investigate the effect of a variety of substituents on the phenol (H, o-Cl, p-Cl, m-Cl, o-CH3, m-CH3, p-CH3, o-NH2, m-NH2, o-NO2, m-NO2, p-NO2, 2,4-di-NO2. Global descriptor such as electronic chemical potential (µ, hardness (η, the maximum electronic charge and global electrophilicity index (ω were determined and used to predict the (pKa values. Results: The theoretical results (predictive values found were in good agreement with experimental values. The predictive pKa calculated values by AM1 method gave excellent results with experimental values. The correlation between the predicted values especially global electrophilicity index showed excellent qualitative agreement with the experimental pKa (R2 = 0.95. Conclusion: The present research was to calculate the physical properties of phenol derivatives. Then, the calculated values were compared, quite favorably with experimental values of these properties. In future, we can predict any substituent of set of a phenol compound and compare its value with the experimental.
Xu, C.; Li, Q.; Liu, C. M.; Duan, M. Y.; Wang, H. K.
2016-05-01
First-principles calculations are employed to investigate the structural and elastic properties, formation enthalpies and chemical bonding features as well as hardness values of chromium tetraboride (CrB4) with different structures. The lattice parameters, Poisson’s ratio and B/G ratio are also derived. Our calculations indicate that the orthorhombic structure with Pnnm symmetry is the most energetically stable one for CrB4. Except for WB4P63/mmc structure with imaginary frequencies, another six new structures are investigated through the full phonon dispersion calculations. Their mechanical and thermodynamic stabilities are also studied by calculating the elastic constants and formation enthalpies. Our calculations show that the thermodynamic stabilities of all these CrB4 phases can be enhanced under high pressure. The large shear moduli, Young’s moduli and hardness values indicate that these CrB4 phases are potential hard materials. Analyses of the densities of states (DOSs) and electron localization functions (ELFs) provide further understandings of the chemical and physical properties of these CrB4 phases. It is observed that the large occupations and high strengths of the B-B covalent bonds are important for the stabilities, incompressibility and hardnesses of these CrB4 phases.
Electronic and optical properties of AlN under pressure: DFT calculations
Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan
2017-01-01
Structural, elastic, optical, and electronic properties of wurtzite (WZ), zinc-blende (ZB), and rocksalt (RS) structures of AlN are investigated using the first-principles method and within the framework of density functional theory (DFT). Lattice parameters, bulk modulus, shear modulus, Young’s modulus, and elastic constants are calculated at zero pressure and compared with other experimental and theoretical results. The wurtzite and zinc-blende structures have a transition to rocksalt phase at the pressures of 12.7 GPa and 14 GPa, respectively. The electronic properties are calculated using both GGA and EV-GGA approximations; the obtained results by EV-GGA approximation are in much better agreement with the available experimental data. The RS phase has the largest bandgap with an amount of 4.98 eV; by increasing pressure, this amount is also increased. The optical properties like dielectric function, energy loss function, refractive index, and extinction coefficient are calculated under pressure using GGA approximation. Inter-band transitions are investigated using the peaks of imaginary part of the dielectric function and these transitions mainly occur from N-2p to Al-3p levels. The results show that the RS structure has more different properties than the WZ and ZB structures.
Fission neutron output measurements at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Nelson, Ronald Owen [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Laptev, Alexander [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Ullmann, J L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Bredeweg, T A [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; Wu, Ching - Yen [LLNL; Becker, J A [LLNL; Stoyer, M A [LLNL; Henderson, R [LLNL; Sutton, M [LLNL; Belier, Gilbert [BRUYERES-LE-CHATEL, FRANCE; Chatillon, A [BRUYERES-LE-CHATEL, FRANCE; Granier, Thierry [CEA, BRUYERES-LE-CHATEL, FRANCE; Laurent, Benoit [CEA, BRUYERES-LE-CHATEL, FRANCE; Taieb, Julien [CEA, BRUYERES-LE-CHATEL, FRANCE
2010-01-01
Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.
Fission Matrix Capability for MCNP Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Energy Technology Data Exchange (ETDEWEB)
Blaise Collin
2014-09-01
This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive
Monte Carlo Based Toy Model for Fission Process
Kurniadi, R; Viridi, S
2014-01-01
Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...
Chemical state of fission products in irradiated uranium carbide fuel
Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko
1987-12-01
The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.
Sensitivity analysis of the fission gas behavior model in BISON.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard
2013-05-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.
Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien's EOS
Zhao, Bo; Cui, Ji-Ping; Fan, Jing
2010-06-01
We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien’s equation of state (EOS) that optimized by “exact” numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien’s EOS with the existed experimental data and the direct simulations show that the behavior of the improved Tsien’s EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien’s EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.
Energy Technology Data Exchange (ETDEWEB)
Landry, Brian R.; Falk, Martin J.; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)
2013-12-07
In a recent paper, we presented a road map for how Tully's fewest switches surface hopping (FSSH) algorithm can be derived, under certain circumstances, from the mixed quantum-classical Liouville equation. In this communication, we now demonstrate how this new interpretation of surface hopping can yield significantly enhanced results for electronic properties in nonadiabatic calculations. Specifically, we calculate diabatic populations for the spin-boson problem using FSSH trajectories. We show that, for some Hamiltonians, without changing the FSSH algorithm at all but rather simply reinterpreting the ensemble of surface hopping trajectories, we recover excellent results and remove any and all ambiguity about the initial condition problem.
Ab initio calculation of mechanical and thermal properties of U{sub 2}Mo intermetallic
Energy Technology Data Exchange (ETDEWEB)
Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Losada, E.L.; Garcés, J.E. [DAEE, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina)
2013-10-15
We present a study of structural, elastic and thermodynamic properties of tetragonal (C11{sub b}) U{sub 2}Mo by means of density-functional theory based calculations using full-potential linearized augmented plane wave method. In this approach the generalized gradient approximation were used for the exchange–correlation potential calculation. The optimized lattice parameters are in excellent agreement with the experimental data. Through the Debye–Grüneisen model the temperature and pressure dependence of equation of state, bulk modulus, thermal expansion and specific heat have been obtained and discussed in the range of pressure 0–20 GPa and the temperature 0–800 K.
Energy Technology Data Exchange (ETDEWEB)
Narayan, A.P. [Univ. of Colorado, Boulder, CO (United States); Rainwater, J.C. [National Institute of Standards and Technology, Boulder, CO (United States); Hanley, H.J.M. [Univ. of Colorado, Boulder, CO (United States)]|[National Institute of Standards and Technology, Boulder, CO (United States)
1995-03-01
A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder.
Energy Technology Data Exchange (ETDEWEB)
Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei
2017-01-01
A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.
First-principles calculations of magnetic properties for CdCrO{sub 2} under pressure
Energy Technology Data Exchange (ETDEWEB)
Amari, S., E-mail: siham_amari@yahoo.fr [Laboratoire de Modelisation et de Simulation en Sciences des Materiaux, Departement de Physique Universite Djillali Liabes, Faculte des sciences, Universite Djillali Liabes, BP 89 Sidi Bel Abbes 22000 (Algeria); Mecabih, S.; Abbar, B.; Bouhafs, B. [Laboratoire de Modelisation et de Simulation en Sciences des Materiaux, Departement de Physique Universite Djillali Liabes, Faculte des sciences, Universite Djillali Liabes, BP 89 Sidi Bel Abbes 22000 (Algeria)
2013-02-15
By employing the first-principles method of the full potential linear augmented plane waves plus the local orbitals (FP-L/APW+lo) within the generalized gradient approximation for the exchange and correlation potential, the structural, electronic, and magnetic properties of chalcopyrite compound CdCrO{sub 2} are investigated. In order to take into account the strong on-site Coulomb interaction, we also performed the generalized gradient approximation plus the Hubbard correlation terms. We systematically study how the exchange interactions and magnetic moments of CdCrO{sub 2} are affected by the different choice of U as well as the exchange correlation potential. We have also carried out the pressure effect on the magnetic properties. - Highlights: Black-Right-Pointing-Pointer The calculation of the exchange constants. Black-Right-Pointing-Pointer The pressure dependence of the magnetic properties. Black-Right-Pointing-Pointer The exchange correlation potential effect on the magnetic properties.
Fission modes of mercury isotopes
Warda, M; Nazarewicz, W
2012-01-01
Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.
Dynamical features of nuclear fission
Indian Academy of Sciences (India)
Santanu Pal
2015-08-01
It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.
Remarks on the fission barriers of super-heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-04-15
Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)
Thermodynamics of fission products in UO2+-x
Energy Technology Data Exchange (ETDEWEB)
Nerikar, Pankaj V [Los Alamos National Laboratory
2009-01-01
The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.
Energy Technology Data Exchange (ETDEWEB)
Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)
2010-04-08
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li_{17}Pb_{83 } eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li_{17}Pb_{83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li_{17}Pb_{83}, separated from the Li_{17}Pb_{83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF_{2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles
Diffusion Monte Carlo ab initio calculations to study wetting properties of graphene
Wu, Yanbin; Zheng, Huihuo; Wagner, Lucas; Aluru, N. R.
2013-11-01
For applications of graphene in water, including for example desalination and DNA sequencing, it is critical to understand the wetting properties of graphene. In this work, we investigate the wetting properties using data from highly accurate diffusion quantum Monte Carlo (DMC) calculations, which treat electron correlation explicitly. Our DMC data show a strong graphene-water interaction, indicating graphene surface is more hydrophilic than previously believed. This has been recently confirmed by experiments [Li et al. Nat. Mater. 2013, doi:10.1038/nmat3709]. The unusually strong interaction can be attributed to weak bonding formed between graphene and water. Besides its inadequate description of dispersion interactions as commonly reported in the literature, density function theory (DFT) fails to describe the correct charge transfer, which leads to an underestimate of graphene-water binding energy. Our DMC calculations can provide insight to experimentalists seeking to understand water-graphene interfaces and to theorists improving DFT for weakly bound systems.
Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics
2015-07-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Electrical Properties of Hydrous Forsterite Derived from First-Principles Calculations
Institute of Scientific and Technical Information of China (English)
WANG Duo-Jun; LIU Zai-Yang; YI Li; SHI Bao-Ping
2011-01-01
@@ We investigate electrical properties of anhydrous and hydrous forsterite crystalwith 3.2 wt% water by using firstprinciples calculations.The calculation results indicate that the pressure weakly affects the electrical properties of anhydrous forsterite.Two types of defect configurations involving the two hydrogen atoms in different positions are considered.Type 1 involves the entrapment of two hydrogen atoms in a Mg vacancy,which demonstrates little effect on the electronic density of states(DoS) of the forsterite crystal.Type 2 corresponds to the replacement of one hydrogen atom into the Mg vacancy with the other one located in different orientations(free proton model).It is this configuration that can significantly change the DoS of the forsterite crystal.The gap energy of the free proton model derived at different orientations is in the range of 0.693-1.007eV.%We investigate electrical properties of anhydrous and hydrous forsterite crystal with 3.2 wt％ water by using firstprinciples calculations. The calculation results indicate that the pressure weakly affects the electrical properties of anhydrous forsterite. Two types of defect configurations involving the two hydrogen atoms in different positions are considered. Type 1 involves the entrapment of two hydrogen atoms in a Mg vacancy, which demonstrates little effect on the electronic density of states (DoS) of the forsterite crystal. Type 2 corresponds to the replacement of one hydrogen atom into the Mg vacancy with the other one located in different orientations (free proton model).It is this configuration that can significantly change the DoS of the forsterite crystal. The gap energy of the free proton model derived at different orientations is in the range of 0.693-1.007eV.
Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.
2010-05-01
First-principles FLAPW-GGA calculations for six possible polymorphs of ruthenium mononitride RuN indicate that the most stable structure is that of zinc blende rather than the rock salt structure recently reported for synthesized RuN samples. The elastic, electronic properties and the features of chemical bonds of zinc-blende RuN polymorph were investigated and discussed in detail.
ding,Yi; Wang, Yanli
2015-01-01
Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α−graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene...
Calculation of the transport and relaxation properties of dilute water vapor
Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa
2009-07-01
Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.
Institute of Scientific and Technical Information of China (English)
Zi-iiang Liu; Xiao-wei Sun; Cai-rong Zhang; Jian-bo Hu; Ting Song; Jian-hong Qi
2011-01-01
The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory.The obtained equation of state is consistent with the available experimental data.The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and temperatures.The elastic constants are calculated using the finite strain method.A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range.The geologically important quantities: Young's modulus,Poisson's ratio,Debye temperature,and crystal anisotropy,are derived from the calculated data.
High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations
Indian Academy of Sciences (India)
Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen
2012-08-01
The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.
Ab initio calculations of the optical properties of crystalline and liquid InSb
Energy Technology Data Exchange (ETDEWEB)
Sano, Haruyuki, E-mail: h-sano@ishikawa-nct.ac.jp [National Institute of Technology, Ishikawa College, Kitacyujo, Tsubata, Ishikawa 929-0392 (Japan); Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292 (Japan)
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Directory of Open Access Journals (Sweden)
A. J. A. Smith
2014-02-01
Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.
Mechanical properties of W–Ti alloys from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Jiang, D.Y. [Department of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); Department of Physics, Nanchang University, Nanchang 330047 (China); School of Basic Sciences, Jiangxi University of Technology, Nanchang 330098 (China); Ouyang, C.Y. [Department of Physics, Jiangxi Normal University, Nanchang 330022 (China); Liu, S.Q., E-mail: sqlgroup@ncu.edu.cn [Department of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); Department of Physics, Nanchang University, Nanchang 330047 (China)
2016-05-15
Highlights: • The mechanical properties of the W{sub 1-x}Ti{sub x} alloys are calculated from DFT. • Ti alloying enhances the ductility of W metal substantially. • The mechanical strength of W-Ti alloys is slightly weaker than W while stronger than Ti. - Abstract: The effect of Ti concentration on the fundamental mechanical properties of W-Ti alloys has been studied from first principles calculations. The lattice constants, the cell volumes and the formation energies of the W{sub 1-x}Ti{sub x} (x = 0.0625, 0.125, 0.1875, 0.25, 0.5) alloys were calculated. It is shown that Ti alloying in bcc W lattice is thermodynamically favorable when the Ti concentration is lower than 25% and the W{sub 0.8125}Ti{sub 0.1875} have the lowest formation energy. With the optimized geometry and lattice, the elastic constants are calculated and then the elastic moduli and other mechanical parameters are derived. Results show that although the mechanical strength of the W-Ti alloys is lower than that of pure W metal, it is much higher than that of pure Ti metal. On the other hand, the B/G ratio and the Poisson's ratio of the W-Ti alloys is much higher than that of pure W, and even higher than that of pure Ti, indicating that Ti alloying can improve the ductility of bcc W substantially.
Bock, Steffen; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa
2004-05-01
The transport properties of pure carbon dioxide have been calculated from the intermolecular potential using the classical trajectory method. Results are reported in the dilute-gas limit for thermal conductivity and thermomagnetic coefficients for temperatures ranging from 200 K to 1000 K. Three recent carbon dioxide potential energy hypersurfaces have been investigated. Since thermal conductivity is influenced by vibrational degrees of freedom, not included in the rigid-rotor classical trajectory calculation, a correction for vibration has also been employed. The calculations indicate that the second-order thermal conductivity corrections due to the angular momentum polarization (Bukowski et al. (1999) are in good agreement with the available experimental data. They underestimate the best experimental data at room temperature by 1% and in the range up to 470 K by 1%-3%, depending on the data source. Outside this range the calculated values, we believe, may be more reliable than the currently available experimental data. Our results are consistent with measurements of the thermomagnetic effect at 300 K only when the vibrational degrees of freedom are considered fully. This excellent agreement for these properties indicates that particularly the potential surface of Bukowski et al. provides a realistic description of the anisotropy of the surface.
LDA +U calculation of electronic and thermoelectric properties of doped CuCoO 2
Knížek, K.
2015-02-01
Doped CuCoO2 is a candidate oxide material for thermoelectric power generation. The evolution of the band structure and thermoelectric properties of CuCoO2 upon hole and electron doping in the CoO2 layer and hole doping at the Cu site were calculated by the local-density approximation (LDA) and LDA +U methods and using standard Boltzmann theory. The doping was simulated by the virtual atom approximation and the supercell approach and the results were compared with previous calculations using the rigid band approximation. The calculated thermopowers are comparable for the virtual atom and rigid band approximations, but the thermopower obtained from the supercell calculation is significantly lower. The reason is the similar energy of Co and Cu d orbitals and the hybridization of symmetrically related Co a1 g and Cu dz2 orbitals. As a consequence, both cations contribute to the bands around the Fermi level and hence a substitution at any of the cation sites alters the band structure at EF and affects the thermoelectric properties. Our results show that in the case of hole doping, higher thermopower is obtained for substitution at the Cu site than in the CoO2 layer.
Energy Technology Data Exchange (ETDEWEB)
Duan, Yuhua
2012-11-02
Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method
Measurement of MA fission cross sections at YAYOI
Energy Technology Data Exchange (ETDEWEB)
Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-03-01
Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)
Electronic properties of tantalum pentoxide polymorphs from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Lee, J. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor 48109 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109 (United States); Lu, W. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109 (United States); Kioupakis, E., E-mail: kioup@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor 48109 (United States)
2014-11-17
Tantalum pentoxide (Ta{sub 2}O{sub 5}) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta{sub 2}O{sub 5} structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (∼4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta{sub 2}O{sub 5}.
Institute of Scientific and Technical Information of China (English)
张信一; 赵柱民; 江新标; 郭和伟; 陈立新; 周永茂
2012-01-01
To calculate the fission product poisoning and bumup of the reactor accurately, the paper sets up the coupled calculation methods based on MCNP code and ORIGEN2 code and program data translation, cross section revision and date interface codes. Making use of elaborate reactor model to calculate the fission product poisoning and bumup for in-hospital neutron irradiator mark 1 reactor.%为了准确地计算反应堆的裂变产物中毒和燃耗问题,开发了一套蒙特卡罗方法程序系统.利用通用的燃耗计算方法,基于MCNP和ORIGEN2,编写了相关的数据转换、截面修正、数据接口程序,实现了MCNP和ORIGEN2程序的耦合.采用堆芯精细结构划分,对医院中子照射器Ⅰ型堆裂变产物中毒和燃耗进行了计算分析.
Directory of Open Access Journals (Sweden)
Dwyer Donard S
2005-08-01
Full Text Available Abstract Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1 different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2 polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3 inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone.
Thermodynamics and elastic properties of Ta from first-principles calculations
Institute of Scientific and Technical Information of China (English)
Li Qiang; Huang Duo-Hui; Cao Qi-Long; Wang Fan-Hou; Cai Ling-Cang; Zhang Xiu-Lu; Jing Fu-Qian
2012-01-01
Within the framework of the quasiharmonic approximation,the thermodynamics and elastic properties of Ta,including phonon density of states (DOS),equation of state,linear thermal expansion coefficient,entropy,enthalpy,heat capacity,elastic constants,bulk modulus,shear modulus,Young's modulus,microhardness,and sound velocity,are studied using the first-principles projector-augmented wave method.The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon DOS and the Debye model.The thermal electronic contribution to Helmholtz free energy is estimated from the integration over the electronic DOS.By comparing the experimental results with the calculation results from the first-principles and the Debye model,it is found that the thermodynamic properties of Ta are depicted well by the first-principles.The elastic properties of Ta from the first-principles are consistent with the available experimental data.
Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations
Directory of Open Access Journals (Sweden)
Lihua Xiao
2016-08-01
Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.
Liang, Zuozhong; Wang, Wei; Zhang, Min; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-04-01
The structural, mechanical and thermodynamic properties of ZrO2 polymorphs (namely, monoclinic (P21/c), tetragonal (P42/nmc), cubic (Fm 3 bar m), and orthorhombic (Pbca and Pnma)) are investigated systematically by employing DFT functionals (LDA, PBE and PW91). It is found that the structural parameters of ZrO2 polymorphs calculated by PBE and PW91 functionals are highly consistent with previous experiments with low absolute relative error (ARE). Moreover, all considered structures are mechanically stable according to the Born-Huang criterion and the PBE and PW91 functionals are more accurate than the LDA functional in predicting mechanical and thermodynamic properties. Significantly, we described mechanical and thermodynamic properties of ZrO2 polymorphs by introducing the charge density difference of related surfaces, which provides a better understanding of different behaviors of elastic constants (Cij) in various crystal structures of ZrO2.
Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.
2017-03-01
The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.
Band Structure and Optical Properties of Kesterite Type Compounds: first principle calculations
Palaz, S.; Unver, H.; Ugur, G.; Mamedov, A. M.; Ozbay, E.
2017-02-01
In present work, our research is mainly focused on the electronic structures, optical and magnetic properties of Cu2FeSnZ4 (Z = S, Se) compounds by using ab initio calculations within the generalized gradient approximation (GGA). The calculations are performed by using the Vienna ab-initio simulation package (VASP) based on the density functional theory. The band structure of the Cu2FeSnZ4 ( Z = S, Se) compounds for majority spin (spin-up) and minority spin (spin-down) were calculated. It is seen that for these compounds, the majority spin states cross the Fermi level and thus have the metallic character, while the minority spin states open the band gaps around the Fermi level and thus have the narrow-band semiconducting nature. For better understanding of the electronic states, the total and partial density of states were calculated, too. The real and imaginary parts of dielectric functions and hence the optical functions such as energy-loss function, the effective number of valance electrons and the effective optical dielectric constant for Cu2FeSnZ4 (Z = S, Se) compounds were also calculated.
Neutron induced fission of 234U
Directory of Open Access Journals (Sweden)
Pomp S.
2012-02-01
Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean
Morales, Giovanni; Martínez, Ramiro
2009-07-30
This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively
Energy Technology Data Exchange (ETDEWEB)
Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)
2011-07-01
In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)
First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO
Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.
2016-05-01
In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.
Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M
2015-06-15
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.
Defect properties of CuCrO2: A density functional theory calculation
Institute of Scientific and Technical Information of China (English)
Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man
2012-01-01
Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,Vcu,Oi,and OCu are the relevant intrinsic defects in CuCrO2; among these intrinsic defects,VCu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.
Directory of Open Access Journals (Sweden)
D. Topping
2015-11-01
Full Text Available In this paper we describe the development and application of a new web based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk, for automating predictions of molecular and atmospheric aerosol properties. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic–organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles; absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES strings and UManSysProp will automatically extract the relevant information for calculations. Built using open source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web-interface, or can be accessed using the user's own code via a JSON API. In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
Energy Technology Data Exchange (ETDEWEB)
Miranda, Fabio S.; Ronconi, Celia M.; Sousa, Mikaelly O.B.; Silveira, Gleiciani Q.; Vargas, Maria D., E-mail: miranda@vm.uff.br, E-mail: mdvargascp@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica
2014-01-15
Four novel 6-aminocoumarin-naphthoquinone conjugates were synthesized and their photophysical and electrochemical properties, investigated. 2-Chloro-3-(2-oxo-2H-chromen-6- ylamino)-1,4-naphthoquinone 1 did not present appreciable fluorescence in solution in comparison with 6-aminocoumarin, 6-AC. In order to understand the reasons for the fluorescence quenching in this compound, two strategies were attempted. Firstly, compound 1 was N-methylated to remove the intramolecular N-H...O=C electrostatic interaction that maintained the two units fixed, but the emission properties of the product 2 were not significantly different from those of 1. Time-dependent density functional theory (TD-DFT) calculations of compounds 1 and 2 indicate that the fluorescence quenching is related to the electron acceptor character of the naphthoquinone ring. The second strategy, therefore, involved the substitution of the chlorine atom in position 2 of the naphthoquinone nucleus for different electron donor groups (compounds 3-5), but again the emission properties did not change significantly. To explain these experimental findings, TD-DFT calculations of the ground (S{sub 0}) and excited (S{sub 1}) states of all molecules in solution were carried out. The results suggest that the energy states in these conjugates are such that the fluorescent group (6-AC) donates electrons to the naphthoquinone LUMO resulting in an oxidative photoinduced electron transfer (oxidative-PET). (author)
Multivariate statics employed as proposal for calculating the market value and property taxation
Directory of Open Access Journals (Sweden)
Jonilson Heil
2013-05-01
Full Text Available It is well known that the Brazilian municipalities aim to increase their own revenues and reduce dependence on state and federal financial transfers, optimizing their tax revenues. It is also known that the municipalities intend to carry out that mission with integrity, clarity and to present easily the accountability to regulators, as well as to their respective populations. In this paper carried out a study on the methodology employed in a town in central-southern state of Paraná to calculate the venal values and property tax (IPTU and the consequent taxation of IPTU and ITBI in these goods. Based on municipality registration data was developed, by means of multivariate statistical techniques, an analysis of the characteristics that most influence the monetary valuations of the property, and applying multiple linear regression analysis are proposed models to estimate values of the venal values of properties, allowing tax calculations predict through it. Finally, comparisons are presented between the results from the methodology used by the municipality with those obtained by the models developed, proposed for use in general.
Calculation of effective transport properties of partially saturated gas diffusion layers
Bednarek, Tomasz; Tsotridis, Georgios
2017-02-01
A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.
Fission yield measurements at IGISOL
Directory of Open Access Journals (Sweden)
Lantz M.
2016-01-01
Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Fission approach to cluster radioactivity
Indian Academy of Sciences (India)
D N Poenaru; R A Gherghescu
2015-09-01
Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.
Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang, E-mail: wangcz@ameslab.gov; Ho, Kai-Ming, E-mail: kmh@ameslab.gov [Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
2015-06-28
The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.
Mihaila, Bogdan; Heisenberg, Jochen
2000-04-01
We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.
Synthesis, characterization and DFT calculations of electronic and optical properties of YbPO4
Khadraoui, Z.; Horchani-Naifer, K.; Ferhi, M.; Ferid, M.
2015-08-01
YbPO4 crystals were synthesized by solid-state reaction and characterized by X-ray diffraction, infrared and Raman spectroscopies. The electronic structure and optical properties of YbPO4 such as the energy band structures, density of states and chemical bonds were calculated with the Density Functional Theory (DFT) for the first time. We present a combination of the GGA and the LDA + U approaches in order to obtain appropriate results due to the strong Coulomb repulsion between the highly localized 4f electrons of rare earth atoms. The linear photon-energy-dependent dielectric functions, conductivity and some optical constants such as refractive index, reflectivity and absorption coefficients were determined. The calculated total and partial densities of states indicate that the top of valance band is built upon O-2p states with P-3p states via σ (P-O) interactions, and the conduction bands mostly originate from Yb-5d states.
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
Li, Xinting; Zhang, Xinyu; Qin, Jiaqian; Zhang, Suhong; Ning, Jinliang; Jing, Ran; Ma, Mingzhen; Liu, Riping
2014-11-01
The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Feldman, J.L.; Broughton, J.Q. (Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5000 (US)); Wooten, F. (Department of Applied Science, University of California at Davis/Livermore, Livermore, California 94550 (US))
1991-01-15
Calculations, based on the Stillinger-Weber (SW) interatomic-potential model and the method of long waves, are presented for the elastic properties of amorphous Si ({ital a}-Si) and for pressure derivatives of the elastic constants of crystalline Si. Several models of {ital a}-Si, relaxed on the basis of the SW potential, are considered, and the external stresses that are associated with these models are evaluated using the Born-Huang relations. The elastic constants appear to obey the isotropy conditions to within a reasonable accuracy and are also consistent with other predictions based on the SW potential at finite temperature obtained by Kluge and Ray. Estimates of the pressure dependence of the elastic constants, Debye temperature, and Grueeisen parameter for {ital a}-Si are also provided on the basis of these calculations.
Ab initio calculations on the magnetic properties of transition metal complexes
Energy Technology Data Exchange (ETDEWEB)
Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes
Directory of Open Access Journals (Sweden)
Lee Y.-O.
2010-03-01
Full Text Available Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC design and applications as well as the design of new generation of nuclear reactors (GEN-IV. This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.
Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes
Kim, H. I.; Gil, C.-S.; Lee, Y.-O.
2010-03-01
Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC) design and applications as well as the design of new generation of nuclear reactors (GEN-IV). This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Nazarewicz, W; Sheikh, J A; Baran, A
2014-01-01
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action princip...
Shielding properties of a conducting bar calculated with a boundary integral method
Directory of Open Access Journals (Sweden)
L. O. Fichte
2005-01-01
Full Text Available A plane rectangular bar of conducting and permeable material is placed in an external low-frequency magnetic field. The shielding properties of this object are investigated by solving the given plane eddy current problem for the vector potential with the boundary integral equation method. The vector potential inside the rectangle is governed by Helmholtz' equation, which in our case is solved by separation. The solution is inserted into the remaining boundary integral equation for the exterior vector potential in the domain surrounding the bar. By expressing its logarithmic kernel as a Fourier integral the overall solution inside and outside the bar is calculated using analytical means only.
Elastic and thermodynamic properties of c-BN from first-principles calculations
Institute of Scientific and Technical Information of China (English)
Hao Yan-Jun; Cheng Yan; Wang Yan-Ju; Chen Xiang-Rong
2007-01-01
The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately. Moreover, the dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained.
Directory of Open Access Journals (Sweden)
Yuriy Natanzon
2008-01-01
Full Text Available We report ﬁrst principles calculations of the electronic and elastic properties of yttriastabilized tetragonal zirconium dioxide doped with metal oxides like: GeO2, TiO2, SiO2,MgO and Al2O3. It is shown that addition of such dopants aﬀects selected elastic propertiesof ZrO2, which is driven by the attraction of electron density by dopant atom and creationof stronger dopant–oxygen bonds. This eﬀect contributes to the increase of superplasticityof doped material.
Directory of Open Access Journals (Sweden)
A A Shokri
2013-10-01
Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.
Yang, Hua
2012-01-01
Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.
Phase transition and thermodynamic properties of SrS via first-principles calculations
Institute of Scientific and Technical Information of China (English)
Cheng Yan; Lu Lai-Yu; Jia Ou-He; Chen Xiang-Rong
2008-01-01
The phase transition of SrS from NaG1 structure (B1) to CsCl structure (B2) is investigated by means of ab initio plane-wave pseudopotential density functional theory, and the thermodynamic properties of the B1 and the B2 structures are obtained through the quasi-harmonic Debye model. It is found that the transition phase from the B1 to the B2 structures occurs at 17.9 GPa, which is in good agreement with experimental data and other calculated results.Moreover, the thermodynamic properties (including specific heat capacity, the Debye temperature, thermal expansion and Grüneisen parameter) have also been obtained successfully.
AB INITIO CALCULATION OF THE ELASTIC AND OPTICAL PROPERTIES OF AL3SC COMPOUND
Institute of Scientific and Technical Information of China (English)
M. Song; D.H. Xiao
2007-01-01
The ab initio method has been performed to explore the elastic and optical properties of Al3Sccompound, based on a plane wave pseudopotential method. It can be seen that the calculatedequilibrium lattice parameter and elastic constants are in reasonable agreement with the previousexperimental data. The elastic constants satisfy the requirement for mechanical stability in the cubicstructure of the Al3Sc compound. The optical property calculations show that a strong absorptivepeak exists from 0-15eV and a relative small absorptive peak exists around 30eV. The form iscaused by the optical transitions between high s, p, and d bands, and the latter results from theoptical transitions from high s, p, and d bands to the low 2p band.
Measurement of Fission Product Yields from Fast-Neutron Fission
Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.
2014-09-01
One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.
The SPIDER fission fragment spectrometer for fission product yield measurements
Energy Technology Data Exchange (ETDEWEB)
Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-07-11
The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.
Directory of Open Access Journals (Sweden)
A. Yu. Zhuravlev
2016-04-01
Full Text Available Purpose. The work is intended to investigate the electromagnetic processes in impedance bond in order to improve noise immunity of track circuits (TC for safe railway operation. Methodology. To achieve this purpose the methods of scientific analysis, mathematical modelling, experimental study, a large-scale simulation were used. Findings. The work examined the interference affecting the normal performance of track circuits. To a large extent, part of track circuit damages account for failures in track circuit equipment. Track circuit equipment is connected directly to the track line susceptible to traction current interference, which causes changes in its electrical characteristics and electromagnetic properties. Normal operability, performance of the main operating modes of the track circuit is determined by previous calculation of its performance and compilation of regulatory tables. The classical method for determination of track circuit parameters was analysed. The classical calculation method assumes representation of individual sections of the electrical track circuit using the quadripole network with known coefficients, usually in the A-form. Determining the coefficients of linear element circuit creates no metrological or mathematical difficulties. However, in circuits containing nonlinear ferromagnets (FM, obtaining the coefficients on the entire induction change range in the cores is quite a difficult task because the classical methods of idling (I and short circuit (SC are not acceptable. This leads to complicated methods for determining both the module and the arguments of quadripole network coefficients. Instead of the classical method, the work proposed the method for calculating the track circuit dependent on nonlinear properties of ferromagnets. Originality. The article examines a new approach to the calculation of TC taking into account the losses in ferromagnets (FM, without determination of equivalent circuit quadripole
Nuclear Fission Investigation with Twin Ionization Chamber
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.
2011-11-01
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract
Directory of Open Access Journals (Sweden)
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process
Panov, I.; Lutostansky, Yu; Thielemann, F.-K.
2016-01-01
For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.
Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se
Energy Technology Data Exchange (ETDEWEB)
Rameshkumar, S.; Jayalakshmi, V., E-mail: karthikajayam@yahoo.co.in [Department of Physics, SRM University, Ramapuram Campus, Chennai – 600089 (India); Jaiganesh, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Palanivel, B. [Department of Physics, Pondicherry Engineering College, Puducherry – 605014 (India)
2015-06-24
The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.
Moon, Juhyuk
2012-06-04
The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.
Zhang, Huan; Bo, Tian-Li; Zheng, Xiaojing
2017-03-01
Dusty phenomena, such as wind-blown sand, dust devils, and dust storms, play key roles in Earth's climate and geological processes. Dust electrification considerably affects the lifting and transport of dust particles. However, the electrical properties of dust storms remain poorly understood. Here, we conducted multi-parameter measurements and theoretical calculations to investigate the electrical properties of dust storms and their application to dust storm prediction. The results show that the vertical electric field (E-field) decreases first, then increases, and finally decreases with the height above the ground, reversing its direction at two heights, ∼ 8- 12 and ∼ 24 m. This suggests that the charge polarity of dust particles changes from negative to positive and back to negative again as the height increases. By carefully analyzing the E-field and dust concentration data, we further found that there is a significant positive linear relationship between the measured E-field intensity and dust concentration at the given ambient conditions. In addition, measurements and calculations demonstrate that a substantial enhancement in the vertical E-field can be observed several hours before the arrival of the external-source dust storms, indicating that the E-field can be used to provide an early warning of external-source dust storms.
Theoretical calculations on structural and electronic properties of BGaAsBi alloys
Aslan, Metin; Yalcin, Battal G.; Ustundag, Mehmet; Bagci, Sadik
2015-11-01
The structural and electronic properties of cubic B x Ga1- x As1- y Bi y alloys with bismuth (Bi) concentration of 0.0625, 0.125, 0.1875 and 0.25 are studied with various boron (B) compositions by means of density functional theory (DFT) within the Wu-Cohen (WC) exchange correlation potential based on generalized gradient approximation (GGA). For all studied alloy structures, we have implemented geometric optimization before the volume optimization calculations. The obtained equilibrium lattice constants and band gap of studied quaternary alloys are investigated for the first time in literature. While the lattice constant behavior changes linearly with boron concentration, increasing small amount of bismuth concentration alter the lattice constant nonlinearly. The present calculation shows that the band gap decreases with increasing bismuth concentration and direct band gap semiconductor alloy became an indirect band gap with increasing boron concentration. From the band offset calculation we have shown that increasing B and Bi concentration in host GaAs reduced the valance band offset in a heterostructure formed by GaAs and studied alloys.
Thermoelectric properties of AgSbTe₂ from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Rezaei, Nafiseh; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)
2014-09-14
The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.
Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)
Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola
Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.
Rodriguez-Guzman, R
2014-01-01
The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes $^{232-280}$ Pu. We resort to the methodology introduced in our previous studies [Phys. Rev. C \\textbf{88}, 054325 (2013) and Phys. Rev. C \\textbf {89}, 054310 (2014)] to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives t$_{SF}$, masses and charges of the fragments in Plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and $\\alpha$-decay modes. The impact of pairing correlations on the predicted t$_{SF}$ values is demonstrated with the help of calculations for $^{232-280}$Pu in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5 $\\%$ and 10 $\\%$, respective...
Membrane biology: fission behind BARs.
Haucke, Volker
2012-06-05
Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.
Guo, San-Dong; Wang, Yue-Hua
2017-01-01
Two-dimensional (2D) materials may have potential applications in thermoelectric devices. In this work, the thermoelectric properties of orthorhombic group IV-VI monolayers AB (A = Ge and Sn; B = S and Se) are systematically investigated by the first-principles calculations and semiclassical Boltzmann transport theory. The spin-orbit coupling (SOC) is considered for their electron part, which produces observable effects on the power factor, especially for n-type doping. According to the calculated ZT, the four monolayers exhibit diverse anisotropic thermoelectric properties although they have a similar hinge-like crystal structure. The GeS along zigzag and armchair directions shows the strongest anisotropy, while SnS and SnSe show mostly isotropic efficiency of thermoelectric conversion. This can be explained by the strength of anisotropy of their respective power factor and electronic and lattice thermal conductivities. The calculated results show that the ZT between n- and p-type doping has little difference for GeS, SnS, and SnSe. It is found that GeSe, SnS, and SnSe show better thermoelectric performance compared to GeS in n-type doping and that SnS and SnSe exhibit higher efficiency of thermoelectric conversion in p-type doping. Compared to other many 2D materials, orthorhombic group IV-VI monolayers AB (A = Ge and Sn; B = S and Se) may possess better thermoelectric performance due to lower lattice thermal conductivities. Our work would be beneficial to stimulate further theoretical and experimental works.
Structural and electronic properties of cerium from LDA+U calculations
Directory of Open Access Journals (Sweden)
F. Kheradmand
2008-12-01
Full Text Available In this work structural, electronic and magnetic properties of alpha and gamma phases of cerium crystal have been calculated by means of the LDA and LDA+U methods. The equilibrium volume and magnetic moment obtained from the GGA approximation in agreement with the experiment are equal to 27.64 Å3 and 0.00018 µB, respectively. This agreement shows that the 4f electrons in alpha phase are itinerant due to the use of the GGA, where no strong correlations have been yet thaken into account. We have observed that even after applying the GGA+U method with U = 6.1 eV, the density of states of f orbital remains still at Fermi surface. Therefore, in complete accord with the experiment, our results show that the 4f electrons in the alpha phase are not localized. This is the case where the LDA and the GGA approximations could not describe the gamma phase properly. Indeed, physical properties of the gamma phase is consistent with the experiment and could only be reproduced after applying LDA+U method with U = 4.4 eV. In this way, the value of equilibrium volume and magnetic moment calculated for the gamma phase were found to be 34.33 Å3 and 1.15 µB, respectively. After including correlations among 4f electrons the γ-Ce DOS is positioned at its more reasonable place lower than Fermi level compared with the DOS obtained from GGA calculations. Our results, then, show that the 4f electrons in the gamma phase, as opposed to the alpha phase, are localized which is indicative of the fact that gamma cerium is a strongly correlated system. The volume of 11 kbar has been obtained for the pressure of the alpha-gamma phase transition .
Khadraoui, Z.; Horchani-Naifer, K.; Ferhi, M.; Ferid, M.
2015-09-01
Single crystals of TbPO4 were grown by high temperature solid-state reaction and identified by means of X-ray diffraction, infrared and Raman spectroscopies analysis. The electronic properties of TbPO4 such as the energy band structures, density of states were carried out using density functional theory (DFT). We have employed the LDA+U functional to treat the exchange correlation potential by solving Kohn-Sham equation. The calculated total and partial density of states indicate that the top of valance band is mainly built upon O-2p states and the bottom of the conduction band mostly originates from Tb-5d states. The population analysis indicates that the P-O bond was mainly covalent and Tb-O bond was mainly ionic. The emission spectrum, color coordinates and decay curve were employed to reveal the luminescence properties of TbPO4. Moreover, the optical properties including the dielectric function, absorption spectrum, refractive index, extinction coefficient, reflectivity and energy-loss spectrum are investigated and analyzed. The results are discussed and compared with the available experimental data.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Ansari, Reza; Ajori, Shahram; Malakpour, Sina
2016-04-01
The considerable demand for novel materials with specific properties has motivated the researchers to synthesize supramolecular nanostructures through different methods. Porous graphene is the first two-dimensional hydrocarbon synthesized quite recently. This investigation is aimed at studying the mechanical properties of atom-decorated (functionalized) porous graphene by employing density functional theory (DFT) calculation within both local density approximations (LDA) and generalized gradient approximations (GGA). The atoms are selected from period 3 of periodic table as well as Li and O atom from period 2. The results reveal that metallic atoms and noble gases are adsorbed physically on porous graphene and nonmetallic ones form chemical bonds with carbon atom in porous graphene structure. Also, it is shown that, in general, atom decoration reduces the values of mechanical properties such as Young's, bulk and shear moduli as well as Poisson's ratio, and this reduction is more considerable in the case of nonmetallic atoms (chemical adsorption), especially oxygen atoms, as compared to metallic atoms and noble gases (physical adsorption).
Decay spectroscopy of exotic fission products
Rykaczewski, Krzysztof
2014-09-01
The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. Supported by the U.S. DOE Office of Nuclear Physics under Contracts DE-AC05-00R22725 (ORNL), DE-FG02-96ER40983 (UTK).
FREYA-a new Monte Carlo code for improved modeling of fission chains
Energy Technology Data Exchange (ETDEWEB)
Hagmann, C A; Randrup, J; Vogt, R L
2012-06-12
A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.
Role of energy cost in the yield of cold ternary fission of 252Cf
Indian Academy of Sciences (India)
P V Kunhikrishnan; K P Santhosh
2013-01-01
The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Schunck, Nicolas
2016-01-01
In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.
Fission modes in charged-particle induced fission
Energy Technology Data Exchange (ETDEWEB)
Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))
1990-12-01
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).
Study of Pre-equilibrium Fission Based on Diffusion Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In terms of numerical method of Smoluchowski equation the behavior of fission process in diffusion model has been described and analyzed, including the reliance upon time, as well as the deformation parameters at several nuclear temperatures in this paper. The fission rates and the residual probabilities inside the saddle point are calculated for fissile nucleus n+238 U reaction and un-fissile nucleus p+208 Pb reaction. The results indicate that there really exists a transient fission process, which means that the pre-equilibrium fission should be taken into account for the fissile nucleus at the high temperature. Oppositely, the pre-equilibrium fission could be neglected for the un-fissile nucleus. In the certain case the overshooting phenomenon of the fission rates will occur, which is mainly determined by the diffusive current at the saddle point. The higher the temperature is, the more obvious the overshooting phenomenon is. However, the emissions of the light particles accompanying the diffusion process may weaken or vanish the overshooting phenomenon.
Energy-Dependent Fission Q Values Generalized for All Actinides
Energy Technology Data Exchange (ETDEWEB)
Vogt, R
2008-09-25
We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.
Dynamics of the tri-nuclear system at spontaneous fission of $^{252}$Cf
Tashkhodjaev, R B; Alpomeshev, E Kh
2016-01-01
To describe of dynamics of ternary fission of $^{252}$Cf an equation of motion of the tri-nuclear system is calculated. The fission of the $^{70}$Ni+$^{50}$Ca+$^{132}$Sn channel was chosen as one of the more probable channels of true ternary fission of $^{252}$Cf. The collinearity of ternary fission has been checked by analyzing results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line, is zero then ternary fission is collinear, otherwise the non collinear ternary fission takes place.
New fission fragment distributions and r-process origin of the rare-earth elements
Goriely, S; Lemaitre, J -F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H -Thomas
2013-01-01
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 140.
Evaluation and compilation of fission product yields 1993
Energy Technology Data Exchange (ETDEWEB)
England, T.R.; Rider, B.F.
1995-12-31
This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.; Boslough, M.B. [Sandia National Labs., Albuquerque, NM (United States); Gray, G.T. III [Los Alamos National Lab., NM (United States); Remo, J.L. [Quantametrics, Inc., St. James, NY (United States)
1994-07-01
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
Furnish, M. D.; Boslough, M. B.; Gray, G. T., III; Remo, J. L.
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2-20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
Advanced model for the prediction of the neutron-rich fission product yields
Directory of Open Access Journals (Sweden)
Rubchenya V. A.
2013-12-01
Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.
Spontaneous fission of superheavy nucleus $^{286}$Fl
Poenaru, Dorin N
2016-01-01
The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...
Energy Technology Data Exchange (ETDEWEB)
Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL
2015-01-01
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for ^{235,238}U and ^{239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.
Anti-cancer properties of green Tea Probed viaquantum mechanics calculations
Directory of Open Access Journals (Sweden)
Azin Chitsazan
2015-03-01
Full Text Available 10.13005/ojc/310147Tea, from the plant camellia sinensis, is consumed in different parts of the world as green, black or oolong tea. Among all of these, however, the most significant effects on human health have been observed with the consumption of green tea. Green tea contains polyphenols, which include flavanols, flavandiols, flavonoids, and phenolic acids. Most of the green tea polyphenols (GTPs are flavonols, commonly known as catechins. There are four kinds of catechins mainly find in green tea: epicatechin, epigallocatechin, epicatechin-3-gallate, and EGCG. Green tea catechins have demonstrated significant antioxidant, anticarcinogenic, anti-inflammatory, thermogenic, probiotic, and antimicrobial properties in numerous human, animal, and in vitro studies. In the present study, four type catechins of green tea were studied. For each catechin ab initio method was employed for calculations and related parameters were computed.
Energy Technology Data Exchange (ETDEWEB)
Perlov, A. E-mail: alexander.perlov@cup.uni-muenchen.de; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I
2004-05-01
An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme as the possibility to account for many-body effects in terms of the non-local energy-dependent self-energy but is numerically much more efficient. In particular an incorporation of the single-site self-energy coming from the dynamical mean-field theory (DMFT) is implemented. An application of the approach to bulk Ni and Fe showed rather good agreement with the experimental data, in contrast with the results of standard local spin density approximation (LSDA) computations.
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A
2008-10-23
This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.
Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions
Nandy, D. K.
2016-11-01
We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.
Energy Technology Data Exchange (ETDEWEB)
Lee, B; Rudd, R E
2006-10-19
We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si {l_angle}001{r_angle} nanowires. The nanowires are taken to have predominantly {l_brace}100{r_brace}surfaces, with small {l_brace}110{r_brace} facets according to the Wulff shape. The Young's modulus, the equilibrium length and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parameterize the continuum model and to account for the discrepancies between the two models and the first-principles results.
Directory of Open Access Journals (Sweden)
Qiushi Zheng
2017-02-01
Full Text Available Vanadium-bearing muscovite is the most valuable component of stone coal, which is a unique source of vanadium manufacture in China. Numbers of experimental studies have been carried out to destroy the carrier muscovite’s structure for efficient extraction of vanadium. Hence, the vanadium location is necessary for exploring the essence of vanadium extraction. Although most infer that vanadium may substitute for trivalent aluminium (Al as the isomorphism in muscovite for the similar atomic radius, there is not enough experimental evidence and theoretical supports to accurately locate the vanadium site in muscovite. In this study, the muscovite model and optimal location of vanadium were calculated by density functional theory (DFT. We find that the vanadium prefers to substitute for the hexa-coordinated aluminum of muscovite for less deformation and lower substitution energy. Furthermore, the local geometry and relative electronic properties were calculated in detail. The basal theoretical research of muscovite contained with vanadium are reported for the first time. It will make a further influence on the technology development of vanadium extraction from stone coal.
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Gao, Fei; Weber, William J.; Xiao, H. Y.; Zu, Xiaotao T.
2009-09-11
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the most stable configuration of a di-vacancy cluster consists of two C vacancies located at second nearest neighbor sites, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and n C vacancies (VSi-nVC) are much smaller than those with a C vacancy and n Si vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Gao, F.; Weber, W. J.; Xiao, H. Y.; Zu, X. T.
2009-09-01
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (VSi-nVC) are much smaller than those with a C vacancy and nSi vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
Ab initio Calculations of the Linear and Nonlinear Optical Properties of Amino Acids
Energy Technology Data Exchange (ETDEWEB)
Tokarz, D; Tuer, A; Cisek, R; Krouglov, S; Barzda, V, E-mail: virgis.barzda@utoronto.ca [Department of Chemical and Physical Sciences, Department of Chemistry, Department of Physics, and Institute for Optical Sciences, University of Toronto, 3359 Mississauga Road North, Mississauga, ON L5L 1C6 (Canada)
2010-11-01
A number of proteins can assemble into chiral structures that display strong nonlinear optical activity. For instance, proteins such as myosin and collagen exhibit intense second harmonic generation (SHG). A large number of experimental studies on the SHG of proteins have been conducted; however few predictive models have been proposed that reliably relate the macroscopic SHG properties to the amino acids present in the peptidic chain. In this study, the linear polarizability ({alpha}), first ({beta}) and second hyperpolarizability ({gamma}) of all twenty amino acids was investigated by time-dependent Hartree-Fock calculations under physiological conditions. Ab initio calculations were performed using the GAMESSUS computational chemistry package. We have found that the aromatic amino acids give rise to the largest mean {alpha}, {beta} and {gamma} values. With this finding, we hope to apply this method to protein structures in order to understand how second harmonic signal is generated from individual amino acids, as well as, recognize how manipulation of the secondary structure of proteins might enhance SHG and third harmonic generation (THG).
Ying, Chun; Zhao, Erjun; Lin, Lin; Hou, Qingyu
2014-10-01
The structural determination, thermodynamic, mechanical, dynamic and electronic properties of 4d transitional metal diborides MB2 (M = Y-Ag) are systematically investigated by first-principles within the density functional theory (DFT). For each diboride, five structures are considered, i.e. AlB2-, ReB2-, OsB2-, MoB2- and WB2-type structures. The calculated lattice parameters are in good agreement with the previously theoretical and experimental studies. The formation enthalpy increases from YB2 to AgB2 in AlB2-type structure (similar to MoB2- and WB2-type). While the formation enthalpy decreases from YB2 to MoB2, reached minimum value to TcB2, and then increases gradually in ReB2-type structure (similar to OsB2-type), which is consistent with the results of the calculated density of states. The structural stability of these materials relates mainly on electronegative of metals, boron structure and bond characters. Among the considered structures, TcB2-ReB2 (TcB2-ReB2 represents TcB2 in ReB2-type structure, the same hereinafter) has the largest shear modulus (248 GPa), and is the hardest compound. The number of electrons transferred from metals to boron atoms and the calculated densities of states (DOS) indicate that each diboride is a complex mixture of metallic, ionic and covalent characteristics. Trends are discussed.
Poltev, V I; Malenkov, G G; Gonzalez, E J; Teplukhin, A V; Rein, R; Shibata, M; Miller, J H
1996-02-01
Hydration properties of individual nucleic acid bases were calculated and compared with the available experimental data. Three sets of classical potential functions (PF) used in simulations of nucleic acid hydration were juxtaposed: (i) the PF developed by Poltev and Malenkov (PM), (ii) the PF of Weiner and Kollman (WK), which together with Jorgensen's TIP3P water model are widely used in the AMBER program, and (iii) OPLS (optimized potentials for liquid simulations) developed by Jorgensen (J). The global minima of interaction energy of single water molecules with all the natural nucleic acid bases correspond to the formation of two water-base hydrogen bonds (water bridging of two hydrophilic atoms of the base). The energy values of these minima calculated via PM potentials are in somewhat better conformity with mass-spectrometric data than the values calculated via WK PF. OPLS gave much weaker water-base interactions for all compounds considered, thus these PF were not used in further computations. Monte Carlo simulations of the hydration of 9-methyladenine, 1-methyluracil and 1-methylthymine were performed in systems with 400 water molecules and periodic boundary conditions. Results of simulations with PM potentials give better agreement with experimental data on hydration energies than WK PF. Computations with PM PF of the hydration energy of keto and enol tautomers of 9-methylguanine can account for the shift in the tautomeric equilibrium of guanine in aqueous media to a dominance of the keto form in spite of nearly equal intrinsic stability of keto and enol tautomers. The results of guanine hydration computations are discussed in relation to mechanisms of base mispairing errors in nucleic acid biosynthesis. The data presented in this paper along with previous results on simulation of hydration shell structures in DNA duplex grooves provide ample evidence for the advantages of PM PF in studies of nucleic-acid hydration.
Cold fission description with constant and varying mass asymmetries
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Garcia, F.; Guzman, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1998-01-01
Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of {sup 234} U cold fission are satisfactorily reproduced. (author) 39 refs., 6 figs., 2 tabs.; e-mail: telo at ird.gov.br
Investigating Prompt Fission Neutron Emission from 235U(n,f in the Resolved Resonance Region
Directory of Open Access Journals (Sweden)
Göök Alf
2016-01-01
Full Text Available Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.
Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T
2014-01-21
We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Energy Technology Data Exchange (ETDEWEB)
Wu, Hai-Ying; Zhou, Ping; Han, Xiang-Yu [Jiaotong Univ., Chongqing (China). School of Science; Chen, Ya-Hong [North Univ. of China, Taiyuan (China). Scholl of Chemical Engineering and Environment; Liu, Zi-Jiang [Lanzhou City Univ. (China). Dept. of Physics
2014-08-15
The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH{sub 4}I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature.
Energy Technology Data Exchange (ETDEWEB)
Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-01-21
We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
The spectroscopy of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.
Saikia, Nabanita; Pati, Swapan K.; Deka, Ramesh C.
2012-09-01
One-dimensional nanostructures such as nanowires and nanotubes are stimulating tremendous research interest due to their structural, electronic and magnetic properties. We perform first principles calculation using density functional theory on the structural, and electronics properties of BNNTs adsorbed with isoniazid (INH) drug via noncovalent functionalization using the GGA/PBE functional and DZP basis set implemented in SIESTA program. The band structure, density of states and projected density of states (PDOS) plots suggest that isoniazid prefers to get adsorbed at the hollow site in case of (5,5) BNNT, whereas in (10,0) BNNT it favours the bridge site. The adsorption energy of INH onto (5,5) BNNT is smaller than in (10,0) BNNT which proposes that (10,0) BNNT with a larger radius compared to (5,5) BNNT is more favourable for INH adsorption as the corresponding distortion energy will also be quite lower. Functionalization of (5,5) and (10,0) BNNTs with isoniazid displays the presence of new impurity states (dispersionless bands) within the HOMO-LUMO energy gap of pristine BNNT leading to an increase in reactivity of the INH/BNNT system and lowering of the energy gap of the BNNTs. The PDOS plots show the major contribution towards the dispersionless impurity states is from INH molecule itself rather than from BNNT near the Fermi energy region. To summarize, noncovalent functionalization of BNNTs with isoniazid drug modulates the electronic properties of the pristine BNNT by lowering its energy gap with respect to the Fermi level, as well as demonstrating the preferential site selectivity for adsorption of isoniazid onto the nanotube sidewalls of varying chirality.
Prompt γ-ray production in neutron-induced fission of 239Pu
Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.
2013-04-01
Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.
Modeling of Fission Gas Release in UO2
Energy Technology Data Exchange (ETDEWEB)
MH Krohn
2006-01-23
A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].
Characterization of intergranular fission gas bubbles in U-Mo fuel.
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.; Nuclear Engineering Division; SSCR RIAR
2008-04-14
This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of {approx}0 at% U-235 (LEU) or a fission density of {approx}3 x 10{sup 21} fissions/cm{sup 3}. Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed
Energy Technology Data Exchange (ETDEWEB)
Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)
2010-04-08
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li_{17}Pb_{83 } eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li_{17}Pb_{83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li_{17}Pb_{83}, separated from the Li_{17}Pb_{83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF_{2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles
Advanced Space Fission Propulsion Systems
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust
Fission hindrance and nuclear viscosity
Indian Academy of Sciences (India)
Indranil Mazumdar
2015-08-01
We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.
Vidal, David; Thormann, Michael; Pons, Miquel
2005-01-01
SMILES strings are the most compact text based molecular representations. Implicitly they contain the information needed to compute all kinds of molecular structures and, thus, molecular properties derived from these structures. We show that this implicit information can be accessed directly at SMILES string level without the need to apply explicit time-consuming conversion of the SMILES strings into molecular graphs or 3D structures with subsequent 2D or 3D QSPR calculations. Our method is based on the fragmentation of SMILES strings into overlapping substrings of a defined size that we call LINGOs. The integral set of LINGOs derived from a given SMILES string, the LINGO profile, is a hologram of the SMILES representation of the molecule described. LINGO profiles provide input for QSPR models and the calculation of intermolecular similarities at very low computational cost. The octanol/water partition coefficient (LlogP) QSPR model achieved a correlation coefficient R2=0.93, a root-mean-square error RRMS=0.49 log units, a goodness of prediction correlation coefficient Q2=0.89 and a QRMS=0.61 log units. The intrinsic aqueous solubility (LlogS) QSPR model achieved correlation coefficient values of R2=0.91, Q2=0.82, and RRMS=0.60 and QRMS=0.89 log units. Integral Tanimoto coefficients computed from LINGO profiles provided sharp discrimination between random and bioisoster pairs extracted from Accelrys Bioster Database. Average similarities (LINGOsim) were 0.07 for the random pairs and 0.36 for the bioisosteric pairs.
Prompt Fission Neutron Spectra of Actinides
Energy Technology Data Exchange (ETDEWEB)
Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.
2016-01-01
The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data
Self-consistent calculations of optical properties of type I and type II quantum heterostructures
Shuvayev, Vladimir A.
In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several
Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2016-08-01
The potential energy curves were calculated for the 21 states (X2Π, A2Π, 32Π, 42Π, 52Π, 12Σ+, 22Σ+, 32Σ+, 12Σ-, 22Σ-, 32Σ-, 12Δ, 22Δ, 32Δ, 12Φ, 14Σ+, a4Σ-, 24Σ-, 14Π, 24Π and 14Δ), which originated from the two lowest dissociation channels of ClO radical. The calculations were done for internuclear separations approximately from 0.08 to 1.10 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV5Z basis set. Of these 21 states, the 14Π, 24Π, 32Δ, 42Π, 52Π, 12Φ, 32Σ+, 14Δ and 24Σ- states are repulsive. The 12Δ, 12Σ-, 14Σ+, 22Σ-, 12Σ+, 22Σ+, 22Δ and 32Σ- states are very weakly bound. Only the A2Π state has one barrier. The avoided crossing exists between the A2Π and the 32Π state. However, the avoided crossing does not generate any double wells. Core- valence correlation correction was accounted for at the level of an aug-cc-pCVQZ basis set. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pVQZ basis set. All the potential energy curves were extrapolated to the complete basis set limit. The spectroscopic parameters were determined. The 12Σ-, 22Σ-, 32Σ- and 14Σ+ states may be very difficult to be detected in an experiment, since each of these Λ-S states has only one or two vibrational states. The Franck-Condon factors and radiative lifetimes were calculated for several low vibrational levels of the A2Π - X2Π, 32Π - a4Σ-, 22Δ - a4Σ- and 32Σ- - 12Σ- transitions. The spin-orbit coupling effect on the spectroscopic parameters of the X2Π, A2Π, 32Π, a4Σ- and 22Σ+ states were discussed. The spectroscopic properties reported here can be expected to be reliably predicted ones.
Neutron induced current pulses in fission chambers. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Taboas, A L; Buck, W L
1978-01-01
The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained.
Fission fragment angular distributions in pre-actinide nuclei
Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu
2016-10-01
measured σfis and predictions of SM indicated the presence of NCNF in at least four systems, when shell effects, both in the level density and the fission barrier, were included in the calculation. Conclusions: Systematic SM analysis of measured fission angular anisotropies and σfis confirmed the onset of NCNF in pre-actinide nuclei. Discrepancies between results about the degree of its influence on complete fusion, as deduced from various experimental probes, remain challenges to be solved. Complete measurement of all signatures of NCNF for many systems and preferably a dynamical description of the collisions between projectile and target nuclei are warranted for a deeper understanding.
Jensen, Jan H
2013-01-01
A new web-server called The Molecule Calculator (MolCalc) is presented. The entry page is a molecular editor (JSmol) for interactive molecule building. The resulting structure can then be used to estimate molecular properties such as heats of formation and other thermodynamic properties, vibrational frequencies and vibrational modes, and molecular orbitals and orbital energies. These properties are computed using the GAMESS program at either the RHF/STO-3G (orbitals and orbital energies) or PM3 level of theory (all other properties) in a matter of seconds or minutes depending on the size of the molecule. The results, though approximate, can help students develop a "chemical intuition" about how molecular structure affects molecular properties, without performing the underlying calculations by hand, a near impossible task for all but the simplest chemical systems.
Crystal Field and First Principle Calculation of Optical and Electronic Properties of ZnCr2O4 Spinel
Avram, N. M.; Brik, M. G.; Avram, C. N.; Gruia, A. S.
2011-10-01
In the present work we report on combined methods for calculation of optical energy levels scheme and electronic properties of antiferromagnetic spinel ZnCr2O4. The exchange charge model (ECM) was used to calculate the crystal field parameters (CFP) with taking into account the effects of the covalent bond formation between the Cr3+ and O2- ions. The calculated CFP values were used for diagonalization of the Cr3+ Hamiltonian in a complete basis set spanned by all wave functions of the LS terms of 3d3 electron configuration. Ab initio calculations (with the CRYSTAL09 computer program) of the density of states allowed evaluating contribution of each ion into the calculated bands. In addition, the spin-polarized calculations allowed for finding difference between densities of the spin-up and spin-down states of 6-fold coordinated Cr3+ ion. The obtained results are discussed and compared with experimental data.
Neutron threshold activation detectors (TAD) for the detection of fissions
Gozani, Tsahi; Stevenson, John; King, Michael J.
2011-10-01
, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.
New Insights To Simulate the Luminescence Properties of Pt(II) Complexes Using Quantum Calculations.
Massuyeau, Florian; Faulques, Eric; Latouche, Camille
2017-03-24
The present manuscript reports a thorough quantum investigation on the luminescence properties of three monoplatinum(II) complexes. First, the simulated bond lengths at the ground state are compared to the observed ones, and the simulated electronic transitions are compared to the reported ones in the literature in order to assess our methodology. In a second time we show that geometries from the first triplet excited state are similar to the ground state ones. Simulations of the phosphorescence spectra from the first triplet excited states have been performed taking into account the vibronic coupling effects together with mode-mixing (Dushinsky) and solvent effects. Our simulations are compared with the observed ones already reported in the literature and are in good agreement. The calculations demonstrate that the normal modes of low energy are of great importance on the phosphorescence signature. When temperature effects are taken into account, the simulated phosphorescence spectra are drastically improved. An analysis of the computational time shows that the vibronic coupling simulation is cost-effective and thus can be extended to treat large transition metal complexes. In addition to the intrinsic importance of the investigated targets, this work provides a robust method to simulate phosphorescence spectra and to increase the duality experiment-theory.
Magnetic and electronic properties of Cu1-xFexO from first principles calculations
Yang, Hua
2013-01-01
Magnetic and electronic properties of Cu1-xFexO systems with x = 6.25% and 12.5% have been investigated using first principles calculations. The ground state of CuO is an antiferromagnetic insulator. At x = 6.25%, Cu1-xFexO systems with Fe on 2 and 4 substitution positions are half-metallic due to the strong hybridization among Fe, the nearest O and Cu atoms, which may come from the double exchange coupling between Fe2+-O2--Cu2+. At x = 12.5%, Cu 1-xFexO system with Fe on 9-11 position has a strong spin polarization near the Fermi level and the system energy is lowest when the doped two Fe atoms form ferromagnetic configuration. This indicates the two doped Fe atoms prefer to form ferromagnetic configuration in Fe2+-O 2--Cu2+-O2--Fe2+ chains. While in the Fe on 7-11 position, the spin-down Fe-11 3d states have a large spin polarization near the Fermi level when the two doped Fe atoms form antiferromagnetic configuration. It is concluded that the transition metal doping can modify the magnetism and electronic structures of Cu 1-xFexO systems. This journal is © The Royal Society of Chemistry 2013.
Stability and hydrogen adsorption properties of Mg/TiMn2 interface by first principles calculation
Dai, J. H.; Jiang, X. W.; Song, Y.
2016-11-01
First principles calculations were carried out to study the stability and hydrogen adsorption properties of Mg/TiMn2 interface. The surface stability and hydrogen adsorption of TiMn2 were explored. The Mn terminated (001) is the most stable surface among the considered surfaces of TiMn2 and TiMn2 surface shows better hydrogen adsorption ability than the pure Mg surface. Two models coupling the Mg(0001) surface and the TiMn2(001) surface with different terminations were constructed to explore the Mg/TiMn2 interface. The Mg(0001)/Mn terminated TiMn2(001) with interface is much more stable than that of Ti terminated system. These two interfaces both show good hydrogen adsorption ability, in which the Mn terminated interface shows - 1.62 eV of hydrogen adsorption energy. The electronic structures of the considered systems are evaluated. The negative adsorption energies of hydrogen on the surface and interface systems are further explained by the analysis of the density of states.
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
Institute of Scientific and Technical Information of China (English)
E.Salmani; Benyoussef; H.Ez-Zahraouy; E.H.Saidi
2011-01-01
According to first-principles density functional calculations,we have investigated the magnetic properties of Mn-doped GaN with defects,Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites,nitrogen vacancies VN,gallium vacancies VG and oxygen substituted at nitrogen sites.The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism.The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions.The effect of defects on ferromagnetic coupling is investigated.It is found that in the presence of donor defects,such as oxygen substituted at nitrogen sites,nitrogen vacancy antiferromagnetic interactions appear,while in the case of Ga vacancies,the interactions remain ferromagnetic;in the case of acceptor defects like Mg and Zn codoping,ferromagnetism is stabilized.The formation energies of these defects are computed.Furthermore,the half-metallic behaviours appear in some studied compounds.
Properties of the Fe/GaAs(110) interface investigated by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Gruenebohm, Anna; Herper, Heike C.; Entel, Peter [Fachbereich Physik, Universitaet Duisburg-Essen, Duisburg (Germany)
2009-07-01
Fe/GaAs is a widely used system for spintronic devices. For example the small lattice mismatch (<2%) and the cheap preparation of layered systems are promising. Because of this many studies on Fe/GaAs have been performed in the last decades mostly on the (001) direction. Recently the (110) direction has attracted plenty of attention as the free GaAs(110) surface doesn't reconstruct and allows to grow flat interfaces. Unfortunately, diffusion and alloy formation occur at both interfaces which may lead to reduced spin injection and magnetic inactive regions. To get an insight into the interface properties we do calculations within the PAW method using VASP adopting the GGA/PBE form for the exchange-correlation potential. To simulate the free surface the slap method is used thereby one side of the slab is passivated through pseudo-hydrogen to guarantee a bulk-like behavior in a moderate sized slap. The adsorption of single Fe-atoms as well as the first monolayers of iron are investigated with respect to the energy landscape for different structures and the magnetic moments. While diffusion of atoms through the interface was shown to be low in energy no magnetic inactive phase could be observed. Hence our results don't show any fundamental limitations for spintronic applications.
Systematics of fission cross sections at the intermediate energy region
Energy Technology Data Exchange (ETDEWEB)
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
A new prompt heavy-ion-induced fission mode
Indian Academy of Sciences (India)
W Udo Schröder
2015-08-01
Fission instabilities induced by mechanical and thermal stresses on intermediate nuclear systems in heavy-ion reactions are poorly understood but should reveal independent evidence for the nuclear equation of state (EoS), notably the tensile strength of finite nuclei. Experimental evidence is presented in support of a new mode of prompt fission of the composite nucleus formed in central 78Kr+40Ca collisions at only a few MeV per nucleon above the interaction barrier. The new process recalls the ‘L-window for fusion’ phenomenon, which was predicted by the early reaction theory and reappears in modern DFT model calculations.
Neutron and fission yields from high-energy deuterons in infinite /sup 238/U targets
Energy Technology Data Exchange (ETDEWEB)
Canfield, E.
1965-06-28
Early work on the interaction of high energy deuterons with large /sup 238/U targets is reexamined and current theoretical study is discussed. Results of fission and neutron yield calculations are compared with experiment. (SDF)
Fission characteristics of 216Ra formed in heavy-ion induced reactions
Indian Academy of Sciences (India)
Hadi Eslamizadeh
2013-11-01
A Kramers-modified statistical model is used to calculate the cross-section of the evaporation residue, fission cross-section, average pre-fission multiplicities of protons and -particles for 216Ra formed in 19F + 197Au reactions and results are compared with the experimental data. To calculate these quantities, the effects of temperature and spin K about the symmetry axis have been considered in the calculations of the potential energy surfaces and the fission widths. It is shown that the results of the calculations using values of the temperature coefficient of the effective potential = 0.008 ± 0.003 MeV−2 and scaling factor of the fission-barrier height $r_{s} = 1.004 ± 0.002$ are in good agreement with the experimental data.
Measurement and Analysis of Fission Rates in a Spherical Mockup of Uranium and Polyethylene
Tong-Hua, Zhu; Xin-Xin, Lu; Rong, Liu; Zi-Jie, Han; Li, Jiang; Mei, Wang
2013-01-01
Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber(PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. And then, the fission count of 238U and 235U in an individual uranium shell was obtained. In this work, MCNP5 and continuous energy cross sections ENDF/BV.0 were used for the analysis of fission rate distribution and fission count. The calculated results were compared with the experimental ones. The calculation of fission rate of DU and EU were found to agree with the measured ones within 10% except at the positions in polyethylene region and the two positions near the outer surface. Beacause the fission chamber was not co...
Fission-track analysis of meteorites: Dating of the Marjalahti pallasite
Energy Technology Data Exchange (ETDEWEB)
Bondar, Yu.V. [Institute of Environmental Geochemistry, 34a Palladin ave., Kiev 03142 (Ukraine)]. E-mail: juliavad@yahoo.com; Perelygin, V.P. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2005-11-15
The results of the Marjalahti pallasite fission-track age determination are presented. Thorough examination of fossil tracks in the phosphate (whitlockite) crystals coupled with U-content determination in whitlockites can make it possible to estimate the contributions of all possible track sources to the total track density and to calculate a model fission-track age. It is found that whitlockite crystals of the Marjalahti pallasite contain fossil tracks due to galactic cosmic rays (VH, VVH nuclei); fission of U and Th induced by cosmic rays; spontaneous fission of {sup 238}U; and spontaneous fission of extinct, short-lived {sup 244}Pu present in significant quantities in the early solar system. A great track density attributed to the extinct {sup 244}Pu testifies to the high fission-track age. The model fission-track ages of (4.31+/-0.02)x10{sup 9}yr for the Marjalahti pallasite are calculated. Petrographic studies allow us to interpret the fission-track age as the time of the last shock/thermal event in the cosmic history of the pallasite.
Energy Technology Data Exchange (ETDEWEB)
Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau
2014-03-01
Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights
Directory of Open Access Journals (Sweden)
Fuda Guo
2016-01-01
Full Text Available The phase stability, mechanical, electronic, and thermodynamic properties of In-Zr compounds have been explored using the first-principles calculation based on density functional theory (DFT. The calculated formation enthalpies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristics and there is a common hybridization between In-p and Zr-d states near the Fermi level. Elastic properties have been taken into consideration. The calculated results on the ratio of the bulk to shear modulus (B/G validate that InZr3 has the strongest deformation resistance. The increase of indium content results in the breakout of a linear decrease of the bulk modulus and Young’s modulus. The calculated theoretical hardness of α-In3Zr is higher than the other In-Zr compounds.
Comparison of Fission Product Yields and Their Impact
Energy Technology Data Exchange (ETDEWEB)
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.
Fusion and fission of atomic clusters: recent advances
DEFF Research Database (Denmark)
Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.
2005-01-01
We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....
A new approach to barrier-top fission dynamics
Bertsch, G. F.; Mehlhaff, J. M.
2016-06-01
We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.
Collective aspects of singlet fission in molecular crystals
Energy Technology Data Exchange (ETDEWEB)
Teichen, Paul E.; Eaves, Joel D., E-mail: joel.eaves@colorado.edu [Department of Chemistry and Biochemistry, The University of Colorado at Boulder, Boulder, Colorado 80309 (United States)
2015-07-28
We present a model to describe collective features of singlet fission in molecular crystals and analyze it using many-body theory. The model we develop allows excitonic states to delocalize over several chromophores which is consistent with the character of the excited states in many molecular crystals, such as the acenes, where singlet fission occurs. As singlet states become more delocalized and triplet states more localized, the rate of singlet fission increases. We also determine the conditions under which the two triplets resulting from fission are correlated. Using the Bethe Ansatz and an entanglement measure for indistinguishable bipartite systems, we calculate the triplet-triplet entanglement as a function of the biexciton interaction strength. The biexciton interaction can produce bound biexciton states and provides a source of entanglement between the two triplets even when the triplets are spatially well separated. Significant entanglement between the triplet pair occurs well below the threshold for bound pair formation. Our results paint a dynamical picture that helps to explain why fission has been observed to be more efficient in molecular crystals than in their covalent dimer analogues and have consequences for photovoltaic efficiency models that assume that the two triplets can be extracted independently.
High-Order Elastic Constants and Anharmonic Properties of NaBH4: First-Principles Calculations
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Dong; JIANG Zhen-Yi; ZHOU Bo; HOU Zhu-Feng; HOU Yu-Qing
2011-01-01
We present theoretical studies for second- and third-order elastic constants in NaBH4 based on ab initio calculations. Our calculated second-order elastic constants agree well with available experimental results. The anharmonic properties of NaBH4,such as pressure derivative of the second-order elastic constants and the Grüneisen constants for long-wavelength acoustic modeγ(q,j),are characterized using the third-order elastic constants.
Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent
2008-10-01
This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information.
Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya; Kanoun, Mohammed Benali
2017-01-01
We report a theoretical investigation of electronic structures, optical and thermoelectric properties of two ternary-layered chalcogenides, MnBi4S7 and FeBi4S7 , by combining the first principles density functional calculations and semi-local Boltzmann transport theory. The calculated electronic band structure have demonstrated that both compounds exhibit indirect band gaps. The optical transitions are explored via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity, and energy loss spectrum. These chalcogenides have exhibited interesting thermoelectric properties such as Seebeck's coefficient, electrical and thermal conductivity, and power factor as function of temperatures.
Excitation Functions of Fusion and Fission for 32S+170Er at Energies Near and Below Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
BAO; Peng-fei; LIN; Cheng-jian; YANG; Feng; JIA; Hui-ming; XU; Xin-xing; YANG; Lei; SUN; Li-jie; MA; Nan-ru; ZHANG; Huan-qiao; LIU; Zu-hua
2013-01-01
Excitation functions of fusion evaporation residue(ER)and fission for 32S+170Er system at near barrier energy region were measured,respectively.With the comparison to the calculations of coupledchannels effects,it is accessible to investigate the impacts on the fusion and fission processes of target deformation and the dependence on the entrance-channel.The experiment was performed at Beijing HI-13 Tandem Accelerator.Fission and fusion evaporation
Assessment of fissionable material behaviour in fission chambers
Energy Technology Data Exchange (ETDEWEB)
Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)
2010-06-21
A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.
Yields of fission products from various uranium and thorium targets
Energy Technology Data Exchange (ETDEWEB)
Kronenberg, A.; Spejewski, E.H.; Mervin, B.; Jost, C.; Carter, H.K. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Stracener, D.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Greene, J.P. [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: greene@anl.gov; Nolen, J.A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Talbert, W.L. [TechSource, Inc., Santa Fe, NM 87501 (United States)
2008-10-15
Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.
Yields of Fission Products from Various Uranium and Thorium Targets
Energy Technology Data Exchange (ETDEWEB)
Kronenberg, Andreas [Oak Ridge Associated Universities (ORAU); Spejewski, Eugene H. [Oak Ridge Associated Universities (ORAU); Mervin, Brenden T. [Oak Ridge Associated Universities (ORAU); Jost, Cara [Oak Ridge Associated Universities (ORAU); Carter, H Kennon [Oak Ridge Associated Universities (ORAU); Stracener, Daniel W [ORNL; Greene, John P. [Argonne National Laboratory (ANL); Nolen, Jerry A. [Argonne National Laboratory (ANL); Talbert, Willard L. [TechSource, Inc.
2008-01-01
Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.
Yields of fission products from various uranium and thorium targets.
Energy Technology Data Exchange (ETDEWEB)
Kronenberg, A.; Spejewski, E. H.; Mervin, B.; Jost, C.; Carter, H. K.; Stracener, D. W.; Greene, J. P.; Nolen, J. A.; Talbert, W. L.; Physics; Oak Ridge Associated Univ.; ORNL; TechSource, Inc.
2008-10-31
Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.
DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals
Sharma, Shatendra; Sharma, Jyotsna; Sharma, Yogita
2016-05-01
The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by using other methods.
Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.
2015-12-01
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.
Energy Technology Data Exchange (ETDEWEB)
Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)
2015-12-15
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)
Experimental approach to fission process of actinides
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science
1997-07-01
From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)
Energy Technology Data Exchange (ETDEWEB)
Alipour, Mojtaba, E-mail: malipour@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)
2011-08-25
Graphical abstract: The electronic properties such as the static dipole polarizability, anisotropy of the polarizability, and dipole moment of yttrium bromide, YBr (X{sup 1}{Sigma}) have been theoretically studied. Highlights: {yields} Conventional ab initio and density functional theory methods were employed to study linear optical properties of YBr molecule. {yields} Properties derivatives and their level of theory dependence were studied. {yields} Electron correlation effects and rovibrational corrections have also been discussed. - Abstract: We have employed conventional ab initio and density functional theory methods to study the electronic properties such as the mean static dipole polarizability, {alpha}-bar, anisotropy of the polarizability, {Delta}{alpha}, and dipole moment, {mu}, of yttrium bromide. The bond length dependence of properties is determined at different levels of theory and appropriate expansions around experimental internuclear distance have been presented. Moreover, the first and second geometrical derivatives for each property are quantified and their level of theory dependence has been analyzed. To study the effect of molecular rotation and vibration on the electronic properties, the rovibrational corrections have also been carried out. It is found that these corrections are less pronounced for considered properties of YBr. In all calculations, the electron correlation effects have been considered and discussed. The obtained results show that the electron correlation is more significant in the calculation of the mean and the anisotropy of dipole polarizability.
Fission fragments transport by gaseous flow with aerosols
Gangrskij, Y P; Zhemenik, V I; Myshinskij, G V; Penionzhkevich, Yu E; Selesh, O
2002-01-01
Paper describes a pilot facility for fission fragment transport by gaseous flow with aerosols. This facility designed for fragment transport consists of a reaction chamber with irradiated target, receipt chamber to collect fragments, aerosol generator, roughing pump to pump put gas and a capillary connecting these units of facility. Paper presents the results of facility testing with fragments of sup 2 sup 3 sup 8 U photofission by microtron Bremsstrahlung. The obtained parameters of facility (up to 70% efficiency of transport, up to 0.1 s time of transport at 1 m distance) enable to use it efficiently in experiments dealing with heavy nuclei fission and with investigation in properties of fission fragments
Photon and proton induced fission on heavy nuclei at intermediate energies
Directory of Open Access Journals (Sweden)
Andrade-II E.
2014-04-01
Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.
High-Resolution Correlated Fission Product Measurements of 235U (nth , f) with SPIDER
Shields, Dan; Spider Team
2015-10-01
The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) has obtained high-resolution, moderate-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). These data will be some of the first of their kind available to nuclear data evaluations. An overview of the SPIDER detector, analytical method, and preliminary results for 235U (nth , f) will be presented. LA-UR-15-20130 This work benefited from the use of the LANSCE accelerator facility and was performed under the auspices of the US Department of Energy by Los Alamos Security, LLC under Contract DE-AC52-06NA25396.
Comparative study of metal cluster fission in Hartree-Fock and LDA
Lyalin, A; Greiner, W; Lyalin, Andrey; Solov'yov, Andrey; Greiner, Walter
2001-01-01
Fission of doubly charged metal clusters is studied using the open-shell two-center deformed jellium Hartree-Fock model and Local Density Approximation. Results of calculations of the electronic structure and fission barriers for the symmetric and asymmetric channels associated with the following processes Na_{10}^{2+} --> Na_{7}^{+} + Na_{3}^{+}, Na_{18}^{2+} --> Na_{15}^{+} + Na_{3}^{+} and Na_{18}^{2+} --> 2 Na_{9}^{+} are presented. The role of the exact exchange and many-body correlation effects in metal clusters fission is analysed. It is demonstrated that the influence of many-electron correlation effects on the height of the fission barrier is more profound if the barrier arises nearby or beyond the scission point. The importance of cluster deformation effects in the fission process is elucidated with the use of the overlapping-spheroids shape parametrization allowing one an independent variation of deformations in the parent and daughter clusters.
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling
Energy Technology Data Exchange (ETDEWEB)
Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)
2015-01-15
The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.
Systematics on fission fragment mass distribution of neutron induced 235U fission
Institute of Scientific and Technical Information of China (English)
LIU Ting-Jin; SUN Zheng-Jun; SHU Neng-Chuan
2008-01-01
Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.
Institute of Scientific and Technical Information of China (English)
Mukhtar Ahmed Rana; Gul Sher,Shahid Manzoor; M.I.Shahzad
2011-01-01
@@ Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector.Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory(USA).Measurement results are compared with the corresponding calculations using the computer code CEM95.Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei.A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of of versus Z2/A into two regimes,one with weak dependence and the other with strong dependence.%Fission cross-sections of 119Sn and 20gBi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of at versus Z2 /A into two regimes, one with weak dependence and the other with strong
Assaraf, Roland; Domin, Dominik
2014-03-01
We study the efficiency of quantum Monte Carlo (QMC) methods in computing space localized ground state properties (properties which do not depend on distant degrees of freedom) as a function of the system size N. We prove that for the commonly used correlated sampling with reweighting method, the statistical fluctuations σ2(N) do not obey the locality property. σ2(N) grow at least linearly with N and with a slope that is related to the fluctuations of the reweighting factors. We provide numerical illustrations of these tendencies in the form of QMC calculations on linear chains of hydrogen atoms.
Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A
2012-11-16
In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.
Fallot, M; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Taín, J L; Yermia, F; Zakari-Issoufou, A -A
2012-01-01
In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the $^{102;104;105;106;107}$Tc, $^{105}$Mo, and $^{101}$Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes $^{235, 238}$U, and $^{239,241}$Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the $\\gamma$ component of the decay heat of $^{239}$Pu, solving a large part of the $\\gamma$ discrepancy in the 4 to 3000\\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of $^{235}$U, $^{239,241}$Pu ...
Bakker, L.G.; Dijk, H.A.L. van
1996-01-01
WIS is a uniform, user friendly, PC-based, European software tool to determine the thermal and solar character-istics of window systems (glazing, frames, solar shading, etc.) and window components. WIS includes databases with component properties and routines for calculation of the thermal-optical i
Ab initio calculations of fundamental properties of SrTe$_{1−x}$O$_x$ alloys
Indian Academy of Sciences (India)
J ZEROUAL; S LABIDI; H MERADJI; M LABIDI; F EL HAJ HASSAN
2016-06-01
Structural, electronic, optical and thermodynamic properties of the SrTe$_{1−x}$O$_x$ alloys ($0 ≤ x ≤ 1$) in rock-salt phase are calculated using the full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential for structural properties was calculated by the standard local density approximation (LDA) and GGA (PBE) and the new form of GGA (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE), while for electronic properties, in addition to LDA, GGA corrections; Engel–Vosko GGA (EV-GGA) and modified Becke–Johnson (mBJ) schemes were also applied. The results show that the use of GGA (WC) in our calculations is more appropriate than GGA and LDA and gives a good description of structural properties such as lattice parameters and bulk modulus. Our investigation on the effect of composition on lattice constant, bulk modulus and band gap for ternary alloys shows almost nonlinear dependence on the composition. In addition to FP-LAPW method, the composition dependence of the refractive index and the dielectric constant was studied by different models. On the other hand, the thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing $\\Delta H_m$ as well as the phase diagram.
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Calculation of taxes for property of pipeline companies constructed or acquired after January 1, 1970. 2.67 Section 2.67 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY...
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Calculation of taxes for property of public utilities and licensees constructed or acquired after January 1, 1970. 2.12 Section 2.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT...
Search for Singlet Fission Chromophores
Energy Technology Data Exchange (ETDEWEB)
Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.
2012-01-01
Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.
Institute of Scientific and Technical Information of China (English)
GUO Lu; ZHAO En-Guang; SAKATA Fumihiko
2003-01-01
Ground-state.properties of C, O, and Ne isotopes are described in the framework of Hartree-FockBogoliubov theory with density-dependent finite-range Gogny interaction D1S. We include all the contributions to the Hartree-Fock and pairing field arising from Gogny and Coulomb interaction as well as the center of mass correction in the numerical calculations. These ground-state properties of C, O, and Ne isotopes are compared with available experimental results, Hartree-Fock plus BCS, shell model and relativistic Hartree-Bogoliubov calculations. The agreement between experiments and our theoretical results is pretty well. The predicted drip-line is dependent strongly on the model and effective interaction due to their sensitivity to various theoretical details. The calculations predict no evidence for halo structure predicted for C, O, and Ne isotopes in a previous RHB study.
Bock, Steffen; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa
2002-08-01
Transport properties of pure carbon dioxide have been calculated from the intermolecular potential using the classical trajectory approach. Results are reported for shear viscosity, viscomagnetic coefficients, and self-diffusion in the dilute-gas limit and in the temperature range of 200-1500 K for the three recently proposed carbon dioxide potential energy hypersurfaces. Agreement with the measurements is, in general, within the experimental error. The calculations indicate that the corrections in the second-order approximation and those due to the angular-momentum polarization for the viscosity are small, Bukowski [et al.] potential energy hypersurface (1999) with the experimental viscosity data is consistent with the rigid-rotor assumption made in the calculations being reasonable for the three properties considered.
Energy Technology Data Exchange (ETDEWEB)
Pedesseau, L., E-mail: laurent.pedesseau@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Even, J. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Katan, C. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, 35042 Rennes (France); Raouafi, F. [Laboratoire de Physico-chimie des matériaux polymères, Institut Préparatoire aux Etudes Scientifiques et Techniques, BP51, 2070 La Marsa (Tunisia); Wei, Y.; Deleporte, E. [Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94 235 Cachan Cedex (France); Jancu, J.-M. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France)
2013-08-31
Density Functional Theory is used to study the vibrational properties of 2H-PbI{sub 2} semiconductor. The Born charge tensors are determined. Calculated phonon frequencies at the Brillouin zone center are compared to Raman scattering and IR absorption measurements. The computed Raman spectra show a good agreement with available experimental data. The simulated phonon dispersion curves are compared with triple-axis neutron scattering measurements. - Highlights: ► Symmetry properties of the optical phonons of the 2H-PbI{sub 2} crystal are analysed. ► Born charges and the dynamical matrix are calculated the Brillouin zone center. ► Raman spectra and Phonon dispersion have been compared with experimental results. ► Dielectric tensors are calculated and compared to measurements.
Energy Technology Data Exchange (ETDEWEB)
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Induced Fission of $^{240}$Plutonium within a Real-Time Microscopic Framework}
Bulgac, Aurel; Roche, Kenneth J; Stetcu, Ionel
2015-01-01
We describe the fissioning dynamics of $^{240}$Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We predict the total kinetic energy released, the average proton and neutron numbers, and the excitation energies of the fission fragments. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with various shape and pairing modes being excited during the evolution. The time scales of the evolution are found to be much slower than previously expected and the role of the collective inertia in the dynamics is found to be negligible.
Chemical state of fission products in irradiated UO 2
Imoto, S.
1986-08-01
The chemical state of fission products in irradiated UO 2 fuel has been estimated for FBR as well as LWR on the basis of equilibrium calculation with the SOLGASMIX-PV code. The system considered for the calculation is composed of a gas phase, a CaF 2 type oxide phase, three grey phases, a noble metal alloy, a mixed telluride phase and several other phases each consisting of single compound. The distribution of elements into these phases and the amount of chemical species in each phase at different temperatures are obtained as a function of oxygen potential for LWR and FBR. Changes of the chemical potential of the fuel-fission products system during burnup are also evaluated with particular attention to the difference between LWR and FBR. Some informations obtained by the calculation are compared with the results of post irradiation examination of UO 2 fuels.
Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles
Institute of Scientific and Technical Information of China (English)
Miao Ting-Ting; Song Meng-Xuan; Ma Wei-Gang; Zhang Xing
2011-01-01
Carbon nanotube bundles are promising thermal interfacial materials due to their excellent thermal and mechanical characteristics. In this study, the phonon dispersion relations and density of states of the single-wall carbon nanotube bundles are calculated by using the force constant model. The calculation results show that the inter-tube interaction leads to a significant frequency raise of the low frequency modes. To verify the applied calculation method, the specific heat of a single single-wall carbon nanotube is calculated first based on the obtained phonon dispersion relations and the results coincide well with the experimental data. Moreover, the specific heat of the bundles is calculated and exhibits a slight reduction at low temperatures in comparison with that of the single tube. The thermal conductivity of the bundles at low temperatures is calculated by using the ballistic transport model. The calculation results indicate that the inter-tube interaction, i.e. van der Waals interaction, hinders heat transfer and cannot be neglected at extremely low temperatures. For (5, 5) bundles, the relative difference of the thermal conductivity caused by ignoring inter-tube effect reaches the maximum value of 26% around 17 K, which indicates the significant inter-tube interaction effect on the thermal conductivity at low temperatures.
Wu, Zhijian; Hao, Xianfeng; Liu, Xiaojuan; Meng, Jian
2007-02-01
The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m , Pa-3 , and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418Å . These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394GPa is also the highest among the considered space groups, slightly larger than previous value 358GPa . The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.
Kongsted, Jacob; Christiansen, Ove
2006-09-28
An automatic and general procedure for the calculation of geometrical derivatives of the energy and general property surfaces for molecular systems is developed and implemented. General expressions for an n-mode representation are derived, where the n-mode representation includes only the couplings between n or less degrees of freedom. The general expressions are specialized to derivative force fields and property surfaces, and a scheme for calculation of the numerical derivatives is implemented. The implementation is interfaced to electronic structure programs and may be used for both ground and excited electronic states. The implementation is done in the context of a vibrational structure program and can be used in combination with vibrational self-consistent field (VSCF), vibrational configuration interaction (VCI), vibrational Moller-Plesset, and vibrational coupled cluster calculations of anharmonic wave functions and calculation of vibrational averaged properties at the VSCF and VCI levels. Sample calculations are presented for fundamental vibrational energies and vibrationally averaged dipole moments and frequency dependent polarizabilities and hyperpolarizabilities of water and formaldehyde.
Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)
2002-01-01
Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)
Regnier, D; Schunck, N; Verriere, M
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...
Density functional theory approach for calculation of dielectric properties of warm dense matter
Saitov, Ilnur
2015-06-01
The reflectivity of shocked xenon was measured in the experiments of Mintsev and Zaporoghets for wavelength 1064 nm. But there is no adequate theoretical explanation of these reflectivity results in the framework of the standard methods of nonideal plasma theory. The assumption of significant width to the shock front gives a good agreement with the experimental data. However, there are no evidences of this effect in the experiment. Reflectivity of shocked compressed xenon plasma is calculated in the framework of the density functional theory approach as in. Dependencies on the frequency of incident radiation and on the plasma density are analyzed. The Fresnel formula for the reflectivity is used. The longitudinal expression in the long wavelength limit is applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function is calculated by means of the Kramers-Kronig transformation. The approach for the calculation of plasma frequency is developed.
Ab initio calculation of the dynamical properties of PPP and PPV
2006-01-01
In this work, we have calculated the vibrational modes and frequencies of the crystalline PPP (in both the Pbam and Pnnm symmetries) and PPV (in the P21/c symmetry). Our results are in good agreement with the available experimental data. Also, we have calculated the temperature dependence of their specific heats at constant volume, and of their vibrational entropies. Based on our results, at high temperatures, the PPP is more stable in the Pnnm structure than in the Pbam one.
Yim, Kanghoon; Lee, Joohee; Lee, Dongheon; Lee, Miso; Cho, Eunae; Lee, Hyo Sug; Nahm, Ho-Hyun; Han, Seungwu
2017-01-01
Throughout the past decades, doped-ZnO has been widely used in various optical, electrical, magnetic, and energy devices. While almost every element in the Periodic Table was doped in ZnO, the systematic computational study is still limited to a small number of dopants, which may hinder a firm understanding of experimental observations. In this report, we systematically calculate the single-element doping property of ZnO using first-principles calculations. We develop an automation code that enables efficient and reliable high-throughput calculations on thousands of possible dopant configurations. As a result, we obtain formation-energy diagrams for total 61 dopants, ranging from Li to Bi. Furthermore, we evaluate each dopant in terms of n-type/p-type behaviors by identifying the major dopant configurations and calculating carrier concentrations at a specific dopant density. The existence of localized magnetic moment is also examined for spintronic applications. The property database obtained here for doped ZnO will serve as a useful reference in engineering the material property of ZnO through doping. PMID:28112188
Yim, Kanghoon; Lee, Joohee; Lee, Dongheon; Lee, Miso; Cho, Eunae; Lee, Hyo Sug; Nahm, Ho-Hyun; Han, Seungwu
2017-01-01
Throughout the past decades, doped-ZnO has been widely used in various optical, electrical, magnetic, and energy devices. While almost every element in the Periodic Table was doped in ZnO, the systematic computational study is still limited to a small number of dopants, which may hinder a firm understanding of experimental observations. In this report, we systematically calculate the single-element doping property of ZnO using first-principles calculations. We develop an automation code that enables efficient and reliable high-throughput calculations on thousands of possible dopant configurations. As a result, we obtain formation-energy diagrams for total 61 dopants, ranging from Li to Bi. Furthermore, we evaluate each dopant in terms of n-type/p-type behaviors by identifying the major dopant configurations and calculating carrier concentrations at a specific dopant density. The existence of localized magnetic moment is also examined for spintronic applications. The property database obtained here for doped ZnO will serve as a useful reference in engineering the material property of ZnO through doping.
Radiochemistry and the Study of Fission
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-14
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.
Development of Fission Chamber Assembly
Institute of Scientific and Technical Information of China (English)
YANGJinwei; ZHANGWei; SONGXianying; LIXu
2003-01-01
The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.
Directory of Open Access Journals (Sweden)
Salahuddin Asif
2013-01-01
Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels;
2009-01-01
Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...
Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao
2016-10-01
As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.
First-principle calculations of the fundamental properties of CuBrxI1-x ternary alloy
Touam, S.; Boukhtouta, M.; Hamioud, L.; Ghemid, S.; Meradji, H.; El Haj Hassan, F.
2015-11-01
Ab initio full-potential linearised augmented plane wave (FP-LAPW) method within density functional theory is applied to study the effect of composition on the structural, electronic and thermodynamic properties of CuBrxI1-x ternary alloy. The structural properties at equilibrium are investigated by using the new form of generalised gradient approximations that are based on the optimisation of total energy. For band structure calculations, both Engel-Vosko and modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. Deviation of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence are observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ∆Hm as well as the phase diagram by calculating the critical temperatures. A numerical first-principle calculations of the elastic constants as function of pressure is used to calculate C11, C12 and C44.
First-principles calculations of electronic and magnetic properties of CeN: The LDA + U method
Hao, Ai-Min; Bai, Jing
2013-10-01
Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density functional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μB per unit cell.
Fission Thrust sail as booster for high {\\Delta}v fusion based propulsion
Ceyssens, Frederik; Driesen, Maarten
2014-01-01
The fission thrust sail as booster for nuclear fusion-based rocket propulsion for future starships is studied. Some required aspects of these systems such as neutron moderation and sail regeneration are discussed. First order calculations are used together with Monte Carlo simulations to assess system performance. When the fusion rocket has relatively low efficiency (~30%) in converting fusion fuel to a directed exhaust, adding a fission sail is shown to be beneficial for obtainable delta-v. Also, this type of fission-fusion hybrid interstellar propulsion has the potential to improve acceleration. Other advantages are discussed as well.
Background and Derivation of ANS-5.4 Standard Fission Product Release Model
Energy Technology Data Exchange (ETDEWEB)
Beyer, Carl E.; Turnbull, Andrew J.
2010-01-29
This background report describes the technical basis for the newly proposed American Nuclear Society (ANS) 5.4 standard, Methods for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuels. The proposed ANS 5.4 standard provides a methodology for determining the radioactive fission product releases from the fuel for use in assessing radiological consequences of postulated accidents that do not involve abrupt power transients. When coupled with isotopic yields, this method establishes the 'gap activity,' which is the inventory of volatile fission products that are released from the fuel rod if the cladding are breached.
Ab initio calculations of the elastic and thermodynamic properties of gold under pressure
Smirnov, N. A.
2017-03-01
The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin–orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: fcc\\to hcp\\to bcc . The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.
Two neutron correlations in photo-fission
Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.
2016-09-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.
Fission dynamics at low excitation energy
Aritomo, Y
2013-01-01
The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.
Fission yield studies at the IGISOL facility
Energy Technology Data Exchange (ETDEWEB)
Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)
2012-04-15
Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)
Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4
Energy Technology Data Exchange (ETDEWEB)
Myers, W.R.; Richardson, T.J.; Rubin, M.D.; Wang, L-W.
2001-10-01
Ab initio total-energy density functional theory is used to investigate the low temperature (LT) monoclinic form of Mg2NiH4. The calculated minimum energy geometry of LT Mg2NiH4 is close to that determined from neutron diffraction data, and the NiH4 complex is close to a regular tetrahedron. The enthalpies of the phase change to high temperature (HT) pseudo-cubic Mg2NiH4 and of hydrogen absorption by Mg2Ni are calculated and compared with experimental values. LT Mg2NiH4 is found to be a semiconductor with an indirect band gap of 1.4 eV. The optical dielectric function of LT Mg2NiH4 differs somewhat from that of the HT phase. A calculated thin film transmittance spectrum is consistent with an experimental spectrum.
Theoretical calculation of the shock compression properties of liquid H2 + D2 mixtures
Institute of Scientific and Technical Information of China (English)
陈其峰; 蔡灵仓; 陈栋泉; 经福谦
1999-01-01
Based on liquid variational perturbation theory with quantum mechanics correction, the effective exp-6 potential is adopted to compute the shock Hugoniot of liquid H2+D2 mixtures at different molar rations. An examination of the confidence of the above computation is performed by comparing experiments and calculations, in which similar calculation procedure used for H2+D2 is adopted for H2 and D2 each, since no experimental data are available to conduct this kind of comparison. Good agreement in both comparisons is found. This fact may look as if an indirect positive verification of calculation procedure was used here at least in the pressure and temperature domain covered by the experimental data of H2 and D2 used for comparison, numerically nearly up to 20 GPa and 104 K.
Indian Academy of Sciences (India)
ESLAMIZADEH HADI
2016-07-01
A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear dissipation strength of $(12–14) \\times 10^{21} s^{−1}$ was extracted for Cf nucleus by fitting the results of calculations with the experimentaldata. Furthermore, it was found that the results of calculations for the anisotropy of the fission fragments angular distribution and pre-scission neutron multiplicities are very sensitive to the magnitude of post-saddle nucleardissipation.
DEFF Research Database (Denmark)
Weitzmann, Peter; Svendsen, Svend
2005-01-01
Lightweight floor heating systems consist of a plastic tube connected to a heat distribution aluminium plate and are used in wooden floor constructions. The thermal properties of lightweight floor heating systems cannot be described accurately. The reason is a very complex interaction of convection......, radiation and conduction of the heat transfer between pipe and surrounding materials. The European Standard for floor heating, EN1264, does not cover lightweight systems, while the supplemental Nordtest Method VVS127 is aimed at lightweight systems. The thermal properties can be found using tabulated values...... or experiments. Neither includes dynamic properties. This article describes a method to find steady-state and dynamical thermal properties in an experimental setup based on finding a characteristic thermal resistance between pipe and heat transfer plate, which can be directly implemented in a numerical...
Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin
2016-06-01
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.
Multidimensionally-constrained relativistic Hartree-Bogoliubov study of nuclear spontaneous fission
Zhao, Jie; Niksic, Tamara; Vretenar, Dario
2015-01-01
Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm is explored. The fission paths, action integrals and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of $^{264}$Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM$^*$ and a density dependent mixed pairing interaction. Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (M...
Precise determination of the 235U reactor antineutrino cross section per fission
Giunti, C.
2017-01-01
We investigate which among the reactor antineutrino fluxes from the decays of the fission products of 235U, 238U, 239Pu, and 241Pu may be responsible for the reactor antineutrino anomaly if the anomaly is due to a miscalculation of the antineutrino fluxes. We find that it is very likely that at least the calculation of the 235U flux must be revised. From the fit of the data we obtain the precise determination σ235 = (6.33 ± 0.08) ×10-43cm2 /fission of the 235U cross section per fission, which is more precise than the calculated value and differs from it by 2.2σ. The cross sections per fission of the other fluxes have large uncertainties and in practice their values are undetermined by the fit.
Ab initio calculations of partial molar properties in the single-site approximation
DEFF Research Database (Denmark)
Ruban, Andrei; Skriver, Hans Lomholt
1997-01-01
We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate...... that these quantities may be considerably in error if they an obtained in methods based on the single-site approximation for fixed alloy compositions. This error does not reflect a breakdown but rather an inappropriate use of the single-site approximation which is, in fact, found to be sufficiently accurate when...... properly applied in calculations of partial molar quantities....
Lopuszynski, Michal; Majewski, Jacek A.
2007-01-01
We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...
Density functional calculations of elastic properties of portlandite, Ca(OH)(2)
DEFF Research Database (Denmark)
Laugesen, Jakob Lund
2005-01-01
The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...... elasticity, applying a least-square method. Young's modulus and bulk modulus are calculated from the stiffness matrix. The results are compared with the Brillouin zone spectroscopy results of F. Holuj et al. [F. Holuj, M. Drozdowski, M. Czajkowski, Brillouin spectrum of Ca(OH)(2), Solid State Commun., 56 (12...
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Jacob G. [Washington River Protection Solutions, Richland, WA (United States)
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.
Research on stellarator-mirror fission-fusion hybrid
Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.
2014-09-01
The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
The fundamental role of fission during r-process nucleosynthesis in neutron star mergers
Energy Technology Data Exchange (ETDEWEB)
Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2015-02-01
The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≅ 278 isobars defines the abundance pattern of nuclei produced in the 110
Institute of Scientific and Technical Information of China (English)
GUOLu; ZHAOEn-Guang; SAKATAFumihiko
2003-01-01
Ground-state properties of C, O, and Ne isotopes are described in the framework of Hartree-Fock-Bogoliubov theory with density-dependent finite-range Gogny interaction D1S. We include all the contributions to the Hartree-Fock and pairing feld arising from Gogny and Coulomb interaction as well as the center of mass correction in the numerical calcu/ations. These ground-state properties of C, O, and Ne isotopes are compared with available experimental results, Hartree-Fock plus BCS, shell model and relativistic Hartree--Bogoliubov calculations. The agreement between experiments and our theoretical results is pretty well. The predicted drip-line is dependent strongly on the model and effective interaction due to their sensitivity to various theoretical details. The calculations predict no evidence for halo structure predicted for C,O, and Ne isotopes in a previous RHB study.
Colon, G.
1981-01-01
The evaluation of the thermodynamic properties of a gas mixture can be performed using a generalized correlation which makes use of the second virial coefficient. This coefficient is based on statistical mechanics and is a function of temperature and composition, but not of pressure. The method provides results accurate to within 3 percent for gases which are nonpolar or only slightly polar. When applied to highly polar gases, errors of 5 to 10 percent may result. For gases which associate, even larger errors are possible. The sequences of calculations can be routinely programmed for a digital computer. The thermodynamic properties of a mixture of neon, argon and ethane were calculated by such a program. The result will be used for the design of the gas replenishment system for the Energetic Gamma Ray Experiment Telescope.
Tian, Wenyan; Chen, Haichuan
2016-01-01
Using the first-principles calculations, the electronic structure, chemical bonding, mechanical, thermodynamics and superconductor properties of NbRuB are investigated. The optimized lattice parameters were in good agreement with the experimental data. The analysis of the density of states and chemical bonding implies that the metallic behavior of NbRuB originates from the Ru and Nb, and the bonding behaviors are a mixture of covalent-ionic bonds. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio and hardness of NbRuB were calculated. The results reveal that the NbRuB is ductility and the Vickers hardness is 15.06 GPa. Moreover, the 3D dependences of reciprocals of Young's modulus is also calculated and discussed, showing strong anisotropic character for NbRuB. Finally, the Debye temperature and superconducting transition temperature are obtained.
A fission fragment detector for correlated fission output studies
Energy Technology Data Exchange (ETDEWEB)
Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)
2014-09-01
A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.
Cluster fission from the standpoint of nuclear fission
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics
1996-03-01
Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)
Stochastic approaches to dynamics of heavy ion collisions, the case of thermal fission
Energy Technology Data Exchange (ETDEWEB)
Boilley, D.; Abe, Y. [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Suraud, E. [Universite Paul Sabatier, 31 - Toulouse (France). Lab. de Physique Quantique; Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States)
1994-03-30
In order to study the influence of fluctuations on various phenomena linked to heavy ion collisions, a Langevin equation has been derived from a microscopic model. Parameters entering this equation are completely determined from microscopic quantities characterizing nuclear matter. This equation has been applied to various phenomena at intermediate energies. This paper focuses on large amplitude motions and especially thermal fission. Fission rate is calculated and compared to experimental results.
Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)
2002-10-01
This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.
Semi-empirical Study on Yield Mass Distribution for n+238U Fission
Institute of Scientific and Technical Information of China (English)
XU; Yong-mei; LIU; Li-le; SHU; Neng-chuan; CHEN; Yong-jing; LIU; Ting-jin; SUN; Zheng-jun
2015-01-01
A semi-empirical model method is developed for calculating the yield mass distributions and energy dependence for neutron-induced 238 fission.The system potential energy is consisting ofthe macro-energy and 2shell corrections,corresponding to the SL,SI and SII fission channels.The yield could be expressed with a five-Gaussianlike formula with 13 parameters,which were
Study of the fission process of deformed Na clusters in liquid-drop stabilized jellium model
Directory of Open Access Journals (Sweden)
M Payami
2008-07-01
Full Text Available In this work, using the liquid drop model in the context of the stabilized jellium model, we have studied the fission of charged Na clusters. In this study we have assumed a deformed non-spherical shape for the cluster. The ground state energies, critical sizes, fission barrier height, and the evaporation energies have been calculated. The results show a better agreement to the experimental results compared to our earlier work.
Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh
2014-11-11
In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule.
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Exotic decay transition from cluster mode to fission mode
Santhosh, K P
2002-01-01
Exotic decay of some heavy nuclei with Z >= 100 formed in heavy ion 'cold fusion' reaction were studied taking interacting barrier consisting of Coulomb and proximity potential. Calculated half-life time shows that some modes of decay are well within the present upper limit for measurements (T sub 1 sub / sub 2 < 10 sup 3 sup 0 s). Cluster formation probabilities are calculated for different clusters within fission model. It is found that transition from cluster mode to fission mode take place at mass of the cluster, A sub 2 = 20 in exotic decay which is comparable with the value A sub 2 = 16 of Shanmugam et al based on cubic plus Yukawa plus exponential model (CYEM). (author)
DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy
Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.
2009-10-01
Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.
Prompt Neutron Emission in 252CF Spontaneous Fission
Hambsch, F.-J.; Oberstedt, S.; Zeynalov, Sh.
2011-10-01
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics. The goal was to compare the results from digital data acquisition and digital signal processing analysis with results of the pioneering work of Budtz-Jørgensen and Knitter. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The results are in very good agreement with literature. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.
Saeed, Yasir
2014-05-11
Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport
Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric
2010-07-01
We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.
Ab initio Calculations of Magnetic Properties of Fe16N2
Institute of Scientific and Technical Information of China (English)
Dan LI; Yousong GU; Zuoren NIE; Bo WANG; Hui YAN
2006-01-01
Pseudo-potential and plane wave basis-set under the framework of density functional theory have been employed to study the electronic and magnetic properties of Fe16N2, and to have an insight look on the subject of giant magnetic moments reported in Fe16N2. After geometrical optimization, band structures and densities of states have been evaluated together with the atom resolved band populations and magnetic moments. In this paper,we report a theoretical effort to look into the various aspects of the magnetic properties of Fe16N2, including volume effect and distortion effect.
Energy Technology Data Exchange (ETDEWEB)
Liu, X.X.; Liu, L.Z. [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, X.L., E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Department of Physics, NingBo University, NingBo 315301 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2015-07-03
The defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated by first-principle calculation. The defect states in the forbidden bands are identified and based on the established electronic structures, the dielectric functions and absorption coefficients are derived. An important result of our calculations is that visible light absorption by the twinning configuration is enhanced significantly, indicating that twinning structures possibly play an important role in silicon-based photovoltaic devices. - Highlights: • Defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated theoretically. • Dielectric functions and absorption coefficients are derived. • Enhanced visible light absorption by the twinning configuration is demonstrated. • Twinning structures play an important role in silicon-based photovoltaic devices.
Calculations of properties of screened He-like systems using correlated wave functions.
Dai, S T; Solovyova, A; Winkler, P
2001-07-01
The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-electron systems have been extended to obtain results for P and D states in a screening environment, and in particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria, a rather systematic computational approach to this notoriously cumbersome method has been developed and thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics; in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of Boltzmann factors.
First-Principles Calculation, Synthesis, and Catalytic Properties of Rh-Cu Alloy Nanoparticles.
Komatsu, Tokutaro; Kobayashi, Hirokazu; Kusada, Kohei; Kubota, Yoshiki; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Sato, Katsutoshi; Nagaoka, Katsutoshi; Kitagawa, Hiroshi
2017-01-01
The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.
N. S. Labidi
2013-01-01
The semiempirical AM1 SCF method is used to study the first static hyperpolarizabilities β of some novel mono-O-Hydroxy bidentate Schiff base in which electron donating (D) and electron accepting (A) groups were introduced on either side of the Schiff base ring system. Geometries of all molecules were optimized at the semiempirical AM1. The first static hyperpolarizabilities of these molecules were calculated using Hyperchem package. To understand this phenomenon in the context of molecular o...
MATHEMATICAL METHODS USED FOR CALCULATE INSURANCE PREMIUM TO THE PROPERTY INSURANCE
Directory of Open Access Journals (Sweden)
MARIAN-LUCIAN ACHIM
2012-01-01
Full Text Available The most important task of the actuarial department is to provide well grounded charges for specialized departments and sales departments subsequently. For the stringency of these calculations will depend in future the economic performance of an insurer, by a mathematical estimate as close to reality existence.The method presented in this work is a quantitative one, later charges will support certain adjustments in terms of quality.
Density functional theory and evolution algorithm calculations of elastic properties of AlON
Energy Technology Data Exchange (ETDEWEB)
Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-01-14
Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.
Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.
2016-12-01
In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.
Dating thermal events at Cerro Prieto using fission track annealing
Energy Technology Data Exchange (ETDEWEB)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Fission Fragment Angular Distributions measured with a Time Projection Chamber
Energy Technology Data Exchange (ETDEWEB)
Kleinrath, Verena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-04-28
The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for ^{235}U); and Future Work (Refine ^{235}U result, Process ^{239}Pu data).
The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy
Institute of Scientific and Technical Information of China (English)
ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan
2009-01-01
This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).
Mechanical properties of carbynes investigated by ab initio total-energy calculations
DEFF Research Database (Denmark)
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...... response to small longitudinal and bending deformations and their failure limits for longitudinal compression and elongation....
VAMP: A computer program for calculating volume, area, and mass properties of aerospace vehicles
Norton, P. J.; Glatt, C. R.
1974-01-01
A computerized procedure developed for analyzing aerospace vehicles evaluates the properties of elemental surface areas with specified thickness by accumulating and combining them with arbitrarily specified mass elements to form a complete evaluation. Picture-like images of the geometric description are capable of being generated.
DEFF Research Database (Denmark)
Diky, Vladimir; Chirico, Robert D.; Muzny, Chris
ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured...... property values and expert system for data analysis and generation of recommended property values at the specified conditions along with uncertainties on demand. The most recent extension of TDE covers solvent design and multi-component process stream property calculations with uncertainty analysis....... Selection is made by best efficiency (depending on the task, solubility, selectivity, or distribution coefficient, etc.) and matching other requirements requested by the user. At user’s request, efficiency criteria are evaluated based on experimental data for binary mixtures or predictive models (UNIFAC...
The VERDI fission fragment spectrometer
Directory of Open Access Journals (Sweden)
Frégeau M.O.
2013-12-01
Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
Principles of the mitochondrial fusion and fission cycle in neurons.
Cagalinec, Michal; Safiulina, Dzhamilja; Liiv, Mailis; Liiv, Joanna; Choubey, Vinay; Wareski, Przemyslaw; Veksler, Vladimir; Kaasik, Allen
2013-05-15
Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.
Tran, Vy
Recently, a new semiconducting 2D material, black phosphorus, has piqued the interest of research groups in the field. In its bulk form, black phosphorus was synthesized over a century ago and in 2014 devices based on thin flakes of black phosphorus were successfully realized. This was a crucial step towards the exploration and characterization of this material. However, because this material was virtually ignored until this point, many open questions needed to be quickly addressed. Fundamental properties such as the band gap, carrier mobility, optical spectrum, and thermal transport had not been established. Furthermore, the effect of extrinsic factors such as the number of layers, external electric fields, and applied strain had not been explored. How these extrinsic factors affect the tunability of the aforementioned physical properties is of utmost importance for device engineers. Using first principle computations based on density functional theory and the GW approximation including many-electron effects, we calculate the fundamental electronic and optical properties of few-layer black phosphorus. Beyond basic calculations, such as the band structure, quasiparticle band gap, and optical absorption spectrum, we dig deeper to explore the origin and nature of some of black phosphorus' unusual and surprising properties. These properties include the existence of relativistic Dirac fermions as charge carriers, a highly anisotropic band structure, an anisotropic optical absorption spectrum, quasi-1D excitonic features, and an ultra-high sensitivity to a gate electric field. In the first chapter, we discuss the properties of few-layer black phosphorus. We calculate the quasiparticle band gap, and excitonic optical spectra for 1-4 layers. We provide an empirical formula in the form of a power law to fit the calculated results and predict the values for larger layer numbers. We also propose an effective mass hydrogenic model to describe the excitonic spectra calculated