Density functional theory calculations of defect and fission gas properties in U-Si fuels
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-03
Accident tolerant fuels (ATF) are being developed in response to the Fukushima Daiichi accident in Japan. One of the options being pursued is U-Si fuels, such as the U_{3}Si_{2} and U_{3}Si_{5} compounds, which benefit from high thermal conductivity (metallic) compared to the UO_{2} fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for U-Si fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap. The present study investigates point defect and fission gas properties in U_{3}Si_{2}, which is one of the main fuel candidates, using density functional theory (DFT) calculations. Based on a few assumption regarding entropy contributions, defect and fission diffusivities are predicted. Even though uranium silicides have been shown to amorphize easily at low temperature, we assume that U_{3}Si_{2} remains crystalline under the conditions expected in Light Water Reactors (LWRs). The temperature and dose where amorphization occurs has not yet been well established.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Influence of fission spectra uncertainties on calculated fast reactor parameters
Energy Technology Data Exchange (ETDEWEB)
Lucius, J.L.; Marable, J.H.
1979-01-01
The effect of fission spectra uncertainties on calculated fast reactor parameters is studied by (1) considering the sensitivities to fission spectrum parameters of four performance parameters in the fast reactor benchmark ZPR-6/7, (2) estimating the uncertainties in these calculated performance parameters due to uncertainties in the fission spectra, (3) reporting the change in ZPR-6/7 calculated performance parameters due to fission spectra changes going from ENDF/B-IV to proposed ENDF/B-VP, and (4) determining what fast benchmark integral experiments are trying to tell us about ENDF/B-IV fission spectrum parameters as variables in a least squares adjustment procedure.
Fission properties of the Barcelona-Catania-Paris energy density functional
Energy Technology Data Exchange (ETDEWEB)
Robledo, L M [Dep. Fisica Teorica (Modulo 15), Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Baldo, M [Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Via Santa Sofia 64, I-95123 Catania (Italy); Schuck, P [Institut de Physique Nucleaire, CNRS, UMR8608, F-91406 Orsay (France); Vinas, X, E-mail: luis.robledo@uam.es [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)
2011-09-16
Fission properties of the Barcelona-Catania-Paris (BCP) energy density functional are explored by performing constrained mean field Hartree-Fock-Bogoliubov (HFB) calculations along the fission path. These calculations provide us with the quantities required to estimate the spontaneous fission half lives and fragment mass distribution. The results obtained are compared to experimental data and other calculations.
Calculation methodology of fast fission factor in a thermal reactor
Directory of Open Access Journals (Sweden)
Grishko Denis V.
2014-01-01
Full Text Available This article describes the coefficient of the fast fission, which is part of the formula of «four factors». Considered, to exist at the moment, two methods for calculation of the coefficient of the fast fission in uranium-water tight lattices. Also presents the results of calculations and comparative analysis of the data obtained by two techniques.
Fission yield calculation using toy model based on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Directory of Open Access Journals (Sweden)
Kaplan Abdullah
2015-01-01
Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.
Correlation measurements of fission-fragment properties
Directory of Open Access Journals (Sweden)
Oberstedt A.
2010-10-01
Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.
Uncertainties in fission-product decay-heat calculations
Energy Technology Data Exchange (ETDEWEB)
Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)
1997-03-01
The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)
Fission and Properties of Neutron-Rich Nuclei
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I
Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations
Energy Technology Data Exchange (ETDEWEB)
Mueller, Don [ORNL; Bowen, Douglas G [ORNL; Marshall, William BJ J [ORNL
2015-01-01
The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k_{eff}) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members accept the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k_{eff} calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk_{eff} (ISG-8, Rev. 3, Recommendation 4).
Calculation of Fission Observables Through Event-by-Event Simulation
Energy Technology Data Exchange (ETDEWEB)
Randrup, J; Vogt, R
2009-06-04
The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.
Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations
Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa
2005-05-01
The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.
Fission cross section calculations of actinides with EMPIRE code
Energy Technology Data Exchange (ETDEWEB)
Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.
2010-04-30
The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.
Directory of Open Access Journals (Sweden)
Porta A.
2016-01-01
Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Fission product inventory calculation by a CASMO/ORIGEN coupling program
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)
Influence of scission neutrons on the prompt fission neutron spectrum calculations
Serot, Olivier; Litaize, Olivier; Chebboubi, Abdelaziz
2017-09-01
The calculation of the Prompt Fission Neutron Spectrum (PFNS) was performed using the FIFRELIN Monte Carlo code simulating the de-excitation of the whole fission fragments. This de-excitation is governed by the Hauser-Feshbach statistical model, which has the advantage to take into account the conservation laws for the energy, spin and parity of the initial and final states. In this way, the competition between prompt neutron and prompt gamma emission can be properly accounted for. Assuming that the prompt neutron emission comes only from an evaporation process of the fully accelerated fission fragments, our calculations are not able to reproduce satisfactorily the experimental data. In this context, we have added an additional source of neutrons that may arise during the sudden rupture of the neck (the so-called scission neutrons). Applied in the case of the spontaneous fission of 252Cf, our PFNS calculations show a very good agreement with the Mannhart evaluation by accounting for a 2% scission neutron contribution. Note to the reader: the pdf file has been changed on October 03, 2017.
Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M
2018-02-03
Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2010-10-01
Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.
Energy Technology Data Exchange (ETDEWEB)
Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.
2017-05-15
Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
Directory of Open Access Journals (Sweden)
Ramos D.
2016-01-01
Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
Delayed neutron spectra and their uncertainties in fission product summation calculations
Energy Technology Data Exchange (ETDEWEB)
Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)
1997-03-01
Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)
Calculation of 239Pu fission observables in an event-by-event simulation
Energy Technology Data Exchange (ETDEWEB)
Vogt, R; Randrup, J; Pruet, J; Younes, W
2010-03-31
The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.
Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane
Directory of Open Access Journals (Sweden)
Afshin Taghva Manesh
2017-02-01
Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.
Fission properties and production mechanisms for the heaviest known elements
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1981-01-01
Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE
Directory of Open Access Journals (Sweden)
Tovesson Fredrik
2017-01-01
Full Text Available Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE, fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer, the NIFFTE Time Projection Chamber (TPC, and Frisch grid Ionization Chambers (FGIC are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.
Energy Technology Data Exchange (ETDEWEB)
Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)
1997-03-01
The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)
Monte Carlo code Serpent calculation of the parameters of the stationary nuclear fission wave
Directory of Open Access Journals (Sweden)
V. M. Khotyayintsev
2017-12-01
Full Text Available n this work, propagation of the stationary nuclear fission wave was simulated for series of fixed power values using Monte Carlo code Serpent. The wave moved in the axial direction in 5 m long cylindrical core of fast reactor with pure 238U raw fuel. Stationary wave mode arises some period later after the wave ignition and lasts sufficiently long to determine kef with high enough accuracy. The velocity characteristic of the reactor was determined as the dependence of the wave velocity on the neutron multiplication factor. As we have recently shown within a one-group diffusion description, the velocity characteristic is two-valued due to the effect of concentration mechanisms, while thermal feedback affects it only quantitatively. The shape and parameters of the velocity characteristic critically affect feasibility of the reactor design since stationary wave solutions of the lower branch are unstable and do not correspond to any real waves in self-regulated reactor, like CANDLE. In this work calculations were performed without taking into account thermal feedback. They confirm that theoretical dependence correctly describes the shape of the velocity characteristic calculated using the results of the Serpent modeling.
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Energy Technology Data Exchange (ETDEWEB)
Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)
2014-07-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)
Vazhappilly, Tijo; Ghanty, Tapan K.; Jagatap, B. N.
2017-07-01
Graphene has excellent adsorption properties due to large surface area and has been used in applications related to gas sorption and separation. The separation of radioactive noble gases using graphene is an interesting area of research relevant to nuclear waste management. Radioactive noble gases Xe and Kr are present in the off-gas streams from nuclear fission reactors and spent nuclear fuel reprocessing plants. The entrapment of these volatile fission gases is important in the context of nuclear safety. The separation of Xe from Kr is extremely difficult, and energy intensive cryogenic distillation is generally employed. Physisorption based separation techniques using porous materials is a cost effective alternative to expensive cryogenic distillation. Thus, adsorption of noble gases on graphene is relevant for fundamental understanding of physisorption process. The properties of graphene can be tuned by doping and incorporation of defects. In this regard, we study the binding affinity of Xe and Kr in pristine and doped graphene sheets. We employ first principle calculations using density functional theory, corrected for dispersion interactions. The structural parameters obtained from the current study show excellent agreement with the available theoretical and experimental observations on similar systems. Noble gas adsorption energies on pristine graphene match very well with the available literature. Our results show that the binding energy of fission gases Xe and Kr on graphene can be considerably improved through doping the lattice with a heteroatom.
Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei
Ramayya, A V; ICFN5
2014-01-01
These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.
Fission of hot rotating nuclei: A selfconsistent Thomas-Fermi calculation
Energy Technology Data Exchange (ETDEWEB)
Garcias, F.; Barranco, M.; Nemeth, J.; Ngo, C.; Vinas, X.
1989-05-01
We have studied the symmetric fission of excited nuclei within an axially deformed Thomas-Fermi model that incorporates selfconsistently the effect of rotation and temperature. We have used a realistic Skyrme force and included up to Planck constant/sup 2/ correction terms in the kinetic energy density.
Energy Technology Data Exchange (ETDEWEB)
Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.
1999-09-01
SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.
Energy Technology Data Exchange (ETDEWEB)
Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)
2002-01-01
SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.
Fission properties of Po isotopes in different macroscopic-microscopic models
Bartel, J.; Pomorski, K.; Nerlo-Pomorska, B.; Schmitt, Ch
2015-11-01
Fission-barrier heights of nuclei in the Po isotopic chain are investigated in several macroscopic-microscopic models. Using the Yukawa-folded single-particle potential, the Lublin-Strasbourg drop (LSD) model, the Strutinsky shell-correction method to yield the shell corrections and the BCS theory for the pairing contributions, fission-barrier heights are calculated and found in quite good agreement with the experimental data. This turns out, however, to be only the case when the underlying macroscopic, liquid-drop (LD) type, theory is well chosen. Together with the LSD approach, different LD parametrizations proposed by Moretto et al are tested. Four deformation parameters describing respectively elongation, neck-formation, reflectional-asymmetric, and non-axiality of the nuclear shape thus defining the so called modified Funny Hills shape parametrization are used in the calculation. The present study clearly demonstrates that nuclear fission-barrier heights constitute a challenging and selective tool to discern between such different macroscopic approaches.
Comparison of fission modes in 252Cf, 257Fm, and 260Md
van Aarle, J.; Siemon, K.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.; Patzelt, P.
1998-10-01
Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of 252Cf, 257Fm and 260Md has been extensively investigated at the Philipps University of Marburg (1-4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for 252Cf, to a much more symmetrical one, found in the fission of 260Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of 252Cf and 260Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of 257Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two "standard" and the "supershort" mode. In this paper, results from the recent 257Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.
Fission-fragment properties in 238U(n ,f ) between 1 and 30 MeV
Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.; Hambsch, F.-J.; Bryś, T.; Vidali, M.
2016-11-01
The fragment mass and kinetic energy in neutron-induced fission of 238U has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy (TKE ¯) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the TKE ¯ data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...
Duarte, S B; Guzmán, F; Di Marco, A; García, F; Rodríguez, O; Gonçalves, M
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the effective liquid drop model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer (VMAS) and Werner-Wheeler's inertia coefficient (WW). The calculated half lives of ground-state to ground-state transitions for proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. These comparisons show that the ELDM is a very efficient model to describe these different decay processes in a same, unified, theoretical framework. A table listing the predicted half-life values, tau sub c , is presented for all possible cases of spontaneous nuclear breakup such that -7.30 -17.0, where tau is the total half life of the parent nucleus.
Energy Technology Data Exchange (ETDEWEB)
Seaborg, Glenn T.
1952-08-29
The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.
Indian Academy of Sciences (India)
2015-08-05
Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...
Fifty years of nuclear fission: Nuclear data and measurements series
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.
Energy Technology Data Exchange (ETDEWEB)
Xhonneux, Andre, E-mail: a.xhonneux@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany); Allelein, Hans-Josef [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany)
2014-05-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
Minato, Futoshi
2016-06-01
Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Directory of Open Access Journals (Sweden)
Minato Futoshi
2016-01-01
Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Directory of Open Access Journals (Sweden)
Kaiba Tanja
2018-01-01
Full Text Available Preliminary calculations were performed with the aim to establish optimal experimental conditions for the measurement campaign within the collaboration between the Jožef Stefan Institute (JSI and Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA Cadarache. The goal of the project is to additionally characterize the neutron spectruminside the JSI TRIGA reactor core with focus on the measurement epi-thermal and fast part of the spectrum. Measurements will be performed with fission chambers containing different fissile materials (235U, 237Np and 242Pu covered with thermal neutron filters (Cd and Gd. The changes in the detected signal and neutron flux spectrum with and without transmission filter were studied. Additional effort was put into evaluation of the effect of the filter geometry (e.g. opening on the top end of the filter on the detector signal. After the analysis of the scoping calculations it was concluded to position the experiment in the outside core ring inside one of the empty fuel element positions.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2009-10-25
Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic
Properties of the platinoid fission products during vitrification of high-level radioactive waste
Gong, W.; Lutze, W.; Perez-Cardenas, F.; Matlack, K. S.; Pegg, I. L.
2006-05-01
the prototypical off-gas treatment system. In the course of several weeks of testing, a total mass of 28,500 kg of glass was produced and sampled. The effect of operating conditions on the behavior of the platinoids was evaluated, including mixing the melt by bubbling with air vs. not bubbling, and the effects of reducing conditions (by adding sugar to the feed). Tests were conducted with Ru, Rh, Pd (0.17% total oxides) or Ru only (0.09 wt%) in the final glass product. The fractions of the platinoids discharged with the glass, deposited in the melter, and/or released to the off-gas were calculated from the analytical data. In addition, mathematical modeling of the distribution and movement of platinoid crystals within the melt was conducted for various furnace operating conditions. This modeling captured the flow, electrical, and thermal fields within the melt and included coupling of the local material properties to the local temperature. The experimental data on platinoid particle size and morphology were used to provide input for modeling their flow and sedimentation behavior with the objective of estimating accumulation rates and spatial distributions. The modeled deposition of the crystals was found to be uneven, with piles in the corners and thicker layers on slanted bottom surfaces. Consequently, contiguous electrical shorting paths could develop more quickly than what would be assumed based on uniform deposition. This paper will present the results from the experimental and modeling work and discuss their implications for melter lifetime estimation.
Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M
The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.
Norbury, John W.
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md
Energy Technology Data Exchange (ETDEWEB)
van Aarle, J. [Laboratory for Materials Behaviour, Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Siemon, K.; Patzelt, P. [Philipps University, FB 15---Kernchemie, D-35032 Marburg an der Lahn (Germany); Wild, J.F.; Lougheed, R.W. [University of California, Lawrence Livermore National Lab., Livermore, California 94551 (United States); Westmeier, W. [Dr. Westmeier GmbH, Moellnerweg 32, 35085 Ebsdorfergrund-Moelln (Germany)
1998-10-01
Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}
Energy Technology Data Exchange (ETDEWEB)
Jo, Yu Gwon; Oh, Yoo Min; Park, Hyang Kyu; Park, Kang Soon; Cho, Nam Zin [KAIST, Daejeon (Korea, Republic of)
2016-05-15
In this paper, two issues in the FSS iteration method, i.e., the waiting time for surface source data and the variance biases in local tallies are investigated for the domain decomposed, 3-D continuous-energy whole-core calculation. The fission sources are provided as usual, while the surface sources are provided by banking MC particles crossing local domain boundaries. The surface sources serve as boundary conditions for nonoverlapping local problems, so that each local problem can be solved independently. In this paper, two issues in the FSS iteration are investigated. One is quantifying the waiting time of processors to receive surface source data. By using nonblocking communication, 'time penalty' to wait for the arrival of the surface source data is reduced. The other important issue is underestimation of the sample variance of the tally because of additional inter-iteration correlations in surface sources. From the numerical results on a 3-D whole-core test problem, it is observed that the time penalty is negligible in the FSS iteration method and that the real variances of both pin powers and assembly powers are estimated by the HB method. For those purposes, three cases; Case 1 (1 local domain), Case 2 (4 local domains), Case 3 (16 local domains) are tested. For both Cases 2 and 3, the time penalties for waiting are negligible compared to the source-tracking times. However, for finer divisions of local domains, the loss of parallel efficiency caused by the different number of sources for local domains in symmetric locations becomes larger due to the stochastic errors in source distributions. For all test cases, the HB method very well estimates the real variances of local tallies. However, it is also noted that the real variances of local tallies estimated by the HB method show slightly smaller than the real variances obtained from 30 independent batch runs and the deviations become larger for finer divisions of local domains. The batch size used
Energy Technology Data Exchange (ETDEWEB)
Ludewig, H.; Durston, C.; Atefi, B.; Cerbone, R.J.
1980-06-01
As part of the Initial Feasibility Study of the Fast Mixed Spectrum Reactor, a series of benchmark calculations were made to determine the sensitivity of the physics analysis to differences in methods and data. Argonne National Laboratory (ANL), the Massachusetts Institute of Technology (MIT), and Oak Ridge National Laboratory (ORNL) were invited to participate with Brookhaven National Laboratory in the analysis of a FMSR model prescribed by BNL. Detailed comparisons are made including a comprehensive study on the adequacy of the fission product treatments.
Coincident measurements of prompt fission γ rays and fission fragments at DANCE
Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.
2015-10-01
Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.
Modelling the widths of fission observables in GEF
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2013-03-01
Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.
The calculation of thermodynamic properties of molecules
DEFF Research Database (Denmark)
van Speybroeck, Veronique; Gani, Rafiqul; Meier, Robert Johan
2010-01-01
Thermodynamic data are key in the understanding and design of chemical processes. Next to the experimental evaluation of such data, computational methods are valuable and sometimes indispensable tools in obtaining heats of formation and Gibbs free energies. The major toolboxes to obtain such quan......Thermodynamic data are key in the understanding and design of chemical processes. Next to the experimental evaluation of such data, computational methods are valuable and sometimes indispensable tools in obtaining heats of formation and Gibbs free energies. The major toolboxes to obtain...... molecules the combination of group contribution methods with group additive values that are determined with the best available computational ab initio methods seems to be a viable alternative to obtain thermodynamic properties near chemical accuracy. New developments and full use of existing tools may lead...
Energy Technology Data Exchange (ETDEWEB)
Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Wagner, John C [ORNL; Bowen, Douglas G [ORNL
2015-09-01
The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k_{eff}) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k_{eff} calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.
Using MCNP6 to Estimate Fission Neutron Properties of a Reflected Plutonium Sphere
Energy Technology Data Exchange (ETDEWEB)
Clark, Alexander Rich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchinson, Jesson D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-08
The purpose of this project was to determine the fission multiplicity distribution, p(v), for the Beryllium Reflected Plutonium (BeRP) ball and to determine whether or not it changed appreciably for various High Density Polyethylene (HDPE) reflected configurations. The motivation for this project was to determine whether or not the average number of neutrons emitted per fission, v, changed significantly enough to reduce the discrepancy between MCNP6 and Robba, Dowdy, Atwater (RDA) point kinetic model estimates of multiplication. The energy spectrum of neutrons that induced fissions in the BeRP ball, NIF (E), was also computed in order to determine the average energy of neutrons inducing fissions, NIF . p(v) was computed using the FMULT card, NIF (E) and NIF were computed using an F4 tally with an FM tally modifier (F4/FM) card, and the multiplication factor, k_{eff}, was computed using the KCODE card. Although NIF (E) changed significantly between bare and HDPE reflected configurations of the BeRP ball, the change in p(v), and thus the change in v, was insignificant. This is likely due to a difference between the way that NIF is computed using the FMULT and F4/FM cards. The F4/FM card indicated that NIF (E) was essentially Watt-fission distributed for a bare configuration and highly thermalized for all HDPE reflected configurations, while the FMULT card returned an average energy between 1 and 2 MeV for all configurations, which would indicate that the spectrum is Watt-fission distributed, regardless of the amount of HDPE reflector. The spectrum computed with the F4/FM cards is more physically meaningful and so the discrepancy between it and the FMULT card result is being investigated. It is hoped that resolving the discrepancy between the FMULT and F4/FM card estimates of NIF(E) will provide better v estimates that will lead to RDA multiplication estimates that are in better agreement with MCNP6 simulations.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
and penetrability for binary nuclear configurations typical for fission processes. The deformed two- ... Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations ... the mass tensor components contain binary character of the process, because the pairing. Pramana – J. Phys.
Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...
Indian Academy of Sciences (India)
L1) identifies its molecular structure and reveals π-π stacking. The synthetic mechanisms for L2, L3 were studied by density functional theory calculations. And a comprehensive study of spectroscopic properties involving experimental data and ...
40 CFR 80.66 - Calculation of reformulated gasoline properties.
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...
Calculation of tin atomic data and plasma properties.
Energy Technology Data Exchange (ETDEWEB)
Morozov, V.; Tolkach, V.; Hassanein, A.
2005-08-26
This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Recommended radiative property data for Venusian entry calculations
Jones, J. J.; Boughner, R. E.; Haggard, K. V.; Nealy, J. E.; Schryer, D. R.; Zoby, E. V.
1974-01-01
A compilation of experimental and calculated data on the radiative properties species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound, and free-free continua are considered for the principal radiating species of shock heated carbon dioxide. A limited amount of data pertinent to the species in the ablation layer is also included. The assumption is made that the Venus atmosphere so closely approximates pure CO2 that the inviscid layer radiation is due almost entirely to thermally excited CO2. The only exception is the inclusion of data on the Violet band system of CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas porperties is also included.
Calculated disturbances for evaluation of dynamical properties of freight cars
Directory of Open Access Journals (Sweden)
I.A. Mashchenko
2013-08-01
Full Text Available Purpose. To form realizations of the calculated disturbances for studying the dynamic properties of railway vehicles. Methodology. Records of the track-test car for one of the typical track sections of the Pridneprovsk railroad are the basic data for building the disturbance components. To derive the true geometric parameters of the railway gauge the records of the track-test car using a double-point metering circuit are transformed considering the transfer function of the measuring system. A model of the calculated disturbances is presented as the four components: a symmetric vertical irregularity determined as a semi-sum of vertical irregularities of the right and left rails; an oblique-symmetric vertical irregularity of the track determined as a semi-difference of vertical irregularities of the right and left rails; horizontal irregularities of the right and left rails. Acceptability criterion of the constructed disturbances is a relationship between the values of the dynamical properties factors of cars and the corresponding experimental data. Findings. The three techniques for the calculated disturbances forming are proposed. The first technique uses records of the track-test car for the track with a sufficiently high amount for given track conditions as components of the calculated disturbances. In so doing symmetrical vertical components of disturbances resulting from records of settling are corrected with the mass and stiffness parameters of the car under consideration. The second technique uses building and applying the theoretical realizations of irregularities corresponding to a real track according to a spectral analysis. The third technique ensures a polyharmonic model of disturbances, the parameters of which are the values of the basic frequencies and amplitudes that are typical for irregularities of a railway track. A possibility of practical applying of the constructed models of disturbances are presented using an example for
Simulative calculation of bromo-polystyrene mechanical properties
Wang Chao; Tang Yong Jian
2002-01-01
The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed
Energy Technology Data Exchange (ETDEWEB)
Dorado, B.
2010-09-15
Uranium dioxide UO{sub 2} is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO{sub 2}, we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO{sub 2} and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)
Hidden systematics of fission channels
Directory of Open Access Journals (Sweden)
Schmidt Karl-Heinz
2013-12-01
Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy
Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.
Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael
2015-08-04
The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fission fragment distributions within dynamical approach
Mazurek, K.; Nadtochy, P. N.; Ryabov, E. G.; Adeev, G. D.
2017-04-01
The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed.
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Greck, Peter
2012-11-26
We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Energy Technology Data Exchange (ETDEWEB)
Struble, G.L.; Haight, R.C.
1981-03-01
Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Equations for calculating the properties of dissociated steam
Aminov, R. Z.; Gudym, A. A.
2017-08-01
The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2003-07-01
The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.
High-accuracy coupled cluster calculations of atomic properties
Energy Technology Data Exchange (ETDEWEB)
Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)
2015-01-22
The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.
Calculation of magnetic response properties using atoms in molecules
Keith, T. A.; Bader, R. F. W.
1992-06-01
A new method (IGAIM — individual gauges for atoms in molecules) is presented for relatively accurate ab initio calculations of molecular magnetic response properties. The current density induced within an atom in a molecule by an external magnetic field is well described by the coupled, perturbed Hartree—Fock method when the gauge origin of the vector potential is placed at its nucleus, the natural origin for the free atom, even though it may be poorly described in the rest of the molecule. Since the molecular magnetic susceptibility and nuclear magnetic shielding tensors can be expressed in terms of the induced current density as a sum of separately determined atomic contributions, these properties are, in general, accurately predicted even with basis sets that are insufficient for conventional CPHF.
Indian Academy of Sciences (India)
Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...
Calculation of atomic structures and radiative properties of fusion plasmas
Jarrah, Walid; Pain, Jean-Christophe; Benredjem, Djamel
2017-03-01
The opacity is an important issue in the knowledge of the radiative properties of Inertial Confinement Fusion (ICF) and astrophysical plasmas. In this work we present the opacity of the mixture C+Si, composing the ablator of some ICF capsules. We have used Cowan's code to calculate the atomic structure of carbon and silicon. We also have developed a collisional-radiative model in order to obtain the opacity of the mixture. Line broadening, line shift and ionization potential depression are taken into account in the opacity profile. Comparisons to other calculations are carried out. NLTE and LTE opacity calculations show discrepancies mainly in the range 1900-2000 eV for the bound-bound contribution to the total opacity and in the range 50-350 eV for the bound-free contribution. We have also accounted for photoexcitation and photoionization processes. The corresponding rates are obtained by modeling the Hohlraum radiation by a Planckian distribution at a radiative temperature of 300 eV.
Modeling defect and fission gas properties in U-Si fuels
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri University of Science and Technology; Grimes, Robin W. [Imperial College, London (United Kingdom)
2017-04-27
Uranium silicides, in particular U_{3}Si_{2}, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO_{2} fuel. They benefit from high thermal conductivity (metallic) compared to UO_{2} fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.
Modeling defect and fission gas properties in U-Si fuels
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark J. [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri Univ. of Science and Technology, Rolla, MO (United States); Grimes, Robin W. [Imperial College, London (United Kingdom)
2017-04-14
Uranium silicides, in particular U_{3}Si_{2}, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO_{2} fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.
Calculation of nonlinear optical properties of molecular clusters
Energy Technology Data Exchange (ETDEWEB)
Yartsev, V. M.; Marcano O, A. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)
2001-03-01
Effects of electronic correlation and electron-intramolecular vibration coupling on the non-linear optical properties are studied. The Hubbard Hamiltonian is used for explicit treatment of electronic correlation in molecular dimmer. The static polarizability and the static second hyper polarizability {gamma} are calculated and their dependences on the model parameters are analyzed. The role of interaction between ion-radical complexes is considered within the model of two parallel dimers. [Spanish] Se estudian los efectos de correlacion y el acoplamiento del electron con las vibraciones moleculares sobre las propiedades opticas no lineales de agregados moleculares. Se utiliza un hamiltoniano de tipo Hubbard para el tratamiento explicito de la correlacion electronica en un dimero molecular. Se calculan la polarizabilidad estatica {alpha} y la hiperpolarizabilidad de segundo orden {gamma} al igual que se analizan sus dependencias de los parametros del modelo. Se estudia ademas el papel de la interaccion entre complejos ino-radical dentro del modelo de dos dimeros paralelos.
Calculation of RF Properties of the Third Harmonic Cavity
Rothemund, K; Van Rienen, U
2004-01-01
Recently a third harmonic structure has been proposed for the injector of the TTF-FEL to avoid nonlinear distortions in the longitudinal phase space. This structure, consists of four nine cell TESLA-like cavities. For the use of this structure in combination with the TTF-FEL it might be interesting to investigate higher order modes (HOM) in the structure and their effect on the beam dynamics. The complexity of the structure, four nine cell cavities assembled with four input couplers and eight HOM-couplers, results in an extremely high numerical effort for full 3D modelling. Therefor Coupled S-Parameter Calculation (CSC) [1] has been applied. This method is based on the scattering parameter description of the rf components found with field solving codes or analytically for components of special symmetry. This paper presents the results of the calculation of rf properties (e.g. scattering parameters, Q-values) of the complete four times nine cell structure equipped with all input- and HOM-couplers.
Calculation of the vibrational properties of LiMgAs.
Mellouki, A; Bennecer, B; Kalarasse, F
2009-07-29
We have studied the vibrational properties of the filled tetrahedral semiconductor LiMgAs and its binary analog AlAs by using the plane-wave pseudopotential method within density functional theory. The calculated lattice constants for the studied compounds are in good agreement with previous theoretical and experimental results. The phonon dispersion curves and phonon density of states are calculated by using density functional perturbation theory. The sound speeds in different directions are quantitatively similar in LiMgAs and AlAs. The assignment of the zone center modes to the relative motion of the atoms shows that the lower optic modes are due to the Mg-As pair vibrations, while for the upper ones the Li-Mg pair dominates, which is attributed to the smaller Mg atom mass. The longitudinal interatomic force constant of Mg-As is about 66% higher than that of Li-As, showing the relatively high covalency of the former bond.
Calculation of the vibrational properties of LiMgAs
Energy Technology Data Exchange (ETDEWEB)
Mellouki, A; Bennecer, B; Kalarasse, F, E-mail: b_bennacer@hotmail.co [Physics Laboratory at Guelma, Faculty of Science and Engineering, University of Guelma, PO Box 401, Guelma 24000 (Algeria)
2009-07-29
We have studied the vibrational properties of the filled tetrahedral semiconductor LiMgAs and its binary analog AlAs by using the plane-wave pseudopotential method within density functional theory. The calculated lattice constants for the studied compounds are in good agreement with previous theoretical and experimental results. The phonon dispersion curves and phonon density of states are calculated by using density functional perturbation theory. The sound speeds in different directions are quantitatively similar in LiMgAs and AlAs. The assignment of the zone center modes to the relative motion of the atoms shows that the lower optic modes are due to the Mg-As pair vibrations, while for the upper ones the Li-Mg pair dominates, which is attributed to the smaller Mg atom mass. The longitudinal interatomic force constant of Mg-As is about 66% higher than that of Li-As, showing the relatively high covalency of the former bond.
The etching property of the surface of CR-39 and the track core radius of fission fragment
Mineyama, D; Yamauchi, T; Oda, K; El-Rahman, A
2002-01-01
The etch pits of fission fragments in CR-39 detector have been observed carefully using an atomic force microscope (AFM) after extremely short chemical etching in stirred 6N KOH solution kept at 70degC. It was found that there existed a thin layer where the bulk etch rate is relativity from large the etch-pit growth curve for the etching duration between 10 and 1800 seconds. The track core radius of fission fragment was evaluated to be about 6 nm from the extrapolation of the growth curve in a thinner region. (author)
Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing
Sutton, Christopher
2017-03-13
We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations.
Directory of Open Access Journals (Sweden)
Aleksandr V Zhuravlev
2016-11-01
Full Text Available Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK and its derivatives, 3-hydroxyanthranilic acid (3HAA and xanthommatin (XAN, leads to the hyperproduction of reactive oxygen species (ROS which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE and ionization potential (IP for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA, several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O* and methyl peroxy radical (Met-OO* decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical.
Closing temperatures of different fission track clocks
Sharma, Y. P.; Lal, N.; Bal, K. D.; Parshad, R.; Nagpaul, K. K.
1980-05-01
The fission track closing temperatures of the minerals which are found to be suitable for fission track geochronology have been calculated for various cooling rates using the stepwise cooling. Biotite is found to have the lowest closing temperature whereas the sphene is having the highest. The closing temperature falls with decrease in cooling rate.
Systematics of Fission-Product Yields
Energy Technology Data Exchange (ETDEWEB)
A.C. Wahl
2002-05-01
Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.
Green function method for calculating properties of static magnetic fields.
Engström, S
2001-10-01
Given complete information about the normal component of a magnetic field in a plane, it is possible to directly calculate all aspects of the field at any point in a source-free, homogeneous volume above that plane. The magnetic scalar potential, the magnetic field, and its gradient have direct representations as integrals of the boundary data. This paper provides a Green function method for this problem, as well as examples of such calculations. Copyright 2001 Wiley-Liss, Inc.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
2015-08-02
Aug 2, 2015 ... The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped ...
Computer codes used in the calculation of high-temperature thermodynamic properties of sodium
Energy Technology Data Exchange (ETDEWEB)
Fink, J.K.
1979-12-01
Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region.
Relativistic Band Calculation and the Optical Properties of Gold
DEFF Research Database (Denmark)
Christensen, N Egede; Seraphin, B. O.
1971-01-01
The energy band structure of gold is calculated by the relativistic augmented-plane-wave (RAPW) method. A nonrelativistic calculation is also presented, and a comparison between this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects are of the same order...... of magnitude as the gaps (approximately 1 eV). Various integrated functions, density of states, joint density of states, and energy distributions of joint density of states are derived from the RAPW calculation. These functions are used in an interpretation of photoemission and static reflectance measurements...... and comparison to the observed temperature shifts of the elements of structure in the experimental ε2 function. Such structure may originate in extended rather than localized regions of k→ space. In contrast, critical-point transitions show up clearly in modulated reflectance spectra, and all elements...
Thorium-uranium fission radiography
Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.
1976-01-01
Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.
Real-space calculations for electron transport properties of nanostructures.
Ono, Tomoya; Tsukamoto, Shigeru; Egami, Yoshiyuki; Fujimoto, Yoshitaka
2011-10-05
Recent developments in the fabrication and investigation of conductors of atomic dimensions have stimulated a large number of experimental and theoretical studies on these nanoscale devices. In this paper, we introduce examples presenting the efficiencies and advantages of a first-principles transport calculation scheme based on the real-space finite-difference (RSFD) formalism and the overbridging boundary-matching (OBM) method. The RSFD method does not suffer from the artificial periodicity problems that arise in methods using plane-wave basis sets or the linear dependence problems that occur in methods using atomic basis sets. Moreover, the algorithm of the RSFD method is suitable for massively parallel computers and, thus, the combination of the RSFD and OBM methods enables us to execute first-principles transport calculations using large models. To demonstrate the advantages of this method, several applications of the transport calculations in various systems ranging from jellium nanowires to the tip and surface system of scanning tunneling microscopy are presented. © 2011 IOP Publishing Ltd
Energy Technology Data Exchange (ETDEWEB)
Bonneau, L
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)
Photophysical properties and theoretical calculations of Cu(I) dendrimers
Energy Technology Data Exchange (ETDEWEB)
Si, Zhenjun [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); An, Chun-Ai [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Song, Shuyan [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)
2014-04-15
The experimental and theoretical analyses on Cu(I) dendrimers are essential for studying their photophysical properties and facilitating the applications of Cu(I) complexes even though there are relatively few studies in it. Therefore, we synthesize four Cu(I) dendrimers Cu-L1–Cu-L4, the antenna effect is confirmed by the fact that the order of their luminescence quantum yield is Cu-L1
Calculated properties of field-induced aggregates in ferrofluids
Ytreberg; McKay
2000-04-01
We have calculated the critical radius of aggregates in thin layers of ferrofluid, assuming a cylindrical aggregate shape, as a function of external field and plate separation. Results are obtained by minimizing the Helmholtz free energy, and can be used to predict aggregate radius and spacing. The model, with entropy included, provides reasonable predictions for the onset of the labyrinth pattern. These results show good agreement when compared with data from experiments on Fe3O4 kerosene-based ferrofluids and magnetorheological fluids.
Elementary flux modes in a nutshell: properties, calculation and applications.
Zanghellini, Jürgen; Ruckerbauer, David E; Hanscho, Michael; Jungreuthmayer, Christian
2013-09-01
Elementary flux mode (EFM) analysis allows the unbiased decomposition of a metabolic network into minimal functional units, making it a powerful tool for metabolic engineering. While the use of EFM analysis (EFMA) is still limited by the size of the models it can handle, EFMA has been successfully applied to solve real-world metabolic engineering problems. Here we provide a user-oriented introduction to EFMA, provide examples of recent applications, analyze current research strategies to overcome the computational restrictions and give an overview over current approaches, which aim to identify and calculate only biologically relevant EFMs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
Dynamic simulation of flash drums using rigorous physical property calculations
Directory of Open Access Journals (Sweden)
F. M. Gonçalves
2007-06-01
Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.
Fission barriers and asymmetric ground states in the relativistic mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Rutz, K. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Maruhn, J.A. [Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN 87831 (United States); Reinhard, P.G. [Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN 87831 (United States); Greiner, W. [Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN 87831 (United States)
1995-07-31
The symmetric and asymmetric fission path for {sup 240}Pu, {sup 232}Th and {sup 226}Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.).
Modeling Fission Product Sorption in Graphite Structures
Energy Technology Data Exchange (ETDEWEB)
Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission
Report on simulation of fission gas and fission product diffusion in UO_{2}
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
2016-07-22
In UO_{2} nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO_{2} under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe_{U3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe_{U3O} cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe_{U3O} cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher
Evolution of isotopic fission-fragment yields with excitation energy
Directory of Open Access Journals (Sweden)
Bazin D.
2012-07-01
Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.
Structure and Biochemical Properties of Fission Yeast Arp2/3 Complex Lacking the Arp2 Subunit
Energy Technology Data Exchange (ETDEWEB)
Nolen, B.; Pollard, T
2008-01-01
Arp2/3 (actin-related protein 2/3) complex is a seven-subunit complex that nucleates branched actin filaments in response to cellular signals. Nucleation-promoting factors such as WASp/Scar family proteins activate the complex by facilitating the activating conformational change and recruiting the first actin monomer for the daughter branch. Here we address the role of the Arp2 subunit in the function of Arp2/3 complex by isolating a version of the complex lacking Arp2 (Arp2? Arp2/3 complex) from fission yeast. An x-ray crystal structure of the ?Arp2 Arp2/3 complex showed that the rest of the complex is unperturbed by the loss of Arp2. However, the Arp2? Arp2/3 complex was inactive in actin nucleation assays, indicating that Arp2 is essential to form a branch. A fluorescence anisotropy assay showed that Arp2 does not contribute to the affinity of the complex for Wsp1-VCA, a Schizosaccharomyces pombe nucleation-promoting factor protein. Fluorescence resonance energy transfer experiments showed that the loss of Arp2 does not prevent VCA from recruiting an actin monomer to the complex. Truncation of the N terminus of ARPC5, the smallest subunit in the complex, increased the yield of Arp2? Arp2/3 complex during purification but did not compromise nucleation activity of the full Arp2/3 complex.
Chemical Property Calculation through JavaScript and Applications in QSAR
Directory of Open Access Journals (Sweden)
Hanqing Wu
1999-02-01
Full Text Available The inorganic property (I and organic property (O values of general organic groups are re-proposed here. Both I and O values of drug and biological molecules or groups can be calculated based on their common group values. The calculation can be performed easily on-line through JavaScript. Similar calculation can be done for the drug and biological molecular group electronegativity (X according to the author's published paper. The calculation of lipophilicity (ÃÂ€ or logP parameter of (macromolecules (like proteins can also be performed on-line through JavaScript. Two equations expressed with I and O are provided here to define the hydrophobicity of each amino acid. The correlations of inorganic property and organic property values with other parameters are also discussed. These calculated parameters combined with other parameters can be used for QSAR studies in some drug molecules.
Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233
Energy Technology Data Exchange (ETDEWEB)
Higgins, Daniel James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmitt, Kyle Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tovesson, Fredrik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-29
Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understand the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.
Nishio Katsuhisa
2013-01-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sec...
A new neutron counter for fission research
Energy Technology Data Exchange (ETDEWEB)
Laurent, B., E-mail: benoit.laurent@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Granier, T.; Bélier, G.; Chatillon, A.; Martin, J.-F.; Taieb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel (Belgium); Tovesson, F.; Laptev, A.B.; Haight, R.C.; Nelson, R.O.; O' Donnell, J.M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2014-05-01
A new neutron counter for research experiments on nuclear fission has been developed. This instrument is designed for the detection of prompt fission neutrons within relatively high levels of gamma and neutron background. It is composed of a set of {sup 3}He proportional counters arranged within a block of polyethylene which serves as moderator. The detection properties have been studied by means of Monte Carlo simulations and experiments with radioactive sources. These properties are confirmed by an experiment on neutron-induced fission of {sup 238}U at the WNR facility of the Los Alamos Neutron Science Center during which the mean prompt fission neutron multiplicity, or ν{sup ¯} has been measured from 1 to 20 MeV of incident neutron energy.
Directory of Open Access Journals (Sweden)
Yadav Mukesh P
2012-11-01
Full Text Available Abstract Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
Fission rate ratios in the FTR engineering mockup
Energy Technology Data Exchange (ETDEWEB)
Daughtry, J.W.; Dobbin, K.D.
1975-01-01
To evaluate neutron flux calculational methods, fission rates were measured in the FTR Engineering Mockup Critical (EMC) assembly, and calculated fission rates were obtained for comparison. Several variations of the analytical methods were used to investigate their suitability and calculation-versus-experiment (C/E) bias factors were obtained which can be used to adjust calculated fission rate ratios in the FTR. A brief description is given of the EMC configuration, the experiment, and the results of the experiments. The analytical methods are described, the calculated results are given, and comparisons are made between the experimental and analytical results.
Mass distributions in nucleon-induced fission at intermediate energies
Duijvestijn, M C; Hambsch, F J
2001-01-01
Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).
Calculation of the thermodynamic properties of liquid Ag–In–Sb alloys
Directory of Open Access Journals (Sweden)
DRAGANA ZIVKOVIC
2006-03-01
Full Text Available The results of calculations of the thermodynamic properties of liquid Ag–In–Sb alloys are presented in this paper. The Redlich–Kister–Muggianu model was used for the calculations. Based on known thermodynamic data for constitutive binary systems and available experimental data for the investigated ternary system, the ternary interaction parameter for the liquid phase in the temperature range 1000–1200 K was determined. Comparison between experimental and calculated results showed their good mutual agreement.
Stability, electronic and thermodynamic properties of aluminene from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Yuan, Junhui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu, Niannian [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Xue, Kanhao, E-mail: xkh@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2017-07-01
Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.
Characteristics of spontaneous fission of 250No
Svirikhin, A. I.; Andreev, A. V.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Kuznetsova, A. A.; Malyshev, O. N.; Popeko, A. G.; Popov, Y. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Schneidman, T. M.; Gall, B.; Dorvaux, O.; Brione, P.; Hauschild, K.; Lopez-Martenz, A.; Rezynkina, K.; Mullins, S.; Jones, P.; Mosat, P.
2017-07-01
This study describes an experiment on investigating the properties of spontaneous fission of shortlived neutron-deficient nuclei synthesized in the reaction of complete fusion 48Ca + 204Pb = 252No*. The experiment is performed using the SHELS separator and the beam of multicharged ions at U-400 accelerator (LNR, JINR). Two activities undergoing spontaneous fission, which can be related to the ground and isomeric states of 250No nucleus, are registered. The half-lives, total kinetic energies of fission fragments, and neutron multiplicities are measured for the short-lived nuclei. The average number of neutrons per fission for the activity with t 1/2 = 5.1 ± 0.3 μs is = 4.38 ± 0.13 μs, and for nuclei with the half-life t 1/2 = 36 ± 3 μs it is xxxxx.
Energy from nuclear fission an introduction
De Sanctis, Enzo; Ripani, Marco
2016-01-01
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...
Energy Technology Data Exchange (ETDEWEB)
Galy, J
1999-09-01
As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)
Nishio, Katsuhisa
2013-12-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.
Energy Technology Data Exchange (ETDEWEB)
Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert [Arizona State University, Tempe, AZ (United States); Dickerson, Patricia [Los Alamos National Lab, Los Alamos, NM (United States); Gong, Bowen [Arizona State University, Tempe, AZ (United States); Peralta, Pedro, E-mail: pperalta@asu.edu [Arizona State University, Tempe, AZ (United States)
2016-08-15
Diffusion of fission gases in UO{sub 2} is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO{sub 2} microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by “bottlenecks” in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale. - Highlights: • Microstructure models are developed to study fission gas transport in oxide fuels. • Crystallographic and temperature dependent material properties are applied. • Fission product concentration is affected by grain boundary distribution. • High concentration regions can form as controlled by the grain boundary connectivity.
Fractal Model of Fission Product Release in Nuclear Fuel
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N
1995-01-01
High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon
Influence of nuclear dissipation on fission dynamics of the excited ...
Indian Academy of Sciences (India)
A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...
Fission anisotropy of Tl produced in fusion reactions in the ...
Indian Academy of Sciences (India)
Abstract. The anisotropy of fission fragment angular distribution, evaporation residue cross- section and the fission cross-section were calculated for 197Tl formed in 16O+181Ta reactions in the framework of the modified statistical model and the results were compared with the experimental data. The effects of temperature ...
Ab initio study of mechanical and thermal properties of GaN nanotubes by phonon calculations
Directory of Open Access Journals (Sweden)
H Tashakori
2015-01-01
Full Text Available In this work, we calculated the phonon dispersion of GaNNTs (4,0 and (4,4 by quantum ESPRESSO package using Density Functional Theory (DFT, pseudo potentials, and plane wave self-consistent field (PWscf method. For the purpose of lattice-dynamical calculation and phononic properties, we used PWscf and Phonon codes. The former produces the self-consistent electronic and all related computations (forces, stresses, structural optimization. The latter solves the DFPT equations and calculates dynamical matrices for a single wave-vector or for a uniform grid of wave-vectors. The stability of these nanotubes was studied by phonon curves. According to the calculations, the breathing mode was distinguished for both nanotubes. The mechanical properties of these nanotubes were characterized by the results obtained for phonon dispersion curves. Finally, a quantitative comparison was made between the values of stiffness of GaNNTs (4,0 and (4,4.
First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.
Bandura, Andrei V; Evarestov, Robert A
2012-07-05
The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.
Gergely, M.; Garrett, T. J.
2015-12-01
Significant progress has been achieved in approximating snowflakes and ice-cloud particles by increasingly more realistic and detailed shape models and in calculating associated scattering properties crucial to snowfall remote sensing. The applied approximations of the snowflake microstructure applied for the scattering calculations, however, are still based on few available field measurement data, often integrated over many individual snow storms, and only include several microstructural properties that cannot fully capture the natural variability during snowfall, e.g. different degrees of riming or aggregate snowflakes formed from more than one distinct ice crystal habit. In this study, (i) the natural variability of key microstructural properties during snowfall is quantified for individual snow storms based on high-resolution multi-view snowflake imaging data collected with the Multi-Angle Snowflake Camera (MASC) at Alta ski area (Alta, UT), and (ii) the corresponding variability in snowflake scattering properties is calculated. In addition to snowflake size, orientation and aspect ratio, 'particle complexity' (specifying snowflake perimeter and brightness variations in the MASC snowflake images) is included in the presented approach, yielding a quantitative and objective measure of characteristic snowflake microstructure, including crystal habit and degree of riming, important for realistically modelling snowfall scattering properties. The aim is to present an analysis of the impact of the observed natural microstructural variability on the derived snowflake scattering properties and ultimately on the snowfall radar reflectivity integrated over the obtained variability of snowflake microstructure and scattering properties.
Spontaneous fission of the heaviest elements
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1989-04-01
Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.
Electronic properties of tantalum pentoxide polymorphs from first-principles calculations
Lee, J.; Lu, W.; Kioupakis, E.
2014-11-01
Tantalum pentoxide (Ta2O5) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta2O5 structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (˜4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta2O5.
Mancera, L; Takeuchi, N
2003-01-01
We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.
Correlated prompt fission data in transport simulations
Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.
2018-01-01
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in
Role of energy cost in the yield of cold ternary fission of Cf
Indian Academy of Sciences (India)
Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...
Extraction of potential energy in charge asymmetry coordinate from experimental fission data
Energy Technology Data Exchange (ETDEWEB)
Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.
2016-12-15
For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)
Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations
Directory of Open Access Journals (Sweden)
Han Han
2015-12-01
Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.
Ab initio calculations of fundamental properties of SrTe1−xOx alloys
Indian Academy of Sciences (India)
form of the most popular Perdew–Burke–Ernzerhof (PBE), while for electronic properties, in addition to LDA, GGA corrections; Engel–Vosko GGA (EV-GGA) and modified Becke–Johnson (mBJ) schemes were also applied. The results show that the use of GGA (WC) in our calculations is more appropriate than GGA and LDA ...
Perlov, A.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I.
2004-01-01
An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure...
Phase transition and electronic properties of SbI3: First-principles calculations
Sun, Xiao-Xiao; Li, Cong; Hou, Qing-Yu; Zhang, Yue
2017-06-01
We have performed the first-principles pseudopotential calculations to investigate the structural phase transition and electronic properties of SbI3 considering several possible phases as a function of pressure from 0 GPa to 100 GPa. Our calculations show that this material undertakes a structural transformation from the R-3 phase to high-pressure P21/c phase at about 6.5 GPa with a relative volume collapse of 4.3%. We also have investigated the elastic properties and energy band structure of SbI3 under hydrostatic pressure. The calculation suggests that the R-3 phase is a semiconductor with an indirect band gap of about 2.16 eV at 0 Gpa. Under the influence of pressure, we have found that high-pressure P21/c phase has transformed to metal at about 55 GPa.
Calculation of the coherent transport properties of a symmetric spin nanocontact
Energy Technology Data Exchange (ETDEWEB)
Bourahla, B., E-mail: bourahla_boualem@yahoo.f [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France); Laboratoire de Physique et Chimie Quantique, Universite de Tizi-Ouzou, B.P. No. 17 RP, 15000 (Algeria); Khater, A. [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France); Tigrine, R. [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France); Laboratoire de Physique et Chimie Quantique, Universite de Tizi-Ouzou, B.P. No. 17 RP, 15000 (Algeria)
2009-10-30
A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.
Clark, A. L.
1985-01-01
Integral property calculation is an important application for solid modeling systems. Algorithms for computing integral properties for various solid representation schemes are fairly well known. It is important to deigners and users of solid modeling systems to understand the behavior of such algorithms. Specifically the trade-off between execution time and accuracy is critical to effective use of integral property calculation. The average behavior of two algorithms for Constructive Solid Geometry (CSG) representations is investigated. Experimental results from the PADL-2 solid modeling system show that coarse decompositions can be used to predict execution time and error estimates for finer decompositions. Exploiting this predictability allow effective use of the algorithms in a solid modeling system.
Calculated Changes in the Elastic Properties of MgCNi3 at the Superconducting Transition
Directory of Open Access Journals (Sweden)
R. Abd-Shukor
2013-01-01
Full Text Available We calculated the elastic properties of MgCNi3 at the superconducting transition ( using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity ( is expected at . The step discontinuities at the transition temperature indicated the importance of lattice changes to the superconducting mechanism of MgCNi3. The Debye temperature was calculated to be 460 K. The electron-phonon coupling constants calculated in the weak and strong coupling limits of the BCS theory and the van Hove scenario showed that MgCNi3 is a moderately strong coupled superconductor.
Nucleon-induced fission cross-sections at transitive energy region 20-200 MeV
Energy Technology Data Exchange (ETDEWEB)
Yavshits, S.; Boykov, G.; Ippolitov, V. [V.G. Khlopin Radium Institute, St. Peterburg (Russian Federation); Grudzevich, O. [Institute of Nuclear Power Engineering, Obninsk (Russian Federation)
2001-03-01
The new approach to the calculation of nucleon induced fission cross sections at energies 20-200 MeV is presented. The cross sections of multiconfiguration fission is calculated as a sum of fission cross-sections for nuclei formed in process of fast (direct) and precompound stage of fission reaction. The intranuclear cascade model is used for description of direct stage and precompound-statistical model for calculation of fission and de-excitation cross sections. Calculated with new optical model parameters sets fission cross sections are compared with experimental data for neutron-induced fission of {sup 237}Np, {sup 239}Pu, {sup 235,238}U and proton-induced fission of {sup 235,238}U. Brief information about new code system is also presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei
2017-01-01
A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.
Ab initio calculation of mechanical and thermal properties of U{sub 2}Mo intermetallic
Energy Technology Data Exchange (ETDEWEB)
Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Losada, E.L.; Garcés, J.E. [DAEE, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina)
2013-10-15
We present a study of structural, elastic and thermodynamic properties of tetragonal (C11{sub b}) U{sub 2}Mo by means of density-functional theory based calculations using full-potential linearized augmented plane wave method. In this approach the generalized gradient approximation were used for the exchange–correlation potential calculation. The optimized lattice parameters are in excellent agreement with the experimental data. Through the Debye–Grüneisen model the temperature and pressure dependence of equation of state, bulk modulus, thermal expansion and specific heat have been obtained and discussed in the range of pressure 0–20 GPa and the temperature 0–800 K.
Modelling of fission chambers in current mode—Analytical approach
Chabod, Sébastien; Fioni, Gabriele; Letourneau, Alain; Marie, Frédéric
2006-10-01
A comprehensive theoretical model is proposed to explain the functioning of fission chambers operated in current mode, even in very high neutron fluxes. The calibration curves are calculated as a function of basic physical parameters as fission rate, gas pressure and geometry of the chambers. The output current at saturation is precisely calculated, as well as the maximum voltage to be applied in order to avoid avalanche phenomena. The electric field distortion due to the space charge phenomena is also estimated. Within this model, the characteristic responses of fission chambers are correctly reproduced, in agreement with the experience feedback obtained at the ILL/Grenoble High-Flux Reactor.
Calculation of thermodynamic properties and transport coefficients of CO2-O2-Cu mixtures
Guo, Xiaoxue; Li, Xingwen; Murphy, Anthony B.; Zhao, Hu
2017-08-01
The thermodynamic properties and transport coefficients of CO2-O2-Cu gas mixtures in the temperature range from 300 K to 30 000 K and the pressure range from 0.1 to 0.8 MPa are calculated. Special attention is paid to the influence of different oxygen and copper proportions and different gas pressures on the CO2-O2-Cu mixture properties. It can be concluded that the addition of oxygen has a strong influence on both thermodynamic properties and transport coefficients. A small proportion of Cu does not lead to a significant change to the properties, apart from the electrical conductivity at low temperatures. However, Cu mole fractions above 10% start to affect all properties. Increasing gas pressure can cause an increase in the transport coefficients, especially in the high-temperature range. The calculation results provide the necessary data for the further study of the behaviour of plasmas using magnetohydrodynamics arc models. The results can be also used to optimize the ratio of the component gases for different applications; some examples are presented.
Directory of Open Access Journals (Sweden)
M.L.Mansfield
2002-01-01
Full Text Available Although the calculation of transport properties of complex-shaped particles (Smoluchowski rate constants for diffusion-limited reactions, Stokes friction coefficient, virial coefficients for conductivity, viscosity and other transport properties is straightforward in principle, the accurate evaluation of these quantities for objects of general shape is a problem of classic difficulty. In the present paper, we illustrate a recently developed numerical path-integration method to estimate basic transport properties of representative complex-shaped objects having scientific and technological interest (i.e., star polymers and diffusion-limited aggregates without excluded volume interactions. The methodology applies to objects of essentially arbitrary shape and its validation for special geometries, where exact results are known, is described in a previous paper. Here we calculate the electrostatic capacity and electrical polarizability tensor of these model branched polymers and then exploit exact and approximate electrostatic-hydrodynamic property interrelations to estimate the Stokes translational friction coefficient and the virial coefficients for conductivity and shear viscosity (intrinsic conductivity and viscosity, respectively. Dimensionless ratios of these transport properties and equilibrium measures of particle size (radius of gyration are considered since these ratios are important experimentally in determining macromolecular topological structure and universality class. We also discuss and illustrate the influence of the branching architecture on the equilibrium charge distribution ("equilibrium measure" of these branched polymers where they are treated as conductors. An unexpected qualitative change in the charge distribution is found with increasing arm number in star polymers that may have important physical consequences.
Determination of fission gas yields from isotope ratios
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg
1983-01-01
This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....
Srivastava, Vipul; Aynyas, M.; Rajagopalan, M.; Sanyal, S. P.
2008-04-01
Electronic properties of non-magnetic cubic B2-type AIRE (RE = La, Ce and Pr) compounds have been derived from self-consistent tight binding linear muffin tin orbital method at ambient pressure. These compounds show metallic behaviour under ambient conditions. While thermal properties like Debye temperature and Grüneisen constant are calculated at T = 0 K within the Debye-Grüneisen model and compared with the others theoretical results. We have also performed a pressure induced variation of Debye temperature. We have found a decrease in Debye temperature around 40 kbar in all the AIRE compounds.
Calculation of the thermodynamic properties of the GaSbTl liquid alloys
Directory of Open Access Journals (Sweden)
DRAGAN MANASIJEVIC
2005-02-01
Full Text Available The results of the calculation of the thermodynamic properties for liquid GaSbTl alloys at the temperature 1073 K are presented in this paper. Initially, the most appropriate thermodynamic model for the investigated system was selected. Based on a comparison of the values calculated by different geometric models (Kohler, Muggianu, Toop, Hillert, Chou with the existing experimental based data, asymmetric models of calculation were determined to give the best results. The asymmetric nature of the investigated ternary system was additionally confirmed by the Chou similarity coefficient concept. For these reasons, further complete thermodynamic calculations were performed according to the Hillert model in five sections of the ternary GaSbTl system from each corner with the mole ratio of other two components being 9:1; 7:3; 5:5; 3:7 and 1:9. The obtained results include integral excess Gibbs energy dependences on composition for all the investigated sections. The calculated activity values at 1073 K for all components are given in the form of isoactivity diagrams. Comparison between the calculated and experimentally obtained gallium activities shows good agreement.
Magnetic properties of vanadium doped CdTe: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Goumrhar, F. [Laboratory of Physics of High Energy, Modeling & Simulations (LPHE-MS), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Laboratory of Magnetism and High Energy Physics (LMPHE-URAC12), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Mounkachi, O. [Material and Nanomaterial Center, MAScIR Fondation, Rabat (Morocco); Benyoussef, A. [Laboratory of Magnetism and High Energy Physics (LMPHE-URAC12), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Material and Nanomaterial Center, MAScIR Fondation, Rabat (Morocco); Hassan II Academy of Sciences and Technology, Rabat (Morocco)
2017-04-15
In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature T{sub c} for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.
Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress
Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.
2009-01-01
Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.
Calculations on nonlinear optical properties for large systems the elongation method
Gu, Feng Long; Springborg, Michael; Kirtman, Bernard
2014-01-01
For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.
Specific fission J-window and angular momentum dependence of the fission barrier
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi
1997-04-01
A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.
Electronic, optical, and thermodynamic properties of borophene from first-principle calculations
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Zhang, Rongjun; Zhu, Heyuan
2016-01-01
Borophene (two-dimensional boron sheet) is a new type of two-dimensional material, which was recently grown successfully on single crystal Ag substrates. In this paper, we investigate the electronic structure and bonding characteristics of borophene by first-principle calculations. The band structure of borophene shows highly anisotropic metallic behaviour. The obtained optical properties of borophene exhibit strong anisotropy as well. The combination of high optical transparency and high ele...
Calculation of the transport and relaxation properties of dilute water vapor
Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa
2009-07-01
Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.
Variational calculations for ground state properties of liquid 3He injected in a carbon nanotube
Bordbar, G. H.; Rastkhadiv, M. A.
2017-09-01
Liquid 3He injected in a carbon nanotube is of high interests due to different behavior of the liquid helium in the quasi-one-dimensional systems. In this work, a variational approach has been performed to calculate some thermodynamic properties of this quantum system. In order to do so, a single-walled carbon nanotube containing liquid 3He is considered, applying the Lennard-Jones and Stan-Cole potentials for 3He-3He and 3He-C interactions, respectively. Finally the total energy, equation of state and incompressibility of the system have been calculated. Our calculations show the high values for the incompressibility at high densities, especially for high radii.
Effects of alloying elements on elastic properties of Al by first-principles calculations
Directory of Open Access Journals (Sweden)
Wang J.
2014-01-01
Full Text Available The effects of alloying elements (Co, Cu, Fe, Ge, Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr on elastic properties of Al have been investigated using first-principles calculations within the generalized gradient approximation. A supercell consisting of 31 Al atoms and one solute atom is used. A good agreement is obtained between calculated and available experimental data. Lattice parameters of the studied Al alloys are found to be depended on atomic radii of solute atoms. The elastic properties of polycrystalline aggregates including bulk modulus (B, shear modulus (G, Young’s modulus (E, and the B/G ratio are also determined based on the calculated elastic constants (cij’s. It is found that the bulk modulus of Al alloys decreases with increasing volume due to the addition of alloying elements and the bulk modulus is also related to the total molar volume (Vm and electron density (nAl31x with the relationship of nAl31x=1.0594+0.0207√B/Vm. These results are of relevance to tailor the properties of Al alloys.
Atomistic calculation of electronic and optical properties of a single InAs quantum dots
Zielinski, M.; Korkusinski, M.; Sheng, W.; Hawrylak, P.
2008-03-01
We present an atomistic tight-binding (TB) theory of electronic structure and optical properties of a single self-assembled InAs quantum dot (SAD). In previous work an effective-bond-orbital model (EBOM) was used to calculate electron and hole states of the SAD. The strain distribution was calculated using the continuum elasticity theory and EBOM was coupled to the strain via the Bir-Pikus Hamiltonian. However, the properties of these multimillion-atom systems are influenced by the presence of crystal facets and the symmetry of underlying zinc-blende lattice. In current work we present a fully atomistic TB model, accounting for the atomistic symmetry, and extended to include d-orbitals for proper treatment of interband/intervalley couplings. Strain is included in the Hamiltonian via Slater-Koster rules and a generalized Harrison law, with the equilibrium positions of atoms calculated using the valence force field method. Coulomb matrix elements are found using the TB functions, and electronic properties of N confined excitons (N=1-6) are determined in the CI approach. Emission spectra of multiexcitons are also obtained. Comparison with the previous approach and the experimental results is presented.
Design and Properties Prediction of AMCO3F by First-Principles Calculations.
Tian, Meng; Gao, Yurui; Ouyang, Chuying; Wang, Zhaoxiang; Chen, Liquan
2017-04-19
Computer simulation accelerates the rate of identification and application of new materials. To search for new materials to meet the increasing demands of secondary batteries with higher energy density, the properties of some transition-metal fluorocarbonates ([CO3F]3-) were simulated in this work as cathode materials for Li- and Na-ion batteries based on first-principles calculations. These materials were designed by substituting the K+ ions in KCuCO3F with Li+ or Na+ ions and the Cu2+ ions with transition-metal ions such as Fe2+, Co2+, Ni2+, and Mn2+ ions, respectively. The phase stability, electronic conductivity, ionic diffusion, and electrochemical potential of these materials were calculated by first-principles calculations. After taking comprehensive consideration of the kinetic and thermodynamic properties, LiCoCO3F and LiFeCO3F are believed to be promising novel cathode materials in all of the calculated AMCO3F (A = Li and Na; M = Fe, Mn, Co, and Ni). These results will help the design and discovery of new materials for secondary batteries.
Fission product solvent extraction
Energy Technology Data Exchange (ETDEWEB)
Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A. [and others
1998-02-01
Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).
Energy Technology Data Exchange (ETDEWEB)
Duan, Yuhua
2012-11-02
Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method
Energy Technology Data Exchange (ETDEWEB)
Laget, M
2007-10-15
While the existence of an island of stability beyond Z=110 is theoretically acquired, the location of this island ranges from Z=114 to Z=126 depending on models. In this work, the stability of super-heavy nuclei is probed through the study of their fission time. The chosen experimental method, the crystal blocking method, is sensitive to the presence of possible long time components in the fission time distribution which indicates a fission mechanism occurring after the formation of a compound nucleus. The blocking dips were therefore constituted for the various products of the reaction U{sup 238} + Ni (6.6 MeV/A) {yields} 120, the experimental set-up allowing us to clearly identify and select the reaction mechanisms. The comparison of the blocking dip constituted for quasi-elastic scattering events with the one obtained for the fission fragments of a Z=120, combined with the study of kinematical properties of these fission fragments, give evidences of the existence of very long fission times (> 10{sup -18} s) only compatible with a fusion-fission mechanism implying a non vanishing fission barrier height for Z=120. The second part outlines microscopic calculations of fission barrier heights, carried out in the framework of the finite temperature of the Hartree-Fock-Bogoliubov (HFB) theory. Because of the progressive vanishing of the pairing correlation with T, which happens differently at the ground state and at the top of the barrier, B{sub f} first grows until T {approx_equal} 0.8 MeV before dropping with T owing to shell-effects damping with temperature. (author)
Harloff, G. J.
1986-01-01
Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.
Lee, Jihang; Kioupakis, Emmanouil; Lu, Wei
2014-03-01
Tantalum oxide has been extensively studied due to its attractive properties as dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide (Ta2O5) have been reported, the structural and electronic/optical properties still remain a controversial issue. We investigate the electronic and optical properties of crystalline and amorphous Ta2O5 structures using first-principles calculations in the GW approximation. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements. The amorphous structure exhibits a strong exciton binding energy and an optical band gap (~ 4eV) similar to experiment. We determine the atomic orbitals that form the conduction band of each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta2O5. This work was supported in part by the AFOSR through MURI grant FA9550-12-1-0038. Jihang Lee is supported in part by Kwanjeong Scholarship. Computational resources were provided by the DOE NERSC facility.
Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations
Directory of Open Access Journals (Sweden)
Lihua Xiao
2016-08-01
Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.
Metal vapors in gas tungsten arcs: part ii. theoretical calculations of transport properties
Dunn, G. J.; Eagar, T. W.
1986-10-01
Theoretical calculations of gas tungsten arc transport properties have revealed that small amounts of low ionization potential elements such as aluminum or calcium do not have as great an effect on the electrical and thermal conductivities as has been previously reported, if the presence of other metal vapors such as iron or manganese is also considered. It is therefore concluded that the effects of minor elements on arc properties may be less important than has previously been believed in explaining the variable penetration often associated with minor element additions to the base metal, and that weld pool convection effects such as surface tension modifications are probably more important. However, the effects of vapors emitted by the tungsten electrode may have a great effect on arc properties, as the shielding gas is otherwise free of contaminants in the upper regions of the arc.
Directory of Open Access Journals (Sweden)
Bulgac Aurel
2017-01-01
Full Text Available Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of fission dynamics in classically allowed regions of the collective potential energy surface, almost eighty years after its discovery in 1939 by Hahn and Strassmann [1]. The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT [2–5] to superfluid fermion systems [6]. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Thus the conditions have been created to renounce phenomenological models and incomplete microscopic treatments with uncontrollable approximations and/or assumptions in the description of the complex dynamics of fission. Even though the available nuclear energy density functionals (NEDFs are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments.
Bulgac, Aurel; Jin, Shi; Magierski, Piotr; Roche, Kenneth; Schunck, Nicolas; Stetcu, Ionel
2017-11-01
Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of fission dynamics in classically allowed regions of the collective potential energy surface, almost eighty years after its discovery in 1939 by Hahn and Strassmann [1]. The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT) [2-5] to superfluid fermion systems [6]. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Thus the conditions have been created to renounce phenomenological models and incomplete microscopic treatments with uncontrollable approximations and/or assumptions in the description of the complex dynamics of fission. Even though the available nuclear energy density functionals (NEDFs) are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments.
Fission Product Library and Resource
Energy Technology Data Exchange (ETDEWEB)
Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-29
Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.
Periodic calculations of excited state properties for solids using a semiempirical approach.
Gadaczek, Immanuel; Hintze, Kim Julia; Bredow, Thomas
2012-01-14
The semiempirical SCF MO method MSINDO (modified symmetrically orthogonalized intermediate neglect of differential overlap) [T. Bredow and K. Jug, Electronic Encyclopedia of Computational Chemistry, 2004] is extended to the calculation of excited state properties through implementation of the configuration interaction singles (CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) [T. Bredow et al., J. Comput. Chem., 2001, 22, 89] which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The CIS equations are solved for a cluster with periodic boundary conditions using the Davidson-Liu iterative block diagonalization approach. As a proof-of-principle, MSINDO-CCM-CIS is applied for the calculation of optical spectra of ZnO and TiO(2), oxygen-defective rutile, and F-centers in NaCl. The calculated spectra are compared to available experimental and theoretical literature data. After re-adjustment of the empirical parameters the quantitative agreement with experiment is satisfactory. The present approximate approach is one of the first examples of a quantum-chemical methodology for solids where excited states are correctly described as n-electron state functions. After careful benchmark testing it will allow calculation of photophysical and photochemical processes relevant to materials science and catalysis.
Importance of light scattering properties of cloud particles on calculating the earth energy cycle
Letu, H.; Nakajima, T. Y.; Nagao, T. M.; Ishimoto, H.
2013-12-01
The Earth is an open system, and the energy cycle of the Earth is not always a certain amount. In other words, the energy cycle in the nature is imbalance. A better understanding of the earth energy cycle is very important to study global climate change. the IPCC-AR4 reported that the cloud in the atmosphere are still characterized by large uncertainties in the estimation of their effects on energy sysle of the Earth's atmosphere. There are two types of cloud in the atmosphere, which are Cirrus and warm water cloud. In order to strongly reflect visible wavelength from sun light, thick water cloud has the effect of cooling the earth surface. When Cirrus is compared to water cloud, temperature is almost lower. Thus, there is a feature that Cirrus is easy to absorb long-wave radiation than warm water cloud. However, in order to quantitatively evaluate the reflection and absorption characteristics of cloud on remote senssing application and energy cycle of the imbalance of nature, it is necessary to obtain the scattering properties of cloud particles. Since the shapes of the water cloud particle are close to spherical, scattering properties of the particles can be calculated accurately by the Mie theory. However, Cirrus particles have a complex shape, including hexagonal, plate, and other non- spherical shapes. Different from warm water cloud partical, it is required to use several different light scattering methods when calculating the light scattering properties of the non-spherical Cirrus cloud particals. Ishimoto et al. [2010, 2012] and Masuda et al. [2012] developed the Finite-Difference Time Domain method (FDTD) and Improved Geometrical-Optics Method (IGOM) for the solution of light scattering by non-spherical particles. Nakajima et al [1997,2009] developed the LIght Scattering solver for Arbitral Shape particle (Lisas)-Geometrical-Optics Method (GOM) and Surface Integral Equations Method of Müller-type (SIEMM) to calculate the light scattering properties for
Fission gas measuring technology
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok
1998-02-01
Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.
Mechanical, Electronic, and Optical Properties of β-B6O: First-Principles Calculations
Yang, Ruike; Ma, Shaowei; Wei, Qun; Du, Zheng
2017-08-01
The mechanical, electronic, and optical properties of β-B6O are calculated by first-principles. The structural optimization and all properties are calculated by the method of generalized gradient approximation - Perdew, Burke and Ernzerhof (PBE). The hardness of β-B6O is 39 GPa under a pressure of 0 GPa, which indicates that it belongs to a hard material. The band gap is indirect with a value of 1.836 eV, showing that β-B6O is a semiconductor. The research of the electron localization function shows that the bonds of β-B6O are covalent bonds, which can increase the stability of the compound. The phonon dispersion curves present the dynamical stability of β-B6O under pressures of 0 and 50 GPa. The optical properties of β-B6O are also calculated. In the energy range from 0 to 18 eV, β-B6O presents high reflectivity; it has a strong absorption in the energy range from 3 to 18 eV. The refractive index results show that light propagates through the β-B6O in a difficult manner in the energy range from 6.9 to 16.5 eV. In addition, the energy of the plasma frequency for β-B6O is 16.6 eV and the peak value of the loss function is 13.6. These properties provide the basis for the development and application of β-B6O.
ISOLDE experiment explores new territory in nuclear fission
CERN Bulletin
2011-01-01
An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question. Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...
Grebeshkov, V. V.; Smolyakov, V. M.
2012-05-01
A 16-constant additive scheme was derived for calculating the physicochemical properties of saturated monoalcohols CH4O-C9H20O and decomposing the triangular numbers of the Pascal triangle based on the similarity of subgraphs in the molecular graphs (MGs) of the homologous series of these alcohols. It was shown, using this scheme for calculation of properties of saturated monoalcohols as an example, that each coefficient of the scheme (in other words, the number of methods to impose a chain of a definite length i 1, i 2, … on a molecular graph) is the result of the decomposition of the triangular numbers of the Pascal triangle. A linear dependence was found within the adopted classification of structural elements. Sixteen parameters of the schemes were recorded as linear combinations of 17 parameters. The enthalpies of vaporization L {298/K 0} of the saturated monoalcohols CH4O-C9H20O, for which there were no experimental data, were calculated. It was shown that the parameters are not chosen randomly when using the given procedure for constructing an additive scheme by decomposing the triangular numbers of the Pascal triangle.
First principles calculation of thermodynamic properties of NaAlSi ternary
Qin, Jining; Lu, Weijie; Zhang, Di; Fan, Tongxiang
2012-01-01
PbFCl-type NaAlSi ternary is a corrosion compound found in aluminum, which is used as a sealing material in sodium sulfur battery. To understand and control the corrosion process, it is important to predict its quantitative properties. In this study, a first-principles calculation has been carried out to calculate its equilibrium lattice parameters, bulk modulus and pressure derivative of bulk modulus by both all-electron full-potential linear augmented plane wave scheme and pseudopotential plane wave scheme within the generalized gradient approximation. The theoretical results show good agreement with the available experimental data. The thermodynamic properties, including the specific heat capacity and entropy with pressure up to 9 GPa, have been investigated for the first time by coupling of density functional perturbation theory and quasiharmonic approximation. The volume and linear thermal expansion coefficients were estimated and the results show that the linear thermal expansion on c-axis is nearly twice as large as that on a-axis within the calculated temperature.
First-principles calculations of high-pressure and -temperature properties of stishovite
Yang, R.; Wu, Z.
2013-12-01
Quartz is one of the main gradient of the crust and is transformed into coesite and then stishovite under pressure. Stishovite is stable at 9~50GPa [1,2]. It is estimated that stishovite makes up more than 20% of the subducted oceanic crust in the mantle transition zone and lower mantle [3,4,5]. Therefore, the properties of stishovite under high-pressure and -temperature are very critical for us to understand the mantle convection. We investigated themodynamic properties of stishovite by combing first-principles calculations with quasi-hamonic approximation. We also calculated the elastic constants of stishovite at high-temperature and -pressure using the new method developed by Wu and Wentzcovitch [6]. The calculated results are in consistence with the experimental data. Both temperature and pressure significantly affect the anistropy of the stishovite. 1, Zhang, J., Li, B., Utsumi, W., Liebermann, R. C., Phys. Chem. Miner., 23, 1-10 (1996) 2, Kingma, K. J., R. E. Cohen, R. J. Hemley, and H. K. Mao, Nature, 374, 243-245 (1995). 3. Kesson, S. E., Fitz Gerald, J. D. Shelley, J. M. G., Nature, 372,767-769 (1994) 4, Ono, S., Ito, E., Katsura, T., Earth Planet. Sci. Lett., 190, 57-63 (2001) 5, Irifue, T., Ringwood, A. E., Earth Planet. Sci. Lett., 117, 101-110 (1993) 6, Wu, Z., Wentzcovitch, R. M., Phys. Rev. B 83, 184115 (2011)
Directory of Open Access Journals (Sweden)
Christoph Helma
2017-06-01
Full Text Available The lazar framework for read across predictions was expanded for the prediction of nanoparticle toxicities, and a new methodology for calculating nanoparticle descriptors from core and coating structures was implemented. Nano-lazar provides a flexible and reproducible framework for downloading data and ontologies from the open eNanoMapper infrastructure, developing and validating nanoparticle read across models, open-source code and a free graphical interface for nanoparticle read-across predictions. In this study we compare different nanoparticle descriptor sets and local regression algorithms. Sixty independent crossvalidation experiments were performed for the Net Cell Association endpoint of the Protein Corona dataset. The best RMSE and r2 results originated from models with protein corona descriptors and the weighted random forest algorithm, but their 95% prediction interval is significantly less accurate than for models with simpler descriptor sets (measured and calculated nanoparticle properties. The most accurate prediction intervals were obtained with measured nanoparticle properties (no statistical significant difference (p < 0.05 of RMSE and r2 values compared to protein corona descriptors. Calculated descriptors are interesting for cheap and fast high-throughput screening purposes. RMSE and prediction intervals of random forest models are comparable to protein corona models, but r2 values are significantly lower.
Li, Rui; Cao, Hong; Dong, Jinming
2017-11-01
The electronic properties of one-dimensional (1D) group-IV monochalcogenide ribbons, denoted as MXNRs (Mdbnd Ge, Sn; Xdbnd S, Se), are investigated by the density functional theory calculations. It is found from our calculations that all the MXNRs with zigzag edges are metals, because there are two edge bands crossing the Fermi level, which come from the py and pz orbital of edge M atoms and py ones of edge X atoms. In contrast, all the MXNRs with armchair edges (arm-MXNRs) are semiconductors, independent of the ribbon widths. Their band gaps are found to fluctuate, which vary with the ribbon width, finally converging to the values of the corresponding 2D MX compounds. It is important to find that except for the arm-SnSNRs, other three narrow arm-MXNRs exhibit repeatedly band gap transitions between the direct and indirect ones as their widths increase because of the edge symmetry and quantum confinement effect of the 1D ribbons. The calculated binding energies indicate that the arm-MXNRs are generally more stable than the zig-MXNRs. In addition, the hydrogen-terminated GeSNRs are also studied, which exhibit semiconducting properties no matter their edges are zigzag or armchair.
Multivariate statics employed as proposal for calculating the market value and property taxation
Directory of Open Access Journals (Sweden)
Jonilson Heil
2013-05-01
Full Text Available It is well known that the Brazilian municipalities aim to increase their own revenues and reduce dependence on state and federal financial transfers, optimizing their tax revenues. It is also known that the municipalities intend to carry out that mission with integrity, clarity and to present easily the accountability to regulators, as well as to their respective populations. In this paper carried out a study on the methodology employed in a town in central-southern state of Paraná to calculate the venal values and property tax (IPTU and the consequent taxation of IPTU and ITBI in these goods. Based on municipality registration data was developed, by means of multivariate statistical techniques, an analysis of the characteristics that most influence the monetary valuations of the property, and applying multiple linear regression analysis are proposed models to estimate values of the venal values of properties, allowing tax calculations predict through it. Finally, comparisons are presented between the results from the methodology used by the municipality with those obtained by the models developed, proposed for use in general.
Pan, Yong; Lin, Yuanhua
2017-10-01
Tungsten borides are promising high-temperature materials. However, the structure and hardening mechanisms of tungsten boride are still great challenges. To solve the problems, we apply the first-principles method to study the structure of WB3 and explore the influence of alloying element Re on the mechanical properties of WB3. The calculated Vickers hardness of WB3 is 39.1 GPa. We further find that a low concentration of Re can improve the hardness of WB3, which is in good agreement with the experimental result. However, the hardness and elastic properties of WB3 decrease gradually with increasing Re concentration. The calculated results show that the structure and hardness of WB3 are attributed to the B-B hexagonal prism. A high concentration of Re weakens the charge interaction between the B-B atoms, and reduces the mechanical properties of WB3. Therefore, we can adjust the alloy concentration to improve the Vickers hardness of transition metal borides.
Energy Technology Data Exchange (ETDEWEB)
Miranda, Fabio S.; Ronconi, Celia M.; Sousa, Mikaelly O.B.; Silveira, Gleiciani Q.; Vargas, Maria D., E-mail: miranda@vm.uff.br, E-mail: mdvargascp@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica
2014-01-15
Four novel 6-aminocoumarin-naphthoquinone conjugates were synthesized and their photophysical and electrochemical properties, investigated. 2-Chloro-3-(2-oxo-2H-chromen-6- ylamino)-1,4-naphthoquinone 1 did not present appreciable fluorescence in solution in comparison with 6-aminocoumarin, 6-AC. In order to understand the reasons for the fluorescence quenching in this compound, two strategies were attempted. Firstly, compound 1 was N-methylated to remove the intramolecular N-H...O=C electrostatic interaction that maintained the two units fixed, but the emission properties of the product 2 were not significantly different from those of 1. Time-dependent density functional theory (TD-DFT) calculations of compounds 1 and 2 indicate that the fluorescence quenching is related to the electron acceptor character of the naphthoquinone ring. The second strategy, therefore, involved the substitution of the chlorine atom in position 2 of the naphthoquinone nucleus for different electron donor groups (compounds 3-5), but again the emission properties did not change significantly. To explain these experimental findings, TD-DFT calculations of the ground (S{sub 0}) and excited (S{sub 1}) states of all molecules in solution were carried out. The results suggest that the energy states in these conjugates are such that the fluorescent group (6-AC) donates electrons to the naphthoquinone LUMO resulting in an oxidative photoinduced electron transfer (oxidative-PET). (author)
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations
Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-07-01
C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.
Indian Academy of Sciences (India)
IAS Admin
tained efforts involving many scientists led by Hahn and. Meitner to ... world. Nuclear energy is one of the clean sources of energy and contributes very little to global warming. The discovery of fission of uranium in 1939 changed forever the way society at ... nuclear world with the discovery of neutron by Rutherford's student ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Story of Fission: Unlocking Power of the Nucleus. Amit Roy. General Article Volume 21 Issue 3 March 2016 pp 247-258. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/021/03/0247-0258 ...
Symmetry Constraints and Diffusion Monte Carlo Calculations of Excited State Properties
Foulkes, W. M. C.; Hood, Randolph Q.; Needs, R. J.
1998-03-01
It is now well established that the fixed--node diffusion Monte Carlo (DMC) method can be used to carry out very accurate calculations of the ground state electronic properties of solids and molecules. For a system containing N electrons in three dimensions, a trial N--electron wavefunction is used to fix a nodal surface (the 3N - 1 dimensional surface on which the trial wavefunction is zero), and the DMC algorithm then projects out the lowest energy variational wavefunction consistent with that imposed nodal surface. In attempts to use DMC to calculate excited--state information, it has often been assumed that the DMC energy must be greater than or equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show by constructing an explicit example that this common assumption is wrong, and that only a weaker and much less useful variational principle applies.
Directory of Open Access Journals (Sweden)
Ardielli Eva
2016-12-01
Full Text Available The process of real property valuation by usage of income approaches is significantly affected by capitalization rate. This article deals with problematic of the capitalization rate determination in the real estate segment of apartments in the Ostrava city. It primarily aims to calculate the level of gross capitalization rate according to different urban localities of Ostrava, for various sizes of apartments, as well depending on the type of apartment ownership. The analysis of the real estate market is an important part of the research. It is focused on the offer of apartments from the perspective of market apartments for sale and also of market apartments for rent. The analyzed and calculated spatial values distributions are consequently processed into cartographic outputs.
Method of experimental and calculation determination of dissipative properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2017-12-01
This paper describes the process of definition of relations between the damping ratio and strain/state levels in a material. For these purposes, the experimental-calculation approach was applied. The experimental research was performed on plane composite specimens. The tests were accompanied by finite element modeling using the ANSYS software. Optimization was used as a tool for FEM property setting and for finding the above-mentioned relations. A difference between the calculation and experimental results was accepted as objective functions of this optimization. The optimization cycle was implemented using the pSeven DATADVANCE software platform. The developed approach makes it possible to determine the relations between the damping ratio and strain/state levels in the material, which can be used for computer modeling of the structure response under dynamic loading.
Ab initio calculations on the magnetic properties of transition metal complexes
Energy Technology Data Exchange (ETDEWEB)
Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Fission neutron output measurements at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Nelson, Ronald Owen [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Laptev, Alexander [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Ullmann, J L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Bredeweg, T A [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; Wu, Ching - Yen [LLNL; Becker, J A [LLNL; Stoyer, M A [LLNL; Henderson, R [LLNL; Sutton, M [LLNL; Belier, Gilbert [BRUYERES-LE-CHATEL, FRANCE; Chatillon, A [BRUYERES-LE-CHATEL, FRANCE; Granier, Thierry [CEA, BRUYERES-LE-CHATEL, FRANCE; Laurent, Benoit [CEA, BRUYERES-LE-CHATEL, FRANCE; Taieb, Julien [CEA, BRUYERES-LE-CHATEL, FRANCE
2010-01-01
Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.
Energy Technology Data Exchange (ETDEWEB)
Blaise Collin
2014-09-01
This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive
Directory of Open Access Journals (Sweden)
Masuda Kazuhiko
2016-01-01
Full Text Available Backscattering properties of ice crystal models (Voronoi aggregates (VA, hexagonal columns (COL, and six-branched bullet rosettes (BR6 are calculated by using geometrical-opticsintegral-equation (GOIE method. Characteristics of depolarization ratio (δ and lidar ratio (L of the crystal models are examined. δ (L values are 0.2~0.3 (4~50, 0.3~0.4 (10~25, and 0.5~0.6 (50~100 for COL, BR6, and VA, respectively, at wavelength λ=0.532 μm. It is found that small deformation of COL model could produce significant changes in δ and L.
Fission Matrix Capability for MCNP Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Directory of Open Access Journals (Sweden)
A A Shokri
2013-10-01
Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.
Yang, Hua
2012-01-01
Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.
Fission yield covariances for JEFF: A Bayesian Monte Carlo method
Leray, Olivier; Rochman, Dimitri; Fleming, Michael; Sublet, Jean-Christophe; Koning, Arjan; Vasiliev, Alexander; Ferroukhi, Hakim
2017-09-01
The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties) and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.
Fission yield covariances for JEFF: A Bayesian Monte Carlo method
Directory of Open Access Journals (Sweden)
Leray Olivier
2017-01-01
Full Text Available The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.
Directory of Open Access Journals (Sweden)
A. Yu. Zhuravlev
2016-02-01
Full Text Available Purpose. The work is intended to investigate the electromagnetic processes in impedance bond in order to improve noise immunity of track circuits (TC for safe railway operation. Methodology. To achieve this purpose the methods of scientific analysis, mathematical modelling, experimental study, a large-scale simulation were used. Findings. The work examined the interference affecting the normal performance of track circuits. To a large extent, part of track circuit damages account for failures in track circuit equipment. Track circuit equipment is connected directly to the track line susceptible to traction current interference, which causes changes in its electrical characteristics and electromagnetic properties. Normal operability, performance of the main operating modes of the track circuit is determined by previous calculation of its performance and compilation of regulatory tables. The classical method for determination of track circuit parameters was analysed. The classical calculation method assumes representation of individual sections of the electrical track circuit using the quadripole network with known coefficients, usually in the A-form. Determining the coefficients of linear element circuit creates no metrological or mathematical difficulties. However, in circuits containing nonlinear ferromagnets (FM, obtaining the coefficients on the entire induction change range in the cores is quite a difficult task because the classical methods of idling (I and short circuit (SC are not acceptable. This leads to complicated methods for determining both the module and the arguments of quadripole network coefficients. Instead of the classical method, the work proposed the method for calculating the track circuit dependent on nonlinear properties of ferromagnets. Originality. The article examines a new approach to the calculation of TC taking into account the losses in ferromagnets (FM, without determination of equivalent circuit quadripole
Prompt fission neutron spectra of sup 2 sup 3 sup 8 U(n,f) above emissive fission threshold
Maslov, V M; Tetereva, N A; Baba, M; Hasegawa, A; Kornilov, N; Kagalenko, A B
2003-01-01
Model calculations were performed to interpret prompt fission neutron spectra (PFNS) of the sup 2 sup 3 sup 8 U(n,f) reaction for incident neutron energies E sub n =6-18 MeV. Pre-fission (pre-saddle) sup 2 sup 3 sup 8 U(n,xnf) reaction neutron spectra were calculated with Hauser-Feshbach statistical model, sup 2 sup 3 sup 8 U fission and (n,xn) reaction cross-section data being described consistently. The increase of the cut-off energy of (n,nf) reaction neutron spectra with excitation energy of fissioning nucleus is described. For E sub n =6-9 MeV the low-energy PFNS component, which is due to the contribution of pre-fission (n,nf) neutrons, is compatible with measured data. Average energy of prefission (n,nf) neutrons is shown to be rather dependent on E sub n. For E sub n =13-18 MeV, a decrease of measured PFNS average neutron energies is interpreted. Spectra of neutrons, evaporated from fission fragments, were approximated as a sum of two Watt distributions. The reduced fission fragment velocity is assume...
Remarks on the fission barriers of super-heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Scheidenberger, C.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Pospiech, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V.
2016-04-01
Shell-correction energies of super-heavy nuclei are approximated by using QαQα values of measured decay chains. Five decay chains were analyzed, which start at the isotopes 285Fl, 294118, 291Lv, 292Lv and 293Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far.
Thermodynamics of fission products in UO2+-x
Energy Technology Data Exchange (ETDEWEB)
Nerikar, Pankaj V [Los Alamos National Laboratory
2009-01-01
The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.
Shi, Guangsha
Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the
Electronic and magnetic properties of Mn-doped ZnO: Total-energy calculations
Energy Technology Data Exchange (ETDEWEB)
AlGhamdi, Ghadah S [King Abdulaziz University Physics Department Faculty of Science PO Box 80203 Jeddah 21589 (Saudi Arabia); AlZahrani, A.Z., E-mail: azalzahrani@kau.edu.sa [King Abdulaziz University Physics Department Faculty of Science PO Box 80203 Jeddah 21589 (Saudi Arabia)
2012-10-01
Based on the spin generalized gradient approximation ({sigma}GGA) of the density functional theory (DFT), the structural, magnetic, and electronic properties of Mn-doped ZnO structure have thoroughly been investigated. It is found that the Mn atom prefers to substitute one of the Zn atoms, producing the energetically most stable configuration for the Mn-doped ZnO structure. Employing the Hubbard potential within the calculations suggests various changes and modifications to the structural, magnetic and electronic properties of the Mn-doped ZnO. Our calculations reveal that the local magnetic moment at the Mn site using the ordinary {sigma}GGA functional is 4.84 {mu}{sub B}/Mn, which is smaller than that evaluated by including the Hubbard potential of 5.04 {mu}{sub B}/Mn. Overall, the electronic band structure of the system, within the {sigma}GGA+U, is half-metallic, with metallic nature for the majority state and semiconducting nature for the minority state. Simulated scanning tunneling microscopy (STM) images for both unoccupied and occupied states indicate siginficant brightness on both Zn and Mn atoms and much brighter protrusions around the O atoms, respectively.
Structure and Magnetic Properties in Ruthenium-Based Full-Heusler Alloys: AB INITIO Calculations
Bahlouli, S.; Aarizou, Z.; Elchikh, M.
2013-12-01
In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru2CrZ (Z = Si, Ge and Sn) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru2CrSi and Ru2CrGe exhibit a semiconducting behavior whereas Ru2CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (TN) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated TN are somewhat overestimated to the available experimental ones.
Synthesis, characterization, optical properties and theoretical calculations of 6-fluoro coumarin.
Bai, Yihui; Du, Jinyan; Weng, Xuexiang
2014-05-21
6-Fluoro coumarin is synthesized and characterized by (1)H NMR and (13)C NMR. The optical properties of the title compound are investigated by UV-vis absorption and fluorescence emission spectra, the results show the title compound can absorb UV-vis light at 319, 269 and 215nm, moreover it exhibits blue-purple fluorescence emission at 416nm. Theoretical studies on molecular structure, infrared spectra (IR), nuclear magnetic resonance ((1)H NMR, (13)C NMR) chemical shifts, UV-vis absorption and fluorescence emission of the synthesized compound have been worked out. Most chemical calculations were performed by density functional theory (DFT) method at the B3LYP/6-311G(d,p) level (NMR at B3LYP/Aug-CC-Pvdz level) using Gaussian 09 program. The compared results reveal that the scaled theoretical vibrational frequencies are in good accordance with the observed spectra; computational chemical shifts are consistent with the experimental values in most parts, except for some minor deviations; the UV-vis absorption calculated matches the experimental one very well, and the fluorescence emission spectrum is in good agreement with the experimental one when the solute-solvent hydrogen-bonding interaction is considered. These good coincidences prove that the computational methods selected can be used to predict these properties of other similar materials where it is difficult to arrive at experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.
Moon, Juhyuk
2012-06-04
The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.
In-beam fission study for Heavy Element Synthesis
Nishio Katsuhisa
2013-01-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sect...
Hirose, K.; Nishio, K.; Tanaka, S.; Léguillon, R.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Vermeulen, M. J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Nakano, K.; Araki, S.; Watanabe, Y.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Andreyev, A. N.
2017-12-01
Fission-fragment mass distributions were measured for U 237 - 240 , Np 239 - 242 , and Pu 241 - 244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O 18 +U 238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U 240 and Np 240 ,241 ,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission.
Directory of Open Access Journals (Sweden)
Nishio Katsuhisa
2013-12-01
Full Text Available Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.
First-principles calculations of the electronic and structural properties of GaSb
Energy Technology Data Exchange (ETDEWEB)
Castaño-González, E.-E. [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Seña, N. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mendoza-Estrada, V.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Dussan, A. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Universidad del Rosario, Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas (Colombia)
2016-10-15
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.
Fission dynamics of the compound nucleus 213 Fr formed in heavy ...
Indian Academy of Sciences (India)
A stochastic approach based on one-dimensional Langevin equations was used to calculate the average pre-fission multiplicities of neutrons, light charged particles and the fission probabilities for the compound nucleus 213Fr and the results are compared with the experimental data. In these calculations, a modified wall ...
Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka
2015-02-01
CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Huang, Bo [School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Duan, Yong-Hua, E-mail: duanyh@kmust.edu.cn [School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Lab of Advance Materials in Rare & Precious and Nonferrous Metals, Ministry of Education, Kunming 650093 (China); Sun, Yong [School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Lab of Advance Materials in Rare & Precious and Nonferrous Metals, Ministry of Education, Kunming 650093 (China); Peng, Ming-Jun; Chen, Shuai [School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)
2015-06-25
Highlights: • The band gaps for CaB{sub 6}, SrB{sub 6} and BaB{sub 6} depend sensitively on the values of lattice constant a and positional parameter z. • The order in elastic anisotropy is CaB{sub 6} > SrB{sub 6} > BaB{sub 6}. • There are LO/TO splitting lines in the range of 5–10 THz at G point. - Abstract: The electronic structures, mechanical and thermodynamic properties of alkaline-earth hexaborides MB{sub 6} (M = Ca, Sr or Ba) are calculated from first principles using density functional theory combined with the quasi-harmonic approximation. These three alkaline-earth hexaborides are semiconductors with a slightly increased trend for their band gaps as M orders from Ca to Ba. Their band gaps depend sensitively on the values of lattice constant a and internal parameter z. The polycrystalline values of the elastic constants and bulk, shear and Young’s moduli are consistent with those determined experimentally. All alkaline-earth hexaborides have strongly anisotropic elastic properties in the order of CaB{sub 6} > SrB{sub 6} > BaB{sub 6}. By using the phonon calculations, the thermodynamic properties are investigated. The obtained phonon dispersion relations for CaB{sub 6}, SrB{sub 6}, and BaB{sub 6} show similar features and there are LO/TO splitting lines in the range of 5–10 THz. Finally, the thermal conductivities of CaB{sub 6}, SrB{sub 6} and BaB{sub 6} are evaluated via Clarke’s model and Cahill’s model.
First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys
Energy Technology Data Exchange (ETDEWEB)
Aly, Samy H., E-mail: samy.ha.aly@gmail.com; Shabara, Reham M., E-mail: rehamph@hotmail.com
2014-06-01
We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co{sub 2}CrSi and Fe{sub 2}CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe{sub 2}CrSb, Ni{sub 2}CrIn, Cu{sub 2}CrIn, and Cu{sub 2}CrSi alloys. Fe{sub 2}CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co{sub 2}CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa. - Highlights: • This study is a novel study on properties of Ni{sub 2}CrIn, Cu{sub 2}CrIn, Cu{sub 2}CrSi and Fe{sub 2}CrSb. • We have calculated the lattice constant, bulk modulus, energy gap, and DOS. • Half-metallic property is found only in both Co{sub 2}CrSi and Fe{sub 2}CrSi alloys. • Total and partial magnetic moments were studied under high pressure.
Measurement of MA fission cross sections at YAYOI
Energy Technology Data Exchange (ETDEWEB)
Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-03-01
Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)
Vila, F. D.; Rehr, J. J.
Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.
Calculation of properties of the electron-hole liquid in uniaxially stressed Ge and Si
Energy Technology Data Exchange (ETDEWEB)
Kelso, S.M.
1982-06-15
We present a detailed theoretical study of the stress dependence of properties of the electron-hole liquid, both at zero and finite temperatures, in <111>-stressed Ge and <100>-stressed Si. These properties include the ground-state equilibrium density, pair energy, electron and hole Fermi energies, sign of the electron-hole drop charge, luminescence linewidth, and liquid compressibility. The results are compared at T = 0 to the calculations of Kirczenow and Singwi and at Troughly-equal2 K to the available data. We discuss the possibility of a phase transition associated with the depopulation of the upper electron valleys in Ge. We also discuss methods of extrapolating from finite to infinite stress. The importance of the nonparabolicity of the valence bands is emphasized throughout. We discuss ranges of validity for a low-temperature expansion of the free energy. Results are presented for the systematic low-temperature variation of the liquid density, Fermi energy, and chemical potential and for the critical temperature and density. These theoretical results are found to be in reasonably good agreement with available data. Finally, we discuss scaling relations for combinations of electron-hole--liquid properties.
Neutron induced fission of 234U
Directory of Open Access Journals (Sweden)
Pomp S.
2012-02-01
Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean
DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis
Energy Technology Data Exchange (ETDEWEB)
Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)
2016-07-01
Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive
Furnish, M. D.; Boslough, M. B.; Gray, G. T., III; Remo, J. L.
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2-20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
Development of JENDL Decay and Fission Yield Data Libraries
Katakura, J.
2014-04-01
Decay and fission yield data of fission products have been developed for decay heat calculations to constitute one of the special purpose files of JENDL (Japanese Nuclear Data Library). The decay data in the previous JENDL decay data file have been updated based on the data extracted from ENSDF (Evaluated Nuclear Structure Data File) and those by Total Absorption Gamma-ray Spectroscopy (TAGS) measurements reported recently. Fission yield data have also been updated in order to maintain consistency between the decay and yield data files. Decay heat calculations were performed using the updated decay and yield data, and the results were compared with measured decay heat data to demonstrate their applicability. The uncertainties of the calculated results were obtained by sensitivity analyses. The resulting JENDL calculations and their uncertainty were compared with those from the ENDF and JEFF evaluated files.
Actinide Sputtering Induced by Fission with Ultra-cold Neutrons
Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark
2017-09-01
Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.
Parity nonconservation and Brosa modes in nuclear fission
Graf, U.; Gönnenwein, F.; Geltenbort, P.; Schreckenbach, K.
1995-09-01
The parity nonconserving (PNC) asymmetry coefficient α for the angular distribution of fragment emission from binary fission of233U irradiated by polarized thermal neutrons has been measured. Complementary fragments were detected by a double ionization chamber with high resolving power. The experiment was carried out at the high flux reactor of the ILL, Grenoble. Integrated over all masses and energies of light fragments from asymmetric fission of234Uh, the PNC asymmetry coefficient is found to be α=(3.29±0.31) × 10-4.The positive sign of α indicates a preferential emission of light fragments parallel to the spin of neutrons inducing fission. Theory claims that PNC effects are sensitive to the properties of the fission barrier. On the other hand, one may wonder whether characteristics of eventual fragments are already specified at the barrier. The measurement of PNC asymmetries for distinct mass-energy ranges of fragments has been utilized to answer this question. Mass-energy distributions of fragments were analyzed along the lines of the Brosa model of fission as a superposition of individual modes. Within experimental uncertainty no mode dependence of asymmetric fission could be disclosed. The result is in keeping with the Brosa model where asymmetric modes bifurcate only once the standard fission barrier has been passed.
Langevin model of low-energy fission
Sierk, Arnold J.
2017-09-01
Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions
First principles calculation of material properties of group IV elements and III-V compounds
Malone, Brad Dean
This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present
Directory of Open Access Journals (Sweden)
Qiushi Zheng
2017-02-01
Full Text Available Vanadium-bearing muscovite is the most valuable component of stone coal, which is a unique source of vanadium manufacture in China. Numbers of experimental studies have been carried out to destroy the carrier muscovite’s structure for efficient extraction of vanadium. Hence, the vanadium location is necessary for exploring the essence of vanadium extraction. Although most infer that vanadium may substitute for trivalent aluminium (Al as the isomorphism in muscovite for the similar atomic radius, there is not enough experimental evidence and theoretical supports to accurately locate the vanadium site in muscovite. In this study, the muscovite model and optimal location of vanadium were calculated by density functional theory (DFT. We find that the vanadium prefers to substitute for the hexa-coordinated aluminum of muscovite for less deformation and lower substitution energy. Furthermore, the local geometry and relative electronic properties were calculated in detail. The basal theoretical research of muscovite contained with vanadium are reported for the first time. It will make a further influence on the technology development of vanadium extraction from stone coal.
Energy Technology Data Exchange (ETDEWEB)
Lee, B; Rudd, R E
2006-10-19
We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si {l_angle}001{r_angle} nanowires. The nanowires are taken to have predominantly {l_brace}100{r_brace}surfaces, with small {l_brace}110{r_brace} facets according to the Wulff shape. The Young's modulus, the equilibrium length and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parameterize the continuum model and to account for the discrepancies between the two models and the first-principles results.
Measured and calculated optical property profiles in the mixed layer and free troposphere
Rosen, James M.; Bodhaine, Barry A.; Boatman, Joe F.; Deluisi, John J.; Post, M. J.; Kim, Young; Schnell, Russell C.; Sheridan, Patrick J.; Garvey, Dennis M.
1992-01-01
Nearly simultaneous measurements of the physical and optical properties of mixed layer and free tropospheric aerosols near Boulder, Colorado, were made on several occasions using aircraft, balloon, and ground-based sensors. This effort (Front Range Lidar, Aircraft, and Balloon experiment (FRLAB)) was conducted with the purpose of obtaining a diverse, self-consistent data set that could be used for testing optical model calculations based on measured physical characteristics such as apparent size distribution, composition, and shape. It was found that even with the uncertainties involved, the model predictions are in good agreement with the measurements in the visible and near infrared wavelength regions. At CO2 lidar wavelengths there is considerably more uncertainty in both the calculated and measured values; however, within the estimated errors there appears to be satisfactory agreement except for the highest free tropospheric layer studied. The results also indicate that during FRLAB the aerosol in the boundary layer and free troposphere behaved as spherical particles for optical modeling purposes. The utility of the observations for determining the extinction-to-backscatter ratio relevant to aerosols in the boundary layer and free troposphere is described with typical measured values being in the 20 to 30 sr range.
Directory of Open Access Journals (Sweden)
Svoboda J.
2009-12-01
Full Text Available The contribution includes the results of experimental works aiming to find a new methodology for the calculation of fatigue life of structures subjected to operational loading from a combination of forces and moments of random character. Considering the fracture mechanics theory, then the damaging of material is both in the micro- and macro-plastic area connected with the rise of plastic deformation and hence with the plastic transformation rate which depends on the amount of supplied energy. The power spectral density (PSD indicating the power at individual frequencies in the monitored frequency band yields information about the supplied amount of energy. Therefore, it can be assumed that there is a dependence between the PSD shape and the size of damage and that the supplied power which is proportional to the value of dispersion s^2 under the PSD curve could be a new criterion for the calculation of fatigue life under combined loading. The searching for links between the spectral properties of the loading process and the fatigue life of structure under load is dealt with by new Grant GA No. 101/09/0904 of the Czech Technical University in Prague and the Institute of Thermomechanics of the Academy of Sciences of the Czech Republic, v.v.i.
Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands
Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.
2018-01-01
The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.
Fission yield measurements at IGISOL
Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.
2016-06-01
The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Fission yield measurements at IGISOL
Directory of Open Access Journals (Sweden)
Lantz M.
2016-01-01
Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Nuclear Forensics and Radiochemistry: Fission
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-07
Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.
First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes
Energy Technology Data Exchange (ETDEWEB)
Xu, Yuanfeng; Peng, Bo; Zhang, Hao; Zhang, Rongjun; Zhu, Heyuan [Shanghai Ultra-precision Optical Manufacturing Engineering Research Center and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Shao, Hezhu [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2017-04-15
Recently a stable monolayer of antimony in buckled honeycomb structure called antimonene was successfully grown on 3D topological insulator Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}, which displays novel semiconducting properties. By first-principle calculations, we systematically investigate the electronic and optical properties of α- and β-allotropes of monolayer arsenene/antimonene. The obtained electronic structures reveal that the direct band gap of α-arsenene/antimonene is much smaller than the indirect band gap of their β-counterpart, respectively. Significant absorption is observed in α-antimonene, which can be used as a broad saturable absorber. For β-arsenene/antimonene, the reflectivity is low and the absorption is negligible in the visible region when the polarization along the out-plane direction, indicating that β-arsenene/antimonene are polarizationally transparent materials. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Microscopic theory of singlet exciton fission. III. Crystalline pentacene
Energy Technology Data Exchange (ETDEWEB)
Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)
2014-08-21
We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.
Fission lifetimes of Th nuclei measured by crystal blocking
Karamian, S A; Assmann, R W; Broude, C; Chevallier, J; Forster, J S; Geiger, J S; Gruener, F; Khodyrev, V A; Malaguti, F; Uguzzoni, A
2003-01-01
Crystal blocking lifetime measurements have been made for highly excited Th nuclei with neutron number well removed from the stability line. Thin W crystals were bombarded with sup 3 sup 2 S ions in the energy range 170-180 MeV and the yield of fission fragments was measured for emission close to a left angle 111 right angle axis. The fission blocking dips are compared to the appropriately scaled ones for elastic scattering of the sup 3 sup 2 S beam ions and no significant difference is seen between the dips. This implies that the fraction of nuclei fissioning with lifetimes longer than 10 as is less than 2%. Fission lifetimes are increased by viscosity in the nuclear mass flow and comparison with a statistical model calculation indicates that the viscosity parameter, eta, must be lower than for Th and U nuclei near beta-stability. The effect of the N=126 magic number is discussed. (orig.)
Proton-induced fission of heavy nuclei at intermediate energies
Deppman, A; Guimaraes, V; Karapetyan, G S; Balabekyan, A R; Demekhina, N A
2013-01-01
The intermediate energy proton-induced fission of 241Am, 238$U and 237$Np is studied. The inelastic interactions of protons and heavy nuclei are described by a CRISP model, in which the reaction proceeds in two steps. The first one corresponds fast cascade, where a series of individual particle-particle collisions occurs within the nucleus. It leaves a highly excited cascade residual nucleus, assumed to be in thermal equilibrium. Subsequently, in the second step the excited nucleus releases its energy by evaporation of neutrons and light charged particles as well. Both the symmetric and asymmetric fission are regarded, and the fission probabilities are obtained from CRISP code calculations, by means of statistical weighting factors. The fission cross sections, the fissility of the fissioning nuclei, and the number of nucleons lost by the target - before and after fission - are calculated and compared to experiments for 660 MeV protons incident on 241Am, 238$U and 237$Np. Some of the model predictions are in f...
ARC: An open-source library for calculating properties of alkali Rydberg atoms
Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.
2017-11-01
We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant
Absolute measurement of rates of capture of neutrons in 238U and fission in 239Pu
Dulin, V. A.
1981-04-01
The absolute rate of capture of neutrons in U-238 was measured in terms of the Np-239 activity found (gamma radiation), using a calibrated Am-243 source to determine the efficiency of gamma recording in the detector. The absolute rate of fission of Pu-239 was determined by means of a fission chamber with a known number of Pu-239 nuclei, and the efficiency of fission fragment recording in the chamber was calculated.
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract
Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process
Panov, I.; Lutostansky, Yu; Thielemann, F.-K.
2016-01-01
For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.
Performance of the Fourier shape parametrization for the fission process
Schmitt, C.; Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.
2017-03-01
The availability of realistic potential energy landscapes in restricted deformation space is the prerequisite starting point for modeling several nuclear properties and reactions, namely large-amplitude phenomena. The achievement of a macroscopic-microscopic approach, employing an innovative four-dimensional (4D) nuclear shape parametrization based on a Fourier expansion, and a realistic potential-energy prescription, is presented. A systematic analysis of the 4D deformation energy landscapes over an extended region of the nuclear chart from Pt to Pu is performed, searching for fission valleys, as well as exotic ground and metastable states. The significance of the approach for predicting mass partitioning in low-energy fission is demonstrated. The ability of the model to address shape-driven effects, like stable octupole and very elongated isomeric configurations, is discussed, too. The proposed approach constitutes an efficient framework for an extended model of fission dynamics over a wide range of fissioning mass, excitation energy, and angular momentum.
Directory of Open Access Journals (Sweden)
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Vidal, David; Thormann, Michael; Pons, Miquel
2005-01-01
SMILES strings are the most compact text based molecular representations. Implicitly they contain the information needed to compute all kinds of molecular structures and, thus, molecular properties derived from these structures. We show that this implicit information can be accessed directly at SMILES string level without the need to apply explicit time-consuming conversion of the SMILES strings into molecular graphs or 3D structures with subsequent 2D or 3D QSPR calculations. Our method is based on the fragmentation of SMILES strings into overlapping substrings of a defined size that we call LINGOs. The integral set of LINGOs derived from a given SMILES string, the LINGO profile, is a hologram of the SMILES representation of the molecule described. LINGO profiles provide input for QSPR models and the calculation of intermolecular similarities at very low computational cost. The octanol/water partition coefficient (LlogP) QSPR model achieved a correlation coefficient R2=0.93, a root-mean-square error RRMS=0.49 log units, a goodness of prediction correlation coefficient Q2=0.89 and a QRMS=0.61 log units. The intrinsic aqueous solubility (LlogS) QSPR model achieved correlation coefficient values of R2=0.91, Q2=0.82, and RRMS=0.60 and QRMS=0.89 log units. Integral Tanimoto coefficients computed from LINGO profiles provided sharp discrimination between random and bioisoster pairs extracted from Accelrys Bioster Database. Average similarities (LINGOsim) were 0.07 for the random pairs and 0.36 for the bioisosteric pairs.
Ab initio calculation of thermodynamic, transport, and optical properties of CH{sub 2} plastics
Energy Technology Data Exchange (ETDEWEB)
Knyazev, D. V. [Joint Institute for High Temperatures RAS, Izhorskaya 13 bldg. 2, Moscow 125412 (Russian Federation); Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); State Scientific Center of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Levashov, P. R. [Joint Institute for High Temperatures RAS, Izhorskaya 13 bldg. 2, Moscow 125412 (Russian Federation); Tomsk State University, Lenin Prospekt 36, Tomsk 634050 (Russian Federation)
2015-05-15
This work covers an ab initio calculation of thermodynamic, transport, and optical properties of plastics of the effective composition CH{sub 2} at density 0.954 g/cm{sup 3} in the temperature range from 5 kK up to 100 kK. The calculation is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. The temperature dependence of the static electrical conductivity σ{sub 1{sub D{sub C}}}(T) has a step-like shape: σ{sub 1{sub D{sub C}}}(T) grows rapidly for 5 kK ≤ T ≤ 10 kK and is almost constant for 20 kK ≤ T ≤ 60 kK. The additional analysis based on the investigation of the electron density of states (DOS) is performed. The rapid growth of σ{sub 1{sub D{sub C}}}(T) at 5 kK ≤ T ≤ 10 kK is connected with the increase of DOS at the electron energy equal to the chemical potential ϵ = μ. The frequency dependence of the dynamic electrical conductivity σ{sub 1}(ω) at 5 kK has the distinct non-Drude shape with the peak at ω ≈ 10 eV. This behavior of σ{sub 1}(ω) was explained by the dip at the electron DOS.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Guzman, R. [Rice University, Department of Physics and Astronomy, Houston, Texas (United States); Rice University, Department of Chemistry, Houston, Texas (United States); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)
2014-09-15
The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes {sup 232-280}Pu. We resort to the methodology introduced in our previous studies (Phys. Rev. C 88, 054325 (2013) and Phys. Rev. C 89, 054310 (2014)) to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives t{sub SF}, masses and charges of the fragments in plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and α-decay modes. The impact of pairing correlations on the predicted t{sub SF} values is demonstrated with the help of calculations for {sup 232-280}Pu, in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5% and 10%, respectively. We further validate the use of the D1M parametrization through the discussion of the half-lives in {sup 242-262}Fm. Our calculations corroborate that, though the uncertainties in the absolute values of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov framework still reproduces the trends with mass and/or neutron numbers and therefore represents a reasonable starting point to describe fission in heavy nuclear systems from a microscopic point of view. (orig.)
Dynamical features of nuclear fission
Indian Academy of Sciences (India)
nuclear decay using the Bohr–Wheeler fission width is usually found to underpredict the pre-scission multiplicities beyond a certain threshold energy [5]. We first briefly re-visit the transition-state model to examine its underlying assumptions which may not be valid for fission at high excitation energies. Pramana – J. Phys.
Fission approach to cluster radioactivity
Indian Academy of Sciences (India)
Abstract. Fission theory is used to explain α decay. Also, the analytical superasymmetric fission. (ASAF) model is successfully employed to make a systematic search and to predict, with other mod- els, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few ...
Fission approach to cluster radioactivity
Indian Academy of Sciences (India)
2015-08-04
Aug 4, 2015 ... Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a ...
Dynamical features of nuclear fission
Indian Academy of Sciences (India)
2015-07-24
Jul 24, 2015 ... Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers' prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the ...
Fission hindrance and nuclear viscosity
Indian Academy of Sciences (India)
2015-07-29
Jul 29, 2015 ... We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); ...
Lovato, Alessandro
2012-10-01
In this thesis, the ground state properties of nuclear matter, namely the energy per particle and the response to weak probes, are computed, studying the effects of three nucleon interactions. Both the variational approach, based on the formalism of correlated basis function, and the auxiliary field diffusion Monte Carlo method have been used. A scheme suitable to construct a density-dependent two-nucleon potential in correlated basis approach is discussed. The density dependent potential resulting from UIX three-nucleon force has been employed in auxiliary field diffusion Monte Carlo calculations that turned out to be in very good agreement with correlated basis variational results. Hence, the underbinding of symmetric nuclear matter has to be ascribed to deficiencies of the UXI potential. A comparative analysis of the equations of state of both pure neutron matter and symmetric nuclear matter obtained using a new generation of "chiral inspired" local three-body potentials has been performed. These potentials provide an excellent description of the properties of light nuclei, as well as of the neutron-deuteron doublet scattering length. The weak response of symmetric nuclear matter has been computed at three-body cluster level. Two-body effective interactions and one-body effective operators have been derived within the formalism of correlated basis functions. The inclusion of the three-body cluster term in the effective interaction allowed for a direct inclusion of the UIX three-nucleon potential. Moreover, the sizable unphysical dependence of the effective weak operator is removed once the three-body cluster term is taken into account.
Thermoelectric Properties and Band Structure Calculations of Novel Boron Network Compounds
Mori, Takao; Nishimura, Toshiyuki; Grin, Yuri; Shishido, Toetsu; Nakajima, Kazuo
2009-03-01
Boron is an interesting element, tending to form atomic networks such as 2D atomic nets and clusters, with some analogy to carbon systems which have been more extensively studied. Boron has one less electron than carbon and thus is electron deficient when forming atomic networks, but this causes it to have a special affinity with the rare earth elements and as a result, many new compounds have recently been discovered [1]. Their potential as viable thermoelectric materials is attracting interest since they are high-temperature materials and possess intrinsic low thermal conductivity, with some compounds exhibiting Seebeck coefficients in excess of 200 μV/K above 1000 K. The thermoelectric properties and band structure calculations of novel borides such as RB44Si2, RB17CN, RB22C2N, RB28.5C4 will be presented. Features in the band structure near the Fermi level indicate large doping effects in these compounds. Various doping experiments were carried out resulting in large increases to the figure of merit. [1] T. Mori, ``Higher Borides,'' in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 38, (North-Holland, Amsterdam, 2008) p. 105-173.
First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys
Aly, Samy H.; Shabara, Reham M.
2014-06-01
We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We develop a method to compute the Green's function for two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. The method is based on a variational approximation to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and is shown to agree with exact digaonalization calculations. We show that the properties of bipolarons arising in such models is qualitatively different from those of the well-studied Holstein bipolarons. In particular, we show that depending on the particle statistics, strongly bound bipolarons may or may not form. In the case of hard-core bosons, we demonstrate novel effects for dimers such as sharp transitions and self-trapping. In the case of soft-core particles/ spinfull fermions, we show that the mediated interactions lead to overscreeing of the bare Hubbard U repulsion resulting in the formation of strongly bound bipolarons. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
Magnetic and electronic properties of Cu1-xFexO from first principles calculations
Yang, Hua
2013-01-01
Magnetic and electronic properties of Cu1-xFexO systems with x = 6.25% and 12.5% have been investigated using first principles calculations. The ground state of CuO is an antiferromagnetic insulator. At x = 6.25%, Cu1-xFexO systems with Fe on 2 and 4 substitution positions are half-metallic due to the strong hybridization among Fe, the nearest O and Cu atoms, which may come from the double exchange coupling between Fe2+-O2--Cu2+. At x = 12.5%, Cu 1-xFexO system with Fe on 9-11 position has a strong spin polarization near the Fermi level and the system energy is lowest when the doped two Fe atoms form ferromagnetic configuration. This indicates the two doped Fe atoms prefer to form ferromagnetic configuration in Fe2+-O 2--Cu2+-O2--Fe2+ chains. While in the Fe on 7-11 position, the spin-down Fe-11 3d states have a large spin polarization near the Fermi level when the two doped Fe atoms form antiferromagnetic configuration. It is concluded that the transition metal doping can modify the magnetism and electronic structures of Cu 1-xFexO systems. This journal is © The Royal Society of Chemistry 2013.
Fragment-mass distributions in fission of heavy nuclei by intermediate and high-energy probes
Energy Technology Data Exchange (ETDEWEB)
Deppman, Airton; Andrade-II, E. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Menezes, J.C.M.; Garcia, F. [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Rossi, P.C.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
Full text: Recent experiments have shown that the multimode approach for describing the fission process leads to some compatibility with the observed results. A systematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In the present work it is shown that the same parameter-values obtained for low- energy fission can be used to describe high-energy fission results of fragment-mass distributions if one takes into account the appropriate distribution of the fissioning system. To calculate the fission-fragment mass distributions, Monte Carlo simulations are used. This simulation considers a two-step reaction mechanism, namely, an intranuclear cascade providing the compound nucleus followed by a mechanism of competition between particle evaporation and fission. The fission-fragment masses are obtained according to the multimode approach following the Statistical Scission Model. Simulations for fission induced by 660 MeV protons on 241Am and 237Np, and for fission of 238U induced by photons from Bremsstrahlung with end-point energies of 50 MeV and 3500 MeV have been performed, and the results have been compared with recent experimental data. (author)
In-beam fission study for Heavy Element Synthesis
Nishio, Katsuhisa
2013-12-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.
Fission gas induced deformation model for FRAP-T6 and NSRR irradiated fuel test simulations
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hosoyamada, Ryuji; Mori, Yukihide
1996-11-01
Pulse irradiation tests of irradiated fuels under simulated reactivity initiated accidents (RIAs) have been carried out at the Nuclear Safety Research Reactor (NSRR). Larger cladding diameter increase was observed in the irradiated fuel tests than in the previous fresh fuel tests. A fission gas induced cladding deformation model was developed and installed in a fuel behavior analysis code, FRAP-T6. The irradiated fuel tests were analyzed with the model in combination with modified material properties and fuel cracking models. In Test JM-4, where the cladding temperature rose to higher temperatures and grain boundary separation by the pulse irradiation was significant, the fission gas model described the cladding deformation reasonably well. The fuel had relatively flat radial power distribution and the grain boundary gas from the whole radius was calculated to contribute to the deformation. On the other hand, the power density in the irradiated LWR fuel rods in the pulse irradiation tests was remarkably higher at the fuel periphery than the center. A fuel thermal expansion model, GAPCON, which took account of the effect of fuel cracking by the temperature profile, was found to reproduce well the LWR fuel behavior with the fission gas deformation model. This report present details of the models and their NSRR test simulations. (author)
Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2
Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam
2017-09-01
Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.
Fission characteristics of Ra formed in heavy-ion induced reactions
Indian Academy of Sciences (India)
section of the evap- oration residue, fission cross-section, average pre-fission multiplicities of protons and α-particles for 216Ra formed in 19F+197Au reactions and results are compared with the experimental data. To calculate these quantities, the ...
Evaluation and compilation of fission product yields 1993
Energy Technology Data Exchange (ETDEWEB)
England, T.R.; Rider, B.F.
1995-12-31
This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.
Advanced model for the prediction of the neutron-rich fission product yields
Directory of Open Access Journals (Sweden)
Rubchenya V. A.
2013-12-01
Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.
Investigating fusion dynamics at high angular momentum via fission cross sections
Palshetkar, C. S.; Hinde, D. J.; Williams, E.; Ramachandran, K.; Dasgupta, M.; Cook, K. J.; Wakhle, A.; Jeung, D. Y.; Rafferty, D. C.; McNeil, S. D.; Carter, I. P.; Luong, D. H.
2017-11-01
A quantitative understanding of fusion dynamics at high angular momentum is attempted employing experimental fission cross sections as a probe and carrying out a simultaneous description of the fusion and fission cross sections at above barrier energies. For this, experimental fission fragment angular distributions for three systems: 16O+148Sm, 28Si+136Ba and 40Ca+124Sn, all forming the same compound nucleus 164Yb at similar excitation energies, have been measured at four beam energies above their respective capture barriers. A simultaneous description of the angle integrated fission cross sections and evaporation residue/fusion cross sections available in literature for the systems is carried out using coupled-channels and statistical model calculations. Fission cross sections, which are most sensitive to the changes in angular momentum, provide very stringent constraints for model calculations thus indicating the need of precision evaporation residue as well as fission cross sections in such studies. A large diffuseness (ao>0.65 fm) of the nuclear potential gives the best reproduction of the experimental data. In addition, different coupling schemes give very different angular momentum distributions, which, in turn, give very different fission cross section predictions. Both these observations hint at the explanation that depending on energy dissipation of the interacting nuclei occurring inside or outside the fusion pocket, very different fission cross sections can result due to heavily altered angular momentum and thus justifies the sensitivity of fission cross sections used as probes in the present work.
Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.
2015-03-01
We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ɛ0, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III-V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.
Time dependent particle emission from fission products
Energy Technology Data Exchange (ETDEWEB)
Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory
2010-01-01
Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.
Energy Technology Data Exchange (ETDEWEB)
Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL
2015-01-01
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for ^{235,238}U and ^{239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.
Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent
2008-10-01
This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information. (c) 2008 Wiley Periodicals, Inc.
Dai, Wen-Wu; Zhao, Zong-Yan
2017-06-01
Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C3N4) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C3N4 and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and promote the separation of photo-generated carriers, which provide useful hints for the applications in photocatalysis.
Directory of Open Access Journals (Sweden)
Grudzevich O.
2010-03-01
Full Text Available The MCFx code system for the description of neutron- and proton-induced fission of heavy nuclei in energy region 20-3000 MeV is presented. The approach integrates the optical model for reaction crosssection calculations, intranuclear cascade for description of fast particle escape, exciton model for multiparticle emission of preequilibrium nucleons and Hauser-Feshbach calculations for statistical description of fission/evaporation competition. New results of systematic calculations of fission cross-sections, multiplicities and double-differential spectra of secondary particles for Pb-Cm targets irradiated by neutrons and protons with energy 20-3000 MeV are discussed.
Fission product studies at WAIT
Energy Technology Data Exchange (ETDEWEB)
De Laeter, J.R.; Rosman, K.J.R.; Loss, R.D. (Western Australian Inst. of Tech., South Bentley)
1985-07-01
A general review of fission yields is presented. The Mass Spectrometry Laboratory in the Department of Applied Physics at WAIT has been involved in a continuing programme of measuring the cumulative fission yields of the elements palladium, silver, cadmium, tin and tellurium for a variety of fissile materials (/sup 233/U, /sup 235/U, /sup 238/U and /sup 239/Pu) over a range of neutron energies. Results of studies into the isotopic composition and fission yields of samples from the Oklo natural reactor in Gabon, West Africa are summarised.
The spectroscopy of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.
A Covariance Generation Methodology for Fission Product Yields
Directory of Open Access Journals (Sweden)
Terranova N.
2016-01-01
Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.
A Covariance Generation Methodology for Fission Product Yields
Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.
2016-03-01
Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.
Modeling of Fission Gas Release in UO2
Energy Technology Data Exchange (ETDEWEB)
MH Krohn
2006-01-23
A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].
Heeg, P.; Hoffmann, K. F.; Mutterer, M.; Theobald, J. P.; Weingärtner, K.; Pannicke, J.; Gönnenwein, F.; Barreau, G.; Leroux, B.
1983-11-01
A new detector system for the comprehensive investigation of light charged particle accompanied fission is described. First experimental results obtained on neutron induced fission of 235U at the high-flux reactor of the ILL are used to discuss the properties of the system.
Characterization of intergranular fission gas bubbles in U-Mo fuel.
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.; Nuclear Engineering Division; SSCR RIAR
2008-04-14
This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of {approx}0 at% U-235 (LEU) or a fission density of {approx}3 x 10{sup 21} fissions/cm{sup 3}. Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed
Energy Technology Data Exchange (ETDEWEB)
Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)
2010-04-08
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li_{17}Pb_{83 } eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li_{17}Pb_{83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li_{17}Pb_{83}, separated from the Li_{17}Pb_{83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF_{2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles
Comparison of Models for Calculation of the Thermodynamic Properties of NH3-CO2-H2O Mixture
Gudjonsdottir, V.; Infante Ferreira, C.A.; Groll, Eckhard
2016-01-01
Couple of models have been developed to calculate thermodynamic properties of NH3-CO2-H2O systems. These models are typically an equation of state for the vapor phase and an activity coefficient model for the liquid phase (Que & Chen, 2011). The activity coefficient models can be divided into
Bakker, L.G.; Dijk, H.A.L. van
1996-01-01
WIS is a uniform, user friendly, PC-based, European software tool to determine the thermal and solar character-istics of window systems (glazing, frames, solar shading, etc.) and window components. WIS includes databases with component properties and routines for calculation of the thermal-optical
Ab initio calculations of partial molar properties in the single-site approximation
DEFF Research Database (Denmark)
Ruban, Andrei; Skriver, Hans Lomholt
1997-01-01
We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate...... properly applied in calculations of partial molar quantities....
Energy Technology Data Exchange (ETDEWEB)
Dai, Wen-Wu [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)
2017-06-01
Highlights: • Heterostructure constructing is an effective way to enhance the photocatalytic performance. • Graphene-like materials and BiOI were in contact and formed van der Waals heterostructures. • Band edge positions of GO/g-C{sub 3}N{sub 4} and BiOI changed to form standard type-II heterojunction. • 2D materials can promote the separation of photo-generated electron-hole pairs in BiOI. - Abstract: Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C{sub 3}N{sub 4}) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C{sub 3}N{sub 4} and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and
Radiochemistry and the Study of Fission
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-14
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.
Energy Technology Data Exchange (ETDEWEB)
Liu, Fenglian; Guo, Fei; Chen, Hongmei; Tao, Xiaoma [Ministry of Education, Guangxi Univ., Nanning (China). Key Lab. of New Processing Technology for Nonferrous Metals and Materials; Ouyang, Yifang [Ministry of Education, Guangxi Univ., Nanning (China). Key Lab. of New Processing Technology for Nonferrous Metals and Materials; Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Feng, Yuanping [National Univ. of Singapore (Singapore). Dept. of Physics; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy
2010-11-15
The lattice constants and elastic constants for Al-Mg-Si alloys have been calculated by using first-principles total energy calculations within the generalized gradient approximation. The calculated results are in good agreement with available experimental and theoretical results. The polycrystalline shear modulus, Young's modulus and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. The Young's modulus and shear modulus increase following the precipitation sequence in Al-Mg-Si. The Debye sound velocity, Debye temperature, Grueneisen constant, heat capacity and linear coefficients of thermal expansion are predicted for the considered Al-Mg-Si alloys based on the Debye-Grueneisen model. The calculated values of Mg{sub 2}Si agree well with the previous experimental and theoretical results. (orig.)
Superheavy nuclei and fission barriers
Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui
In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.
Energy Technology Data Exchange (ETDEWEB)
Liu Qijun, E-mail: dianerliu@yahoo.com.c [State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Zhengtang; Feng Liping [State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)
2010-04-15
Structural parameters, elastic, electronic, bonding and optical properties of delafossite CuAlO{sub 2} have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties obtained by minimizing the total energy are in favorable agreement with the previous work. We have derived the bulk, shear and Young's modulus, Poisson coefficient for delafossite CuAlO{sub 2}. We estimated the Debye temperature of CuAlO{sub 2} from the acoustic velocity. Electronic and chemical bonding properties have been studied throughout the calculation of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions for delafossite CuAlO{sub 2}, the dielectric function is calculated, which shows a significant optical anisotropy in the components of polarization directions (1 0 0) and (0 0 1).
Štancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, Loïc; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )
2018-01-01
A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat á l'énergie atomique et auxénergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.
Oberstedt, Andreas; Oberstedt, Stephan
2017-09-01
As a consequence of recent experimental results, previously established systematics for prompt fission γ-ray spectra (PFGS) characteristics as function of both atomic and mass number of the compound system have been revised. Although based on purely empirical dependences, it allows estimating average gamma-ray multiplicity, mean and total photon energy in cases, where the target nuclei are either not available or not accessible experimentally. Based on this systematics, we show in this paper that PFGS characteristics may also be predicted for fission induced by fast neutrons. Our calculations were performed for the target nuclei 238U, 235U and 239Pu in the neutron energy range from 0 to 20 MeV, and the results are compared to existing experimental and theoretical values.
Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas
Li, Xingwen; Guo, Xiaoxue; Murphy, Anthony B.; Zhao, Hu; Wu, Jian; Guo, Ze
2017-10-01
The thermodynamic properties and transport coefficients of C5F10O-CO2 gas mixtures, which are being considered as substitutes for SF6 in circuit breaker applications, are calculated for the temperature range from 300 K to 30 000 K and the pressure range from 0.05 MPa to 1.6 MPa. Special attention is paid on investigating the evolution of thermophysical properties of C5F10O-CO2 mixtures with different mixing ratios and with different pressures; both the mixing ratio and pressure significantly affect the properties. This is explained mainly in terms of the changes in the temperatures at which the dissociation and ionization reactions take place. Comparisons of different thermophysical properties of C5F10O-CO2 mixtures with those of SF6 are also carried out. It is found that most of the thermophysical properties of the C5F10O-CO2 mixtures, such as thermal conductivity, viscosity, and electrical conductivity, become closer to those of SF6 as the C5F10O concentration increases. The composition and thermophysical properties of pure C5F10O in the temperature range from 300 K to 2000 K based on the decomposition pathway are also given. The calculation results provide a basis for further study of the insulation and arc-quenching capability of C5F10O-CO2 gas mixtures as substitutes for SF6.
Systematics of fission cross sections at the intermediate energy region
Energy Technology Data Exchange (ETDEWEB)
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Prompt particle emission in correlation with fission fragments
Directory of Open Access Journals (Sweden)
Litaize Olivier
2017-01-01
mass split and compared to recent measurements. The presence of structures in the calculations (especially for light nuclei is clearly related to the nuclear level scheme. Various situations occur and an overestimation (or underestimation of the calculated number of emitted neutrons can be correlated to the light or heavy fragment of a pair and to a restricted energy range. In addition prompt fission gamma spectra (PFGS are estimated for selected fragment mass ranges and compared to recent measurements. In this way the presence of specific gamma-ray transitions can be established.
Prompt particle emission in correlation with fission fragments
Litaize, Olivier; Serot, Olivier; Thulliez, Loïc; Chebboubi, Abdelaziz
2017-09-01
compared to recent measurements. The presence of structures in the calculations (especially for light nuclei) is clearly related to the nuclear level scheme. Various situations occur and an overestimation (or underestimation) of the calculated number of emitted neutrons can be correlated to the light or heavy fragment of a pair and to a restricted energy range. In addition prompt fission gamma spectra (PFGS) are estimated for selected fragment mass ranges and compared to recent measurements. In this way the presence of specific gamma-ray transitions can be established.
Goodness of isospin in neutron rich systems from the fission fragment distribution
Garg, Swati; Jain, Ashok Kumar
2017-09-01
We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.
Yim, Kanghoon; Lee, Joohee; Lee, Dongheon; Lee, Miso; Cho, Eunae; Lee, Hyo Sug; Nahm, Ho-Hyun; Han, Seungwu
2017-01-01
Throughout the past decades, doped-ZnO has been widely used in various optical, electrical, magnetic, and energy devices. While almost every element in the Periodic Table was doped in ZnO, the systematic computational study is still limited to a small number of dopants, which may hinder a firm understanding of experimental observations. In this report, we systematically calculate the single-element doping property of ZnO using first-principles calculations. We develop an automation code that enables efficient and reliable high-throughput calculations on thousands of possible dopant configurations. As a result, we obtain formation-energy diagrams for total 61 dopants, ranging from Li to Bi. Furthermore, we evaluate each dopant in terms of n-type/p-type behaviors by identifying the major dopant configurations and calculating carrier concentrations at a specific dopant density. The existence of localized magnetic moment is also examined for spintronic applications. The property database obtained here for doped ZnO will serve as a useful reference in engineering the material property of ZnO through doping.
Quantum close coupling calculation of transport and relaxation properties for Hg-H{sub 2} system
Energy Technology Data Exchange (ETDEWEB)
Nemati-Kande, Ebrahim; Maghari, Ali, E-mail: maghari@ut.ac.ir
2016-11-10
Highlights: • Several relaxation cross sections are calculated for Hg-H{sub 2} van der Waals complex. • These cross sections are calculated from exact close-coupling method. • Energy-dependent SBE cross sections are calculated for ortho- and para-H{sub 2} + Hg systems. • Viscosity and diffusion coefficients are calculated using Mason-Monchick approximation. • The results obtained by Mason-Monchick approximation are compared to the exact close-coupling results. - Abstract: Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H{sub 2} molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005–25,000 cm{sup −1}. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50–2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H{sub 2} potential energy surface used in this work can reliably predict diffusion coefficient data.
Observation of fission modes in heavy ion induced reactions
Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttgé, L.
1998-02-01
The fission of the systems 220,224,226Th was investigated by measuring the mass-energy distributions of the fission fragments. The corresponding excitation energies at the saddle point, Esp*, ranged from 16 to 40 MeV. As Esp* decreases, an asymmetric mass component becomes visible on the predominately symmetric mass distribution. The contribution of the asymmetric mode is characterized by the total yield ratio Ys/Ya, which decreases rapidly for the heavier isotopes of thorium. This behavior of Ys/Ya is in qualitative agreement with theoretical calculations. For all isotopes studied, the subtracted asymmetric fission component, Ya=Y1-Ys, exhibits a complex structure, actually showing two components, Ya=Ya1+Ya0, which have average masses Ma1=132 and Ma0=140.
Stabilization effect of fission source in coupled Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)
2017-08-15
A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.
Comparison of Fission Product Yields and Their Impact
Energy Technology Data Exchange (ETDEWEB)
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.
A new approach to barrier-top fission dynamics
Directory of Open Access Journals (Sweden)
Bertsch G.F.
2016-01-01
Full Text Available We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.
Design of methyldopa structure and calculation of its properties by quantum mechanics
Directory of Open Access Journals (Sweden)
Maziar Noei
2017-05-01
Full Text Available Methyldopa, which released in 1960, is one of the most popular blood pressure lowering drugs. Taking this medicine for high blood pressure, it seems that the effect drug in blood pressure duct ions convection to alpha-methyl is nor epinephrine. Alpha-methyl nor epinephrine from thus reducing central blood pressure is. This work reports an investigation of an antihypertensive drug methyldopa with the combined density functional theory (DFT and its structure was optimized at B3LYP, BLYP and MP2(3–21G∗,6–31G,6–31G∗ levels and the molecular structure in different solvents (SCRF calculation, NMR parameters were calculated using DFT at B3LYP, BLYP and MP2(3–21G∗,6–31G,6–31G∗ basis set. And finally we calculated natural bond orbital (NBO parameters for this structure.
Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4
Energy Technology Data Exchange (ETDEWEB)
Myers, W.R.; Richardson, T.J.; Rubin, M.D.; Wang, L-W.
2001-10-01
Ab initio total-energy density functional theory is used to investigate the low temperature (LT) monoclinic form of Mg2NiH4. The calculated minimum energy geometry of LT Mg2NiH4 is close to that determined from neutron diffraction data, and the NiH4 complex is close to a regular tetrahedron. The enthalpies of the phase change to high temperature (HT) pseudo-cubic Mg2NiH4 and of hydrogen absorption by Mg2Ni are calculated and compared with experimental values. LT Mg2NiH4 is found to be a semiconductor with an indirect band gap of 1.4 eV. The optical dielectric function of LT Mg2NiH4 differs somewhat from that of the HT phase. A calculated thin film transmittance spectrum is consistent with an experimental spectrum.
Calculation of the thermodynamic properties of fuel-vapor species from spectroscopic data
Energy Technology Data Exchange (ETDEWEB)
Green, D.W.
1980-09-01
Measured spectroscopic data, estimated molecular parameters, and a densty-of-states model for electronic structure have been used to calculate thermodynamic functions for gaseous ThO, ThO/sub 2/, UO, UO/sub 2/, UO/sub 3/, PuO, and PuO/sub 2/. Various methods for estimating parameters have been considered and numerically evaluated. The sensitivity of the calculated thermodynamic functions to molecular parameters has been examined quantitatively. New values of the standard enthalpies of formation at 298.15/sup 0/K have been derived from the best available ..delta..G/sup 0//sub f/ equations and the calculated thermodynamic functions. Estimates of the uncertainties have been made for measured and estimated data as well as for various mathematical and physical approximations. Tables of the thermodynamic functions to 6000/sup 0/K are recommended for gaseous thorium, uranium, and plutonium oxides.
Cluster decay analysis and related structure effects of fissionable ...
Indian Academy of Sciences (India)
2015-08-01
Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been applied to study the attributes of hot ( ≠ 0) and rotating (ℓ = 0) nuclei lying in heavy and super-heavy mass regimes. We present here an overview of the characteristic fission decay properties such as shell effect, role of ...
Schizosaccharomyces pombe, the Principal Subject of Fission Yeast Genetics
DEFF Research Database (Denmark)
Egel, Richard
2013-01-01
Schizosaccharomyces pombe is a primitive ascomycetous fungus, also known as fission yeast. It has been extensively used in general and molecular genetics, and its genome is fully sequenced. It is considered a very useful model organism for experimental research on fundamental properties...
Cluster decay analysis and related structure effects of fissionable ...
Indian Academy of Sciences (India)
2015-08-01
DCM) has been applied to study the attributes of hot (T = 0) and rotating (ℓ = 0) nuclei lying in heavy and super- heavy mass regimes. We present here an overview of the characteristic fission decay properties such as shell effect ...
Density functional calculations of elastic properties of portlandite, Ca(OH)(2)
DEFF Research Database (Denmark)
Laugesen, Jakob Lund
2005-01-01
elasticity, applying a least-square method. Young's modulus and bulk modulus are calculated from the stiffness matrix. The results are compared with the Brillouin zone spectroscopy results of F. Holuj et al. [F. Holuj, M. Drozdowski, M. Czajkowski, Brillouin spectrum of Ca(OH)(2), Solid State Commun., 56 (12......The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...
Coupled-cluster calculations of properties of Boron atom as a monovalent system
Gharibnejad, H
2015-01-01
We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants, and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is computationally treated as a monovalent system. We explore performance of the CC method at various approximations. Our most complete treatment involves singles, doubles and the leading valence triples. The calculations are done using several approximations in the coupled-cluster (CC) method. The results are within 0.2-0.4% of the energy benchmarks. The hyperfine constants are reproduced with 1-2% accuracy.
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Alldredge, G. P.; McMurry, H. L.
1983-01-01
The phonon density of states for trigonal selenium has been calculated on the basis of a short range force model giving good overall agreement with experimental room temperature phonon dispersion data. A qualitative comparison with an experimental determination of the phonon density of states shows...... similarities in the gross features, but the experimental data lacks many of the finer details shown by the theoretical results due to resolution effects. The lattice dynamical contribution to the heat capacity CV is calculated and is found to be in good agreement with experimental determinations of Cp after...... transforming Cp to CV. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....
Monte Carlo calculations of thermodynamic properties of deuterium under high pressures
Energy Technology Data Exchange (ETDEWEB)
Levashov, P R; Filinov, V S; BoTan, A; Fortov, V E [Joint Institute for High Temperatures, Izhorskaya 13-2, Moscow 125412 (Russian Federation); Bonitz, M [Cristian-Albrechts-Universitaet zu Kiel, ITPA, Leibnizstr. 15, 24098 Kiel (Germany)], E-mail: pasha@ihed.ras.ru
2008-07-15
Two different numerical approaches have been applied for calculations of shock Hugoniots and compression isentrope of deuterium: direct path integral Monte Carlo and reactive Monte Carlo. The results show good agreement between two methods at intermediate pressure which is an indication of correct accounting of dissociation effects in the direct path integral Monte Carlo method. Experimental data on both shock and quasi-isentropic compression of deuterium are well described by calculations. Thus dissociation of deuterium molecules in these experiments together with interparticle interaction play significant role.
Pan, Yong; Jin, Chao; Mao, Pengyu
2017-11-01
RuAl2 is a fascinating intermetallic semiconducting compound. However, the influence of vacancies on the electronic and mechanical properties of RuAl2 is unknown. By means of first-principles calculations, we have investigated the influence of vacancies on the electronic properties, elastic modulus, brittle or ductile behavior and Vickers hardness of RuAl2. Two possible vacancy types, Ru-va and Al-va, are considered. The calculated results show that the Ru-va vacancy is more thermodynamically stable than that of the Al-va vacancy. Importantly, we find that vacancies can improve the electronic properties of RuAl2 because the removed Ru or Al atom enhances the charge overlap between conduction band and the valence band near the Fermi level. In addition, these vacancies weaken the resistance to volume deformation, shear deformation and the elastic stiffness of RuAl2 because the removed atom weakens the localized hybridization between the Ru atom and the Al atom. However, the Ru-va vacancy can improve the Vickers hardness and Al-va vacancies result in brittle-to-ductile transition of RuAl2. The variation of mechanical properties is attributed to the Ru-Al and Al-Al metallic bonds along the shear direction. Therefore, we can conclude that vacances are beneficial for improving the electronic and mechanical properties of RuAl2.
Compact fission counter for DANCE
Energy Technology Data Exchange (ETDEWEB)
Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J
2010-11-06
The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed
Energy Technology Data Exchange (ETDEWEB)
Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)
2015-12-15
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)
DEFF Research Database (Denmark)
Frota, H.O.; Flensberg, Karsten
1992-01-01
We have done a numerical renormalization-group calculation for a Hamiltonian modeling charging effect in ultrasmall tunnel junctions. We find that the conductance is enhanced by the quantum charge fluctuations allowing tunneling below the charging energy gap. However, in all cases the conductance...
DEFF Research Database (Denmark)
Ruud, Kenneth; Jonsson, Dan; Norman, Patrick
1998-01-01
We describe the implementation of integral screening in the integral-direct SCF calculation of cubic response functions. The screening is applied to all computational steps that involve the construction of Fock matrices or one-index transformed Fock matrices. We apply this implementation to study...
On the Friedel sum rule in ab initio calculations of optical properties
Knyazev, D. V.; Levashov, P. R.
2013-01-01
We investigate the influence of technical parameters in dynamic electrical conductivity calculations by the Kubo-Greenwood formula on the value of the so-called sum rule. We propose a possible explanation of the slight overestimation of the sum rule in most of our results.
Filanovich, A. N.; Povzner, A. A.
2017-12-01
In the framework of density functional theory method, the ground state energy of the PuCoGa5 compound is calculated for different values of the unit cell volume. The obtained data were incorporated into the thermodynamic model, which was utilized to calculate the temperature dependencies of thermal and elastic properties of PuCoGa5. The parameters of the developed model were estimated based on data of ab initio phonon spectrum. The Gruneisen parameters, which characterize degree of anharmonicity of the acoustic and optical phonons, are obtained. Using experimental data, non-lattice contributions to the coefficient of thermal expansion and heat capacity are determined. The nature of observed anomalies of the properties of PuCoGa5 is discussed, in particular, the possibility of a valence phase transition.
Electronic and optical properties of 2D graphene-like ZnS: DFT calculations
Energy Technology Data Exchange (ETDEWEB)
Lashgari, Hamed [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Boochani, Arash, E-mail: arash_bch@yahoo.com [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Shekaari, Ashkan [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Solaymani, Shahram [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Sartipi, Elmira [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Mendi, Rohollah Taghavi [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)
2016-04-30
Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.
Neutron-multiplicity experiments for enhanced fission modelling
Al-Adili, Ali; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Jansson, Kaj; Solders, Andreas; Rakapoulos, Vasileios; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Oberstedt, Stephan; Prokofiev, Alexander V.; Sundén, Erik A.; Vidali, Marzio; Österlund, Michael; Pomp, Stephan
2017-09-01
The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.
Fission product retention in the Oklo natural fission reactors
Energy Technology Data Exchange (ETDEWEB)
Curtis, D.; Benjamin, T.; Gancarz, A.; Loss, E.; Rosman, K.; DeLaeter, J.; Delmore, J.E.; Maeck, W.J.
We present in this paper the abundances and isotopic composition of U and eight fission product elements in samples from well-defined locations in a cross section of one of the fossil reactors. These are unique data with regard to the chemical diversity represented by the elements measured in each of the samples. We will characterize the degree of retention of the fission products in the samples of the reactor zone and attempt to rationalize our observations by analogy with anthropogenic irradiated reactor fuel.
Tveiterå, Martin
2016-01-01
Master's thesis in Petroleum engineering Increasing temperature and pressure with depth, affects the properties of drilling fluid. The effect of temperature and pressure on the density and viscosity of drilling fluid is of great importance. This is because, among several reasons, it affects the calculation of downhole pressure and the buoyancy factor for the well. Correct pressure estimation, could pose a great concern regarding well integrity. The buoyancy factor would affect the effectiv...
Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.
2017-04-01
The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.
Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.
2017-01-01
The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects. PMID:28397808
Energy Technology Data Exchange (ETDEWEB)
Hu, Yong-Jie, E-mail: yoh5120@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Shang, Shun-Li; Wang, Yi [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Darling, Kristopher A.; Butler, Brady G.; Kecskes, Laszlo J. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005 (United States); Liu, Zi-Kui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2016-06-25
The influence of various transition alloying elements (X's) on the elastic properties of W-based alloys has been studied via first-principles calculations on the basis of density functional theory. Here, nineteen transition metal alloying elements (X) are considered: Ti, V, Cr, Fe, Co, Ni, Y, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, Re, Os, Ir, and Pt. It is found that (i) the bulk modulus of the dilute W-X alloy decreases with increasing its equilibrium volume, particularly, for the alloying elements in the same period; (ii) all of the alloying elements decrease the shear modulus of BCC W; and (iii) the largest decrease of elastic properties of W is due to alloying element Y. In addition, it is shown that the changes of elastic properties of W caused by the alloying elements are traceable from the electron charge density distribution, resulting in a bonding distortion between W and the alloying atoms. Using the quasi-static approach based on the Debye model, the elastic properties of these W-X alloys at finite temperatures are predicted. Calculated properties of BCC W and the W-X alloys are in favorable agreement with available experimental measurements. - Highlights: • The effects of nineteen metal elements on the elastic properties of W are studied. • The elastic properties at finite temperatures are predicted by the Debye model. • The alloying effects can be traceable from the changes of electronic structure. • The possibly promising alloying elements to soften BCC W are suggested.
Nakano, Masayoshi
2014-01-01
This brief investigates the diradical character, which is one of the ground-state chemical indices for 'bond weakness' or 'electron correlation' and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the th
Saeed, Yasir
2014-05-11
Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport
DEFF Research Database (Denmark)
Weitzmann, Peter; Svendsen, Svend
2005-01-01
Lightweight floor heating systems consist of a plastic tube connected to a heat distribution aluminium plate and are used in wooden floor constructions. The thermal properties of lightweight floor heating systems cannot be described accurately. The reason is a very complex interaction of convection......, radiation and conduction of the heat transfer between pipe and surrounding materials. The European Standard for floor heating, EN1264, does not cover lightweight systems, while the supplemental Nordtest Method VVS127 is aimed at lightweight systems. The thermal properties can be found using tabulated values...
Peng, Yen-Chun; Chen, Chieh-Cheng; Wu, Hsuan-Chung; Lu, Jong-Hong
2015-01-01
This study adopted first-principles calculations to evaluate the effects of intrinsic defects on the electronic structure and optical properties of Boron-doped ZnO (BZO). Four types of defect were considered: non-defective (BZn), Zn vacancies (VZn), O vacancies (VO), and interstitial Zn (Zni). Calculations of formation energy illustrate that O-rich conditions tend to induce VZn, while O-poor conditions tend to induce VO and Zni. With respect to electric properties, VZn defects in BZO decrease carrier concentration as well as mobility, which consequently decreases the conductivity of BZO. The existence of VO or Zni defects in BZO leads to n-type conductive characteristics and increases the optical band gap. The existence of Zni defects in BZO also increases the effective mass, which decreases the mobility and conductivity of BZO. As for the optical properties, the introduction of VZn to BZO leads to an increase in transmittance in the visible light region, but a decrease in the UV region. The introduction of intrinsic VO and Zni defects to BZO leads to a significant decrease in transmittance in the visible as well as UV regions. The calculated results were also compared with experimental data from the literature.
Directory of Open Access Journals (Sweden)
Yaxuan Cai
2017-06-01
Full Text Available The electronic structure and ferroelectric mechanism of trichloroacetamide were studied using first principles calculations and density functional theory within the generalized gradient approximation. Using both Bader charge and electron deformation density, large molecular spontaneous polarization is found to originate from the charge transfer cause by the strong “push-pull” effect of electron-releasing interacting with electron-withdrawing groups. The intermolecular hydrogen bonds, NH⋯O, produce dipole moments in adjacent molecules to be aligned with each other. They also reduce the potential energy of the molecular chain threaded by hydrogen bonds. Due to the symmetric crystalline properties, however, the polarization of trichloroacetamide is mostly compensated and therefore small. Using the Berry Phase method, the spontaneous polarization of trichloroacetamide was simulated, and good agreement with the experimental values was found. Considering the polarization characteristics of trichloroacetamide, we constructed a one-dimensional ferroelectric Hamiltonian model to calculate the ferroelectric properties of TCAA. Using the Hamiltonian model, the thermal properties and ferroelectricity of trichloroacetamide were studied using the Monte Carlo method, and the Tc value was calculated.
Energy Technology Data Exchange (ETDEWEB)
Du, Jincheng; Devanathan, Ramaswami; Corrales, Louis R.; Weber, William J.
2012-05-01
First-principles periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the mineral zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal–mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The electronic density of states and atomic charges analyses show that bonding in the high-pressure reidite phase has a stronger covalent character.
Energy Technology Data Exchange (ETDEWEB)
Du, Jincheng [University of North Texas; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Corrales, L Rene [University of Arizona; Weber, William J [ORNL
2012-01-01
First principle periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal-mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The atomic charges determined using the Bader method show that bonding in reidite has a stronger covalent character.
Photon and proton induced fission on heavy nuclei at intermediate energies
Directory of Open Access Journals (Sweden)
Andrade-II E.
2014-04-01
Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.
Mass distribution of fission fragments within the Born-Oppenheimer approximation
Energy Technology Data Exchange (ETDEWEB)
Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)
2017-03-15
The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)
Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh
2014-11-11
In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches
Dadsetani, Mehrdad; Nejatipour, Reihan
2018-02-01
Ab initio calculations based on many-body perturbation theory have been used to study the electronic and optical properties of AgGaO2 in rhombohedral, hexagonal, and orthorhombic phases. GW calculations showed that AgGaO2 is an indirect-bandgap semiconductor in all three phases with energy bandgap of 2.35 eV, 2.23 eV, and 2.07 eV, in good agreement with available experimental values. By solving the Bethe-Salpeter equation (BSE) using the full potential linearized augmented plane wave basis, optical properties of the AgGaO2 polymorphs were calculated and compared with those obtained using the GW-corrected random phase approximation (RPA) and with existing experimental data. Strong anisotropy in the optical absorption spectra was observed, and the excitonic structures which were absent in the RPA calculations were reproduced in GWBSE calculations, in good agreement with the optical absorption spectrum of the rhombohedral phase. While modifying peak positions and intensities of the absorption spectra, the GWBSE gave rise to the redistribution of oscillator strengths. In comparison with the z-polarized response, excitonic effects in the x-polarized response were dominant. In the x- (and y-) polarized responses of r- and h-AgGaO2, spectral features and excitonic effects occur at the lower energies, but in the case of o-AgGaO2, the spectral structures of the z-polarized response occur at lower energies. In addition, the low-energy loss functions of AgGaO2 were calculated and compared using the GWBSE approach. Spectral features in the energy loss function components near the bandgap region were attributed to corresponding excitonic structures in the imaginary part of the dielectric function.
Calculation of MP2 and coupled-cluster molecular properties using the q-integral method.
de Oliveira, H C B; Rangel, F C; Esteves, C S; Vieira, F M C; Mundim, K C
2009-12-31
The main purpose of this paper is to report results of quantum mechanical calculation of the H(2) system using the q-Integral method with correlation corrections to the SCF (Self Consistent Field) wave functions included through the Møller-Plesset second-order perturbation (MP(2)) and Coupled-Cluster (CC) theory. Using the q-Integral method, we evaluated potential energy curves, rovibrational spectroscopy constants, rovibrational spectra, interatomic equilibrium distance and longitudinal static hyper(polarizability). All calculations were carried out through the STO-3G, STO-6G, and double-zeta (DZV) atomic basis set. The q-Integral method was implemented in the source code of the general ab initio quantum chemistry package GAMESS.
Seferoğlu, Zeynel; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Hökelek, Tuncer; Yılmaz, Ebru; Şahin, Ertan
2013-09-01
In this study, the synthesis of four new phenylazo indole dyes (dye 1-4) were carried out by diazotization of 4-aminoacetophenone and coupling with various 2- and 1,2-disubstituted indole derivatives. The dyes were characterized by UV-vis, FT-IR, (1)H NMR, HRMS and X-ray single crystal diffraction methods. Azo-hydrazone tautomeric bahavior of the dyes in different solvents (DMSO, methanol, acetic acid and chloroform) was investigated by using (1)H NMR and UV-vis results. The experimental results were compared with the corresponding calculated values. The results of experimental data and theoretical calculations showed that the azo tautomer is more stable than hydrazone tautomer. In addition to this, the antimicrobial activity of the dyes was also evaluated. Published by Elsevier B.V.
Cui, Qiang; Karplus, Martin
2000-01-01
Analytical second derivatives for combined QM/MM calculations have been formulated and implemented in the CHARMM program interfaced with the ab initio quantum mechanical GAMESS and CADPAC programs. This makes possible evaluation of vibrational frequencies and infrared intensities in large systems that cannot be treated effectively by QM or MM alone; examples are polarizable molecules in solution and substrates or transition states in enzymes. Test calculations on a number of systems, including formamide in water, butanol, a model transition state structure for triosephosphate isomerase and the active site model of myoglobin, show that the MM description of the environment can capture much of its polarization effects on the QM region. Thus the implementation of analytical second derivatives within the QM/MM framework has considerable potential for the study of large systems.
Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A
2012-11-16
In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.
2015-11-18
Number: 88ABW-2015-1249; Clearance Date: 19 Mar 2015. This document contains color. Journal article published in the Journal of Applied Physics, Vol...JOURNAL OF APPLIED PHYSICS 118, 195302 (2015) [This article is copyrighted as indicated in the article . Reuse of AIP content is subject to the terms at...METHODS Calculations were performed using the Vienna ab initio simulation package VASP 5.3 (Refs. 42 and 43) within the framework of DFT. The projector
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Ab initio calculations of fundamental properties of SrTe1− xOx alloys
Indian Academy of Sciences (India)
... density approximation (LDA) and GGA (PBE) and the new form of GGA (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE), while for electronic properties, in addition to LDA, GGA corrections; Engel–Vosko GGA (EV-GGA) and modified Becke–Johnson (mBJ) schemes were also applied.
Mechanical properties of carbynes investigated by ab initio total-energy calculations
DEFF Research Database (Denmark)
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...
Density functional calculations of the properties of silicon-substituted hydroxyapatite.
Chappell, H F; Bristowe, P D
2007-05-01
Ab initio density functional plane-wave calculations are performed on silicon-substituted hydroxyapatite (SiHA). Formation energies are obtained for the substitution of a phosphorus atom by a silicon atom in each of the six phosphate groups of the unit cell in turn. It is found that the co-removal of a hydroxyl group to maintain charge neutrality is energetically favourable and the calculated unit cell volumes for the single silicon substitutions agree extremely well with experimental observation. The substitution of a second silicon atom in the unit cell is found to be almost as energetically favourable as the first (and on one site more favourable) and there can be an attractive interaction between the two Si substituents when they are closely separated. However, experimental observation suggests that for this concentration of silicon a phase transformation to a different structure occurs which, because of the imposed boundary conditions, could not be accessed in the calculations. The density of states of the SiHA indicates that new states are introduced deep into the valence band and the band gap decreases by 1.6 eV compared to phase-pure HA. No new states are introduced into the band gap indicating that the Si incorporation does not make the material inherently electrically active. Furthermore a population analysis shows that the Si impurity has only a small effect on the neighbouring ionic charge.
Directory of Open Access Journals (Sweden)
Bacak M.
2017-01-01
Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.
Bacak, M.; Berthoumieux, E.; Aiche, M.; Bélier, G.; Cardella, R.; Chatillon, A.; Diakaki, M.; Dupont, E.; Gunsing, F.; Heyse, J.; Kopecky, S.; Laurent, B.; Leeb, H.; Mathieu, L.; Schillebeeckx, P.; Taieb, J.; Vlachoudis, V.
2017-09-01
233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC) coupled with compact fission detectors is used. Previously used MicroMegas (MGAS) detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.
Comprehensive overview of the Point-by-Point model of prompt emission in fission
Energy Technology Data Exchange (ETDEWEB)
Tudora, A. [University of Bucharest, Faculty of Physics, Bucharest Magurele (Romania); Hambsch, F.J. [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G2, Geel (Belgium)
2017-08-15
The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for {sup 252}Cf(SF) and {sup 235}U(n,f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν(A,TKE) and γ-ray energy E{sub γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A (e.g., ν(A), E{sub γ}(A), left angle ε right angle (A) etc.), as a function of TKE (e.g., ν(TKE), E{sub γ}(TKE)) up to the prompt neutron distribution P(ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning
PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS
Segre, E.; Kennedy, J.W.; Seaborg, G.T.
1959-10-13
This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.
Curci, Gabriele
2017-04-01
The calculation of optical properties from knowledge of the composition and abundance of atmospheric aerosol implies a certain number of assumptions. First and if not known or explicitly simulated, a size distribution must be assigned to each aerosol component (e.g. sulfate-like inorganic ions, organic and back carbon, soil dust, sea salt). Second, physical-chemical properties such as the shape, density, complex refractive index, and hygroscopic factors must be associated to each aerosol species. Third, a representation of how the aerosol species combine together must be made: among those, the most popular are the assumptions of external mixing, in which each particle is assumed to be formed of a single compound and the optical properties may be calculated separately for each species, or of internal core-shell arrangement, in which each particle consists of a water-insoluble core coated with a water-soluble shell and that requires more elaborate calculations for optical properties. Previous work found that the assumption on the mixing state (external or core-shell internal) is the one that introduces the highest uncertainty, quantified in about 30% uncertainty on the calculation of monthly mean aerosol optical depth (AOD) and single-scattering albedo (SSA). The external mixing assumption is generally more reasonable for freshly emitted aerosol, while the internal mixing case is associated with aged aerosol that had the time to form the coating around the core. Both approximations are thus regarded as valid, but in general a combination of the two mixing states may be expected in a given air mass. In this work, we test a simple empirical parameterization of the fraction of internally mixed particles (F_in) in a generic air mass. The F_in fraction is calculated in two alternative ways, one exploiting the NOz to NOx ratio (proxy of the photochemical aging), and the other using the relative abundance of black carbon with respect to other aerosol components (proxy of
Search for Singlet Fission Chromophores
Energy Technology Data Exchange (ETDEWEB)
Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.
2012-01-01
Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.
Review of Calculations on Point Defect Properties in Delta-Pu
Energy Technology Data Exchange (ETDEWEB)
Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-09-08
The results of theoretical predictions of properties for vacancies and self-interstitial atoms (SIA) in δ-Pu are presented and reviewed. Three methods have been used for these predictions, namely the modified embedded atom method (MEAM), density functional theory (DFT) with and without spin polarization, and continuum mechanics (CM) models adapted to plutonium. The properties considered are formation and migration energies, and relaxation volumes of vacancies and SIA. Predicted values vary considerably. Nevertheless, all three methods predict that the activation energy for self-diffusion by vacancies is of similar magnitude as the SIA formation energy. Furthermore, the absolute magnitudes of relaxation volumes for vacancies and SIA are also similar, indicating that there exist no large bias for radiation-induced void swelling.
Properties of half-Heusler compounds TaIrGe by using first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Wei, JunHong [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China); Henan Institute of Science and Technology, School of Mechanical and Electrical Engineering, Xinxiang, Henan (China); Wang, Guangtao [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China)
2017-05-15
The electronic structures, optical and thermoelectric properties of ternary half-Heusler compound TaIrGe were investigated by using the first-principles and Boltzmann transport theory. Spin-orbit coupling (SOC) removed the degeneracy of VBM, and then decreased the Seebeck coefficients and power factor. From the compressive to tensile strain, the band gap gradually increases from 0.96 to 1.11 eV, accompanied by the absorption coefficient peak red-shift. The effective mass (m{sup *}{sub DOS}) of VBM and CBM gradually increases from the compressive to tensile strain, which enhances the Seebeck coefficient and power factor. Our results indicate that the electronic structures, optical and thermoelectric properties of TaIrGe can be effectively tuned by the strain and TaIrGe can be used as an important photoelectric and thermoelectric material in the future. (orig.)
1981-09-30
Order Phase Transition, Jour. Stat. Phys., 19, 6, 633 (1978). (With 0. Penrose, J. Marro , A. ur and M. Kalos). 4. Irreversible Thermodynamics for...Phys. Rev. Lett., 43, 282 (1979). (With J. Marro and M. H. Kalos). 8. Monte Carlo Study of an Ordering Alloy on an FCC Lattice, Phys. Rev. Lett., 42, 9...297 (1982). (With J. Marro and M. H. Kalos). 26. Properties of Two-Dimensional Polymers, Macromolecules, 15, 549 (1982). (With I. Webman, J. Tobochnik
Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir
2017-08-01
Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.
First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials
Directory of Open Access Journals (Sweden)
J. O. Morales-Ferreiro
2017-12-01
Full Text Available A first-principles study using density functional theory and Boltzmann transport theory has been performed to evaluate the thermoelectric (TE properties of a series of single-layer 2D materials. The compounds studied are SnSe, SnS, GeS, GeSe, SnSe2, and SnS2, all of which belong to the IV–VI chalcogenides family. The first four compounds have orthorhombic crystal structures, and the last two have hexagonal crystal structures. Solving a semi-empirical Boltzmann transport model through the BoltzTraP software, we compute the electrical properties, including Seebeck coefficient, electrical conductivity, power factor, and the electronic thermal conductivity, at three doping levels corresponding to 300 K carrier concentrations of 1018, 1019, and 1020 cm−3. The spin orbit coupling effect on these properties is evaluated and is found not to influence the results significantly. First-principles lattice dynamics combined with the iterative solution of phonon Boltzmann transport equations are used to compute the lattice thermal conductivity of these materials. It is found that these materials have narrow band gaps in the range of 0.75–1.58 eV. Based on the highest values of figure-of-merit ZT of all the materials studied, we notice that the best TE material at the temperature range studied here (300–800 K is SnSe.
Directory of Open Access Journals (Sweden)
A. Schmidt
2012-01-01
Full Text Available The vibration and damping characteristics of an assembled structure made of steel are investigated by an experimental modal analysis and compared with the results of a finite element modal analysis. A generic experiment is carried out to evaluate the stiffness and the damping properties of the structure's join patches. Using these results, an appropriate finite element model of the structure is developed where the join patches are represented by thin-layer elements containing material properties which are derived from the generic experiment's results. The joint's stiffness is modeled by orthotropic material behavior whereas the damping properties are represented by the model of constant hysteresis, leading to a complex-valued stiffness matrix. A comparison between the experimental and the numerical modal analysis shows good agreement. A more detailed damping model in conjunction with an optimization procedure for the joint's parameters results in an improved correlation between the experimental and the numerical modal quantities and reveals that the results of the generic experiment are sound.
Reactivity effects of fission product decay in PWRs
Energy Technology Data Exchange (ETDEWEB)
Aragones, J.M.; Ahnert, C.
1988-01-01
The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in /approx/ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to /sup 149/Nd is considered.
First-principles calculations of atomic and electronic properties of ZnO nanostructures
Energy Technology Data Exchange (ETDEWEB)
Xu, H.; Fan, W.; Fang, D. [Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Rosa, A.L.; Frauenheim, T. [BCCMS, University of Bremen (Germany); Zhang, R.Q. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)
2010-10-15
We employ density-functional theory within the generalized-gradient approximation to investigate the formation energies and atomic and electronic structure of ZnO nanowires and nanotubes (NTs). We find that relaxations on the facets of the bare wires are very similar to those in nonpolar (10 anti 10) surfaces and play an important role in stabilizing the nanowires. All bare wires are found to be semiconducting, with band gaps larger than that in bulk ZnO. We further investigated hydrogen and water adsorption on ZnO nanowires. We find that the electronic structure of ZnO nanowires can be tuned by hydrogen adsorption and that adsorption of water leads to dissociation of a half-monolayer. Next, the stability of ZnO NTs has been investigated. We show that multiwall NTs are more stable than single-walled tubes. Finally, point defects in ZnO NTs have been investigated using spin-polarized calculations. All calculations were shown to introduce defect levels in the band gap, thus changing the electronic structure of the NTs drastically. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Zhang, Chuanzhao; Kuang, Xiaoyu; Jin, Yuanyuan; Lu, Cheng; Zhou, Dawei; Li, Peifang; Bao, Gang; Hermann, Andreas
2015-12-09
We present results of an unbiased structure search for stable ruthenium silicide compounds with various stoichiometries, using a recently developed technique that combines particle swarm optimization algorithms with first-principles calculations. Two experimentally observed structures of ruthenium silicides, RuSi (space group P2(1)3) and Ru2Si3 (space group Pbcn), are successfully reproduced under ambient pressure conditions. In addition, a stable RuSi2 compound with β-FeSi2 structure type (space group Cmca) was found. The calculations of the formation enthalpy, elastic constants, and phonon dispersions demonstrate the Cmca-RuSi2 compound is energetically, mechanically, and dynamically stable. The analysis of electronic band structures and densities of state reveals that the Cmca-RuSi2 phase is a semiconductor with a direct band gap of 0.480 eV and is stabilized by strong covalent bonding between Ru and neighboring Si atoms. On the basis of the Mulliken overlap population analysis, the Vickers hardness of the Cmca structure RuSi2 is estimated to be 28.0 GPa, indicating its ultra-incompressible nature.
Energy Technology Data Exchange (ETDEWEB)
Varache, R. [Laboratoire de Génie Electrique de Paris, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 8507, Ecole Supelec, Université Paris-Sud 11, Université Pierre et Marie Curie - Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstrasse 5, D-12489 Berlin (Germany); Kleider, J.P.; Gueunier-Farret, M.E. [Laboratoire de Génie Electrique de Paris, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 8507, Ecole Supelec, Université Paris-Sud 11, Université Pierre et Marie Curie - Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Korte, L. [Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstrasse 5, D-12489 Berlin (Germany)
2013-05-15
Highlights: ► We relate the open circuit voltage and the band-bending in crystalline silicon. ► We calculate the band-bending in the crystalline part of a silicon heterojunction. ► The band-bending is strongly influenced by the work function and density of states. ► A high defect density in the amorphous silicon emitter increases the band bending. ► A high defect density reduces the impact of the contact on the open circuit voltage. -- Abstract: The key constituent of silicon heterojunction solar cells, the amorphous silicon/crystalline silicon heterojunction (a-Si:H/c-Si), offers a high open-circuit voltage (V{sub oc}) potential providing that both the interface defect passivation and the band bending in the c-Si absorber are sufficient. We detail here analytical calculations of the equilibrium band bending in c-Si (ψ{sub c-Si}) in Transparent Conductive Oxide (TCO)/a-Si:H emitter/c-Si absorber structures. We studied the variation of some electronic parameters (density of states, work function) according to relevant experimental values. This study introduces a discussion on the optimization of the doped emitter layer in relation with the work function of the TCO. In particular, we argue on the advantage of having a highly defective (p)a-Si:H emitter layer that maximizes ψ{sub c-Si} and reduces the influence of the TCO on V{sub oc}.
Tight binding calculations for the optical properties of ellipsoidal silicon nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Trani, F.; Cantele, G.; Ninno, D.; Iadonisi, G. [INFM and Dipartimento di Scienze Fisiche, Universita di Napoli ' ' Federico II' ' , Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Napoli (Italy)
2005-06-01
Silicon ellipsoidal nanocrystals have been studied within a Tight Binding approximation. Transition energies and optical properties have been analyzed varying the shape and the number of atoms of the structures. We have investigated how the polarization of the absorbed radiation depends on the geometrical anisotropy. Our results can give a useful contribution in explaining recent measurements of polarized light emission from porous silicon and may give new insights on the silicon nanostructure physics. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...
Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)
2002-01-01
Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)
Li, Haoyuan
2016-03-24
A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using the snapshots from the dynamic trajectory of the simulated molecular system. Kinetic Monte Carlo simulations are carried out to calculate the current characteristics. A widely used hole-transporting material, N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) is studied as an application of this method, and the properties of its hole-only device are investigated. The calculated current densities and dependence on the applied voltage without an injection barrier are close to those obtained by the Mott-Gurney equation. The results with injection barriers are also in good agreement with experiment. This method can be used to aid the design of molecules and guide the optimization of devices. © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Bouhemadou, A. [Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria)], E-mail: a_bouhemadou@yahoo.fr; Khenata, R. [Department of Physics, University of Mascara, 29000 Mascara (Algeria); Chegaar, M.; Maabed, S. [Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria)
2007-11-19
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg{sub 3} has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg{sub 3} aggregate. We estimated the Debye temperature of AsNMg{sub 3} from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg{sub 3} compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap ({gamma}-{gamma}) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.
Energy Technology Data Exchange (ETDEWEB)
Yi, Jun; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn
2014-12-15
Europium-doped luminescent heavy metal bismuth oxychloride has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BiOCl and Eu-doped BiOCl have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BiOCl has been discussed. Owing to the unique layered structure, BiOCl host could produce enough separated electron–hole pairs, under UV-light excitation. Furthermore, because the energy levels ({sup 5}D{sub 0}) of Eu{sup 3+} is matched with the energy bands (the bottom of conduction band) of BiOCl, the energy transport and charge transfer from host to luminescence center can be efficiently carried out. Thus, the photoluminescence of Eu{sup 3+} could be enhanced in the matrix of BiOCl. These findings are helpful to understand previously published experimental results, and to improve novel luminescence materials. - Highlights: • Eu doping effects in BiOCl were systematically studied by first-principles calculations. • Eu doping causes very gentle lattice distortion, and induces crystal expansion. • BiOCl host could produce enough separated electron–hole pairs, under UV-light excitation. • Energy transport and charge transfer from BiOCl to Eu{sup 3+} can be efficiently carried out.
Energy Technology Data Exchange (ETDEWEB)
Bannikov, V.V.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru
2013-11-15
Highlights: • 23 Pd- and Pt-based antiperovskite-type ternary carbides are probed from first principles. • Structural, elastic, electronic properties and inter-atomic bonding are evaluated. • A rich variety of mechanical and electronic properties was predicted. -- Abstract: By means of first-principles calculations, the structural, elastic, and electronic properties of a broad series of proposed Pd- and Pt-based antiperovskite-type ternary carbides AC(Pd,Pt){sub 3}, where A are Zn, Ca, Al, Ga, In, Ge, Hg, Sn, Cd, Pb, Ag, Sc, Ti, Y, Nb, Mo, and Ta, have been studied, and their stability, elastic constants, bulk, shear, and Young’s moduli, compressibility, Pugh’s indicator, Poisson’s ratio, indexes of elastic anisotropy, as well as electronic properties have been evaluated. We found that these materials should demonstrate a rich variety of mechanical and electronic properties depending on the type of A sublattices, which can include (unlike the majority of known 3d-metal-based antiperovskites) both sp elements and d atoms. We believe that the presented results will be useful for future synthesis of these phases, as well as for expanding our knowledge of this interesting group of antiperovskite-type materials.
Directory of Open Access Journals (Sweden)
B.Andriyevsky
2007-01-01
Full Text Available First principle calculations of the effect of hydrostatic pressure on the structural and electronic parameters of TGS crystals have been carried out within the framework of density functional theory using the CASTEP code. The volume dependence of total electronic energy E(V of the crystal unit cell satisfies the third-order Birch-Murnaghan isothermal equation of state. For the pressure range of -5...5 GPa, the bulk modulus was found to be equal to K=45 ± 5 GPa. The relative pressure changes of the unit cell parameters were found to be linear in the range of -5...5 GPa. Crossing of the pressure dependencies of enthalpy corresponding to the ferroelectric and non-ferroelectric phases at P=7.7 GPa testifies to the probable pressure induced phase transition in TGS crystal.
Du, Aijun; Zhu, Zhonghua; Smith, Sean C
2010-03-10
The lack of an obvious "band gap" is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene ( http://www.sciencedaily.com/releases/2009/11/091120084337.htm ) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C(3)N(4) materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
Calculation of Electronic and Optical Properties of Doped Titanium Dioxide Nanostructure
Directory of Open Access Journals (Sweden)
Sh. Khaleghi
2012-06-01
Full Text Available By means of first principles calculations we show that both rutile and anatase phases of bulk TiO2 doped by S, Se or Pb can display substantial decreasing in the band gap (up to 50%, while doping by Zr does not sizably affect the band-gap value. Moreover, the absorption edge is shifted (up to 1 eV to the lower energy range in the case of TiO2 doped by S or Pb that opens a way to enhancing of absorption of sun’s radiation. We also discuss how our findings can improve efficiency of photovoltaic cells and photocatalytic cells for hydrogen generation.
Caro, Miguel A; Laurila, Tomi; Lopez-Acevedo, Olga
2016-12-28
We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.
Caro, Miguel A.; Laurila, Tomi; Lopez-Acevedo, Olga
2016-12-01
We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.
Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon
Rufinus, J.
2017-10-01
The field of spintronics has been continuously attracting researchers. Tremendous efforts have been made in the quest to find good candidates for future spintronic devices. One particular type of material called graphene is under extensive theoretical study as a feasible component for practical applications. However, pristine graphene is diamagnetic. Thus, a lot of research has been performed to modify the graphene-based structure to achieve meaningful magnetic properties. Recently, a new type of graphene-based one-dimensional material called Boron Nitrogen nanoribbon (BNNR) has been of interest, due to the theoretical predictions that this type of material shows half-metallic property. Here we present the results of the theoretical and computational study of M-doped (M = Cr, Mn) Zigzag BNNR (ZBNNR), the objective of which is to determine whether the presence of these dopants will give rise to ferromagnetism. We have found that the concentration and the atomic distance among the dopants affect the magnetic ordering of this type of material. These results provide a meaningful theoretical prediction of M-doped ZBNNR as a basic candidate of future spintronic devices.
Calculation of viscoelastic properties of edible films: application of three models
Directory of Open Access Journals (Sweden)
CHANDRA Prabir K.
2000-01-01
Full Text Available The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.
Directory of Open Access Journals (Sweden)
Salahuddin Asif
2013-01-01
Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
2015-08-05
Aug 5, 2015 ... Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of ...
Nuclear fission with inertial confinement
Koshkarev, D G
2002-01-01
The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed
Discoveries of isotopes by fission
Indian Academy of Sciences (India)
About 3000 different isotopes have been discovered until now. A recent compilation sum- marized details of the discovery of all isotopes [1–4] including the year, laboratory and country of discovery as well as the production mechanism used to produce the isotopes. Fission, one of the largest contributing production ...
Puelles, P.; Beranoaguirre, A.; Ábalos, B.; Gil Ibarguchi, J. I.; García de Madinabeitia, S.; Rodríguez, J.; Fernández-Armas, S.
2017-07-01
This study describes the strain geometry, crystal-plastic deformational features, isotopic age of metamorphism, and calculated seismic properties of two medium-temperature eclogite types from the Malpica-Tui Allochthonous Complex of Variscan NW Iberia. The eclogite types are eclogites with coronitic garnets and eclogites with a planolinear fabric. Both of them were buried, deformed and recrystallized under maximum pressure and temperature of 2.6 GPa and 610-640°C, and subsequently exhumed in a late Devonian subduction channel. The metamorphic peak of the subduction-exhumation cycle occurred 375 Ma ago. Omphacite petrofabric ties eclogites with coronitic garnet to noncoaxial constrictional strain and eclogites with planolinear fabrics to noncoaxial flattening strain and stretching along the lineation. We also used omphacite crystallographic preferred orientations to calculate and constrain the seismic properties of the eclogites. The slight variations in petrophysical properties observed are interpreted to result from variations in the strain regime recorded by pristine eclogites, or from variations in the modal proportions of the constituent high-pressure minerals. We foresee that eclogite in subduction metamorphic complexes might be either seismically undetectable or detected as planar features with high impedance contrasts relative to their host rocks.
Azhar, N. S.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.
2017-03-01
Crystal structures of α-Bi2O3 and β-Bi2O3 were calculated using Cambridge serial total energy package (CASTEP) based on the first-principles plane-wave ultrasoft pseudopotential method within local density approximation (LDA) and generalized gradient approximation (GGA) together with Perdew-Burke-Ernzerhof (GGA-PBE) and Perdew-Burke-Ernzerhof revised for solid (GGA-PBEsol). The structural parameter of α-Bi2O3 and β-Bi2O3 are in good agreement with previous experimental and theoretical data. All of the polymorphs were calculated for the total density of states (TDOS) and the partial density of states (PDOS) of Bi, O atoms. Density of states exhibits hybridization of Bi 6s and O 2p orbitals and the calculated charge density profiles exhibit the ionic character in the chemical bonding of this compound. The narrowed band gap (E g) and red-shift of light absorption edge are responsible for the photocatalytic activity of Bi2O3 for water splitting application. The optical properties such as optical absorption and electron energy loss function were calculated to show the best structure among these polymorphs for the photocatalytic water splitting application.
Energy Technology Data Exchange (ETDEWEB)
Lalic, M.V.; Carbonari, A.W.; Saxena, R.N.; Moralles, M.; Mestnik-Filho, J. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil)]. E-mail: jmestnik@net.ipen.br
2002-06-10
We report on first-principles band-structure calculations of the semiconducting CuAlO{sub 2} delafossite compound in the pure form and also with Cd impurity occupying either a Cu or Al position. The computational tool was a full-potential linear augmented plane-wave method, with the generalized gradient approximation accounting for the exchange and correlation effects. The changes caused by the presence of Cd are studied by the analysis of the electronic structure and the electric field gradient (EFG) in both Cd-doped and pure CuAlO{sub 2} systems. Good agreement between the calculated and measured EFGs at Cd substituting for Cu or Al atoms in CuAlO{sub 2} indicates that the calculations were able to correctly describe the ground state of the system containing the impurity. It is shown that a specific hybridization scheme, involving Cu (and Cd) s and d{sub z{sup 2}} orbitals and neighbouring O p{sub z} orbitals, takes place at the Cu sites in CuAlO{sub 2} as proposed earlier. The results of the calculations indicate that the Cd-doped system changes its electrical properties when Cd replaces Cu atoms (producing an n-type semiconductor), but not when it substitutes for Al atoms. (author)
Directory of Open Access Journals (Sweden)
K.-D. Bouzakis
2012-03-01
Full Text Available Nanoindentation is usually applied on thin films at ambient temperatures for hardness determination. Recently, instruments for conducting nanoindentation at elevated temperatures have been developed facilitating measurements up to 700 oC. Both indenter and specimen, if necessary, are heated in an inert atmosphere to avoid film oxidations. In the described investigations, nanoindentations were conducted on cemented carbides and high speed steel specimens, coated with various films, up to 400 oC. The obtained results were subjected to statistical analysis to estimate their reliability. Moreover, the results were evaluated by appropriate FEM (Finite Element Method algorithms for determining the coatings’ elasticity modulus, yield and rupture stress as well as hardness at various temperatures. The results reveal a non-linear temperature dependence of the coating properties.
Synthesis, characterization and calculated non-linear optical properties of two new chalcones
Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav
2012-06-01
Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).
Hernández Rosas, J J; Ramírez Gutiérrez, R E; Escobedo-Morales, A; Chigo Anota, Ernesto
2011-05-01
The electrical and chemical properties of graphene (C(24)H(12)), graphane (C(24)H(24)) and graphene oxide (C(54)H(17)+O+(OH)(3)+COOH) were studied through the density functional theory (DFT) at level of Local Density Approximation (LDA) using a model C(n)H(m) like. The optimized geometry, energy gap and chemical reactivity for the proposed carbon 2D models are reported. It was found that while the graphene and graphane structures have semiconductor behavior, the graphene oxide behaves as semi-metal. However, a transition from semi-mental to semiconductor is predicted if the carboxyl group (COOH) is removed from such structure. The chemically active sites are analyzed on the basis of the electrophilic Fukui functions for each structure.
Kong, Xiangyu; Xu, Hong-Guang; Zheng, Weijun
2012-08-01
Chromium-doped silicon clusters, CrSin-(n = 3-12), were investigated with anion photoelectron spectroscopy and density functional theory calculations. The combination of experimental measurement and theoretical calculations reveals that the onset of endohedral structure in CrSin- clusters occurs at n = 10 and the magnetic properties of the CrSin- clusters are correlated to their geometric structures. The most stable isomers of CrSin- from n = 3 to 9 have exohedral structures with magnetic moments of 3-5μB while those of CrSi10-, CrSi11-, and CrSi12- have endohedral structures and magnetic moments of 1μB.
Pullanhiotan, Sugathan; Dubey, Rakesh; Yadav, Chandrabhan; Jhingan, Akhil; Komalan Satheedas, Golda; Nedumbally, Saneesh; Kumar, Mohit
2017-11-01
Fission process is strongly influenced by entrance channel dynamical variables. Among these, the nuclear charge product, mass asymmetry and deformation play important role in fission dynamics. Reaction characteristics are distinguished by investigating the properties of fission mass and angular distributions. Experiments using actinide targets are challenging due to many conflicting results making unambiguous identification of quasi-fission difficult. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission mechanism and role of entrance channel parameters and deformation. Fragment mass distribution, angular distribution and neutron multiplicity measurements are performed to study reactions using spherical and deformed targets.
Weniger, Kirsten K.; Muller, Gerhard J.
2005-03-01
In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.
Kinetic energy dependence of fission fragment isomeric ratios for spherical nuclei 132Sn
Chebboubi, A.; Kessedjian, G.; Litaize, O.; Serot, O.; Faust, H.; Bernard, D.; Blanc, A.; Köster, U.; Méplan, O.; Mutti, P.; Sage, C.
2017-12-01
Isomeric ratios are a powerful observable to investigate fission fragment total angular momenta. A recent experimental campaign achieved at the LOHENGRIN spectrometer, shows a kinetic energy dependence of μs isomeric ratios from fission fragments populated in neutron induced fission of 235U. For the first time, this dependence was measured for the isomeric ratio of the doubly magic 132Sn. A Bayesian assessment of the angular momentum distribution of 132Sn is proposed according to calculations performed with the FIFRELIN code and interpreted with spin generation models.
Energy Technology Data Exchange (ETDEWEB)
Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.
2010-09-02
A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.
Ab initio calculations of structural and magnetic properties of Ni-Co-Mn-Cr-Sn alloys
Directory of Open Access Journals (Sweden)
Zagrebin Mikhail
2015-01-01
Full Text Available The composition dependences of crystal lattice parameters, bulk modulus, magnetic moments, magnetic exchange parameters in Ni2-yCoyMn1.5-xCrxSn0.5 (y = 0.2, 0.4; 0.0 ≤ x ≤ 0.4 Heusler alloys are investigated with the help of ab initio calculations. Our simulations have shown that crystal lattice parameter firstly increased and then decreased with Cr content (x increasing. The strongest ferromagnetic interaction for Ni1.6Co0.4Mn1.4Cr0.1Sn0.5 is nearest-neighbor interaction between Co and Mn1 (on own sites. The strongest antiferromagnetic interaction is observed between nearest-neighbor Mn1-Cr atoms in the first coordination sphere and it is equal to -15meV. Total magnetic moment of Ni2-yCoyMn1.5-xCrxSn0.5 (y =0.2, 0.4; 0.0 ≤ x ≤ 0.4 takes value in region from 6.1 μB to 6.6 μB.
Statistical properties of $^{243}$Pu, and $^{242}$Pu(n,$\\gamma$) cross section calculation
Laplace, T A; Guttormsen, M; Larsen, A C; Bleuel, D L; Bernstein, L A; Goldblum, B L; Siem, S; Garotte, F L Bello; Brown, J A; Campo, L Crespo; Eriksen, T K; Giacoppo, F; Görgen, A; Hadyńska-Klȩk, K; Henderson, R A; Klintefjord, M; Lebois, M; Renstrøm, T; Rose, S J; Sahin, E; Tornyi, T G; Tveten, G M; Voinov, A; Wiedeking, M; Wilson, J N; Younes, W
2015-01-01
The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is in excellent agreement with sum-rule estimates. The measured level density and gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron energy range for which there were previously no measured data.
Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose
2013-06-20
The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.
Olejniczak, Małgorzata; Bast, Radovan; Pereira Gomes, André Severo
2017-03-22
We report an implementation of nuclear magnetic resonance (NMR) shielding (σ), isotope-independent indirect spin-spin coupling (K) and the magnetizability (ξ) tensors in a frozen density embedding scheme using the four-component (4c) relativistic Dirac-Coulomb (DC) Hamiltonian and non-collinear spin density functional theory. The formalism takes into account the magnetic balance between the large and the small components of molecular spinors and assures the gauge-origin independence of the NMR shielding and magnetizability results. This implementation has been applied to hydrogen-bonded HXHOH2 complexes (X = Se, Te, Po) and compared with supermolecular calculations and with an approach based on the integration of the magnetically induced current density vector. A comparison with the approximate zeroth-order regular approximation (ZORA) Hamiltonian indicates non-negligible differences in σ and K in the HPoHOH2 complex, and calls for a thorough comparison of ZORA and DC Hamiltonians in the description of environment effects on NMR parameters for molecular systems with heavy elements.
DEFF Research Database (Denmark)
Diky, Vladimir; Chirico, Robert D.; Muzny, Chris
ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured...... be either a pure substance or mixture of chemical compounds under bubble, dew, or specified P-T conditions. VLE compositions and single-phase properties are calculated for process streams. Uncertainties are evaluated with the use of the covariance method where covariance matrices account for experimental...
Dias, Jerry Ray
2016-06-09
The results herein demonstrate that the methods of circumscribing and the facile calculation of Hückel molecular orbital (HMO) eigenvalues by mirror-plane fragmentation have a broad application in the construction of carbon cluster series and the systematic study of trends in their electronic properties. In comparing open-ended nanotubes and their isomeric elongated fullerenes (bicapped nanotubes), we show that the former are more aromatic but the latter are more conjugated and that progressive elongation increases aromaticity and conjugation in both. Recursion equations that will allow one to obtain the eigenvalues to all 5-endcapped nanotubes are given.
Bordbar, G. H.; Hosseini, S.; Poostforush, A.
2017-05-01
Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.
Bettahar, N.; Nasri, D.; Benalia, S.; Merabet, M.; Abidri, B.; Benkhettou, N.; Khenata, R.; Rached, D.; Rabah, M.
2013-03-01
Elastic, thermodynamic, electronic, and magnetic properties in the cubic antiperovskite InNCe3 compound are derived from the full-potential linear muffin-tin orbital method. From the computed elastic constants, theoretical values of Young's modulus, the shear modulus, Poisson's ratio, Lamé's coefficients, sound velocities, and the Debye temperature are evaluated. Analysis of the ratio between the bulk modulus and the shear modulus shows that InNCe3 is brittle in nature. The variations of elastic constants with pressure indicate that this compound possesses higher mechanical stability in the pressure range from 0 to 40 GPa. The electronic and magnetic properties of this compound are calculated by adding the Coulomb interaction U to improve the results.
Cohen, Guy; Gull, Emanuel; Reichman, David R; Millis, Andrew J
2014-04-11
The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.
Structural and electronic properties of wurtzite Bx Al1-x N from first-principles calculations
Zhang, Muwei
2017-06-14
The structural and electronic properties of wurtzite BAlN (0≤x≤1) are studied using density functional theory. The change of lattice parameters with increased B composition shows small bowing parameters and thus slightly nonlinearity. The bandgap exhibits strong dependence on the B composition, where transition from direct to indirect bandgap occurs at a relatively low B composition (x∼0.12) is observed, above which the bandgap of BAlN maintained indirect, thus desirable for low-absorption optical structures. The Γ-A and Γ-K indirect bandgaps are dominant at lower and higher B compositions, respectively. Density of states (DOS) of the valence band is susceptible to the B incorporation. Strong hybridization of Al, B, and N in p-states leads to high DOS near the valence band maximum. The hybridization of Al and B in s-states at lower B compositions and p-states of B at higher B compositions give rise to high DOS near lower end of the upper valence band. Charge density analysis reveals the B-N chemical bond is more covalent than the Al-N bond. This will lead to more covalent crystal with increasing B composition. Dramatic change of the heavy hole effective mass is found due to significant curvature increase of the band by minor B incorporation.
Robinson, Max W; Hill, Alan P; Readshaw, Simon A; Hollerton, John C; Upton, Richard J; Lynn, Sean M; Besley, Steve C; Boughtflower, Bob J
2017-02-07
Universal quantitative detection without the need for analyte reference standards would offer substantial benefits in many areas of analytical science. The quantitative capability of high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) was investigated for 50 compounds with a wide range of physical and chemical properties. It is widely believed that CAD is a mass detector. Quantification of the 50 compounds using a generic calibrant and mass calibration achieved an average error of 11.4% relative to 1H NMR. Correction factors are proposed that estimate the relative surface area of particles in the detector, taking into account the effects of the density and charge of analytes. Performing these corrections and quantifying with surface area calibration, rather than mass, shows considerably improved linearity and uniformity of detection, reducing the average error relative to 1H NMR to 7.1%. The accuracy of CAD quantification was most significantly improved for highly dense compounds, with traditional mass calibration showing an average error of 34.7% and the newly proposed surface area calibration showing an average error of 5.8%.
Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.
2018-01-01
Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.
Samyn, M.; Goriely, S.; Pearson, J. M.
2005-10-01
Large-scale fission barrier calculations have been performed in the framework of the Skyrme-Hartree-Fock model. Our Hartree-Fock-Bogoliubov calculations restore broken symmetries such as translational invariance, particle-number conservation, parity, and, in a more approximate way, rotational invariance. Axial symmetry is imposed, but reflection asymmetry is allowed. The energy surface properties are analyzed with the flooding method. A large set of Skyrme interactions, which were fitted to all known masses under different specific constraints, is used to study the main effects influencing the energy surface and the barrier heights. The principal interaction used in the comparison with experimental barriers is BSk8, the force on which the HFB-8 mass table is based. We found that for nuclei with 92≤Z≤98 the agreement of our calculations with experimental data is excellent; the rms deviation on the primary barriers is 0.722 MeV. For lighter nuclei, however, the calculated primary barriers are always too high because of the existence of a third barrier at very high deformations. However, our calculated superheavy barriers appear to be too low, although they are consistent with previous calculations.
Energy Technology Data Exchange (ETDEWEB)
Mejia-Urueta, Rafael; Mestre-Quintero, Kleyber; Vivas-Reyes, Ricardo, E-mail: rvivasr@unicartagena.edu.co [Grupo de Quimica Cuantica y Teorica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena (Colombia)
2011-09-15
Perfluorinated organic compounds (POCs), such as perfluorooctanesulfonate (PFOS) and perfluoroalkylsulfonamide (PFASA) are compounds that have recently attracted considerable attention worldwide because of its high persistence and wide distribution in the environment. Among the spectroscopic methods used to study the PFASA, {sup 19}F nuclear magnetic resonance (NMR {sup 19}F) is very effective, due to its ability to determine concentrations of PFASA in biological samples and measure pollution in water samples. For this reason, a theoretical study of the properties of {sup 19}F NMR was performed. In this study we have determined the shielding constant ({sigma}) for different fluorine nucleus of the 18 molecules under study, using density functional theory (DFT) and GIAO method with the B3PW91/6-31+G(d,p) level of calculation. The {sigma} calculations were made at vacuum and in presence of a solvent. The values of chemical shifts ({delta}), were also calculated in a different level of theory. The best results were obtained with the level of calculation DFT-GIAO/B3PW91/6-31+G(d,p) by considering the solvent such as dimethylsulfoxide (DMSO), chloroform (CHCl{sub 3}), acetone (CH{sub 3}COCH{sub 3}) and methanol (CH{sup 3}OH). The results were interpreted in terms of calculated hardness at DFT/B3PW91/6-31+G(d, p) level. The behaviour of the hardness was higher in the molecules of four carbons PFASA than eight carbons. This explain theoretically resistance of four carbons PFAS to be transformed into perfluorobutanesulfonate (PFBS). (author)
Wang, Neng-Ping
2011-01-01
I present a method to calculate the ballistic transport properties of atomic-scale structures under bias. The electronic structure of the system is calculated using the Kohn-Sham scheme of density functional theory (DFT). The DFT eigenvectors are then transformed into a set of maximally localized Wannier functions (MLWFs) [N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847]. The MLWFs are used as a minimal basis set to obtain the Hamitonian matrices of the scattering region and the adjacent leads, which are needed for transport calculation using the nonequilibrium Green's function formalism. The coupling of the scattering region to the semi-infinite leads is described by the self-energies of the leads. Using the nonequilibrium Green's function method, one calculates self-consistently the charge distribution of the system under bias and evaluates the transmission and current through the system. To solve the Poisson equation within the scheme of MLWFs I introduce a computationally efficient method. The method is applied to a molecular hydrogen contact in two transition metal monatomic wires (Cu and Pt). It is found that for Pt the I-V characteristics is approximately linear dependence, however, for Cu the I-V characteristics manifests a linear dependence at low bias voltages and exhibits apparent nonlinearity at higher bias voltages. I have also calculated the transmission in the zero bias voltage limit for a single CO molecule adsorbed on Cu and Pt monatomic wires. While a chemical scissor effect occurs for the Cu monatomic wire with an adsorbed CO molecule, it is absent for the Pt monatomic wire due to the contribution of d-orbitals at the Fermi energy.
Large-scale density functional calculations of the surface properties of the Wigner crystal
Cortes-Huerto, R.; Ballone, P.
2010-05-01
The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for rs˜20 , then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at rs=30 . At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.
Directory of Open Access Journals (Sweden)
Oberstedt Stephan
2017-01-01
Full Text Available The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f, 239Pu(nth, f, and 252Cf(sf. Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS characteristics (average number of photons per fission, average total energy per fission and mean photon energy from 252Cf(sf, 235U(nth, f and 239,241Pu(nth, f within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.
Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas
2017-09-01
The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.
Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)
2002-10-01
This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.
Study of the fission process of deformed Na clusters in liquid-drop stabilized jellium model
Directory of Open Access Journals (Sweden)
M Payami
2008-07-01
Full Text Available In this work, using the liquid drop model in the context of the stabilized jellium model, we have studied the fission of charged Na clusters. In this study we have assumed a deformed non-spherical shape for the cluster. The ground state energies, critical sizes, fission barrier height, and the evaporation energies have been calculated. The results show a better agreement to the experimental results compared to our earlier work.
A fission fragment detector for correlated fission output studies
Energy Technology Data Exchange (ETDEWEB)
Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)
2014-09-01
A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.
Łuszczak, Katarzyna; Persano, Cristina; Braun, Jean; Stuart, Finlay
2016-04-01
Low temperature thermochronometers are mainly used to decipher crustal denudation histories. However, these methods provide cooling paths that can be confidently translated into denudation rates only if the geothermal gradient at the time of cooling is known. As past geothermal gradients cannot be directly measured, they can be sometimes estimated from the thermochronometric data, when borehole data or vertical profiles are available. In all the other cases, our knowledge of the spatial and temporal variation of the geothermal gradient is limited. It is common practice in many thermochronometric studies to calculate the amounts and rates of denudation through time assuming a constant, average present-day value for the geothermal gradient. In this study, using 1D and 3D (Pecube) models, we have investigated the impact of crustal heat production and thermal conductivity (κ) on the estimated values of denudation, taking central west Britain as our case study. In this region, the apatite fission track (AFT) ages describe a characteristic U-shape pattern with early Cenozoic ages in the English Lake District and older, up to 200 Ma ages northwards in S Scotland, and southwards in N Wales. This pattern, which could be referred to a difficult to justify localized, differential denudation, can actually be best explained as an effect of the spatially variable heat production. The insulating effect of low thermal conductivity Upper Mesozoic sedimentary rocks, composed largely by chalk, increases the palaeogeothermal gradient and reduces the amounts of denudation, especially in the Lake District, where a heat productive granite batholith increases the local heat flow. The observed AFT age pattern may be, therefore, explained without any significant variation of early Cenozoic denudation across central west Britain. If the thermal proprieties of the crust are not taken into account, denudation in the Lake District will be overestimated by a factor of 1.5-2.0 and the mechanisms
In-beam fission study for Heavy Element Synthesis
Directory of Open Access Journals (Sweden)
Nishio Katsuhisa
2013-12-01
Full Text Available Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.
Design of ITER neutron monitor using micro fission chambers
Energy Technology Data Exchange (ETDEWEB)
Nishitani, Takeo; Ebisawa, Katsuyuki; Ando, Toshiro; Kasai, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Johnson, L.C.; Walker, C.
1998-08-01
We are designing micro fission chambers, which are pencil size gas counters with fissile material inside, to be installed in the vacuum vessel as neutron flux monitors for ITER. We found that the {sup 238}U micro fission chambers are not suitable because the detection efficiency will increase up to 50% in the ITER life time by breading {sup 239}Pu. We propose to install {sup 235}U micro fission chambers on the front side of the back plate in the gap between adjacent blanket modules and behind the blankets at 10 poloidal locations. One chamber will be installed in the divertor cassette just under the dome. Employing both pulse counting mode and Campbelling mode in the electronics, we can accomplish the ITER requirement of 10{sup 7} dynamic range with 1 ms temporal resolution, and eliminate the effect of gamma-rays. We demonstrate by neutron Monte Carlo calculation with three-dimensional modeling that we avoid those detection efficiency changes by installing micro fission chambers at several poloidal locations inside the vacuum vessel. (author)
Delayed neutron yield from fast neutron induced fission of sup 2 sup 3 sup 8 U
Piksaikin, V M; Isaev, S G; Kazakov, L E; Roshchenko, V A; Tertytchnyi, R G
2001-01-01
The measurements of the total delayed neutron yield from fast neutron induced fission of sup 2 sup 3 sup 8 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of sup 2 sup 3 sup 8 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant.
Jiang, He; Chen, Changshui
2015-04-23
Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable.
Energy Technology Data Exchange (ETDEWEB)
Sesion Jr, P D [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte (Brazil); Henriques, J M [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte (Brazil); Barboza, C A; Albuquerque, E L [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-900 Natal, Rio Grande do Norte (Brazil); Freire, V N [Departamento de Fisica, Universidade Federal do Ceara, 60455-970 Fortaleza, Ceara (Brazil); Caetano, E W S, E-mail: ewcaetano@gmail.co [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Avenida 13 de Maio, 2081, Benfica, 60040-531 Fortaleza, Ceara (Brazil)
2010-11-03
CdSnO{sub 3} ilmenite and perovskite crystals were investigated using both the local density and generalized gradient approximations, LDA and GGA, respectively, of the density functional theory (DFT). The electronic band structures, densities of states, dielectric functions, optical absorption and reflectivity spectra related to electronic transitions were obtained, as well as the infrared absorption spectra after computing the vibrational modes of the crystals at q = 0. Dielectric optical permittivities and polarizabilities at {omega} = 0 and {infinity} were also calculated. The results show that GGA-optimized geometries are more accurate than LDA ones, and the Kohn-Sham band structures obtained for the CdSnO{sub 3} polymorphs confirm that ilmenite has an indirect band gap, while perovskite has a direct band gap, both being semiconductors. Effective masses for both crystals are obtained for the first time, being highly isotropic for electrons and anisotropic for holes. The optical properties reveal a very small degree of anisotropy of both crystals with respect to different polarization planes of incident light. The phonon calculation at q = 0 for perovskite CdSnO{sub 3} does not show any imaginary frequencies, in contrast to a previous report suggesting the existence of a more stable crystal of perovskite CdSnO{sub 3} with ferroelectric properties.
Xiong, Huihui; Liu, Zhao; Zhang, Henghua; Du, Zheng; Chen, Congmei
2017-08-01
Interfacial models of SiC/ZrB2 composite coating were studied by first-principles calculations based on density functional theory (DFT). The cubic SiC and hexagonal ZrB2 were selected in our work, and twelve types of SiC (111)/ZrB2 (0001) interface structures were investigated in consideration of four different terminations and three stacking sequences. The cohesive energy (Wad), interfacial energy (γint), and electronic structure of the SiC/ZrB2 interfaces were all calculated. The results show that the ZrB2 (0001) surface with 9 layers exhibits bulk-like interior characteristic. Among the interfaces of C/Zr terminated hcp-stacked (CZH), Si/Zr terminated hcp-stacked (SZH), C/B terminated center-stacked (CBC) and Si/B terminated center-stacked (SBT), the CZH interface has the largest Wad (6.28 J/m2) and thus is of the best stability. Over the range of zirconium chemical potential, the γint of CZH, SZH, CBC and SBT interfaces are -0.31-2.50 J/m2, 1.07-3.88 J/m2, 2.85-5.66 J/m2 and 2.32-5.13 J/m2, respectively. The calculated electronic properties reveal that, the CZH, CBC and SBT interfaces mainly contain covalent bonding, while the SZH one primarily consists of metallic bonding.
First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7
Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin
2017-12-01
We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2‑x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2‑x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2‑x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2‑x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.
Density Functional Theory Calculations of Mass Transport in UO2
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders D. [Los Alamos National Laboratory; Dorado, Boris [CEA; Uberuaga, Blas P. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory
2012-06-26
In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models
Fission Fragment Angular Distributions measured with a Time Projection Chamber
Energy Technology Data Exchange (ETDEWEB)
Kleinrath, Verena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-04-28
The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for ^{235}U); and Future Work (Refine ^{235}U result, Process ^{239}Pu data).
Dating thermal events at Cerro Prieto using fission track annealing
Energy Technology Data Exchange (ETDEWEB)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Cell polarization in budding and fission yeasts.
Martin, Sophie G; Arkowitz, Robert A
2014-03-01
Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, R. G. (Rene G.)
2002-01-01
As NASA continues the exploration of deep space, there is a need for safe, reliable, and long-lasting source of energy. Solar cells, which are useful at the inner solar system, cannot provide adequate power for a spacecraft once it has passed beyond Jupiter's orbit. For missions to the outer planets, NASA has relied on radioisotope thermoelectric generators (RTGs) using 238Pua s a heat source. RTGs are an excellent power conversion technology but, unfortunately, 238Pu is a potential environmental hazard. In the past, the use of 238Pu has generated much controversy and turmoil. Its use in future missions is doubtful because of environmental concerns. This paper presents calculations performed with MCNP for a power source that will take advantage of the low temperatures found in deep space.
Moruzzi, VL
1995-01-01
This is a handbook of calculated electronic properties of elements and of 3d/3d and 4d/4d ordered alloys. The book derives the ground-state or equilibrium properties of the metallic elements in both bcc and fcc structures, and of existing and nonexisting ordered binary transition-metal alloys in CsCl, CuAu, and Cu 3 Au structures by the analysis of binding curves, or total energy vs. volume curves, calculated from first-principles augmented-spherical-wave methods. The calculated properties, energy bands along symmetry lines in the respective Brillouin zones, and the total and I-decomposed dens
The VERDI fission fragment spectrometer
Directory of Open Access Journals (Sweden)
Frégeau M.O.
2013-12-01
Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)
2016-01-15
Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)
Mukhtar, Ahmed Rana; Gul, Sher; Shahid, Manzoor; I. Shahzad, M.
2011-09-01
Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of σf versus Z2/A into two regimes, one with weak dependence and the other with strong dependence.
Technical Application of Nuclear Fission
Denschlag, J. O.
The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-12-01
Fusion - fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the "Fusion by Diffusion" (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
Directory of Open Access Journals (Sweden)
Kowal Michał
2016-01-01
Full Text Available Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Modeling the Control of DNA Replication in Fission Yeast
Novak, Bela; Tyson, John J.
1997-08-01
A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (``endoreplication'') or initiation of mitosis before DNA is fully replicated (``mitotic catastrophe''). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of ``Start'' control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1- (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1- rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.
The resonance neutron fission on heavy nuclei
Kopach, Yu N; Furman, V I; Alfimenkov, V P; Lason', L; Pikelner, L B; Gonin, N N; Kozlovskij, L K; Tambovtsev, D I; Gagarskij, A M; Petrov, G A; Sokolov, V E
2001-01-01
A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned sup 2 sup 3 sup 5 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
$\\beta$-delayed fission in proton-rich nuclei in the lead region
AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia
Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...
The status of the Munich Fission Fragment Accelerator Project
Groß, M.; Habs, D.; Kester, O.; Ott, J.; Rao, R.; Thirolf, P.; Egidy, T. v.; Kienle, P.; Köster, U.; Steichele, E.
1998-10-01
At the new Munich high-flux reactor FRM-II, which is currently under construction and will have properties similar to the ILL reactor, a fission fragment accelerator—similar to the former Grenoble PIAFE project—is under design and will be able to provide very intense ion beams of neutron-rich nuclei. A status report of this project is given with emphasis on new developments concerning the in-pile part of the arrangement.
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Formation and distribution of fragments in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas
2017-12-01
30 nucleons even near scission. Conclusions: Our Rapid Communication shows that only theoretical models of fission that account for some form of stochastic dynamics can give an accurate description of the structure of fragment distributions. In particular, it should be nearly impossible to predict the tails of these distributions within the standard formulation of time-dependent density-functional theory. At the same time, the large number of nonlocalized nucleons during fission suggests that adiabatic approaches where the interplay between intrinsic excitations and collective dynamics is neglected are ill suited to describe fission fragment properties, in particular, their excitation energy.
Directory of Open Access Journals (Sweden)
Iván Vera-Romero
2017-06-01
Full Text Available The design and optimization of energy systems are very important today. Some of these systems use the ammonia-water mixture as working fluid, therefore, calculation of the thermodynamic properties becomes indispensable for its evaluation, design and optimization. In the present work an application has been developed in ExcelTM using Visual Basic (VBA from a formulation based on free Gibbs Energy of Excess, in order to simulate different systems such as cooling, air conditioning, heat pumps, cogeneration and power cycles, without to acquire commercial simulators for this purpose. To validate this program, the results were compared with data obtained by the National Institute of Standards and Technology (NIST software and experimental data reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Soubbotin, V.B.; Vinas, X.; Roux, C.; Danilov, P.B.; Gridnev, K.A. [Dept. d' Estructura i Constituents de la Materia, Barcelona Univ. (Spain)
1995-07-01
The ground-state properties of magic nuclei have been studied by means of the Gogny force within the Hartree-Fock Scheme using the Slater approximation for the exchange part. A similar analysis has been carried out within the semiclassical framework by considering the extended Thomas-Fermi approach for the kinetic energy density. Comparisons with the complete Hartree-Fock results are made. The ion-ion potential for two colliding nuclei has been obtained in the energy density functional and the double-folded model approaches by using self-consistent semiclassical densities calculated with the Gogny force. These potentials have been applied in the study of {sup 40}Ca-{sup 40}Ca elastic scattering. (author)
Energy Technology Data Exchange (ETDEWEB)
Bouzidi, Chaker, E-mail: bouzidtc@yahoo.fr [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, BP No.73, 8027 Soliman (Tunisia); Horchani-Naifer, Karima; Khadraoui, Zied [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, BP No.73, 8027 Soliman (Tunisia); Elhouichet, Habib [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, BP No.73, 8027 Soliman (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis-ElManar ElManar, 2092 Tunis (Tunisia); Ferid, Mokhtar [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, BP No.73, 8027 Soliman (Tunisia)
2016-09-15
The electronic and optical properties of calcium molybdate (CaMoO{sub 4}) have been determined by X-ray diffraction, spectroscopic measurements and calculations of energy-band structures, density of states, and optical response functions by density functional theory. The chemical bonding analysis indicates that Mo–O bonds exhibit more covalent character than the Ca–O bond. The linear photon-energy-dependent dielectric functions, conductivity, refractive index, reflectivity and extinction coefficients were investigated and analyzed. The results are in agreement with previous theoretical works and the experimental data. Reflectivity spectra revealed that the CaMoO{sub 4} promises as good coating materials in the energy region of 9.3–11.6 eV with reflectivity larger than 75%.
Energy Technology Data Exchange (ETDEWEB)
Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F.; Dixon, David A.
2016-08-09
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.
Energy Technology Data Exchange (ETDEWEB)
Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics
2017-07-01
The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.
Zaharo, Aflah; Purqon, Acep
2017-07-01
The calculation of the structure and electronic properties of Rare Earth (RE) at the wurtzite Gallium Nitride (GaN) based on DFT has completed. GGA approximation used for exchange correlation and Ultra soft pseudo potential too. The stability structure of GaN is seen that difference lattice parameter 11% lower than another calculation and experiment result. It is shown the stability structure GaN have direct band gap energy on Gamma point hexagonal lattice Brillouin zone. The width Eg is 2.6 eV. When one atom Ga is substituted with one atom RE, the bond length is change 12 % longest. An in good agreement with theoretical doping RE concentration increases, the edge of energy level shifted towards to make the band gap narrow which is allow the optical transitions and help to improve the optical performance of GaN. The RE doped GaN is potentially applicable for various color of LED with lower energy consumption and potentially energy saving application
Faizan, Mohd; Alam, Mohammad Jane; Ahmad, Shabbir
2017-11-01
In the present investigation, spectroscopic techniques (FTIR, FT-Raman and UV-Vis) and quantum chemical calculations are employed for exploring vibrational and electronic spectra of sulindac compound. The calculations are performed on most stable conformer of the sulindac molecule using density functional theory (DFT). Anharmonic corrections are made to frequencies using vibrational second-order perturbation theory (VPT2). The effect of intermolecular interactions on the vibrational dynamics has been analyzed using dimeric structure of sulindac molecule. Hirshfeld surface analysis and 2D fingerprint plots are utilized to investigate the nature of interaction present in the crystal system. To account for electronic spectra in different solvents, an integral equation formalism of polarizable continuum model (IEFPCM) at TD-DFT/B3LYP/6-31G(d,p) level of theory has been employed. An excellent agreement between the theoretical and experimental data over the entire spectral region is observed. In addition, natural bond orbital (NBO) analysis, frontier molecular orbitals, nonlinear optical properties (NLO) and molecular electrostatic potential (MEP) analysis are also reported.
Chiniforoshan, Hossein; Khalesi, Sara Bahmanpour; Tabrizi, Leila; Hajipour, Abdol R.; Chermahini, Alireza Najafi; Karimzadeh, Morteza
2015-02-01
In this research, a new complex of 4,4‧-dicyanamidobiphenyl (bpH2) ligand, Ag(bpH) has been synthesized and characterized by FT-IR, UV-Vis spectroscopies, and elemental analysis. The morphology and size of complex were determined by the scanning electron microscopy (SEM) image. The diameter of the complex was about 61 nm and the nanoparticles were spherical. TGA result indicated that this complex was thermally stable. Also, photoluminescent and electroluminescent properties of Ag(bpH) were reported. The blue-green light emission was observed by fabricating double-layer devices using Ag(bpH) as electron-transport and NPB as hole-transport material. In addition, this complex was optimized by B3LYP/LANL2DZ method. The calculated FT-IR and UV-Vis data are in better agreement with the experimental results. In addition to DFT calculations, natural bond orbital (NBO) was also performed at the same level of theory.
Calculation of the vibration properties of the Pd/Au (111 ordered surface alloy in its stable domain
Directory of Open Access Journals (Sweden)
Tigrine R.
2012-06-01
Full Text Available In the present paper, a calculation is presented for the vibration properties of the ordered surface alloy alloy Au(111 − (√3×√3R30° − Pd, which is a stable system in the temperature range of 500K to 600K. This surface alloy is formed by depositing Pd atoms onto the Au(111surface, and annealing at higher temperatures. The matching theory is applied to calculate the surface phonons and local vibration densities of states (LDOS for the clean Au (111 surface, and for the Au(111 − (√3×√3R30° − Pd surface alloy. Our theoretical results for the surface phonon branches of the clean Au (111 surface compare favorably with previous ab initio results and experimental data. In contrast, there are no previous results for the vibrational LDOS for the atomic Au site in a clean Au (111 surface, or results for the surface phonons and vibration spectra for the surface alloy. The surface phonons are calculated for the clean Au (111 surface and the ordered surface alloy along three directions of high symmetry, namely, ΓΜ¯, MML:MK¯ $overline {Gamma {m M}} ,{m{ }}overline {{m{MK}}} $ , and KΓ¯ $overline {KGamma } $ . The phonon branches are strongly modified from the Au (111 surface to the surface alloy. In particular a remarkable change takes place for the LDOS between the clean Au (111 surface and the surface alloy, which may find its origin in the charge transfer from Au atoms to Pd atoms.
FISSION TARGET DESIGN AND INTEGRATION OF NEUTRON CONVERTER FOR EURISOL-DS PROJECT
J. Bermudez, O. Alyakrinskiy, M. Barbui, F. Negoita, L. Serbina, L.B. Tecchio, E. Udup
A study of a new fission target for EURISOL-DS is presented with a detailed description of the target. Calculations of several configurations were done using Monte Carlo code FLUKA aimed to obtaining 1015 fissions/s on single target. In Eurisol, neutrons inducing the fission reactions are produced by a proton beam 1GeV-4mA interacting with a mercury converter. The target configuration was customized to gain fission yield from the large amount of low energy neutrons produced by the Hg converter. To this purpose, the fissile material is composed by discs of 238-Uranium carbide enriched with 15 g of 235-U. Studies of several geometries were done in order to define the shape and composition of uranium target, taking into account the mechanical and space constraints
Fan, Yang; Li, Hua-Min; Duan, Rui-Huan; Lu, Hai-Ting; Cao, Jun-Tao; Zou, Guo-Dong; Jing, Qiang-Shan
2017-11-06
The metal-to-core charge transfer (MCCT) transition in sensitized titanium-oxo clusters is an important process for photoinduced electron injection in photovoltaic conversion. This process resembles most closely the Type II photoinjection in dye-sensitized solar cells. Herein we report the synthesis and photophysical and photoelectrochemical (PEC) properties of the phosphonate-stabilized titanium-oxo clusters containing the ferrocenecarboxylate ligands. These ferrocene-containing clusters exhibit intense visible absorption extended up to 600 nm along with low optical band gaps of ∼2.2 eV. The low-energy transitions of these clusters were systematically investigated by UV-vis spectroscopy and DFT/TDDFT calculations. The combined experimental and computational studies suggest that the ferrocenecarboxylate-substituted titanium-oxo clusters form a donor-acceptor (D-A) system. The low-energy transition of these clusters primarily involves the MCCT from the iron center to TiO cluster core. The TiO core structure and phosphonate ligands both have great influence on the PEC properties of the clusters. This work provides valuable examples for the sensitized titanium-oxo clusters in which electron injection takes place via MCCT transition.
Drablia, S.; Boukhris, N.; Boulechfar, R.; Meradji, H.; Ghemid, S.; Ahmed, R.; Omran, S. Bin; El Haj Hassan, F.; Khenata, R.
2017-10-01
The alkaline earth metal chalcogenides are being intensively investigated because of their advanced technological applications, for example in photoluminescent devices. In this study, the structural, electronic, thermodynamic and thermal properties of the BaSe1-x Te x alloys at alloying composition x = 0, 0.25, 0.50, 0.75 and 1 are investigated. The full potential linearized augmented plane wave plus local orbital method designed within the density functional theory was used to perform the total energy calculations. In this research work the effect of the composition on the results of the parameters and bulk modulus as well as on the band gap energy is analyzed. From our results, we found a deviation of the obtained results for the lattice constants from Vegard’s law as well as a deviation of the value of the bulk modulus from the linear concentration dependence. We also carried out a microscopic analysis of the origin of the band gap energy bowing parameter. Furthermore, the thermodynamic stability of the considered alloys was explored through the measurement of the miscibility critical temperature. The quasi-harmonic Debye model, as implemented in the Gibbs code, was used to predict the thermal properties of the BaSe1-x Te x alloys, and these investigations comprise our first theoretical predictions concerning the BaSe1-x Te x alloys.
Energy Technology Data Exchange (ETDEWEB)
El Bassem, Y.; Oulne, M., E-mail: oulne@uca.ma
2017-01-15
In a previous work (El Bassem and Oulne (2015) ), hereafter referred to as paper I, we have investigated the ground-state properties of Nd, Ce and Sm isotopes within Hartree–Fock–Bogoliubov method with SLy5 Skyrme force in which the pairing strength has been generalized with a new proposed formula. However, that formula is more appropriate for the region of Nd. In this work, we have studied the ground-state properties of both even–even and odd Mo and Ru isotopes. For this, we have used Hartree–Fock–Bogoliubov method with SLy4 Skyrme force, and a new formula of the pairing strength which is more accurate for this region of nuclei. The results have been compared with available experimental data, the results of Hartree–Fock–Bogoliubov calculations based on the D1S Gogny effective nucleon–nucleon interaction and predictions of some nuclear models such as Finite Range Droplet Model (FRDM) and Relativistic Mean Field (RMF) theory.
First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects
Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng
2017-01-01
Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).
Sharma, N.; Mazzoleni, C.; China, S.; Dubey, M. K.; Onasch, T. B.; Cross, E. S.; Davidovits, P.; Wrobel, W.; Ahern, A.; Schwarz, J. P.; Spackman, J. R.; Lack, D. A.; Massoli, P.; Freedman, A.; Olfert, J. S.; Freitag, S.; Sedlacek, A. J.; Cappa, C. D.; Subramanian, R.
2010-12-01
A black carbon instrument inter-comparison study was conducted in July 2008 at Boston College to measure the optical, physical and chemical properties of laboratory generated soot under controlled conditions [1]. The physical, chemical and optical properties were measured on size-selected particles for: 1. Nascent soot particles 2. Nascent- denuded soot particles 3. Soot particles coated with sulfuric acid or DOS (dioctyl sebacate) across a range of coating thicknesses 4. Coated and then denuded soot particles. Instruments involved in the inter-comparison study fell into two broad categories: a) mass-based instruments and b) optically-based instruments. During this experiment, 7 mass-based and 9 optically-based instruments were deployed. Absorption scattering and extinction measurements were carried out in combination with mass-based instruments in order to obtain absorption, scattering and extinction coefficients for coated and denuded soot particles as a function of their mass, size and coating thickness. Particle samples were also collected on nuclepore filters to perform Scanning Electron Microscopy (SEM) analysis. The images obtained with the SEM elucidated the changes in particle morphology upon coating and denuding. The images were also used to determine morphological parameters for single soot aggregates (e.g. monomers number and diameter) used in the numerical estimation of aerosol optical properties. With the data collected during the experiment, we carry out a comparative study of the optical properties of soot particles obtained experimentally with those calculated using the two most commonly used numerical approximations (Rayleigh-Debye-Gans (RDG) theory and Mie theory). Thus we validate the degree of agreement between theoretical models and experimental results. The laboratory optical, mass, size and morphological data can be used to elucidate the impact of these parameters on radiative forcing by atmospheric soot [2, 3]. References: 1. Cross, E. S
Alpha decay calculations with a new formula
Akrawy, D. T.; Poenaru, D. N.
2017-10-01
A new semi-empirical formula for calculations of α decay half-lives is presented. It was derived from the Royer relationship by introducing new parameters which are fixed by fit to a set of experimental data. We are using three sets: set A with 130 e-e (even-even), 119 e-o (even-odd), 109 o-e, and 96 o-o, set B with 188 e-e, 147 e-o, 131 o-e and 114 o-o, and set C with 136 e-e, 84 e-o, 76 o-e and 48 o-o alpha emitters. A comparison of results obtained with the new formula (newF) and the following well known relationships: semiempirical relationship based on fission theory (semFIS), analytical superasymmetric fission (ASAF) model and universal formula (UNIV) made in terms of rms standard deviation. We also introduced a weighted mean value of this quantity, allowing us to compare the global properties of a given model. For set B the order of the four models is the following: semFIS, UNIV, newF and ASAF. Nevertheless for even-even alpha emitters, UNIV gives the second best result after semFIS, and for odd-even parents the second is newF. Despite its simplicity in comparison with semFIS, newF, presented in this article, behaves quite well, competing with the other well known relationships.
Energy Technology Data Exchange (ETDEWEB)
Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics
2015-05-01
The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.
Energy Technology Data Exchange (ETDEWEB)
Michalski, R. [Inst. of Physics, Pedagocial Univ., Cracow (Poland); Radwanski, R.J. [Center for Solid State Physics, Cracow (Poland)
2005-07-01
The aim of this paper is to demonstrate the effectiveness of the calculation method, which takes into consideration the electrostatic ligands field as well as the the magnetic interactions. Our calculations method based on crystal field (CEF) together with the Zeeman effect in one Hamiltonian and allows calculating many of the temperature dependencies of the magnetic and electronic properties of the rare earth compounds. The result of the calculations shows the accuracy of the approach even for the intermetallic compounds. The obtained results for calculations of the compounds of the family in RERu{sub 2}Si{sub 2} (RE - rare-earth element) are fully confirmed the experimental data such as: the easy magnetic direction of all the analyzed compounds, the thermal dependencies of magnetic properties; in particular the giant magnetocrystalline anisotropy of PrRu{sub 2}S{sub 2} with the calculated anisotropy field B{sub A}>400T, in-plain anisotropy of ErRu{sub 2}Si{sub 2}, the cause of difficulty in magnetic ordering of compounds TmRu{sub 2}Si{sub 2} and YbRu{sub 2}Si{sub 2} as well as effects and dependencies not foreseen before. In this paper we have put together the elementary calculated magnetic properties for the chosen compounds of RERu{sub 2}Si{sub 2} in the paramagnetic region. All Calculations are on the basis of the calculating computer package BIREC 1.5{sup 1}. (orig.)
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
Cold fission from isomeric states of superheavy nuclei
Sandulescu, A.; Mirea, M.
2014-07-01
Correlations between the potential energy surface structure and the mass distributions observed in the production of superheavy nuclei are evidenced. The isomeric states are identified by spanning the multidimensional configuration space from the contact point of the colliding nuclei up to the formation of the compound nucleus. The available degrees of freedom are the elongation, the necking, the mass asymmetry, and the deformations of the two colliding nuclei. Using the macroscopic-microscopic model based on the Woods-Saxon two-center shell model, several minima in the potential energy landscape were revealed. The fission process from these isomeric states was investigated and the probabilities of realization of possible partitions were calculated in the WKB approximation. The inertia was computed in the framework of the cranking model. The identified correlations indicate that the mass distribution attributed to quasifission in previous studies can be alternatively explained as a cold-fission process from excited states.
Pre-scission configuration of the tri-nuclear system at spontaneous ternary fission of {sup 252}Cf
Energy Technology Data Exchange (ETDEWEB)
Nasirov, A.K. [Joint Institute for Nuclear Research, BLTP, Dubna (Russian Federation); Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Tashkhodjaev, R.B. [Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Oertzen, W. von [Helmholtz-Zentrum Berlin, Berlin (Germany); Freie Universitaet, Fachbereich Physik, Berlin (Germany)
2016-05-15
The potential energy surface for the pre-scission configurations of tri-nuclear systems formed in the spontaneous ternary fission of {sup 252}Cf is calculated. The fission channel {sup 70}Ni+{sup 50}Ca+{sup 132}Sn is chosen as one of the more probable channels of true ternary fission of {sup 252}Cf. A study of the collinear arrangement of the reaction products for true ternary fission is the aim of this work. The results are presented as a function of the relative distance R{sub 12} between the centres of mass of {sup 70}Ni and {sup 132}Sn and the distance from the centre of mass of {sup 50}Ca, which is perpendicular to R{sub 12}. The results show that only for a particular range of the R{sub 12} values the collinear tripartion of the fissioning nucleus occurs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gieseke, J.A.; Baybutt, P.; Denning, R.S.; Jordan, H.; Wooton, R.O.
1976-09-07
Analysis methods and computer models for predicting fission product transport and deposition under postulated loss of coolant accident conditions within water-cooled reactor primary systems and shipping casks are being developed. Existing thermal-hydraulic analyses (RELAP-EM) form the basis for defining the conditions within the primary systems and the transport flow from which fission products deposit. The analyses to be developed in this study will provide methods for more realistically calculating the rate and magnitude of fission product release to the containment. Efforts during the reporting period were directed toward postulating the types of conditions to be assumed in developing the model for failed shipping casks, completing the PWR transport model format design, beginning the PWR transport model assembly and checkout, and performing various tasks related to fission product deposition rates, fission product chemistry, and thermal-hydraulic condition specification in support of the PWR model development.
Current estimates of the energy released following the fission of actinide nuclides
Sonzogni, Alejandro; McCutchan, Elizabeth
2017-09-01
We calculate the energy released following the neutron induced fission of the main fuel nuclides in a reactor, 235U, 238U, 239Pu and 241Pu. These energies are used in a number of fields, but we were particularly motivated by their application in the recent measurements of reactor antineutrinos spectra and yields. The calculations are performed using the best estimates of cumulative fission yields for long-lived fission products and the recently released 2016 Atomic Mass Evaluation by Wang et al. Additionally, we obtain more precise values of the energy taken away by antineutrinos by using the latest Total Absorption Gamma Spectroscopy (TAGS) results. An important part of this project is also to obtain realistic estimates of the uncertainties. A comparison with earlier calculations will be presented. Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC0298CH10886.
Some aspects of fission and quasifission processes
Indian Academy of Sciences (India)
2015-07-22
Jul 22, 2015 ... The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were ...
Radiochemical studies on nuclear fission at Trombay
Indian Academy of Sciences (India)
dependence of angular anisotropy while 16O+232Th systems shows higher anisotropies for the symmetric fission products [58]. The trend is thus reversed compared to the light ion- induced fission. Mass-resolved angular distribution studies were also carried out in the. 20Ne+181Ta [28], 20Ne+208Pb [26] and 20Ne+232Th ...
Nuclear Power from Fission Reactors. An Introduction.
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Some aspects of fission and quasifission processes
Indian Academy of Sciences (India)
The correct interpretation of these resonances was first given in [12]. This happened just as I started my Ph.D. studies at the Niels. Bohr Institute in Copenhagen, where many of the key players in the newly invigorated field of fission studies were resident at that time, both theorists and experimentalists. I got involved in fission ...
Prompt fission neutron spectrum of actinides
Energy Technology Data Exchange (ETDEWEB)
Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)
2016-01-06
Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.
Coulomb fission of a dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Merlino, R. L., E-mail: robert-merlino@uiowa.edu; Meyer, J. K. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Sen, A. [Institute for Plasma Research, Gandhinagar (India)
2016-06-15
Experimental observations are presented of the splitting (fission) of a suspension of charged microparticles (dusty plasma) into two fragments when the plasma was suddenly turned off. The triggering mechanism for fissioning of the dust cloud is discussed in terms of a pinching instability driven by the ion drag force.
Seventy-five years of nuclear fission
Indian Academy of Sciences (India)
2015-07-19
Jul 19, 2015 ... Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also ...
Prompt radiation as a probe for fission dynamics
Karpeshin, F. F.
2011-07-01
It is shown that the Strutinsky-Denisov induced polarization mechanism leads to the appearance of the prompt electric dipole radiation from fission fragments of 235Uby thermal neutrons in the domain of around 5 MeV. The probability of the radiation is at the level of 0.001 per fission, which is in agreement with experiment. The angular distribution exhibits left-right asymmetry with respect to the direction of the neutron polarization axis. That means that the emission of gamma quanta at the given angle depends on the neutron polarization. The asymmetry is at the level of 10-3. The study of this effect will give a direct information about the scission configuration, nuclear viscosity, and dissipation properties of the collective energy of the surface vibration in fragments with large amplitude. This will give a complete picture of the process of snapping back the nuclear surface.
Fission Surface Power Technology Development Status
Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott
2010-01-01
Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.
Energy Technology Data Exchange (ETDEWEB)
Knyazev, D. V. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg. 2, Moscow 125412 (Russian Federation); Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); State Scientific Center of the Russian Federation—Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Levashov, P. R. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg. 2, Moscow 125412 (Russian Federation); Tomsk State University, Lenin Prospekt 36, Tomsk 634050 (Russian Federation)
2014-07-15
This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical, and thermal conductivities were obtained in the ab initio calculation which is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. Then the semiempirical approximation was constructed based on the results of our simulation. This approximation yields the dependences σ{sub 1{sub D{sub C}}}∝1/T{sub i}{sup 0.25} and K∝T{sub e}/T{sub i}{sup 0.25} for the static electrical conductivity and thermal conductivity, respectively, for liquid aluminum at ρ = 2.70 g/cm{sup 3}, 3 kK ≤ T{sub i} ≤ T{sub e} ≤ 20 kK. Our results are well described by the Drude model with the effective relaxation time τ∝T{sub i}{sup −0.25}. We have considered a number of other models for the static electrical and thermal conductivities of aluminum, they are all reduced in the low-temperature limit to the Drude model with different expressions for the relaxation time τ. Our results are not consistent with the models in which τ∝T{sub i}{sup −1} and support the models which use the expressions with the slower decrease of the relaxation time.
Energy Technology Data Exchange (ETDEWEB)
Gibbs, A.; Thomason, R.S.
2000-09-05
This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data.
Analysis of the total kinetic energy of fission fragments with the Langevin equation
Usang, M. D.; Ivanyuk, F. A.; Ishizuka, C.; Chiba, S.
2017-12-01
We analyzed the total kinetic energy (TKE) of fission fragments with three-dimensional Langevin calculations for a series of actinides and Fm isotopes at various excitation energies. This allowed us to establish systematic trends of TKE with Z2/A1 /3 of the fissioning system and as a function of excitation energy. In the mass-energy distributions of fission fragments we see the contributions from the standard, super-long, and super-short (in the case of 258Fm) fission modes. For the fission fragments mass distribution of 258Fm we obtained a single peak mass distribution. The decomposition of TKE into the prescission kinetic energy and Coulomb repulsion showed that decrease of TKE with growing excitation energy is accompanied by a decrease of prescission kinetic energy. It was also found that transport coefficients (friction and inertia tensors) calculated by a microscopic model and by macroscopic models give drastically different behaviors of TKE as a function of excitation energy. The results obtained with microscopic transport coefficients are much closer to experimental data than those calculated with macroscopic ones.
Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Nascimento, M. A. C.; Bitzer, R. S.
2017-03-01
The reactions of 6-nitropiperonal with H2Nsbnd NHsbnd C(S)sbnd NHR, R = Me, Et, Ph or H, afforded four nitroaromatic thiosemicarbazones 1-4, respectively. 1-4 were characterized by elemental analysis (CHN), FTIR, and 1H and 13C{1H} NMR spectroscopy. In addition, the crystal structures of 2 and 3 were determined by single-crystal X-ray diffraction. Our X-ray structural results have shown that the nitropiperonal and thiosemicarbazone moieties exhibit an almost coplanar arrangement for both 2 and 3. Moreover, they establish 2-D networks along the [111] base vector by means of classical and nonclassical hydrogen bonds. Electronic and spectroscopic properties of 1-4 were investigated at the DFT B3LYP/6-311G** level of calculation. The Cdbnd S group of 1-4 constitutes a nucleophilic region, whereas the NO2 group defines an electrophilic centre, as expected. Furthermore, a DFT vibrational analysis of 4 allowed a reliable assignment of the thiosemicarbazone-based vibrations. Also, a good agreement between theoretical and experimental 13C chemical shift values was obtained for 1-4.
Puzzarini, Cristina; Barone, Vincenzo
2011-04-21
The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.
Energy Technology Data Exchange (ETDEWEB)
Masuda-Jindo, K. [Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503 (Japan)], E-mail: kmjindo@issp.u-tokyo.ac.jp; Vu Van Hung; Hoa, N.T. [Department of Physics, Hanoi National Pedagogic University, km8 Hanoi-Sontay Highway, Hanoi (Viet Nam); Turchi, P.E.A. [Lawrence Livermore National Laboratory, PO Box 808, L-353 LLNL, Livermore, CA 94551 (United States)
2008-03-06
The thermodynamic quantities of high temperature metals and alloys are studied using the statistical moment method, going beyond the quasi-harmonic approximations. Including the power moments of the atomic displacements up to the fourth order, the Helmholtz free energies and the related thermodynamic quantities are derived explicitly in closed analytic forms. The configurational entropy term is taken into account by using the tetrahedron cluster approximation of the cluster variation method (CVM). The energetics of the binary (Ta-W and Mo-Ta) alloys are treated within the framework of the first-principles TB-LMTO (tight-binding linear muffin tin orbital) method coupled to CPA (coherent potential approximation) and GPM (generalized perturbation method). The equilibrium phase diagrams are calculated for the refractory Ta-W and Mo-Ta bcc alloys. In addition, the mechanical properties, i.e., temperature dependence of the elastic moduli C{sub 11}, C{sub 12} and C{sub 44} and those of the ideal tensile and shear strengths of the bcc Ta-W and Ta-Mo alloys have been also studied.
Loued, W.; Wéry, J.; Dorlando, A.; Alimi, K.
2015-02-01
In this paper, the significance of annealing, in two different atmospheres (air and vacuum), on the surface characteristics of poly (lactic acid) (PLA) films was investigated. X-ray diffraction (XRD) measurements correlated to atomic force microscopy (AFM) observations of the cast PLA films show that thermal treatment under air atmosphere is responsible for a significant increase of crystallinity with the increase of temperature. However, band gap energy of the title compound is slightly affected by annealing at different temperatures. As for the untreated PLA, the molecular geometry was optimized using density functional theory (DFT/B3LYP) method with 6-31g (d) basis set in ground state. From the optimized geometry, HOMO and LUMO energies and quantum chemical parameters were performed at B3LYP/6-31g (d). The theoretical results, applied to simulated optical spectra of the compound, were compared to the observed ones. On the basis of theoretical vibrational analyses, the thermodynamic properties were calculated at different temperatures, revealing the correlation between internal energy (U), enthalpy (H), entropy (S), Free energy (G) and temperatures.
Response of ultra-thin scintillator foils to fission fragments
Energy Technology Data Exchange (ETDEWEB)
Manduchi, C.; Russo-Manduchi, M.T.; Segato, G.F.
1986-03-01
Luminescence and timing properties of ultra-thin film detectors, with thicknesses ranging from 20 to 200 ..mu..g/cm/sup 2/, are compared. The light collection system, coupled to two selected and matched phototubes, provides an effective method for testing and comparing the properties of different detectors. Typical responses to /sup 252/Cf spontaneous fission fragments are presented in two-dimensional contour plots, relating to (i) residual energy of the fragments vs time-of-flight, (ii) light output vs time-of-flight, and (iii) light output vs residual energy. (orig.).
Measurement of 240Pu Angular Momentum Dependent Fission Probabilities Using the (α ,α') Reaction
Koglin, Johnathon; Burke, Jason; Fisher, Scott; Jovanovic, Igor
2017-09-01
The surrogate reaction method often lacks the theoretical framework and necessary experimental data to constrain models especially when rectifying differences between angular momentum state differences between the desired and surrogate reaction. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(α ,α' f) reaction - a surrogate for the 239Pu(n , f) - and fission fragment angular distributions. Fission probability measurements were performed at a beam energy of 35.9(2) MeV at eleven scattering angles from 40° to 140°e in 10° intervals and at nuclear excitation energies up to 16 MeV. Fission fragment angular distributions were measured in six bins from 4.5 MeV to 8.0 MeV and fit to expected distributions dependent on the vibrational and rotational excitations at the saddle point. In this way, the contributions to the total fission probability from specific states of K angular momentum projection on the symmetry axis are extracted. A sizable data collection is presented to be considered when constraining microscopic cross section calculations.
Helgeson, Harold C.; Owens, Christine E.; Knox, Annette M.; Richard, Laurent
1998-03-01
Calculation of the thermodynamic properties of organic solids, liquids, and gases at high temperatures and pressures is a requisite for characterizing hydrothermal metastable equilibrium states involving these species and quantifying the chemical affinities of irreversible reactions of organic molecules in natural gas, crude oil, kerogen, and coal with minerals and organic, inorganic, and biomolecular aqueous species in interstitial waters in sedimentary basins. To facilitate calculations of this kind, coefficients for the Parameters From Group Contributions (PFGC) equation of state have been compiled for a variety of groups in organic liquids and gases. In addition, molecular weights, critical temperatures and pressures, densities at 25°C and 1 bar, transition, melting, and boiling temperatures ( Tt,Pr, Tm,Pr, and Tv,Pr, respectively) and standard molal enthalpies of transition (Δ H° t,Pr), melting (Δ H° m,Pr), and vaporization (Δ H° v,Pr) of organic species at 1 bar ( Pr) have been tabulated, together with an internally consistent and comprehensive set of standard molal Gibbs free energies and enthalpies of formation from the elements in their stable state at 298.15 K ( Tr) and Pr (Δ G° f and Δ H° f, respectively). The critical compilation also includes standard molal entropies ( S°) and volumes ( V°) at Tr and Pr, and standard molal heat capacity power function coefficients to compute the standard molal thermodynamic properties of organic solids, liquids, and gases as a function of temperature at 1 bar. These properties and coefficients have been tabulated for more than 500 crystalline solids, liquids, and gases, and those for many more can be computed from the equations of state group additivity algorithms. The crystalline species correspond to normal alkanes (C nH 2( n+1) ) with carbon numbers ( n, which is equal to the number of moles of carbon atoms in one mole of the species) ranging from 5 to 100, and 23 amino acids including glycine (C 2H 5NO
Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M
2010-01-01
Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.
Ti, Shih-Chieh; Pollard, Thomas D.
2011-01-01
Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells. PMID:21148484
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
Energy Technology Data Exchange (ETDEWEB)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.
Stabilization effect of fission source in coupled Monte Carlo simulations
Directory of Open Access Journals (Sweden)
Börge Olsen
2017-08-01
Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.
Probing fusion-fission dynamics in Bi203
Mukul, Ish; Nath, S.; Golda, K. S.; Jhingan, A.; Gehlot, J.; Prasad, E.; Kalkal, Sunil; Naik, M. B.; Banerjee, Tathagata; Varughese, T.; Sugathan, P.; Madhavan, N.; Pal, Santanu
2015-11-01
Background: Complete fusion between two massive nuclei after capture inside the potential barrier is inhibited by competing fission-like processes. The target-projectile composite system may reseparate after capture without proceeding towards formation of the compound nucleus (CN), which is equilibrated in all degrees of freedom. The nature of these non-CN fission (NCNF) processes and factors that affect them are not completely known yet. Purpose: The nuclear mass regions from where NCNF processes begin to manifest themselves are not clearly demarcated. This work aims to study the onset of NCNF, if any, in the mass region ˜200 . Methods: Fission fragment (FF) mass and angular distribution (MAD) and pre-scission and post-scission neutron multiplicities were measured for the reaction +W184F19 at a laboratory energy (Elab) range of 84-125 MeV. The measurements were carried out using two multiwire proportional counters (MWPC) to detect the FFs in coincidence and four neutron detectors to measure neutron time of flight (TOF). Statistical model (SM) calculation was performed. Results: No significant mass-angle correlation was observed in the MAD plots. Extracted mass ratio distributions were single-peaked and of Gaussian shape. Measured pre-scission neutron multiplicity values indicated dissipative nature of CN decay for this reaction. Conclusions: No clear signatures of NCNF were observed in the studied reaction, indicating that the target-projectile composite system predominantly proceeds towards formation of the CN after capture.
Directory of Open Access Journals (Sweden)
Somak Das
2014-01-01
Full Text Available It was proposed that resveratrol, a polyphenolic antioxidant and a calorie restriction mimetic could promote longevity but subsequent studies could not prove this. The original proposal was based on the fact that a grape-derived antioxidant could activate the antiaging gene Sirt1. Most studies agree that indeed grape activates Sirt1, but a question remains whether Sirt1 is the cause or consequence of resveratrol treatment. Subsequently, mitochondrial Sirt3 was found to be activated. The present study on ischemic reperfusion (I/R in rat hearts demonstrates that Foxo3a is activated subsequent to Sirt3 activation, which then activates PINK1. PINK1 potentiates activation of PARKIN leading to the activation of mitochondrial fission and mitophagy. Confocal microscopy conclusively shows the coexistence of Sirt3 with Foxo3a and Foxo3a with PINK1 and PARKIN. Mitophagy was demonstrated both by confocal microscopy and transmission electron microscopy. Western blot analyses data are consistent with the results of confocal microscopy. It appears that the grape-derived antioxidant modifies the intracellular environment by changing the oxidizing milieu into a reducing milieu and upregulating intracellular glutathione, potentiates a signal transduction cascade consisting of Sirt1/Sirt3-Foxo3a-PINK1-PARKIN-mitochondrial fusion fission-mitophagy that leads to cardioprotection, and paves the way to an anti-aging environment.
Energy Technology Data Exchange (ETDEWEB)
Gieseke, J.A.; Baybutt, P.; Denning, R.S.; Jordan, H.; Wooton, W.O.
1976-06-09
The escape of fission product activity from a water-cooled reactor under loss of coolant accident (LOCA) conditions is studied. It is the goal of the study to develop a primary system fission product transport and deposition model which is consistent with the emerging state of knowledge regarding fission product release from fuel rods and thermal-hydraulic analyses of emergency core cooling (ECC). The analyses to be developed will provide methods for more realistically calculating the rate and magnitude of fission product release to the containment. An analogous fission product transport and deposition model is also to be developed for spent fuel shipping casks under hypothetical LOCA conditions. Progress during this quarter was primarily in those areas associated with efforts to organize and initiate this study. Technical efforts were initiated (1) to develop the format to be used in the model analyzing fission product transport in pressurized water reactor (PWR) primary systems, (2) to define accidents for shipping casks which result in loss of coolant, (3) to derive from existing computer codes and additional calculations thermal-hydraulic conditions within PWR primary systems, and (4) to determine probable chemical forms for the various fission product species.
Modelling of fission gas swelling in the high burnup UO{sub 2} fuel
Energy Technology Data Exchange (ETDEWEB)
Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho
1999-06-01
Discharge burnup of the fuel in LWR has been increased to improve the fuel economy, and currently the high burnup fuel of over 70 MWd/kg U-rod avg. is being developed by the fuel vendors worldwide. At high burnup, thermal / mechanical properties of the fuel is known to change and new phenomenon could arise. This report describes the model development on fission gas swelling in high burnup UO{sub 2} fuel. For the low burnup fuel, swelling only by the solid fission products has been considered in the fuel performance analysis. However, at high burnup fuel, swelling by fission gas bubbles can not be neglected anymore. Therefore, fission gas swelling model which can predictbubble swelling of the high burnup UO{sub 2} fuel during the steady-state and the transient conditions in LWR was developed. Based on the bubble growth model, the empirical fission gas swelling model was developed as function of burnup, time and temperature. The model showed that fuel bubble swelling would be proportional to the burnup by the power of 1.157 and to the time by the power of 0.157. Comparison of the model prediction with the measured fission gas swelling data under the various burnup and temperature conditions showed that the model would predict the measured data reasonably well. (author). 20 refs., 8 tabs., 17 figs.
Energy Technology Data Exchange (ETDEWEB)
Shaw, H F; Blink, J; Farmer, J; Latkowski, J; Kramer, K
2009-09-08
We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce {approx}2 GWt of power (fusion + fission) over its 50- to 70-year lifetime
Georgiev, Anton; Bubev, Emil; Dimov, Deyan; Yancheva, Denitsa; Zhivkov, Ivaylo; Krajčovič, Jozef; Vala, Martin; Weiter, Martin; Machkova, Maria
2017-03-01
In this paper three different "push-pull" 4-aminoazobenzene dyes have been synthesized in order to characterize their photochromic behavior in different solvents. The molecular geometry was optimized by DFT/B3LYP functional combined with the standard 6-31 + G(d,p) basis set for trans (E) and cis (Z) isomers and the energy levels of HOMO and LUMO frontier orbitals were computed using IEFPCM solvation in CHCl3 and DMF. The calculated results were compared to the experimental optical band gap and HOMO values of cyclic voltammetry. The intramolecular six-membered hydrogen bond was formed in both isomers of the synthesized dyes. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans → cis, Δμtrans → cis, ΔHtrans → cis, ΔGtrans → cis and ΔStrans → cis values. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. The solvatochromic shift was evaluated by UV-VIS spectroscopy in CHCl3 (nonpolar), EtOH (polar protic) and DMF (polar aprotic) solvents to determine the electron withdrawing and donating properties of the substituents on electron transitions energy. Through the increasing solvent polarity a strong bathochromic shift is observed. The photoisomerization experiments have been performed in two solvents CHCl3 (nonpolar) and DMF (polar aprotic) by UV light irradiation with λ = 365 nm at equal concentrations and time of illuminations. The electronic spectra were computed by TD-DFT after geometry optimization using IEFPCM solvation in CHCl3 and DMF. The degree of photoisomerization was calculated for the three azo chromophores in both solvents. By using first derivative of the UV-VIS spectra it was possible to resolve the overlapped
Georgiev, Anton; Bubev, Emil; Dimov, Deyan; Yancheva, Denitsa; Zhivkov, Ivaylo; Krajčovič, Jozef; Vala, Martin; Weiter, Martin; Machkova, Maria
2017-03-15
In this paper three different "push-pull" 4-aminoazobenzene dyes have been synthesized in order to characterize their photochromic behavior in different solvents. The molecular geometry was optimized by DFT/B3LYP functional combined with the standard 6-31+G(d,p) basis set for trans (E) and cis (Z) isomers and the energy levels of HOMO and LUMO frontier orbitals were computed using IEFPCM solvation in CHCl3 and DMF. The calculated results were compared to the experimental optical band gap and HOMO values of cyclic voltammetry. The intramolecular six-membered hydrogen bond was formed in both isomers of the synthesized dyes. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans→cis, Δμtrans→cis, ΔHtrans→cis, ΔGtrans→cis and ΔStrans→cis values. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. The solvatochromic shift was evaluated by UV-VIS spectroscopy in CHCl3 (nonpolar), EtOH (polar protic) and DMF (polar aprotic) solvents to determine the electron withdrawing and donating properties of the substituents on electron transitions energy. Through the increasing solvent polarity a strong bathochromic shift is observed. The photoisomerization experiments have been performed in two solvents CHCl3 (nonpolar) and DMF (polar aprotic) by UV light irradiation with λ=365nm at equal concentrations and time of illuminations. The electronic spectra were computed by TD-DFT after geometry optimization using IEFPCM solvation in CHCl3 and DMF. The degree of photoisomerization was calculated for the three azo chromophores in both solvents. By using first derivative of the UV-VIS spectra it was possible to resolve the overlapped electron
Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G
2013-01-07
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
Energy Technology Data Exchange (ETDEWEB)
Belier, G.; Chatillon, A.; Granier, T.; Laborie, J.M.; Laurent, B.; Ledoux, X.; Taieb, J.; Varignon, C.; Bauge, E.; Bersillon, O.; Aupiais, J.; Le Petit, G. [CEA Bruyeres-le-Chatel, 91 (France); Authier, N.; Casoli, P. [CEA Valduc, 21 - Is-sur-Tille (France)
2011-07-15
Investigations on neutron-induced fission of actinides and the deuteron breakup are presented. Neutron-induced fission has been studied for 10 years at the WNR (Weapons Neutron Research) neutron facility of the Los Alamos Neutron Science Center (LANSCE). Thanks to this white neutron source the evolution of the prompt fission neutron energy spectra as a function of the incident neutron energy has been characterized in a single experiment up to 200 MeV incident energy. For some isotopes the prompt neutron multiplicity has been extracted. These experimental results demonstrated the effect on the mean neutron energy of the neutron emission before scission for energies higher than the neutron binding energy. This extensive program ({sup 235}U and {sup 238}U, {sup 239}Pu, {sup 237}Np and {sup 232}Th were measured) is completed by neutron spectra measurements on the CEA 4 MV accelerator. The D(n,2n) reaction is studied both theoretically and experimentally. The cross-section was calculated for several nucleon-nucleon interactions including the AV18 interaction. It has also been measured on the CEA 7 MV tandem accelerator at incident neutron energies up to 25 MeV. Uncertainties lower than 8% between 5 and 10 MeV were obtained. In particular these experiments have extended the measured domain for cross sections. (authors)
Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi
2017-11-01
The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.
Recovery and use of fission product noble metals
Energy Technology Data Exchange (ETDEWEB)
Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.
1980-06-01
Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)
Beta decay heat following U-235, U-238 and Pu-239 neutron fission
Li, Shengjie
1997-09-01
This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.