WorldWideScience

Sample records for calculate doses resulting

  1. Preliminary results on food consumption rates for off-site dose calculation of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Gab Bock; Chung, Yang Geun; Bang, Sun Young; Kang, Duk Won

    2005-01-01

    The Internal dose by food consumption mostly account for radiological dose of public around nuclear power plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988. is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual, the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out

  2. Results of dose calculations for NET accidental and normal operation releases of tritium and activation products

    International Nuclear Information System (INIS)

    Raskob, W.; Hasemann, I.

    1992-08-01

    This report documents conditions, data and results of dose calculations for accidental and normal operation releases of tritium and activation products, performed within the NET subtask SEP2.2 ('NET-Benchmark') of the European Fusion Technology Programme. For accidental releases, the computer codes UFOTRI and COSYMA for assessing the radiological consequences, have been applied for both deterministic and probabilistic calculations. The influence on dose estimates of different release times (2 minutes / 1 hour), two release heights (10 m / 150 m), two chemical forms of tritium (HT/HTO), and two different model approaches for the deposition velocity of HTO on soil was investigated. The dose calculations for normal operation effluents were performed using the tritium model of the German regulatory guidelines, parts of the advanced dose assessment model NORMTRI still under development, and the statistical atmospheric dispersion model ISOLA. Accidental and normal operation source terms were defined as follows: 10g (3.7 10 15 Bq) for accidental tritium releases, 10 Ci/day (3.7 10 11 Bq/day) for tritium releases during normal operation and unit releases of 10 9 Bq for accidental releases of activation products and fission products. (orig./HP) [de

  3. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  4. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  5. A method for calculating Bayesian uncertainties on internal doses resulting from complex occupational exposures

    International Nuclear Information System (INIS)

    Puncher, M.; Birchall, A.; Bull, R. K.

    2012-01-01

    Estimating uncertainties on doses from bioassay data is of interest in epidemiology studies that estimate cancer risk from occupational exposures to radionuclides. Bayesian methods provide a logical framework to calculate these uncertainties. However, occupational exposures often consist of many intakes, and this can make the Bayesian calculation computationally intractable. This paper describes a novel strategy for increasing the computational speed of the calculation by simplifying the intake pattern to a single composite intake, termed as complex intake regime (CIR). In order to assess whether this approximation is accurate and fast enough for practical purposes, the method is implemented by the Weighted Likelihood Monte Carlo Sampling (WeLMoS) method and evaluated by comparing its performance with a Markov Chain Monte Carlo (MCMC) method. The MCMC method gives the full solution (all intakes are independent), but is very computationally intensive to apply routinely. Posterior distributions of model parameter values, intakes and doses are calculated for a representative sample of plutonium workers from the United Kingdom Atomic Energy cohort using the WeLMoS method with the CIR and the MCMC method. The distributions are in good agreement: posterior means and Q 0.025 and Q 0.975 quantiles are typically within 20 %. Furthermore, the WeLMoS method using the CIR converges quickly: a typical case history takes around 10-20 min on a fast workstation, whereas the MCMC method took around 12-hr. The advantages and disadvantages of the method are discussed. (authors)

  6. Offsite radiation doses from Hanford Operations for the years 1983 through 1987: A comparison of results calculated by two methods

    International Nuclear Information System (INIS)

    Soldat, J.K.

    1989-10-01

    This report compares the results of the calculation of potential radiation doses to the public by two different environmental dosimetric systems for the years 1983 through 1987. Both systems project the environmental movement of radionuclides released with effluents from Hanford operations; their concentrations in air, water, and foods; the intake of radionuclides by ingestion and inhalation; and, finally, the potential radiation doses from radionuclides deposited in the body and from external sources. The first system, in use for the past decade at Hanford, calculates radiation doses in terms of 50-year cumulative dose equivalents to body organs and to the whole body, based on the methodology defined in ICRP Publication 2. This system uses a suite of three computer codes: PABLM, DACRIN, and KRONIC. In the new system, 50-year committed doses are calculated in accordance with the recommendations of the ICRP Publications 26 and 30, which were adopted by the US Department of Energy (DOE) in 1985. This new system calculates dose equivalent (DE) to individual organs and effective dose equivalent (EDE). The EDE is a risk-weighted DE that is designed to be an indicator of the potential health effects arising from the radiation dose. 16 refs., 1 fig., 38 tabs

  7. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  8. Calculation of individual and population doses on Danish territory resulting from hypothetical core-melt accidents at the Barsebaeck reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)

  9. Factors affecting calculations of dose resulting from a tritium release into the atmosphere

    International Nuclear Information System (INIS)

    Otaduy, P.; Easterly, C.E.; Booth, R.S.; Jacobs, D.G.

    1976-01-01

    Tritium releases in the form of HT represent a lower hazard to man than releases as HTO. However, during movement in the environment, HT is converted into HTO. The effects of the conversion rate on calcultions of dose are described, and a general method is presented for determining the dose from tritium for various conversion rates and relative HTO/HT risk factors

  10. Biosphere transport and radiation dose calculations resulting from radioactive waste stored in deep salt formation (PACOMA-project)

    International Nuclear Information System (INIS)

    Jong, E.J. de; Koester, H.W.; Vries, W.J. de; Lembrechts, J.F.

    1990-03-01

    Parts are presented of the results of a safety-assessment study of disposal of medium and low level radioactive waste in salt formations in the Netherlands. The study concerns several disposal concepts for 2 kinds of salt formation, a deep dome and a shallow dome. 7 cases were studied with the same Dutch inventory and 1 with a reference inventory R, in order to compare results with those of other PACOMA participants. The total activity of the reference inventory R is 30 percent lower than the Dutch inventory, but some long living nuclides such as I-129, Np-237 and U-238 have a considerably higher activity. This reference inventor R has been combined with the disposal concept of mined cavities in a shallow salt dome. In each case. the released fraction of stored radio-nuclides moves gradually with water through the geosphere to the bio-sphere where it enters a river. River water is used for sprinkler irrigation and for drinking by man and livestock. The dispersal of the radionuclides into the biosphere is calculated with the BIOS program of the NRPB. Subroutines linked to the program add doses via different pathways to obtain a maximum individual dose, a collective dose and an integrated collective dose. This study presents results of these calculations. (author). 11 refs.; 39 figs.; 111 tabs

  11. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  12. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  13. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  14. Practical applications of internal dose calculations

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles

  15. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  16. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  17. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  18. Text book of dose calculation for operators

    International Nuclear Information System (INIS)

    Aoyagi, Haruki; Gonda, Kozo

    1979-07-01

    This is a text book of dose calculation for the operators of the reprocessing factory of Power Reactor and Nuclear Fuel Development Corporation. The radiations considered are beta-ray and gamma-ray. The method used is a point attenuation nuclear integral method. Radiation sources are considered as the assemblies of point sources. Dose from each point source is calculated, then, total dose is obtained by the integration for all sources. Attenuation is calculated by considering the attenuation owing to distance and the absorption by absorbers. The build-up factor is introduced for the correction for scattered gamma-ray. The build-up factor is given in a table for various scatterers. The operators are able to calculate dose by themselves. The results of integral calculation expressed with formulas are given in graphs. (Kato, T.)

  19. Rapid method of calculating the fluence and spectrum of neutrons from a critical assembly and the resulting dose

    International Nuclear Information System (INIS)

    Bessis, J.

    1977-01-01

    The proposed calculation method is unsophisticated but rapid. The first part (computer code CRITIC), which is based on the Fermi age equation, evaluates the number of neutrons per fission emitted from a moderated critical assembly and their energy spectrum. The second part (computer code NARCISSE), which uses the current albedo for concrete, evaluates the product of neutron reflection on the walls and calculates the fluence resulting at any point in the room and its energy distribution by 21 groups. The results obtained are shown to compare satisfactorily with those obtained through the use of a Monte Carlo program

  20. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  1. Dose - a software package for the calculation of integrated exposure resulting from an accident in a nuclear power plant

    International Nuclear Information System (INIS)

    Doron, E.; Ohaion, H.; Asculai, E.

    1985-05-01

    A software package intended for the assessments of risks resulting from accidental release of radioactive materials from a nuclear power plant is presented. The models and the various programs based on them, are described. The work includes detailed operating instructions for the various programs, as well as instructions for the preparation of the necessary input data. Various options are described for additions and changes to the programs with the aim of extending their usefulness to more general cases from the aspects of meteorology and pollution sources. finally, a sample calculation that enables the user to test the proper functioning of the whole package, as well as his own proficiency in its use, is given. (author)

  2. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  3. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  4. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  5. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  6. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  7. Dose calculations for intakes of ore dust

    International Nuclear Information System (INIS)

    O'Brien, R.S.

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures

  8. Simplified dose calculation method for mantle technique

    International Nuclear Information System (INIS)

    Scaff, L.A.M.

    1984-01-01

    A simplified dose calculation method for mantle technique is described. In the routine treatment of lymphom as using this technique, the daily doses at the midpoints at five anatomical regions are different because the thicknesses are not equal. (Author) [pt

  9. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Mein, S [Duke University Medical Physics Graduate Program (United States); Gunasingha, R [Department of Radiation Safety, Duke University Medical Center (United States); Nolan, M [Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (United States); Oldham, M; Adamson, J [Department of Radiation Oncology, Duke University Medical Center (United States)

    2016-06-15

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold

  10. Electron and bremsstrahlung penetration and dose calculation

    Science.gov (United States)

    Watts, J. W., Jr.; Burrell, M. O.

    1972-01-01

    Various techniques for the calculation of electron and bremsstrahlung dose deposition are described. Energy deposition, transmission, and reflection coefficients for electrons incident on plane slabs are presented, and methods for their use in electron dose calculations were developed. A method using the straight-ahead approximation was also developed, and the various methods were compared and found to be in good agreement. Both accurate and approximate methods of calculating bremsstrahlung dose were derived and compared. Approximation is found to give a good estimate of dose where the electron spectrum falls off exponentially with energy.

  11. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Taboaco, R.C.

    1982-02-01

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author) [pt

  12. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  13. Georgia fishery study: implications for dose calculations

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr

  14. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  15. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  16. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  17. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  18. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  19. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  20. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  1. Educational audit on drug dose calculation learning in a Tanzanian ...

    African Journals Online (AJOL)

    Background: Patient safety is a key concern for nurses; ability to calculate drug ... Specific objectives were to assess learning from targeted teaching, to identify problem areas in perfor- .... this could result in reduced risk of drug dose error in.

  2. Development of internal dose calculation programing via food ingestion

    International Nuclear Information System (INIS)

    Kim, H. J.; Lee, W. K.; Lee, M. S.

    1998-01-01

    Most of dose for public via ingestion pathway is calculating for considering several pathways; which start from radioactive material released from a nuclear power plant to diffusion and migration. But in order to model these complicate pathways mathematically, some assumptions are essential and lots of input data related with pathways are demanded. Since there is uncertainty related with environment in these assumptions and input data, the accuracy of dose calculating result is not reliable. To reduce, therefore, these uncertain assumptions and inputs, this paper presents exposure dose calculating method using the activity of environmental sample detected in any pathway. Application of dose calculation is aim at peoples around KORI nuclear power plant and the value that is used to dose conversion factor recommended in ICRP Publ. 60

  3. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  4. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  5. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  6. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  7. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  8. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  9. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  10. Manual method for dose calculation in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, Elizabeth A.; Almeida, Carlos E. de; Biaggio, Maria F. de

    1998-01-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author)

  11. Validation of Dose Calculation Codes for Clearance

    International Nuclear Information System (INIS)

    Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

    2003-01-01

    Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale

  12. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  13. Testing of the analytical anisotropic algorithm for photon dose calculation

    International Nuclear Information System (INIS)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka; Tenhunen, Mikko; Helminen, Hannu; Siljamaeki, Sami; Alakuijala, Jyrki; Paiusco, Marta; Iori, Mauro; Huyskens, Dominique P.

    2006-01-01

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d max . The electron contamination model was found to be suboptimal to model the dose around d max , especially for physical

  14. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  15. Dose calculation of X-ray in medium

    International Nuclear Information System (INIS)

    Liu Yanmei; Xue Dingyu; Xu Xinhe; Chen Zhen; Dong Zaili

    2006-01-01

    The photon transportation in radiotherapy is studied based on Monte Carlo method. The dose calculation based on the MC simulation package DPM has been carried out, and the results have been visualized using MEX technology of Matlab. The dose results of X-ray in homogeneity and inhomogeneity medium have been compared with experimental data and those of other MC simulation package, and these results all agree. The calculation method we proposed has the advantage of high speed and good accuracy, therefore, is applicable in practice. (authors)

  16. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  17. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  18. CT dose profiles and MSAD calculation in a chest phantom

    International Nuclear Information System (INIS)

    Oliveira, Bruno Beraldo; Silva, Teogenes Augusto da

    2011-01-01

    For optimizing patient doses in computed tomography (CT), the Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a quality control parameter for CT scanners. Compliance with the DRLs can be verified by measuring the Computed Tomography Air Kerma Index with a calibrated pencil ionization chamber or by obtaining the dose distribution in CT scans. An analysis of the quality of five CT scanners in Belo Horizonte was done in terms of dose profile of chest scans and MSAD determinations. Measurements were done with rod shape lithium fluoride thermoluminescent dosimeters (TLD-100) distributed in cylinders positioned in peripheral and central regions of a polymethylmethacrylate chest phantom. The peripheral regions presented higher dose values. The longitudinal dose variation can be observed and the maximum dose was recorded at the edges of the phantom at the midpoint of the longitudinal axis. The MSAD results were in according to the DRL of 25 mGy established by Brazilian legislation. The results contribute to disseminate to hospitals and radiologists the proper procedure to use the thermoluminescent dosimeters for the calculation of the MSAD from the CT dose profiles and to notice the compliance with the DRLs. (author)

  19. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  20. Smartphone apps for calculating insulin dose: a systematic assessment.

    Science.gov (United States)

    Huckvale, Kit; Adomaviciute, Samanta; Prieto, José Tomás; Leow, Melvin Khee-Shing; Car, Josip

    2015-05-06

    subtle harms resulting from suboptimal glucose control. Healthcare professionals should exercise substantial caution in recommending unregulated dose calculators to patients and address app safety as part of self-management education. The prevalence of errors attributable to incorrect interpretation of medical principles underlines the importance of clinical input during app design. Systemic issues affecting the safety and suitability of higher-risk apps may require coordinated surveillance and action at national and international levels involving regulators, health agencies and app stores.

  1. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  2. Internal dose conversion factors for calculation of dose to the public

    International Nuclear Information System (INIS)

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities

  3. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  4. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  5. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  6. Activities of the ICRP task group on dose calculations (DOCAL)

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    Full text. The International Commission of Radiological Protection has been doing many efforts to improve dose calculations due to intake of radionuclides by workers and members of the public. More specifically, the biokinetic models have become more and more physiologically based and developed for age-groups ranging from the embryo to the adult. The dosimetric aspects have also been very carefully revised and a new series of phantoms encompassing all developing stages of embryo and fetus were also envisaged. In order to assure the quality of the calculations, dose coefficients have been derived by two different laboratories and the results and methods have been frequently compared and discussed. A CD-ROM has been prepared allowing the user to obtain dose coefficients for the several age-groups for ingestion and inhalation of all important radionuclides. Inhalation dose coefficients will be available for several AMADs. For the particular case of embryo and fetus, doses will be calculated when the intake occurred before and during gestation for single and chronic patterns of intake

  7. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  8. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  9. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    International Nuclear Information System (INIS)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W.; Laumonier, Herve; Trillaud, Herve; Seror, Olivier; Sesay, Musa-Bahazid; Grenier, Nicolas

    2010-01-01

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  10. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  11. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  12. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    International Nuclear Information System (INIS)

    Jimenez V, Reina A.

    2007-01-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae

  13. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  14. Accumulated dose calculations in Indian PHWRs under DBA

    International Nuclear Information System (INIS)

    Nesaraj, David; Pradhan, A.S.; Bhardwaj, S.A.

    1996-01-01

    Accumulated gamma dose inside reactor building due to release of fission products from equilibrium core of Indian PHWR under accident condition has been assessed. The assessment has been done for the radiation tolerance limit of the critical equipment inside reactor building. The basic source data has been generated using computer code ORIGEN2 written and developed by Oak Ridge National Laboratory, USA (ORNL). This paper discusses the details of the calculations done on the basis of certain assumption which are mentioned at relevant places. The results indicate accumulated gamma dose at a few typical locations inside reactor building under accident condition. (author). 1 ref., 1 tab., 1 fig

  15. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  16. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  17. Comparison of different dose calculation methods for irregular photon fields

    International Nuclear Information System (INIS)

    Zakaria, G.A.; Schuette, W.

    2000-01-01

    In this work, 4 calculation methods (Wrede method, Clarskon method of sector integration, beam-zone method of Quast and pencil-beam method of Ahnesjoe) are introduced to calculate point doses in different irregular photon fields. The calculations cover a typical mantle field, an inverted Y-field and different blocked fields for 4 and 10 MV photon energies. The results are compared to those of measurements in a water phantom. The Clarkson and the pencil-beam method have been proved to be the methods of equal standard in relation to accuracy. Both of these methods are being distinguished by minimum deviations and applied in our clinical routine work. The Wrede and beam-zone methods deliver useful results to central beam and yet provide larger deviations in calculating points beyond the central axis. (orig.) [de

  18. NAC-1 cask dose rate calculations for LWR spent fuel

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation

  19. Data base for terrestrial food pathways dose commitment calculations

    International Nuclear Information System (INIS)

    Bailey, C.E.

    1979-01-01

    A computer program is under development to allow calculation of the dose-to-man in Georgia and South Carolina from ingestion of radionuclides in terrestrial foods resulting from deposition of airborne radionuclides. This program is based on models described in Regulatory Guide 1.109 (USNRC, 1977). The data base describes the movement of radionuclides through the terrestrial food chain, growth and consumption factors for a variety of radionuclides

  20. Calculation of radiation dose received in computed tomography examinations

    International Nuclear Information System (INIS)

    Abed Elseed, Eslam Mustafa

    2014-07-01

    Diagnostic computed tomography (CT) examinations play an important role in the health care of the population. These examination may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed to assess the effective dose (ED) received in brain CT examination ( base of skull and cerebrum) and to analyze effective dose distributions among radiological departments under study. The study was performed at Elnileen Medical Center, coverage one CT unit and a sample of 51 patients (25 cerebrum sample and 26 base of skull sample). The following parameters were recorded age, weight, height body mass index (BMI) derived from weight (kg) and height ( m) and exposure factor and CTDI voi , DLP value. The effective dose was measured for brain CT examination. The ED values were calculated from the obtained DLP values using AAPM report No 96 calculation methods. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were 0.35±0.15 for base of skull of brain CT examinations and 0.70±0.32 for cerebrum of brain CT examination, respectively. Further studies are recommended with more number of pa.(Author)

  1. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  2. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.

    1994-01-01

    A new methodology for equivalent dose calculations has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neutral network. The research was orientated towards the optimization of the whole set of parameters involves in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neutral network was performed by taking the readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation. (author)

  3. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.

    1994-01-01

    A new methodology for equivalent dose calculation has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neural network. The research was oriented towards the optimization of the whole set of parameters involved in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neural network was performed by taking readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation

  4. Intravascular brachytherapy: a model for the calculation of the dose

    International Nuclear Information System (INIS)

    Pirchio, Rosana; Martin, Gabriela; Rivera, Elena; Cricco, Graciela; Cocca, Claudia; Gutierrez, Alicia; Nunez, Mariel; Bergoc, Rosa; Guzman, Luis; Belardi, Diego

    2002-01-01

    In this study we present the radiation dose distribution for a theoretical model with Montecarlo simulation, and based on an experimental model developed for the study of the prevention of restenosis post-angioplasty employing intravascular brachytherapy. In the experimental in vivo model, the atherosclerotic plaques were induced in femoral arteries of male New Zealand rabbits through surgical intervention and later administration of cholesterol enriched diet. For the intravascular irradiation we employed a 32P source contained within the balloon used for the angioplasty. The radiation dose distributions were calculated using the Monte Carlo code MCNP4B according to a segment of a simulated artery. We studied the radiation dose distribution in the axial and radial directions for different thickness of the atherosclerotic plaques. The results will be correlated with the biologic effects observed by means of histological analysis of the irradiated arteries (Au)

  5. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  6. Development of a computational methodology for internal dose calculations

    International Nuclear Information System (INIS)

    Yoriyaz, Helio

    2000-01-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)

  7. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  8. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  9. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  10. Internal radiation dose calculations with the INREM II computer code

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Killough, G.G.

    1978-01-01

    A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation

  11. [Evaluation of methods to calculate dialysis dose in daily hemodialysis].

    Science.gov (United States)

    Maduell, F; Gutiérrez, E; Navarro, V; Torregrosa, E; Martínez, A; Rius, A

    2003-01-01

    Daily dialysis has shown excellent clinical results because a higher frequency of dialysis is more physiological. Different methods have been described to calculate dialysis dose which take into consideration change in frequency. The aim of this study was to calculate all dialysis dose possibilities and evaluate the better and practical options. Eight patients, 6 males and 2 females, on standard 4 to 5 hours thrice weekly on-line hemodiafiltration (S-OL-HDF) were switched to daily on-line hemodiafiltration (D-OL-HDF) 2 to 2.5 hours six times per week. Dialysis parameters were identical during both periods and only frequency and dialysis time of each session were changed. Time average concentration (TAC), time average deviation (TAD), normalized protein catabolic rate (nPCR), Kt/V, equilibrated Kt/V (eKt/V), equivalent renal urea clearance (EKR), standard Kt/V (stdKt/V), urea reduction ratio (URR), hemodialysis product and time off dialysis were measured. Daily on-line hemodiafiltration was well accepted and tolerated. Patients maintained the same TAC although TAD decreased from 9.7 +/- 2 in baseline to a 6.2 +/- 2 mg/dl after six months, p time off dialysis was reduced to half. Dialysis frequency is an important urea kinetic parameter which there are to take in consideration. It's necessary to use EKR, stdKt/V or weekly URR to calculate dialysis dose for an adequate comparison between different frequency dialysis schedules.

  12. Comparison between calculation methods of dose rates in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Biaggio, M.F.; D R, M.F.; Almeida, C.E. de

    1998-01-01

    In treatments with radiations for gynecologic tumors is necessary to evaluate the quality of the results obtained by different calculation methods for the dose rates on the points of clinical interest (A, rectal, vesicle). The present work compares the results obtained by two methods. The Manual Calibration Method (MCM) tri dimensional (Vianello E., et.al. 1998), using orthogonal radiographs for each patient in treatment, and the Theraplan/T P-11 planning system (Thratonics International Limited 1990) this last one verified experimentally (Vianello et.al. 1996). The results show that MCM can be used in the physical-clinical practice with a percentile difference comparable at the computerized programs. (Author)

  13. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  14. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm 2 field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.

  15. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  16. Method for dose calculation in intracavitary irradiation of endometrical carcinoma

    International Nuclear Information System (INIS)

    Zevrieva, I.F.; Ivashchenko, N.T.; Musapirova, N.A.; Fel'dman, S.Z.; Sajbekov, T.S.

    1979-01-01

    A method for dose calculation for the conditions of intracavitary gamma therapy of endometrial carcinoma using spherical and linear 60 Co sources was elaborated. Calculations of dose rates for different amount and orientation of spherical radiation sources and for different planes were made with the aid of BEhSM-4M computer. Dosimet were made with the aid of BEhSM-4M computer. Dosimetric study of dose fields was made using a phantom imitating the real conditions of irradiation. Discrepancies between experimental and calculated values are within the limits of the experiment accuracy

  17. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  18. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    Science.gov (United States)

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and

  19. Monte Carlo calculations of patient doses from dental radiography

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Pujol, A.; Chen, T.S.; Malcolm, A.W.

    1984-01-01

    A Monte Carlo computer program has been developed to calculate patient dose from diagnostic radiologic procedures. Input data include patient anatomy as serial CT scans at 1-cm intervals from a typical cadaver, beam spectrum, and projection geometry. The program tracks single photons, accounting for photoelectric effect, coherent (using atomic form factors) and incoherent (using scatter functions) scatter. Inhomogeneities (bone, teeth, muscle, fat, lung, air cavities, etc.) are accounted for as they are encountered. Dose is accumulated in a three-dimensional array of voxels, corresponding to the CT input. Output consists of isodose curves, doses to specific organs, and effective dose equivalent, H/sub E/, as defined by ICRP. Initial results, from dental bite-wing projections using 90-kVp, half-wave rectified dental spectra, have produced H/sub E/ values ranging from 3 to 17 microsieverts (0.3-1.7 mrem) per image, depending on image receptor and projection geometry. The probability of stochastic effect is estimated by ICRP as 10/sup -2//Sv, or about 10/sup -7/ to 10/sup -8/ per image

  20. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  1. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  2. Is it worth to calculate the dose of radioiodine?

    International Nuclear Information System (INIS)

    Mikalauskas, V.; Kuprionis, G.; Vajauskas, D.

    2005-01-01

    Full text: Administration of empirical doses of radioiodine (RAI) has been preferred to calculated doses in many hospitals, because the need to measure the size and the iodine uptake in the thyroid involves considerable inconvenience to the patient and additional costs. The preparation of RAI of varying activities also means extra work. Today there is no general consensus on whether radioiodine should be given as a fixed dose or should be calculated. There is also no consensus regarding the question of which radiation burden should be administered to a given volume of thyroid if the activity is calculated. However, while it is possible to deliver a relatively precise dose of radiation to the thyroid gland, maybe it is worth doing this?The aim of this study was to investigate the results of different uptake and volume dependent target doses on clinical outcome of patients with hyperthyroidism in Graves' disease, multi-nodular toxic goiter or toxic adenoma after radioiodine therapy. We reviewed the records of 428 patients (389 women and 39 men, mean age 56.8±12.9 years) who had received radioiodine treatment for Graves' disease and multinodular toxic goiter (n=312) or toxic adenoma (n=116) during the period of 2000-2004 in Kaunas Medical University Hospital. Most patients were given antithyroid drug therapy in order to achieve euthyroidism before treatment with RAI. Radioiodine uptake test with repeated measurements at 2, 6, 24, 48 and/or 72 and/or 96 hr to define the effective half-life was performed. In addition, all the patients underwent thyroid ultrasonography and scintigraphy to define the volume of the thyroid. The 131I activities were calculated according to the formula of Marinelli. In addition to the normal calculation individual target doses were adjusted to the thyroid volumes of each patient before therapy. For statistical evaluation, the patients were divided into four groups: group I included those with a thyroid volume 51 ml. Statistical analysis was

  3. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  4. Current evaluation of dose rate calculation - analytical method

    International Nuclear Information System (INIS)

    Tello, Marcos; Vilhena, Marco Tulio

    1996-01-01

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested

  5. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  6. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  7. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  8. The interpretation of animal data in the calculation of doses from new radiolabeled compounds

    International Nuclear Information System (INIS)

    Naylor, G.P.L.; Ellender, M.; Harrison, J.D.

    1992-01-01

    At NRPB, dose calculations are performed for pharmaceutical companies wishing to obtain approval for human volunteer experiments. Animal data from one or more species are used to estimate the radiation doses to humans that would result from the administration of novel radiolabeled compounds. The calculations themselves are straightforward, but the animal data can be interpreted in different ways, leading to variations in the calculated dose. Doses to the gut compartments usually dominate the committed effective dose equivalent, but retention in other tissues may be important for some compounds. Long-term retention components in tissues can affect doses considerably, and the binding of many radiopharmaceuticals to melanin means that doses to the eye are particularly important. The effect of these considerations on calculating doses are considered, as well as the effect of changes in risk estimates and tissue weighting factors

  9. The internal radiation dose calculations based on Chinese mathematical phantom

    International Nuclear Information System (INIS)

    Wang Haiyan; Li Junli; Cheng Jianping; Fan Jiajin

    2006-01-01

    The internal radiation dose calculations built on Chinese facts become more and more important according to the development of nuclear medicine. the MIRD method developed and consummated by the society of Nuclear Medicine (America) is based on the European and American mathematical phantom and can't fit Chinese well. The transport of γ-ray in the Chinese mathematical phantom was simulated with Monte Carlo method in programs as MCNP4C. the specific absorbed fraction (Φ) of Chinese were calculated and the Chinese Φ database was created. The results were compared with the recommended values by ORNL. the method was proved correct by the coherence when the target organ was the same with the source organ. Else, the difference was due to the different phantom and the choice of different physical model. (authors)

  10. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Leroux, J.B.; Herbaut, Y.

    1996-01-01

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60 Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60 Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm 2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60 Co source, in contact with skin, is of the order of 6.1 10 -2 nGy s -1 Bq -1 . (author)

  11. Calculation of dose point kernels for five radionuclides used in radio-immunotherapy

    International Nuclear Information System (INIS)

    Okigaki, S.; Ito, A.; Uchida, I.; Tomaru, T.

    1994-01-01

    With the recent interest in radioimmunotherapy, attention has been given to calculation of dose distribution from beta rays and monoenergetic electrons in tissue. Dose distribution around a point source of a beta ray emitting radioisotope is referred to as a beta dose point kernel. Beta dose point kernels for five radionuclides such as 131 I, 186 Re, 32 P, 188 Re, and 90 Y appropriate for radioimmunotherapy are calculated by Monte Carlo method using the EGS4 code system. Present results were compared with the published data of experiments and other calculations. Accuracy and precisions of beta dose point kernels are discussed. (author)

  12. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine

    International Nuclear Information System (INIS)

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6 MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, − 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3 mm criteria. The mean and standard deviation of pixels passing

  13. Mathematical models for calculating radiation dose to the fetus

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs

  14. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  15. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  16. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  17. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  18. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  19. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  20. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  1. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  2. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  3. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  4. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  5. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs

  6. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  7. The models of internal dose calculation in ICRP

    International Nuclear Information System (INIS)

    Nakano, Takashi

    1995-01-01

    There are a lot discussions about internal dose calculation in ICRP. Many efforts are devoted to improvement in models and parameters. In this report, we discuss what kind of models and parameters are used in ICRP. Models are divided into two parts, the dosimetric model and biokinetic model. The former is a mathematical phantom model, and it is mainly developed in ORNL. The results are used in many researchers. The latter is a compartment model and it has a difficulty to decide the parameter values. They are not easy to estimate because of their age dependency. ICRP officially sets values at ages of 3 month, 1 year, 5 year, 10 year, 15 year and adult, and recommends to get values among ages by linear age interpolate. But it is very difficult to solve the basic equation with these values, so we calculate by use of computers. However, it has complex shame and needs long CPU time. We should make approximated equations. The parameter values include much uncertainty because of less experimental data, especially for a child. And these models and parameter values are for Caucasian. We should inquire whether they could correctly describe other than Caucasian. The body size affects the values of calculated SAF, and the differences of metabolism change the biokinetic pattern. (author)

  8. Radiological Dose Calculations And Supplemental Dose Assessment Data For Neshap Compliance For SNL Nevada Facilities 1996.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity. Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.

  9. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  10. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  11. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  12. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  13. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  14. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  15. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  16. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  17. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  18. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Considerations of beta and electron transport in internal dose calculations

    International Nuclear Information System (INIS)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab

  20. Considerations of beta and electron transport in internal dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  1. Considerations of beta and electron transport in internal dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.; Poston, J.W. Sr. (Texas A and M Univ., College Station, TX (USA). Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  2. Considerations of beta and electron transport in internal dose calculations

    International Nuclear Information System (INIS)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document

  3. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    International Nuclear Information System (INIS)

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-01-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  4. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  5. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  6. ALMA. Calculations of diffusion and radiation doses in connection with final storage of radioactive wastes

    International Nuclear Information System (INIS)

    Gelin, R.; Kjellbert, N.; Stenquist, C.

    1978-09-01

    Calculations of diffusion and radiation doses in connection with final storage of low-lavel and intermediate-level radioactive wastes. The results show that the doses obtained with realistic values of parameters used in the calculations are very low. However, substantially simplified assumption have been applied in the calculations. Thus more detailed models for the description of the diffusion process have to be developed. (E.R.)

  7. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  8. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  9. Methods for calculating population dose from atmospheric dispersion of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Jow, H N; Lee, I S [Pittsburgh Univ., PA (USA)

    1978-06-01

    Curves are computed from which population dose (man-rem) due to dispersal of radioactivity from a point source can be calculated in the gaussian plume model by simple multiplication, and methods of using them and their limitations are considered. Illustrative examples are presented.

  10. Touch screen man machine interfere for emergency dose calculations

    International Nuclear Information System (INIS)

    Woodard, K.; Abrams, M.

    1987-01-01

    Emergency dose calculation systems generally use a keyboard to provide the interface between the user and the computer. This interface is preferred by users who work daily with computers; however, for many plant personnel who are not continuously involved with computer operations, the use of a keyboard can be cumbersome and time consuming. This is particularly true when the user is under pressure during a drill or an actual emergency. Experience in many applications of Pickard, Lowe and Garrick's PLG's Meteorological Information and Dose Assessment System (MIDAS) has shown that user friendliness is a key ingredient toward achieving acceptance of computerized systems. Hardware to support to touch screen interface is now available and has been implemented in MIDAS. Recent experience has demonstrated that selection times for dose calculations are reduced, data entry errors have been minimized, and confusion over appropriate entries has been avoided due to the built-in logic. A 10-yr search for an acceptable keyboard replacement has ended

  11. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  12. Manual method for dose calculation in gynecologic brachytherapy; Metodo manual para o calculo de doses em braquiterapia ginecologica

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, Elizabeth A.; Almeida, Carlos E. de [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Biaggio, Maria F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    1998-09-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author) 10 refs., 5 figs.

  13. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  14. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.

    1996-01-01

    The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)

  15. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  16. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  17. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  18. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  19. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  20. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  1. A unique manual method for emergency offsite dose calculations

    International Nuclear Information System (INIS)

    Wildner, T.E.; Carson, B.H.; Shank, K.E.

    1987-01-01

    This paper describes a manual method developed for performance of emergency offsite dose calculations for PP and L's Susquehanna Steam Electric Station. The method is based on a three-part carbonless form. The front page guides the user through selection of the appropriate accident case and inclusion of meteorological and effluent data data. By circling the applicable accident descriptors, the user circles the dose factors on pages 2 and 3 which are then simply multiplied to yield the whole body and thyroid dose rates at the plant boundary, two, five, and ten miles. The process used to generate the worksheet is discussed, including the method used to incorporate the observed terrain effects on airflow patterns caused by the Susquehanna River Valley topography

  2. Dose calculation for iridium-192 sources by a personal computer

    International Nuclear Information System (INIS)

    Takahashi, Kenichi; Ishigaki, Hideyo; Udagawa, Kimio; Saito, Masami; Yamaguchi, Kyoko

    1988-01-01

    Recently Ir-192 sources have been used for interstitial radiotherapy instead of Ra-226 needles. One end of Ir-192 (single-pin) is formed with circlet and implanted Ir-192 sources are not always straight line. So the authors have developed a new dose calculation system, in which the authers employed conventional method considering oblique filteration for linear source and multi-point source method for curved source. Conventionally the positions of sources in three dimensions are determined from projections of the implanted sources on orthogonal or stereo radiographs. But it is frequentry impossible to define the end of sources on account of overlap. Then the authers have devised a method to determine the positions of sources from two radiographs which were taken with arbitrary directions. For tongue cancer injuries of mandibula so frequently occur after interstitial radiotherapy that the calculation of gingival dose is necessary. The positions of the gingival line are determined from two directional radiographs too. Further the three dimensional dose distributions can be displayed on the cathod ray tube. These calculations are performed by using a personal computer because of its distinctive features such as superiority in cost performance and flexibility for development and modification of programs. (author)

  3. Monte Carlo calculation of received dose from ingestion and inhalation of natural uranium

    International Nuclear Information System (INIS)

    Trobok, M.; Zupunski, Lj.; Spasic-Jokic, V.; Gordanic, V.; Sovilj, P.

    2009-01-01

    For the purpose of this study eighty samples are taken from the area Bela Crkva and Vrsac. The activity of radionuclide in the soil is determined by gamma- ray spectrometry. Monte Carlo method is used to calculate effective dose received by population resulting from the inhalation and ingestion of natural uranium. The estimated doses were compared with the legally prescribed levels. (author) [sr

  4. Doses resulting from intrusion into uranium tailings areas

    International Nuclear Information System (INIS)

    Walsh, M.L.

    1986-02-01

    In the future, it is conceivable that institutional controls of uranium tailings areas may cease to exist and individuals may intrude into these areas unaware of the potential radiation hazards. The objective of this study was to estimate the potential doses to the intruders for a comprehensive set of intrusion scenarios. Reference tailings areas in the Elliot Lake region of northern Ontario and in northern Saskatchewan were developed to the extent required to calculate radiation exposures. The intrusion scenarios for which dose calculations were performed, were categorized into the following classes: habitation of the tailings, agricultural activities, construction activities, and recreational activities. Realistic exposure conditions were specified and annual doses were calculated by applying standard dose conversion factors. The exposure estimates demonstrated that the annual doses resulting from recreational activities and from construction activities would be generally small, less than twenty millisieverts, while the habitational and agricultural activities could hypothetically result in doses of several hundred millisieverts. However, the probability of occurrence of these latter classes of scenarios is considered to be much lower than scenarios involving either construction or recreational activities

  5. Modeling for Dose Rate Calculation of the External Exposure to Gamma Emitters in Soil

    International Nuclear Information System (INIS)

    Allam, K. A.; El-Mongy, S. A.; El-Tahawy, M. S.; Mohsen, M. A.

    2004-01-01

    Based on the model proposed and developed in Ph.D thesis of the first author of this work, the dose rate conversion factors (absorbed dose rate in air per specific activity of soil in nGy.hr - 1 per Bq.kg - 1) are calculated 1 m above the ground for photon emitters of natural radionuclides uniformly distributed in the soil. This new and simple dose rate calculation software was used for calculation of the dose rate in air 1 m above the ground. Then the results were compared with those obtained by five different groups. Although the developed model is extremely simple, the obtained results of calculations, based on this model, show excellent agreement with those obtained by the above-mentioned models specially that one adopted by UNSCEAR. (authors)

  6. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  7. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  8. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  9. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen Mingli; Reckwerdt, Paul J; Mackie, Thomas R

    2005-01-01

    Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm 2 ) and the 'narrow' (1.2 x 1.2 cm 2 ) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm

  10. Determination of organ doses during radiological examinations and calculation of somatically significant dose

    International Nuclear Information System (INIS)

    Steiner, H.

    1980-01-01

    Examples are used to demonstrate that a shift in the point of emphasis is necessary with regard to radiation hazard in medicinal X-ray diagnosis. The parameters employed in this study to calculate somatic dose (SD) and somatically significant dose (SSD) may well be in need of modification; nevertheless the numerical estimation of SSD arrived at here appears to reflect the right order of magnitude for the estimation of somatic risk. The consideration of the threshold dose for somatic injury remains a problem. (orig./MG) [de

  11. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  12. Reactor calculation benchmark PCA blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables

  13. Reactor calculation benchmark PCA blind test results

    Energy Technology Data Exchange (ETDEWEB)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables.

  14. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  15. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  16. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  17. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  18. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  19. Advanced local dose rate calculations with the Monte Carlo code MCNP for plutonium nitrate storage containers

    International Nuclear Information System (INIS)

    Quade, U.

    1994-01-01

    Neutron- und Gamma dose rate calculations were performed for the storage containers filled with plutonium nitrate of the MOX fabrication facility of Siemens. For the particle transport calculations the Monte Carlo Code MCNP 4.2 was used. The calculated results were compared with experimental dose rate measurements. It can be stated that the choice of the code system was appropriate since all aspects of the many facettes of the problem were well reproduced in the calculations. The position dependency as well as the influence of the shieldings, the reflections and the mutual influences of the sources were well described by the calculations for the gamma and for the neutron dose rates. However, good agreement with the experimental results on the gamma dose rates could only be reached when the lead shielding of the detector was integrated into the geometry modelling of the calculations. For some few cases of thick shieldings and soft gamma ray sources the statistics of the calculational results were not sufficient. In such cases more elaborate variance reduction methods must be applied in future calculations. Thus the MCNP code in connection with NGSRC has been proven as an effective tool for the solution of this type of problems. (orig./HP) [de

  20. Independent procedure of checking dose calculations using an independent calculus algorithm

    International Nuclear Information System (INIS)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-01-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  1. Method for calculating individual equivalent doses and cumulative dose of population in the vicinity of nuclear power plant site

    International Nuclear Information System (INIS)

    Namestek, L.; Khorvat, D; Shvets, J.; Kunz, Eh.

    1976-01-01

    A method of calculating the doses of external and internal person irradiation in the nuclear power plant vicinity under conditions of normal operation and accident situations has been described. The main difference between the above method and methods used up to now is the use of a new antropomorphous representation of a human body model together with all the organs. The antropomorphous model of human body and its organs is determined as a set of simple solids, coordinates of disposistion of the solids, sizes, masses, densities and composition corresponding the genuine organs. The use of the Monte-Carlo method is the second difference. The results of the calculations according to the model suggested can be used for determination: a critical group of inhabitans under conditions of normal plant operation; groups of inhabitants most subjected to irradiation in the case of possible accident; a critical sector with a maximum collective dose in the case of an accident; a critical radioisotope favouring the greatest contribution to an individual equivalent dose; critical irradiation ways promoting a maximum contribution to individual equivalent doses; cumulative collective doses for the whole region or for a chosen part of the region permitting to estimate a population dose. The consequent method evoluation suggests the development of separate units of the calculationg program, critical application and the selection of input data of physical, plysiological and ecological character and improvement of the calculated program for the separate concrete events [ru

  2. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  3. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  4. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J da [University of Cambridge, Cambridge, Cambridgeshire (United Kingdom)

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  5. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    International Nuclear Information System (INIS)

    Silva, J da

    2014-01-01

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552

  6. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  7. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  8. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  9. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  10. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  11. JISCARD GUI, a graphical interface application for simple and quick calculation of aviation route doses

    International Nuclear Information System (INIS)

    Andersson, Martin; Ryufuku, Susumu; Yasuda, Hiroshi

    2011-01-01

    Pilots, flight attendants, and passengers aboard jet aircrafts are subjected to higher cosmic radiation levels at high altitude than on the ground. Additional dose, received during flight is called 'aviation route dose'. Addressing the needs for precise and easy determination of aviation route doses (Sv), the authors have developed a new application 'JISCARD GUI' with a graphical user interface which provides dose rate (Sv/h) distribution along a flight route and aviation route dose. The graphical interface made with Adobe Flash provide functions to select airports on dynamic map or to search by airport/city names, and to report resulting aviation route doses and graphs of dose rate change through a flight. Dose rate data at several cut off rigidity, Rc and force field potential, FFP were calculated in advance using a PHITS-based analytical model and stored in the server as matrix data. Upon user's request of departure/arrival airports and flight date, interpolation using matrix data substantiates derivation of dose rate distribution in a simple and quick manner with sufficient accuracy. Precision of the dose calculation was verified by comparison with JISCARD EX (MS-Excel version) released in September 2008. This advanced application will be open to public through the website of the National Institute of Radiological Sciences in the near future. (author)

  12. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    García-Garduño, O. A., E-mail: oagarciag@innn.edu.mx, E-mail: amanda.garcia.g@gmail.com [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México and Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México City 11500, México (Mexico); Rodríguez-Ponce, M. [Departamento de Biofísica, Instituto Nacional de Cancerología, Mexico City 14080, México (Mexico); Gamboa-deBuen, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Rodríguez-Villafuerte, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Galván de la Cruz, O. O. [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México (Mexico); and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  13. Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation has been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2

  14. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  15. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  16. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  17. Calculation of photon dose for Dalat research reactor in case of loss of reactor tank water

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2007-01-01

    Photon sources of actinides and fission products were estimated by ORIGEN2 code with the modified cross-section library for Dalat research reactor (DRR) using new cross-section generated by WIMS-ANL code. Photon sources of reactor tank water calculated from the experimental data. MCNP4C2 with available non-analog Monte Carlo model and ANSI/ANL-6.1.1-1977 flux-to-dose factors were used for dose estimation. The agreement between calculation results and those of measurements showed that the methods and models used to get photon sources and dose were acceptable. In case the reactor water totally leaks out from the reactor tank, the calculated dose is very high at the top of reactor tank while still low in control room. In the reactor hall, the operation staffs can access for emergency works but with time limits. (author)

  18. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  19. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms

    International Nuclear Information System (INIS)

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-01-01

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  20. A comparison of the calculation methods of the maze shielding dose

    International Nuclear Information System (INIS)

    Li Wenqian; Li Junli; Li Pengyu; Tao Yinghua

    2009-01-01

    This paper gives a theoretical calculating method for the dose rate of the maze of the low-energy accelerators or high-energy accelerators, based on the NCRP report Nos.49, 51 and 151. The multi-legged maze of the Miyun CT workshop of the NUCTECH Company Limited and the arc maze of the radiation laboratory of the Academy of Military Medical Sciences were calculated using this method. The calculating results were compared with the MCNP simulating results and the measured results. For the commonly estimation of the maze dose rate, as long as the parameters chosen properly, this method can give a conservative result, and save time from simulation. It's hoped that this work could offer a reference for the maze design and the dose estimation method in the aftertime. (authors)

  1. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  2. Dose variations with varying calculation grid size in head and neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heeteak [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Jin, Hosang [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States); Suh, Tae-Suk [Department of Biomedical Engineering, Catholic University of Korea (Korea, Republic of); Kim, Siyong [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States)

    2006-10-07

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle{sup 3} TPS for two targets, one shallow ({approx}0.5 cm depth) and one deep ({approx}6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study.

  3. Dose variations with varying calculation grid size in head and neck IMRT

    International Nuclear Information System (INIS)

    Chung, Heeteak; Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2006-01-01

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle 3 TPS for two targets, one shallow (∼0.5 cm depth) and one deep (∼6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study

  4. SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm

    International Nuclear Information System (INIS)

    Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M

    2014-01-01

    Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans

  5. Calculation of radiation dose rates from a spent nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Radiation doses from a spent nuclear fuel cask are usually from various phases of operations during handling, shipping, and storage of the casks. Assessment of such doses requires knowledge of external radiation dose rates at various locations surrounding a cask. Under current practices, dose rates from gamma photons are usually estimated by means of point- or line-source approaches incorporating the conventional buildup factors. Although such simplified approaches may at times be easy to use, their accuracy has not been verified. For example, those simplified methods have not taken into account influencing factors such as the geometry of the cask and the presence of the ground surface, and the effects of these factors on the calculated dose rates are largely unknown. Moreover, similar empirical equations for buildup factors currently do not exist for neutrons. The objective of this study is to use a more accurate approach in calculating radiation dose rates for both neutrons and gamma photons from a spent fuel cask. The calculation utilizes the more sophisticated transport method and takes into account the geometry of the cask and the presence of the ground surface. The results of a detailed study of dose rates in the near field (within 20 meters) are presented and, for easy application, the cask centerline dose rates are fitted into empirical equations at cask centerline distances up to 2000 meters from the surface of the cask

  6. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  7. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested

  8. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  9. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  10. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  11. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  12. Development of internal dose calculation model and the data base updated IDES (Internal Dose Estimation System)

    International Nuclear Information System (INIS)

    Hongo, Shozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi; Iwai, Satoshi.

    1994-01-01

    A computer program named IDES is developed by BASIC language for a personal computer and translated to C language of engineering work station. The IDES carries out internal dose calculations described in ICRP Publication 30 and it installs the program of transformation method which is an empirical method to estimate absorbed fractions of different physiques from ICRP Referenceman. The program consists of three tasks: productions of SAF for Japanese including children, productions of SEE, Specific Effective Energy, and calculation of effective dose equivalents. Each task and corresponding data file appear as a module so as to meet future requirement for revisions of the related data. Usefulness of IDES is discussed by exemplifying the case that 5 age groups of Japanese intake orally Co-60 or Mn-54. (author)

  13. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  14. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  15. Calculation of radiation dose to infants from radioactive breast milk and suspensions necessary to constrain dose

    International Nuclear Information System (INIS)

    Cormack, J.; Shearer, J.

    2000-01-01

    Full text: For nuclear medicine patients who are breast feeding an infant, special radiation safety precautions may need to be taken. An estimate of the potential radiation dose to the child from ingested milk must be made, and breast-feeding may need to be suspended until levels of radioactivity in the breast-milk have fallen to acceptable levels. The risk of radiation to the child must be weighed against the benefits of breast-feeding and the possible trauma to both mother and child arising from interruption or cessation of the milk supply. In the United States, the Nuclear Regulatory Commission (NRC) has already published regulations which will necessitate an estimate of the infant's dose from breast milk to be made, in principle, for every breast-feeding patient. There is obviously, therefore, a need to provide a rapid and reliable means of estimating such doses. A spreadsheet template which automatically calculates the cumulative dose to breast feeding infants based on any multi-exponential clearance of activity from the breast milk, and any pattern of feeding, has been developed by the authors. The time (post administration) for which breast-feeding should be interrupted in order to constrain the radiation dose to a selected limit is also calculated along with the concentration of activity in breast milk at which feeding can resume. The effect of changing dose limits, feeding patterns and using individually derived breast milk clearance rates may be readily modelled using this spreadsheet template. Data has been included for many of the most commonly used radiopharmaceuticals and new data can readily be incorporated as it becomes available. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  17. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 γ-ray beams. Either the Klein--Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source--surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  18. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    Energy Technology Data Exchange (ETDEWEB)

    French, S; Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Bellor, M [Lockheed Martin, Manassas, VA (United States)

    2016-06-15

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrc package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate

  19. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  20. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  1. Recommended environmental dose calculation methods and Hanford-specific parameters

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V.; Davis, J.S.

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document

  2. Recommended environmental dose calculation methods and Hanford-specific parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. (Pacific Northwest Lab., Richland, WA (United States)); Davis, J.S. (Westinghouse Hanford Co., Richland, WA (United States))

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  3. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    International Nuclear Information System (INIS)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron

    2016-01-01

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm 3 water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  4. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron [Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB (Canada)

    2016-08-15

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  5. SU-F-T-60: A Quick Dose Calculation Check for Accuboost Breast Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Cancer Treatment Center of America, Tulsa, OK (United States)

    2016-06-15

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually entered into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.

  6. Calculation of electron contamination doses produced using blocking trays for 6 MV X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J. E-mail: mbutson@guessmail.com; Cheung Tsang; Yu, P.K.N

    2002-04-01

    Calculation of electron contamination doses whilst using blocking trays in radiotherapy is achieved by comparison of measured absorbed dose within the first few centimeters of a water phantom. Electron contamination of up to 28% of maximum dose is produced at the central axis of the beam whilst using a 6 mm Perspex blocking tray for a 30 cmx30 cm field. The electron contamination is spread over the entire field reducing slightly towards the edge of the beam. Electron contamination from block trays is also present outside the primary collimated X-ray beam with more than 20% of the maximum dose deposited at the surface, 5 cm outside the primary collimated beam at a field size of 40 cmx40 cm. The electron contamination spectrum has been calculated from measured results.

  7. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  8. A calculation of dose distribution around 32P spherical sources and its clinical application

    International Nuclear Information System (INIS)

    Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi

    1977-01-01

    In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)

  9. Interpretation of animal data in the calculation of doses from new radiolabelled compounds

    International Nuclear Information System (INIS)

    Ellender, M.; Naylor, G.P.L.

    1992-01-01

    The Radionuclide Biokinetics Group of the Biomedical Effects Department at NRPB provides a dose calculation service for pharmaceutical companies and associated laboratories which plan to administer radiolabelled drugs to human volunteers as part of their research and development programmes for new compounds. Animal data provided by these companies are used to estimate the likely doses to humans from administration of the compound. The dose estimate then accompanies the pharmaceutical company's application for approval from the UK Administration of Radioactive Substances Advisory Committee (ARSAC). The method of calculation, the interpretation of the animal data and the range of results obtained are discussed. In addition, the effect of the use of the new ICRP tissue weighting factors in the calculations is considered. (Author)

  10. Validation of a model for calculating environmental doses caused by gamma emitters in the soil

    International Nuclear Information System (INIS)

    Ortega, X.; Rosell, J.R.; Dies, X.

    1991-01-01

    A model has been developed to calculate the absorbed dose rates caused by gamma emitters of both natural and artificial origin distributed in the soil. The model divides the soil into five compartments corresponding to layers situated at different depths, and assumes that the concentration of radionuclides is constant in each one of them. The calculations, following the model developed, are undertaken through a program which, based on the concentrations of the radionuclides in the different compartments, gives as a result the dose rate at a height of one metre above the ground caused by each radionuclide and the percentage this represents with respect to the total absorbed dose rate originating from this soil. The validity of the model has been checked in the case of sandy soils by comparing the exposure rates calculated for five sites with the experimental values obtained with an ionisation chamber. (author)

  11. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  12. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  13. Modelling of an industrial environment, part 2.: External dose calculation with relevant countermeasures

    International Nuclear Information System (INIS)

    Eged, K.; Kis, Z.; Alvarez-Farizo, B.; Gil, J.; Voigt, G.

    2002-01-01

    The calculation of the collective dose and averted collective dose after applying countermeasures in an industrial environment has been divided in two parts. In the first part (Kis et al. 2002) separate Monte Carlo simulations of photon transport resulted in the air kermas per photon per unit area due to the industrial surfaces contaminated by 1 37C s at specific points using the so-called local approach. In the local approach the air kerma rates due to specific intervention elements at the evaluation locations in the whole environment are determined (Gutierrez et al. 2000). In this way the collective and averted collective dose due to the radiation from a particular intervention element (e.g. the roof of a building) can be obtained. It can, therefore, provide a ranking of the specific intervention elements based on their contribution to collective dose as well. The deposition pattern and the long-term behaviour of deposited radionuclides vary widely in natural circumstances; therefore the number of the photons emitted from the various surfaces per unit area and time can differ significantly. This means the results of the Monte Carlo simulations have to be weighted according to the number of emitted photons so that the actual radiation field can be set up. For this purpose, a dose calculation code has been developed in the framework of the TEMAS project (Gutierrez et al. 2000) which allows to calculate collective doses for different environments. This code has been applied in the present work

  14. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  15. Feasibility of CBCT-based dose calculation: Comparative analysis of HU adjustment techniques

    International Nuclear Information System (INIS)

    Fotina, Irina; Hopfgartner, Johannes; Stock, Markus; Steininger, Thomas; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2012-01-01

    Background and purpose: The aim of this work was to compare the accuracy of different HU adjustments for CBCT-based dose calculation. Methods and materials: Dose calculation was performed on CBCT images of 30 patients. In the first two approaches phantom-based (Pha-CC) and population-based (Pop-CC) conversion curves were used. The third method (WAB) represents override of the structures with standard densities for water, air and bone. In ROI mapping approach all structures were overridden with average HUs from planning CT. All techniques were benchmarked to the Pop-CC and CT-based plans by DVH comparison and γ-index analysis. Results: For prostate plans, WAB and ROI mapping compared to Pop-CC showed differences in PTV D median below 2%. The WAB and Pha-CC methods underestimated the bladder dose in IMRT plans. In lung cases PTV coverage was underestimated by Pha-CC method by 2.3% and slightly overestimated by the WAB and ROI techniques. The use of the Pha-CC method for head–neck IMRT plans resulted in difference in PTV coverage up to 5%. Dose calculation with WAB and ROI techniques showed better agreement with pCT than conversion curve-based approaches. Conclusions: Density override techniques provide an accurate alternative to the conversion curve-based methods for dose calculation on CBCT images.

  16. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  17. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K; Chen, D. Z; Hu, X. S [University of Notre Dame, Notre Dame, IN (United States); Zhou, B [Altera Corp., San Jose, CA (United States)

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  18. Calculation of doses of fast electrons in formation of the beam with the aid of grids

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Telesh, L V; Chifonenko, V V; Shishov, V A

    1976-04-01

    The authors describe the method of finding dose distributions of electron beams formed with the aid of grids. Calculation of fields for different grids is made with the help of the mentioned method. The authors analyzed the relation between the depth of location, extension of the homogeneous area, and the engagement factor and size of the grid holes. The effect of electron scattering on the hole edges on the shape of the dose field is considered. The comparison of calculated and experimental results shows that the method is sufficiently accurate to be used for practical radiation therapy.

  19. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  20. The sensitivity of calculated doses to critical assumptions for the offsite consequences of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Moeller, M.P.; Scherpelz, R.I.; Desrosiers, A.E.

    1982-01-01

    This work analyzes the sensitivity of calculated doses to critical assumptions for offsite consequences following a PWR-2 accident at a nuclear power reactor. The calculations include three radiation dose pathways: internal dose resulting from inhalation, external doses from exposure to the plume, and external doses from exposure to contaminated ground. The critical parameters are the time period of integration for internal dose commitment and the duration of residence on contaminated ground. The data indicate the calculated offsite whole body dose will vary by as much as 600% depending upon the parameters assumed. When offsite radiation doses determine the size of emergency planning zones, this uncertainty has significant effect upon the resources allocated to emergency preparedness

  1. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  2. Standardized dose factors for dose calculations - 1982 SRP reactor safety analysis report tritium, iodine, and noble gases

    International Nuclear Information System (INIS)

    Pillinger, W.L.; Marter, W.L.

    1982-01-01

    Standardized dose constants are recommended for calculation of offsite doses in the 1982 SRP Reactor Safety Analysis Report (SAR). Dose constants are proposed for inhalation of tritium and radioiodines and for submersion in a semi-infinite cloud of radioiodines and noble gases. The proposed constants, based on ICRP2 methodology for internal dose and methodology recommended by the US Nuclear Regulatory Commission for external dose, are compatible with dose calculational methods used at the Savannah River Plant and Savannah River Laboratory for normal releases of radioactivity. 8 references

  3. Improved Patient Size Estimates for Accurate Dose Calculations in Abdomen Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Lae [Yonsei University, Wonju (Korea, Republic of)

    2017-07-15

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  4. Measurements and calculations of neutron spectra and neutron dose distribution in human phantoms

    International Nuclear Information System (INIS)

    Palfalvi, J.

    1984-11-01

    The measurement and calculation of the radiation field around and in a phantom, with regard to the neutron component and the contaminating gamma radiation, are essential for radiation protection and radiotherapy purposes. The final report includes the development of the simple detector system, automized detector measuring facilities and a computerized evaluating system. The results of the depth dose and neutron spectra experiments and calculations in a human phantom are given

  5. Calculation of the ingestion critical dose rate for the Goiania radioactive waste repository

    International Nuclear Information System (INIS)

    Passos, E.M. dos; Martin Alves, A.S. De

    1994-01-01

    The calculation results of the critical distance for the ingestion dose rate due to a hypothetical Cs-137 release from the Abadia de Goias repository are shown. The work is based on the pathway repository-aquifer-well food chain. The calculations were based upon analytical models for the migration of radioisotopes through the aquifer and for its transfer from well water to food. (author)

  6. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  7. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  8. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  9. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  10. Two examples of indication specific radiation dose calculations in dental CBCT and Multidetector CT scanners.

    Science.gov (United States)

    Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde

    2017-09-01

    To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  12. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  13. Development of a program for calculation of second dose and securities in brachytherapy high dose rate

    International Nuclear Information System (INIS)

    Esteve Sanchez, S.; Martinez Albaladejo, M.; Garcia Fuentes, J. D.; Bejar Navarro, M. J.; Capuz Suarez, B.; Moris de Pablos, R.; Colmenares Fernandez, R.

    2015-01-01

    We assessed the reliability of the program with 80 patients in the usual points of prescription of each pathology. The average error of the calculation points is less than 0.3% in 95% of cases, finding the major differences in the axes of the applicators (maximum error -0.798%). The program has proved effective previously testing him with erroneous dosimetry. Thanks to the implementation of this program is achieved by the calculation of the dose and part of the process of quality assurance program in a few minutes, highlighting the case of HDR prostate due to having a limited time. Having separate data sheet allows each institution to its protocols modify parameters. (Author)

  14. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  15. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  16. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  17. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  18. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  19. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  20. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  1. Calculation of dose for β point and sphere sources in soft tissue

    International Nuclear Information System (INIS)

    Sun Fuyin; Yuan Shuyu; Tan Jian

    1999-01-01

    Objective: To compare the results of the distribution of dose rate calculated by three typical methods for point source and sphere source of β nuclide. Methods: Calculating and comparing the distributions of dose rate from 32 P β point and sphere sources in soft tissue calculated by the three methods published in references, [1]. [2] and [3], respectively. Results: For the point source of 3.7 x 10 7 Bq (1mCi), the variations of the calculation results of the three formulas are within 10% if r≤0.35 g/cm 2 , r being the distance from source, and larger than 10% if r > 0.35 g/cm 2 . For the sphere source whose volume is 50 μl and activity is 3.7 x 10 7 Bq(1 mCi), the variations are within 10% if z≤0.15 g/cm 2 , z being the distance from the surface of the sphere source to a point outside the sphere. Conclusion: The agreement of the distributions of the dose rate calculated by the three methods mentioned above for point and sphere β source are good if the distances from point source or the surface of sphere source to the points observed are small, and poor if they are large

  2. Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms

    Science.gov (United States)

    Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan

    2017-09-01

    The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.

  3. Calculation of residence times and radiation doses using the standard PC software Excel

    International Nuclear Information System (INIS)

    Herzog, H.; Zilken, H.; Niederbremer, A.; Friedrich, W.; Mueller-Gaertner, H.W.

    1997-01-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%±18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%±6%. Both outcomes indicate the validity of the present approach. (orig.)

  4. Calculation of residence times and radiation doses using the standard PC software Excel.

    Science.gov (United States)

    Herzog, H; Zilken, H; Niederbremer, A; Friedrich, W; Müller-Gärtner, H W

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%+/-18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%+/-6%. Both outcomes indicate the validity of the present approach.

  5. Calculation of residence times and radiation doses using the standard PC software Excel

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.; Zilken, H.; Niederbremer, A.; Friedrich, W. [Institute of Medicine, Research Center Juelich, Juelich (Germany); Mueller-Gaertner, H.W. [Institute of Medicine, Research Center Juelich, Juelich (Germany)]|[Department of Nuclear Medicine, Heinrich-Heine University Hospital Duesseldorf (Germany)

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%{+-}18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%{+-}6%. Both outcomes indicate the validity of the present approach. (orig.) With 5 figs., 2 tabs., 18 refs.

  6. FORTRAN Code for Glandular Dose Calculation in Mammography Using Sobol-Wu Parameters

    Directory of Open Access Journals (Sweden)

    Mowlavi A A

    2007-07-01

    Full Text Available Background: Accurate computation of the radiation dose to the breast is essential to mammography. Various the thicknesses of breast, the composition of the breast tissue and other variables affect the optimal breast dose. Furthermore, the glandular fraction, which refers to the composition of the breasts, as partitioned between radiation-sensitive glandular tissue and the adipose tissue, also has an effect on this calculation. Fatty or fibrous breasts would have a lower value for the glandular fraction than dense breasts. Breast tissue composed of half glandular and half adipose tissue would have a glandular fraction in between that of fatty and dense breasts. Therefore, the use of a computational code for average glandular dose calculation in mammography is a more effective means of estimating the dose of radiation, and is accurate and fast. Methods: In the present work, the Sobol-Wu beam quality parameters are used to write a FORTRAN code for glandular dose calculation in molybdenum anode-molybdenum filter (Mo-Mo, molybdenum anode-rhodium filter (Mo-Rh and rhodium anode-rhodium filter (Rh-Rh target-filter combinations in mammograms. The input parameters of code are: tube voltage in kV, half-value layer (HVL of the incident x-ray spectrum in mm, breast thickness in cm (d, and glandular tissue fraction (g. Results: The average glandular dose (AGD variation against the voltage of the mammogram X-ray tube for d = 4 cm, HVL = 0.34 mm Al and g=0.5 for the three filter-target combinations, as well as its variation against the glandular fraction of breast tissue for kV=25, HVL=0.34, and d=4 cm has been calculated. The results related to the average glandular absorbed dose variation against HVL for kV = 28, d=4 cm and g= 0.6 are also presented. The results of this code are in good agreement with those previously reported in the literature. Conclusion: The code developed in this study calculates the glandular dose quickly, and it is complete and

  7. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    Science.gov (United States)

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose

  8. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  9. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  10. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  11. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  12. Calculation of organ doses in x-ray examinations of premature babies

    International Nuclear Information System (INIS)

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model

  13. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  14. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  15. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  16. Calculation of primary and secondary dose in proton therapy of brain tumors using Monte Carlo method

    International Nuclear Information System (INIS)

    Moghbel Esfahani, F.; Alamatsaz, M.; Karimian, A.

    2012-01-01

    High-energy beams of protons offer significant advantages for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum - Bragg peak - near the end of range with a sharp falloff at the distal edge. Therefore, research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. Dose calculations were performed by MCNPX in tumoral and healthy parts of brain. The brain tumor has a 10 mm diameter and is located 16 cm under the skin surface. The brain was simulated by a cylindrical water phantom with the dimensions of 19 x 19cm 2 (length x diameter), with 0.5 cm thickness of plexiglass (C 4 H 6 O 2 ). Then beam characteristics were investigated to ensure the accuracy of the model. Simulations were initially validated with against packages such as SRIM/TRIM. Dose calculations were performed using different configurations to evaluate depth-dose profiles and dose 2D distributions.The results of the simulation show that the best proton energy interval, to cover completely the brain tumor, is from 152 to 154 MeV. (authors)

  17. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Science.gov (United States)

    Vasseur, Aurélien; Makovicka, Libor; Martin, Éric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-04-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150×1×150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  18. Dose calculations using artificial neural networks: A feasibility study for photon beams

    International Nuclear Information System (INIS)

    Vasseur, Aurelien; Makovicka, Libor; Martin, Eric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-01-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions

  19. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Aurelien [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)], E-mail: aurelien.vasseur@gmail.com; Makovicka, Libor; Martin, Eric [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); Sauget, Marc [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France); Contassot-Vivier, Sylvain; Bahi, Jacques [University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)

    2008-04-15

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  20. Calculation of Absorbed Glandular Dose using a FORTRAN Program Based on Monte Carlo X-ray Spectra in Mammography

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2011-03-01

    Full Text Available Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRAN code to calculate average glandular dose. Results: Average glandular dose variation was calculated against the voltage of the mammographic x-ray tube for d = 5 cm, HVL= 0.35 mm Al, and different value of g. Also, the results related to average glandular absorbed dose variation per unit roentgen radiation against the glandular fraction of breast tissue for kV = 28 and HVL = 0.400 mmAl and different values of d are presented. Finally, average glandular dose against d for g = 60% and three values of kV (23, 27, 35 kV with corresponding HVLs have been calculated. Discussion and Conclusion: The absorbed dose computational program is accurate, complete, fast and user friendly. This program can be used for optimization of exposure dose in mammography. Also, the results of this research are in good agreement with the computational results of others.

  1. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  2. Monte Carlo dose calculations for BNCT treatment of diffuse human lung tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.

    2006-01-01

    In order to test the possibility to apply BNCT in the core of diffuse lung tumours, dose distribution calculations were made. The simulations were performed with the Monte Carlo code MCNP.4c2, using the male computational phantom Adam, version 07/94. Volumes of interest were voxelized for the tally requests, and results were obtained for tissues with and without Boron. Different collimated neutron sources were tested in order to establish the proper energies, as well as single and multiple beams to maximize neutron flux uniformity inside the target organs. Flux and dose distributions are reported. The use of two opposite epithermal neutron collimated beams insures good levels of dose homogeneity inside the lungs, with a substantially lower radiation dose delivered to surrounding structures. (author)

  3. Comparison of measured and calculated contralateral breast doses in whole breast radiotherapy for VMAT and standard tangent techniques

    International Nuclear Information System (INIS)

    Tse, T.L.J; Bromley, R.; Booth, J.; Gray, A.

    2011-01-01

    Full text: Objective This study aims to evaluate the accuracy of calculated dose with the Eclipse analytical anisotropic algorithm (AAA) for contralateral breast (CB) in left-sided breast radiotherapy for dual-arc VMA T and standard wedged tangent (SWT) techniques. Methods and materials Internal and surface CB doses were measured with EBT2 film in an anthropomorphic phantom mounted with C-cup and D-cup breasts. The measured point dose was approximated by averaging doses over the 4 x 4 mm 2 central region of each 2 x 2 cm2 piece of film. The dose in the target region of the breast was also measured. The measured results were compared to AAA calculations with calculation grids of I, 2.5 and 5 mm. Results In SWT plans, the average ratios of calculation to measurement for internal doses were 0.63 ± 0.081 and 0.5 I ± 0.28 in the medial and lateral aspects, respectively. Corresponding ratios for surface doses were 0.88 ± 0.22 and 0.38 ± 0.38. In VMAT plans, however, the calculation accuracies showed little dependence on the measurement locations, the ratios were 0.78 ± O. I I and 0.81 ± 0.085 for internal and surface doses. In general, finer calculation resolutions did not inevitably improve the dose estimates of internal doses. For surface doses, using smaller grid size I mm could improve the calculation accuracies on the medial but not the lateral aspects of CB. Conclusion In all plans, AAA had a tendency to underestimate both internal and surface CB doses. Overall, it produces more accurate results in VMAT than SWT plans.

  4. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  5. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    International Nuclear Information System (INIS)

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-01-01

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D m,m ) and dose-to-water in medium (D w,m ), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%–4.4% to AXB doses (both D m,m and D w,m ); and within 2.5%–6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes (±3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB Dm,m , and AXB Dw,m , respectively. The differences between AXB and AAA in dose–volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However

  6. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)

  7. Radioimmunotherapy. Dose calculation and radionuclides used in treatment

    International Nuclear Information System (INIS)

    Savolainen, S.

    1995-10-01

    In radioimmunotherapy (RIT) monoclonal antibodies to cancer-associated antigens can be utilized for the transport of therapeutic radioisotopes to cancer cells. Intravenous administration of radiolabelled antibody is a potentially curative form of therapy in hematological amignancies as circulating antibodies have easy access to tumour sites. Intravenous RIT is less effective in the treatment of solid tumours because of the low fractional uptake of the injected dose, particularly in the central parts of tumours. In solid tumours more promising results have been achieved by local RIT applications. The choice of radiation - α, β or γ - will depend of the characteristics of the tumour. The importance of radiation delivered by Auger electrons has been largely underestimated in the past, but recent research has resulted in a remarkable reassessment of this issue significantly influencing the selection of radioisotopes for RIT. Research is now being focused on the therapeutic aspects of different isotopes and microdosimetric problems. There are now good prospects of RIT becoming an important form of cancer treatment before year 2000. (orig.) (78 refs., 3 figs., 1 tab.)

  8. Can medical students calculate drug doses? | Harries | Southern ...

    African Journals Online (AJOL)

    ... with calculations when the drug concentration was expressed either as a ratio or a percentage. Conclusion: Our findings support calls for the standardised labelling of drugs in solution and for dosage calculation training in the medical curriculum. Keywords: drug dosage calculations, clinical competence, medication errors

  9. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  10. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    Science.gov (United States)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  11. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  12. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  13. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  14. Applying the 'general principles of dose calculation' (ABG) in practice. Pt. 1

    International Nuclear Information System (INIS)

    Haubelt, R.

    1985-01-01

    Radiation doses are to be calculated for the main exposure pathways such as gamma submersion, beta submersion, gamma radiation at ground level, inhalation and ingestion of radionuclides. After the amendment of the German Radiation Protection Ordinance to include the latest ICRP Recommendations, the dose to be determined now is the effective dose equivalent, replacing the former whole-body dose equivalent. (DG) [de

  15. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  16. Potential Indoor Worker Exposure From Handling Area Leakage: Dose Calculation Methodology and Example Consequence Analysis

    International Nuclear Information System (INIS)

    Nes, Razvan; Benke, Roland R.

    2008-01-01

    The U.S. Department of Energy (DOE) is currently considering design options for preclosure facilities in a license application for a geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the PCSA Tool Version 3.0.0 software for the U.S. Nuclear Regulatory Commission (NRC) to aid in the regulatory review of a potential DOE license application. The objective of this paper is to demonstrate PCSA Tool modeling capabilities (i.e., a generic two-compartment, mass-balance model) for estimating radionuclide concentrations in air and radiological dose consequences to indoor workers in a control room from potential leakage of radioactively contaminated air from an adjacent handling area. The presented model computes internal and external worker doses from inhalation and submersion in a finite cloud of contaminated air in the control room and augments previous capabilities for assessing indoor worker dose. As a complement to the example event sequence frequency analysis in the companion paper, example consequence calculations are presented in this paper for the postulated event sequence. In conclusion: this paper presents a model for estimating radiological doses to indoor workers for the leakage of airborne radioactive material from handling areas. Sensitivity of model results to changes in various input parameters was investigated via illustrative example calculations. Indoor worker dose estimates were strongly dependent on the duration of worker exposure and the handling-area leakage flow rate. In contrast, doses were not very sensitive to handling-area exhaust ventilation flow rates. For the presented example, inhalation was the dominant radiological dose pathway. The two companion papers demonstrate independent analysis capabilities of the regulator for performing confirmatory calculations of frequency and consequence, which assist the assessment of worker

  17. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  18. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P [University of Kansas Medical Center, Kansas City, KS (United States)

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  19. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  20. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  1. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    International Nuclear Information System (INIS)

    Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M

    2006-01-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  2. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  3. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  4. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  5. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1996-01-01

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms

  6. Application of a Monte Carlo linac model in routine verifications of dose calculations

    International Nuclear Information System (INIS)

    Linares Rosales, H. M.; Alfonso Laguardia, R.; Lara Mas, E.; Popescu, T.

    2015-01-01

    The analysis of some parameters of interest in Radiotherapy Medical Physics based on an experimentally validated Monte Carlo model of an Elekta Precise lineal accelerator, was performed for 6 and 15 Mv photon beams. The simulations were performed using the EGSnrc code. As reference for simulations, the optimal beam parameters values (energy and FWHM) previously obtained were used. Deposited dose calculations in water phantoms were done, on typical complex geometries commonly are used in acceptance and quality control tests, such as irregular and asymmetric fields. Parameters such as MLC scatter, maximum opening or closing position, and the separation between them were analyzed from calculations in water. Similarly simulations were performed on phantoms obtained from CT studies of real patients, making comparisons of the dose distribution calculated with EGSnrc and the dose distribution obtained from the computerized treatment planning systems (TPS) used in routine clinical plans. All the results showed a great agreement with measurements, finding all of them within tolerance limits. These results allowed the possibility of using the developed model as a robust verification tool for validating calculations in very complex situation, where the accuracy of the available TPS could be questionable. (Author)

  7. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko; Jiang, Runqing; Barnett, Rob B.

    2006-01-01

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ( R NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R NTCP if 1 cm 3 of the volume of intersection of the PTV and rectum (R int ) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R int , and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R NTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose

  8. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    International Nuclear Information System (INIS)

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  9. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  10. Dose calculations for the concrete water tunnels at 190-C Area, Hanford Site

    International Nuclear Information System (INIS)

    Kamboj, S.; Yu, C.

    1997-01-01

    The RESRAD-BUILD code was used to calculate the radiological dose from the contaminated concrete water tunnels at the 190-C Area at the Hanford Site. Two exposure scenarios, recreationist and maintenance worker, were considered. A residential scenario was not considered because the material was assumed to be left intact (i.e., the concrete would not be rubbleized because the location would not be suitable for construction of a house). The recreationist was assumed to use the tunnel for 8 hours per day for 1 week as an overnight shelter. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered in calculating the dose. Three external exposure pathways involved penetrating radiation emitted directly from the contaminated tunnel floor, emitted from radioactive particulates deposited on the tunnel floor, and resulting from submersion in airborne radioactive particulates. Three internal exposure pathways involved inhalation of airborne radioactive particulates; inadvertent direct ingestion of removable, contaminated material on the tunnel floor; and inadvertent indirect ingestion of airborne particulates deposited on the tunnel floor. The gradual removal of surface contamination over time and the ingrowth of decay products were considered in calculating the dose at different times. The maximum doses were estimated to be 1.5 mrem/yr for the recreationist and 0.34 mrem/yr for the maintenance worker

  11. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  12. Differentiated thyroid cancer treatment with therapeutic doses of 131I calculated by dosimetry: our experience

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.M.; Valdivieso, C.M.; Degrossi, Osvaldo J.; Cabrejas, R.; Cabrejas, M.L.

    2006-01-01

    The optimum dose for the differentiated thyroid cancer treatment is a motive of controversy. There exist two ways of deciding the dose to administer: the empirical method (fixed doses) and dosimetric calculation method. The use of fixed doses has demonstrated safety and effectiveness. Nevertheless there are cases in which the use of several small doses not resolves the metastases illness of the patients. Using the Benua-Leeper method for dosimetric calculation we have evaluated the maximum dose treatment that could be administered to 20 patients who showed persistent disease after several treatments with 131 I. (author) [es

  13. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  14. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  15. The calculation of relative output factor and depth dose for irregular electron fields in water

    International Nuclear Information System (INIS)

    Dunscombe, Peter; McGhee, Peter; Chu, Terence

    1996-01-01

    Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm

  16. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    International Nuclear Information System (INIS)

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-01-01

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI ≤ 0.4), EVAL (0.4 0.6), and FAIL (GI ≥ 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm 3 ). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 ± 0.08. Linac stability was high with an average GI of 0.28 ± 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  17. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations

    DEFF Research Database (Denmark)

    Knöös, Tommy; Wieslander, Elinore; Cozzi, Luca

    2006-01-01

    to the fields. A Monte Carlo calculated algorithm input data set and a benchmark set for a virtual linear accelerator have been produced which have facilitated the analysis and interpretation of the results. The more sophisticated models in the type b group exhibit changes in both absorbed dose and its...... distribution which are congruent with the simulations performed by Monte Carlo-based virtual accelerator....

  18. Calculation of dose distribution on Rhizophora spp soy protein ...

    African Journals Online (AJOL)

    Some of the commercial solid phantoms were unable to provide a good simulation to water at low and high energy ranges. A potential phantom from Malaysian mangrove wood family, Rhizophoraspp was fabricated with addition of Soy Protein. An Electron Gamma Sho (EGSnrc) code was used to evaluate the dose ...

  19. Experimental validation of Monte Carlo calculations for organ dose

    International Nuclear Information System (INIS)

    Yalcintas, M.G.; Eckerman, K.F.; Warner, G.G.

    1980-01-01

    The problem of validating estimates of absorbed dose due to photon energy deposition is examined. The computational approaches used for the estimation of the photon energy deposition is examined. The limited data for validation of these approaches is discussed and suggestions made as to how better validation information might be obtained

  20. TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a

    Energy Technology Data Exchange (ETDEWEB)

    Xue, J; Park, J; Kim, L; Wang, C [MD Anderson Cancer Center at Cooper, Camden, NJ (United States); Balter, P; Ohrt, J; Kirsner, S; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommended by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.

  1. Calculated and measured dose distribution in electron and X-ray irradiated water phantom

    CERN Document Server

    Ziaie, F; Bulka, S; Afarideh, H; Hadji-Saeid, S M

    2002-01-01

    The Bremsstrahlung yields produced by incident electrons on a tantalum converter have been calculated by using a Monte-Carlo computer code. The tantalum thickness as an X-ray converter was optimized for 2, 2.5, 5, 7.5, and 10 MeV electron beams. The dose distribution in scanning and conveyor direction for both 2 MeV electron and X-ray converted from 2 MeV electron beam have been calculated and compared with experimental results. The economical aspects of low energy electron conversion were discussed as well.

  2. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-01-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  3. Probabilistic calculation of dose commitment from uranium mill tailings

    International Nuclear Information System (INIS)

    1983-10-01

    The report discusses in a general way considerations of uncertainty in relation to probabilistic modelling. An example of a probabilistic calculation applied to the behaviour of uranium mill tailings is given

  4. The calculation of dose from photon exposures using reference human phantoms and Monte Carlo methods. Pt. 5

    International Nuclear Information System (INIS)

    Petoussi, N.; Zankl, M.; Williams, G.; Veit, R.; Drexler, G.

    1987-01-01

    There has been some evidence that cervical cancer patients who were treated by radiotherapy, had an increased incidence of second primary cancers noticeable 15 years or more after the radiotherapy. The data suggested that high dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but not leukemia (Kleinerman et al., 1982, Morton 1973). The aim of the present work is to estimate the absorbed dose, due to radiotherapy treatment for cervival cancer, to various organs and tissues in the body. Monte Carlo calculations were performed to calculate the organ absorbed doses resulting from intracavitary sources such as ovoids and applicators filled or loaded with radium, Co-60 and Cs-137. For that purpose a routine which simulates an internal source was constructed and added to the existing Monte Carlo code (GSF-Bericht S-885, Kramer et al.). Calculations were also made for external beam therapy. Various anterior, posterior and lateral fields were applied, resulting from megavoltage, Co-60 and Cs-137 therapy machines. The calculated organ doses are tabulated in three different ways: as organ dose per air Kerma in the reference field, according to the recommendations of the International Commission on Radiation Units and Measurements (ICRU Report No 38, 1985); as organ dose per surface dose and as organ dose per tissue dose at Point B. (orig.)

  5. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  6. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    International Nuclear Information System (INIS)

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-01-01

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of 125 I, 103 Pd, and 137 Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, Δ, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE preplan , in a 5x5x5 cm 3 volume for 125 I (Oncura 6711), 103 Pd (Theragenics 200), and 131 Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes (Δ=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE preplan for our edema model

  7. Development of a Monte Carlo multiple source model for inclusion in a dose calculation auditing tool.

    Science.gov (United States)

    Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S

    2017-09-01

    The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm 2 to 30 × 30 cm 2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.

  8. Use of Monte Carlo simulation software for calculating effective dose in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    This study aimed to develop a geometry of irradiation applicable to the software PCXMC and the consequent calculation of effective dose in applications of the Computed Tomography Cone Beam (CBCT). We evaluated two different CBCT equipment s for dental applications: Care stream Cs 9000 3-dimensional tomograph; i-CAT and GENDEX GXCB-500. Initially characterize each protocol measuring the surface kerma input and the product kerma air-area, P{sub KA}, with solid state detectors RADCAL and PTW transmission chamber. Then we introduce the technical parameters of each preset protocols and geometric conditions in the PCXMC software to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for 3-dimensional computer 9000 Cs; within the range 44.5 to 89 μSv for GXCB-500 equipment and in the range of 62-111 μSv for equipment Classical i-CAT. These values were compared with results obtained dosimetry using TLD implanted in anthropomorphic phantom and are considered consistent. Os effective dose results are very sensitive to the geometry of radiation (beam position in mathematical phantom). This factor translates to a factor of fragility software usage. But it is very useful to get quick answers to regarding process optimization tool conclusions protocols. We conclude that use software PCXMC Monte Carlo simulation is useful assessment protocols for CBCT tests in dental applications. (Author)

  9. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  10. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)

  11. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  12. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2015-01-01

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations

  13. Kinetics and dose calculations of amikacin in the newborn

    DEFF Research Database (Denmark)

    Sardemann, H; Colding, H; Hendel, J

    1976-01-01

    compartment model. The absorption was evaluated in 8 of the infants after intramuscular injection of 7.5 mg amikacin per kilogram of body weight. The absorption rate, estimated by the tmax, was significantly faster than reported in adults. The total body clearance and apparent volume of distribution were...... studied in 22 infants after the same dose of amikacin intramuscularly. The body clearance expressed in relation to body surface or body weight was significantly less than in adults and correlated with the postnatal age. No correlation could be demonstrated between clearance and gestational age or birth...... weight. The volume of distribution per kilogram was significantly greater than in adults. On the basis of the derived kinetic parameters, a dose schedule is presented. In 5 children there was a reasonable agreement between the measured and predicted serum levels....

  14. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  15. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  16. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  17. Presentation of geometries and transient results of TRAC-calculations

    International Nuclear Information System (INIS)

    Lutz, A.; Lang, U.; Ruehle, R.

    1985-02-01

    The computer code TRAC is used to analyze the transient behaviour of nuclear reactors. The input of a TRAC-Calculation, as well as the produced result files serve for the graphical presentation of the geometries and transient results. This supports the search for errors during input generation and the understanding of complex processes by dynamic presentation of calculational result in colour. (orig.) [de

  18. Monte Carlo method for dose calculation due to oral X-rays

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  19. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  20. DOSEFU: Computer application for dose calculation and effluent management in normal operation

    International Nuclear Information System (INIS)

    Martin Garcia, J. E.; Gonzalvo Manovel, A.; Revuelta Garcia, L.

    2002-01-01

    DOSEFU is a computer application on Windows that develops the methodology of nuclear power plant Exterior Dose Calculation Manuals (Manuals de Calculo de Dosis al Exterior-MACADE) for calculating doses in normal operation caused by radioactive liquid and gaseous effluents, for the purpose of enforcing the new Spanish Regulation on Health Protection against Ionizing Radiations, Royal Decree 783/2001 resulting from transposition of Directive 96/29/Euratom whereby the basic rules regarding health protection of workers and the population against risks resulting from ionizing radiations are established. In addition to making dose calculations, DOSEFU generates, on a magnetic support, the information regarding radioactive liquid and gaseous effluents that plants must periodically send to the CSN (ELGA format). The computer application has been developed for the specific case of Jose Cabrera NPP, which is called DOEZOR. This application can be easily implemented in any other nuclear or radioactive facility. The application is user-friendly, as the end user inputs data and executes the different modules through keys and dialogue boxes that are enabled by clicking on the mouse (see figures 2, 3, 4 and 5 ), The application runs under Windows 95. Digital Visual Fortran has been used as the development program, as this does not require additional libraries (DLLs), it can be installed in any computer without affecting other programs that are already installed. (Author)

  1. SU-E-T-192: Commissioning of a Commercial 3D Dose Calculation Program

    International Nuclear Information System (INIS)

    Langen, K; Guerrero, M; Xu, H; Zhou, J; Zhang, B; Chen, S; Killefer, M

    2015-01-01

    Purpose: To commission a commercial software package (CSP) that is used as secondary dose calculation check. The CSP uses an independent golden data beam model. However, some parameters can be modified to generate a customer specific model. Plan comparisons and point dose measurements were performed to test if and to what extent the beam model needed adjustment to optimize results. Methods: Beam parameter configurations were compared between the CSP and both TPS. Twelve phantom test plans ranging from simple to complex were generated in two treatment planning systems (TPS). Tests included small field, off axis, EDW, IMRT and VMAT plans. For each plan a point dose was measured to establish ground truth. Lastly, patient plans were compared for both TPS systems and the CSP. Results: Beam parameters agreed within 2%. The output factors for small fields were changed for the 15 MV beam by 2 and 1.5 % for the 1 cm and 2 cm field sizes, respectively. For the 6 MV beam output factors were adjusted by 3−0.8% for field sizes ranging from 1 to 5 cm. The MLC dynamic leaf gap was adjusted by 1.5 mm for 18 MV beam. Differences between the CSP and the TPS were noted in the built-up region. These differences affected the gamma pass rate in the surface region, however this effect is reduced with increasing number of beam angles and does not affect point dose calculations at depth. All IMRT and VMAT plans agreed with the CSP using a gamma pass rate of 95% (3%, 3mm). Conclusion: The CSP is used to verify point doses for all 3D plans generated in our clinic for the last 6 months. No point dose mismatches were encountered since the CSP was implemented. Next, the CSP will be adapted for secondary checks of all IMRT plans. KL had a beta tester agreement with Mobius Medical for an in-kind equipment and software loan

  2. SU-E-T-192: Commissioning of a Commercial 3D Dose Calculation Program

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K; Guerrero, M; Xu, H; Zhou, J; Zhang, B; Chen, S [University of Maryland School of Medicine, Baltimore, MD (United States); Killefer, M [Hastings College, Hastings, Nebraska (United States)

    2015-06-15

    Purpose: To commission a commercial software package (CSP) that is used as secondary dose calculation check. The CSP uses an independent golden data beam model. However, some parameters can be modified to generate a customer specific model. Plan comparisons and point dose measurements were performed to test if and to what extent the beam model needed adjustment to optimize results. Methods: Beam parameter configurations were compared between the CSP and both TPS. Twelve phantom test plans ranging from simple to complex were generated in two treatment planning systems (TPS). Tests included small field, off axis, EDW, IMRT and VMAT plans. For each plan a point dose was measured to establish ground truth. Lastly, patient plans were compared for both TPS systems and the CSP. Results: Beam parameters agreed within 2%. The output factors for small fields were changed for the 15 MV beam by 2 and 1.5 % for the 1 cm and 2 cm field sizes, respectively. For the 6 MV beam output factors were adjusted by 3−0.8% for field sizes ranging from 1 to 5 cm. The MLC dynamic leaf gap was adjusted by 1.5 mm for 18 MV beam. Differences between the CSP and the TPS were noted in the built-up region. These differences affected the gamma pass rate in the surface region, however this effect is reduced with increasing number of beam angles and does not affect point dose calculations at depth. All IMRT and VMAT plans agreed with the CSP using a gamma pass rate of 95% (3%, 3mm). Conclusion: The CSP is used to verify point doses for all 3D plans generated in our clinic for the last 6 months. No point dose mismatches were encountered since the CSP was implemented. Next, the CSP will be adapted for secondary checks of all IMRT plans. KL had a beta tester agreement with Mobius Medical for an in-kind equipment and software loan.

  3. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions

    Directory of Open Access Journals (Sweden)

    Karlsson Mikael

    2010-06-01

    Full Text Available Abstract Background Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI as a complement to computed tomography (CT in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. Methods MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. Results The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. Conclusions The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.

  4. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy

    Science.gov (United States)

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation

  5. Estimation of dose distribution and neutron spectra in JCO critical accident by shielding calculations

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2001-01-01

    The information about neutrons at the surrounding of JCO site in the critical accident is limited to survey results by neutron Rem counter in the period of accident and activation data very near the test facility measured after the shut down of accident. This caused the big uncertainty in the dose estimation by detailed shielding calculation codes. On the other hand, environmental activity data measured by radiochemical researchers included the information about fast neutrons inside of JCO site and thermal neutrons up to 1 km from test facility. It is important to grasp the actual circumstance and examine the executed evaluation of the critical accident as scientifically as possible. Therefore, it is meaningful for different field researchers to corporate and exchange the information. In the Technical Divisions of Radiation Science and Technology in Atomic Energy Society of Japan, the information about neutron spectra are released from their home page and three groups of JAERI/CRC, Sumitomo Atomic Energy Industry and Nuclear Power Engineering Corp. (NUPEC)/Mitsubishi Research Institute Inc. (MRI), tried the shielding calculation by Monte Carlo Code MCNP-4B. The procedures and main results of shielding calculations were reviewed in this report. The main difference of shielding calculation by three groups was density and water content of autoclaved light-weight concrete (ALC) as the wall and ceiling. From the result by NUPEC/MRI, it was estimated that the water content in ALC was from 0.05 g/cm 3 to 0.10 g/cm 3 . The behavior of dose equivalent attenuation obtained by shielding calculation was very similar with the measured data from 250 m to 1,700 m obtained by survey meter, TLD and monitoring post. For more exact dose estimation, more detail examination of density and water content of ALC will be needed. (author)

  6. Calculation of dose equivalents for photon skyshine production; Calculo da dose equivalente para fotons decorrente da producao de skyshine

    Energy Technology Data Exchange (ETDEWEB)

    Frota, Marco A.; Kelecom, Alphonse [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Biologia Geral. Lab. de Radiobiologia e Radiometria (LARARA)]. E-mail: egbakel@vm.uff.br

    2005-07-01

    Some radiation facilities are designed with little shielding in the ceiling above the accelerator. A problem may then arise as a result of the radiation scattered by the atmosphere to points at ground level outside the treatment room. Stray radiation of this type is referred to as skyshine, and the National Council on Radiation Protection and Measurements Report No. 51 (NCRP 1977) gives methods for the calculation of skyshine for accelerator facilities. McGinley (1993) has compared skyshine measurements made at an 18 MeV medical accelerator facility with values calculated using the techniques presented in NCRP Report No. 51. Measurements were made of the photon levels outside a treatment room housing a Varian 2100 deg C. The roof above the accelerator was designed for weather protection only and offered little shielding for the primary beam and scattered radiation. The distance from the treatment room floor to the roof was 4.27 m, and the primary walls were constructed of concrete 2.0 m thick.The secondary walls were fabricated of concrete 0.99 m thick. The results for the photon skyshine rate dose as a function of distance from the isocenter using Monte Carlo code, are compared with those in NCRP publication 74 and measured obtained. The photon skyshine dose rates simulated for real clinic spectra transmitted through roof range from 4.7 to 14.6 nSv.s{sup -1}. (author)

  7. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  8. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  9. DEPDOSE: An interactive, microcomputer based program to calculate doses from exposure to radionuclides deposited on the ground

    International Nuclear Information System (INIS)

    Beres, D.A.; Hull, A.P.

    1991-12-01

    DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer

  10. CARI NAIRAS: Calculating Flight Doses from NAIRAS Data using CARI

    Science.gov (United States)

    2014-12-01

    S44 (1996). 5. O’Brien, K; Smart, DF; Shea, MA; et al. World-wide radiation dosage calculations for air crew members. Advan Space Res, 2003, 31(4...STEPMIN(I), STEPFEET(I) ENDDO WRITE(40,*) ‘RDBIGFLT RETURNS CRUISE TIME (MIN): ‘,CRUISEMIN WRITE(40,*) ‘RDBIGFLT RETURNS DESCENT TIME (MIN...USE ONE STEP PER MINUTE, CENTERED ON 1/2 STEP IF (DIAGNOSE.EQ.’YES’) WRITE(40,*) ‘CALCULATING DESCENT ’ CALL FT2KM(DALT,DEPTH(ALLSTEPS)) DT(J

  11. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  12. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  13. Calculation of the dose rate and air ionisation from radioactive fallout deposited at Chilton, Oxon (1951 to 1977)

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1978-06-01

    This report is a brief survey of the methods used for calculating the dose rate from deposited fallout and includes improvements in the computing techniques. The changes consist of (a) the use of a more exact allowance for weathering (b) the calculation doses to mid-month rather than end of each month (c) the inclusion of the contribution from Nb-95 in a more exact way to allow for its build-up and decay with time (d) the use of a more precise method for estimating the dose prior to 1954. The result is to increase the calculated total γ-ray dose from 1951 to 1976 by 17% from 153 to 179 mrad in air at 1 m with an increase of 11% in the beta-ray dose. The annual levels for natural γ and β radiation are 12 and 62 mrad respectively. (author)

  14. Calculation of Dose Gamma Ray Build up Factor in Some ...

    African Journals Online (AJOL)

    The gamma ray buildup factor was calculated by analyzing the narrow- beam and broad-beam geometry equations using Taylor's formula for isotropic sources and homogeneous materials. The buildup factor was programmed using MATLAB software to operate with any radiation energy (E), atomic number (Z) and the ...

  15. Verification of dose rate calculation and selection study on low activation concrete in fusion facilities

    International Nuclear Information System (INIS)

    Oishi, Koji; Minami, Kiyoshi; Ikeda, Yujiro; Kosako, Kazuaki; Nakamura, Tomoo

    1991-01-01

    A concrete assembly was irradiated by D-T neutrons for 10 h, and dose rate measurement one day after shutdown has been carried out in order to provide a guide line for selection studies of low activation concrete. The experimental results were analyzed by the two dimensional calculation code DOT3.5 with its related nuclear data library GICX40 based on ENDF/B-III, however disagreement between experiment and calculation was observed in the deeper detector positions. Calculations were also performed using the nuclear data library based on ENDF/B-IV, and agreement within experimental errors was obtained at all detector positions. Selection studies for low activation concrete were performed using this nuclear data library. As a result, it was found that limestone concrete exhibited excellent properties as a low activation concrete in fusion facilities. (orig.)

  16. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  17. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  18. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  19. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  20. Calculation of shielding and radiation doses for PET/CT nuclear medicine facility

    International Nuclear Information System (INIS)

    Mollah, A.S.; Muraduzzaman, S.M.

    2011-01-01

    Positron emission tomography (PET) is a new modality that is gaining use in nuclear medicine. The use of PET and computed tomography (CT) has grown dramatically. Because of the high energy of the annihilation radiation (511 keV), shielding requirements are an important consideration in the design of a PET or PET/CT imaging facility. The goal of nuclear medicine and PET facility shielding design is to keep doses to workers and the public as low as reasonably achievable (ALARA). Design involves: 1. Calculation of doses to occupants of the facility and adjacent regions based on projected layouts, protocols and workflows, and 2. Reduction of doses to ALARA through adjustment of the aforementioned parameters. The radiological evaluation of a PET/CT facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The objective of the study was to evaluate shielding requirements for a PET/CT to be installed in the department of nuclear medicine of Bangladesh Atomic Energy Commission (BAEC). Minimizing shielding would result in a possible reduction of structural as well as financial burden. Formulas and attenuation coefficients following the basic AAPM guidelines were used to calculate un-attenuated radiation through shielding materials. Doses to all points on the floor plan are calculated based primarily on the AAPM guidelines and include consideration of broad beam attenuation and radionuclide energy and decay. The analysis presented is useful for both, facility designers and regulators. (author)

  1. Dose calculation due to electrons interaction with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Mark, S; Orion, I; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering; Laster, B [Brookhaven National Lab., Upton, NY (United States)

    1996-12-01

    Experiments done with gadolinium loaded V79 Chinese Hamster cells, irradiated with thermal neutrons, showed that cells lethality increased by a factor of 1.8 compared to the case where the Gd atoms were located outside the cell.(l) It was obvious that the dramatic increase in cell lethality is due to the emission of Auger electrons following the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction. Electrons of various energies from about 40 keV (very few) to less than 1 keV, are emitted. In the present work, energy absorbed in DNA was calculated, due to interaction of electron of different energies: 30, 15, 10, 8, 5 and 2 keV. The Monte Carlo code EGS4(2) was used for the calculations. The DNA was modeled as a series of alternative layers of sugar (phosphate - C{sub 5}O{sub 5}H{sub 7}P p=1.39gr cm{sup -1}) and water. The sugar layer thickness was assumed 2.5nm and the water layer thickness 10nm. An isotropic electron source was assumed to be located in a water layer and the electrons interactions (absorption and scattering) were calculated in the forward hemisphere. The energy absorbed in a group of 8 layers, (4 sugar and 4 water) was calculated for each one of the electron energies. An interesting fact found in those calculations; when the source electrons energy is 10 keV or more, most of the electrons are absorbed in the DNA-water system, are at energy about 2keV. There is no good explanation for this phenomenon except for assuming that when the electron`s energy reaches a low point of about 2keV, it cannot escape absorption in the medium. 10% of the 10 keV electrons deposit their entire energy in the 8 layers range (authors).

  2. Methodology for calculation of doses to man and implementation in Pandora

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Rodolfo [Facilia AB, Bromma (Sweden); Bergstroem, Ulla [Swepro Project Management AB, Solna (Sweden)

    2006-07-15

    This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP; the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different food-stuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that SKB and Posiva currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by SKB and Posiva.

  3. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  4. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  5. Methodology for calculation of doses to man and implementation in Pandora

    International Nuclear Information System (INIS)

    Avila, R.; Bergstroem, U.

    2006-07-01

    This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP, the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different foodstuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that Posiva and SKB currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by Svensk Kaernbraenslehantering AB (SKB) and Posiva. The report will be printed also as a SKB report R-06-68. (orig.)

  6. Methodology for calculation of doses to man and implementation in Pandora

    International Nuclear Information System (INIS)

    Avila, Rodolfo; Bergstroem, Ulla

    2006-07-01

    This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP; the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different food-stuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that SKB and Posiva currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by SKB and Posiva

  7. Calculated dose factors for the radiosensitive tissues in bone irradiated by surface-deposited radionuclides

    International Nuclear Information System (INIS)

    Spiers, F.W.; Whitwell, J.R.; Beddoe, A.H.

    1978-01-01

    The method of calculating dose factors for the haemopoietic marrow and endosteal tissues in human trabecular bone, used by Whitwell and Spiers for volume-seeking radionuclides, has been developed for the case of radionuclides which are deposited as very thin layers on bone surfaces. The Monte Carlo method is again used, but modifications to the computer program are made to allow for a surface rather than a volume source of particle emission. The principal change is the introduction of a surface-orientation factor which is shown to have a value of approximately 2, varying slightly with bone structure. Results are given for β-emitting radionuclides ranging from 171 Tm(anti Esub(β) = 0.025 MeV) to 90 Y(anti Esub(β) = 0.93 MeV), and also for the α-emitter 239 Pu. It is shown that where the particle ranges are short compared with the dimensions of the bone structures the dose factors for the surface seekers are much greater than those for the volume seekers. For long range particles the dose factors for surface- and volume-seeking radionuclides converge. Comparisons are given relating the dose factors calculated in this paper on the basis of measured bone structures to those of other workers based on single plane geometry. (author)

  8. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  9. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  10. Evaluation of dose calculation algorithms for the electron beams used in radiotherapy. Comparison with radiochromic film measurements

    International Nuclear Information System (INIS)

    El Barouky, Jad

    2011-01-01

    In radiotherapy, the dose calculation accuracy is crucial for the quality and the outcome of the treatments. The purpose of our study was to evaluate the accuracy of dose calculation algorithms for electron beams in situations close to clinical conditions. A new practical approach of radiochromic film dosimetry was developed and validated especially for difficult situations. An accuracy of 3.1% and 2.6% was achieved for absolute and relative dosimetry respectively. Using this technique a measured database of dose distributions was developed to form the basis of several fast and efficient Quality Assurance tests. Such tests are intended to be used also when the dose calculation algorithm is changed or the Treatment Planning System replaced. Pencil Beam and Monte Carlo dose calculations were compared to the measured data for simple geometrical phantom setups. They both gave similar results for obliquity, surface irregularity and extended SSD tests but the Monte Carlo calculation was more accurate in presence of heterogeneities. The same radiochromic film dosimetry method was applied to film cuts inserted into anthropomorphic phantoms providing a 2D dose distribution for any transverse plan. This allowed us to develop clinical test that can be also used for internal Quality Assurance purposes. As for simpler geometries, the Monte Carlo calculations showed better agreement with the measured data than the Pencil Beam calculation, especially in presence of heterogeneities such as lungs, cavities and bones. (author) [fr

  11. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

    International Nuclear Information System (INIS)

    Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M

    2004-01-01

    The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams

  12. POPFOOD - a computer code for calculating ingestion collective doses from continuous atmospheric releases

    International Nuclear Information System (INIS)

    Hotson, J.; Stacey, A.; Nair, S.

    1980-07-01

    The basic methodology incorporated in the POPFOOD computer code is described, which may be used to calculate equilibrium collective dose rates associated with continuous atmospheric releases and arising from consumption of a broad range of food products. The standard data libraries associated with the code are also described. These include a data library, based on the 1972 agricultural census, describing the spatial distribution of production, in England, Wales and Scotland, of the following food products: milk; beef and veal; pork bacon and ham; poultrymeat; eggs; mutton and lamb; root vegetables; green vegetables; fruit; cereals. Illustrative collective dose calculations were made for the case of 1 Ci per year emissions of 131 I, tritium and 14 C from a typical rural UK site. The calculations indicate that the ingestion pathway results in a greater collective dose than that via inhalation, with the contributions from consumption of root and green vegetables, and cereals being of comparable significance to that from liquid milk consumption, in all three cases. (author)

  13. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    International Nuclear Information System (INIS)

    Rampado, Osvaldo; Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-01-01

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K_a_i_r), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses

  14. Calculation of the effective environmental dose rate for ESR and luminescence dating

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2001-01-01

    The determination of the age of a sample using luminescence and ESR dating techniques requires knowledge of the sample's average effective environmental dose rate due to natural radiation sources (alpha, beta, gamma, and cosmic), and age estimates can never be more accurate than the estimate of this dose rate. The estimation process is often complicated by spatial and temporal inhomogeneities in the distribution of natural radiation sources. This paper discusses applications of radiation physics in modelling the effects of these inhomogeneities to ensure accurate estimation of the average dose rate for the sample. For natural alpha, beta, and gamma sources, 'dose point kernels' are employed in calculations using an assumed model for the spatial and temporal dependence of source concentrations. These three types of radiation have rather different penetration properties, with their typical effective ranges being multiples of 10 micrometre, 1 mm, and 100 mm respectively. For each type of radiation, applications are discussed where spatial inhomogeneity in the distribution of sources around and in a sample has a serious effect on the average dose rate to the sample. In some cases, (e.g. gamma dose estimation in 'lumpy' environments) lack of detailed knowledge precludes accurate modelling of the site for a particular sample, but useful statistical information can still be obtained. Temporal variation of radioactive source concentrations is usually coupled with spatial effects and can arise from processes such as parent-daughter disequilibrium, uptake or leaching of sources, or variation in burial depth or water saturation. Again, calculations based non a known or assumed history can be employed to obtain a time-averaged dose rate for a sample. The accuracy with which these calculations can reflect the true environmental dose rate is limited principally by the reliability of the model assumed, which in turn depends on the state of knowledge of the site and its history

  15. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  16. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  17. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  18. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy

    International Nuclear Information System (INIS)

    Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.

    2006-01-01

    Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate

  19. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 6

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1991-11-01

    Computed tomography (CT) is a technique which offers a high diagnostic capability; however, the dose to the patient is high compared to conventional radiography. This report provides a catalogue of organ doses resulting from CT examinations. The organ doses were calculated for the type of CT scanners most commonly used in the FRG and for three different radiation qualities. For the dose calculations, the patients were represented by the adult mathematical phantoms Adam and Eva. The radiation transport in the body was simulated using a Monte Carlo method. The doses were calculated as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per single CT slice of 1 cm width. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contribution to the organ dose from each relevant slice. In order to facilitate the selection of the appropriate slices, a table is given which relates the mathematical phantoms' coordinates to certain anatomical landmarks in the human body. (orig.)

  20. Radioactivity in food and the environment: calculations of UK radiation doses using integrated methods

    International Nuclear Information System (INIS)

    Allott, Rob

    2003-01-01

    Dear Sir: I read with interest the paper by W C Camplin, G P Brownless, G D Round, K Winpenny and G J Hunt from the Centre for Environment, Fisheries and Aquaculture Science (CEFAS) on 'Radioactivity in food and the environment: calculations of UK radiation doses using integrated methods' in the December 2002 issue of this journal (J. Radiol. Prot. 22 371-88). The Environment Agency has a keen interest in the development of a robust methodology for assessing total doses which have been received by members of the public from authorised discharges of radioactive substances to the environment. Total dose in this context means the dose received from all authorised discharges and all exposure pathways (e.g. inhalation, external irradiation from radionuclides in sediment/soil, direct radiation from operations on a nuclear site, consumption of food etc). I chair a 'total retrospective dose assessment' working group with representatives from the Scottish Environment Protection Agency (SEPA), Food Standards Agency (FSA), National Radiological Protection Board, CEFAS and BNFL which began discussing precisely this issue during 2002. This group is a sub-group of the National Dose Assessment Working Group which was set up in April 2002 (J. Radiol. Prot. 22 318-9). The Environment Agency, Food Standards Agency and the Nuclear Installations Inspectorate previously undertook joint research into the most appropriate methodology to use for total dose assessment (J J Hancox, S J Stansby and M C Thorne 2002 The Development of a Methodology to Assess Population Doses from Multiple Source and Exposure Pathways of Radioactivity (Environment Agency R and D Technical Report P3-070/TR). This work came to broadly the same conclusion as the work by CEFAS, that an individual dose method is probably the most appropriate method to use. This research and that undertaken by CEFAS will help the total retrospective dose assessment working group refine a set of principles and a methodology for the

  1. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  2. Detriment calculations resulting from occupational radiation exposures in Egypt

    International Nuclear Information System (INIS)

    Abdel-Ghani, A.H.

    2000-01-01

    The application of the nominal probability coefficient to evaluate the detriment after the annual occupational exposures of workers from radiation sources and radioactive material have been calculated for workers in medical practices, industrial applications, atomic energy activities and those involved in exploration and mining of radioactive ores and phosphates. The aim of detriment calculations is to provide a foresight for the future occurrence of stochastic effects among the exposed workers. The calculated detriment can be classified into three classes. The first includes workers in diagnostic radiology and atomic energy activities who received the higher doses and consequently represent the higher detriment. The second class comprises workers in radiotherapy and nuclear medicine whose detriment is for times lesser than that of the first class. The third one concerns workers in industrial applications and in exploration and mining of radioactive ores and phosphates, their detriments ten times lesser than that of the second class. The occupational radiation doses are endorsed by the united nation scientific committee on efects of atomic radiation (UNSCEAR) for the period january 1995 to december 1998

  3. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    International Nuclear Information System (INIS)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C.

    2017-01-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  4. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C., E-mail: research.photonics@gmail.com [Centro Regional de Ciências Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goiás, GO (Brazil)

    2017-07-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  5. Parameter calculation tool for the application of radiological dose projection codes

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vergara del C, J. A.; Galvan A, S. J.; Tijerina S, F.

    2016-09-01

    The use of specialized codes to estimate the radiation dose projection to an emergency postulated event at a nuclear power plant requires that certain plant data be available according to the event being simulated. The calculation of the possible radiological release is the critical activity to carry out the emergency actions. However, not all of the plant data required are obtained directly from the plant but need to be calculated. In this paper we present a computational tool that calculates the plant data required to use the radiological dose estimation codes. The tool provides the required information when there is a gas emergency venting event in the primary containment atmosphere, whether well or dry well and also calculates the time in which the spent fuel pool would be discovered in the event of a leak of water on some of the walls or floor of the pool. The tool developed has mathematical models for the processes involved such as: compressible flow in pipes considering area change and for constant area, taking into account the effects of friction and for the case of the spent fuel pool hydraulic models to calculate the time in which a container is emptied. The models implemented in the tool are validated with data from the literature for simulated cases. The results with the tool are very similar to those of reference. This tool will also be very supportive so that in postulated emergency cases can use the radiological dose estimation codes to adequately and efficiently determine the actions to be taken in a way that affects as little as possible. (Author)

  6. Calculation of conversion coefficients Hp(3)/K air using the PENELOPE Monte Carlo code and comparison with MCNP calculation results

    International Nuclear Information System (INIS)

    Daures, J.; Gouriou, J.; Bordy, J.M.

    2010-01-01

    The authors report calculations performed using the MNCP and PENELOPE codes to determine the Hp(3)/K air conversion coefficient which allows the Hp(3) dose equivalent to be determined from the measured value of the kerma in the air. They report the definition of the phantom, a 20 cm diameter and 20 cm high cylinder which is considered as representative of a head. Calculations are performed for an energy range corresponding to interventional radiology or cardiology (20 keV-110 keV). Results obtained with both codes are compared

  7. Advantages of mesh tallying in MCNPX for 3D dose calculations in radiotherapy

    International Nuclear Information System (INIS)

    Jabbari, I.; Shahriari, M.; Aghamiri, S.M.R.; Monadi, S.

    2012-01-01

    The energy deposition mesh tally option of MCNPX Monte Carlo code is very useful for 3-Dimentional (3D) dose calculations. In this study, the 3D dose calculation was done for CT-based Monte Carlo treatment planning in which the energy deposition mesh tally were superimposed on merged voxel model. The results were compared with those of obtained from the common energy deposition (*F8) tally method for all cells of non-merged voxel model. The results of these two tallies and their respective computational times are compared, and the advantages of the proposed method are discussed. For this purpose, a graphical user interface (GUI) application was developed for reading CT slice data of patient, creating voxelized model of patient, optionally merging adjacent cells with the same material to reduce the total number of cells, reading beam configuration from commercial treatment planning system transferred in DICOM-RT format, and showing the isodose distribution on the CT images. To compare the results of Monte Carlo calculated and TiGRT planning system (LinaTech LLC, USA), treatment head of the Siemens ONCOR Impression accelerator was also simulated and the phase-space data on the scoring plane just above the Y-jaws was created and used. The results for a real prostate intensity-modulated radiation therapy (IMRT) plan showed that the proposed method was fivefold faster while the precision was almost the same. (author)

  8. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy.

    Science.gov (United States)

    Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H

    2006-09-01

    To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.

  9. Photon dose estimation from ultraintense laser–solid interactions and shielding calculation with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-01-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called “hot electrons”). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 10 19 to 10 21 W/cm 2 . Furthermore, an equation to estimate the photon dose generated from ultraintense laser–solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser–solid interactions. - Highlights: • The laser–driven X-ray ionizing radiation source was analyzed in this study. • An equation to estimate the photon dose based on the laser intensity is given. • The shielding effects of concrete and lead were studied for this new X-ray source. • The aim of this study is to analyze and mitigate the laser–driven X-ray hazard.

  10. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  11. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  12. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  13. Modeling of tube current modulation methods in computed tomography dose calculations for adult and pregnant patients

    International Nuclear Information System (INIS)

    Caracappa, Peter F.; Xu, X. George; Gu, Jianwei

    2011-01-01

    The comparatively high dose and increasing frequency of computed tomography (CT) examinations have spurred the development of techniques for reducing radiation dose to imaging patients. Among these is the application of tube current modulation (TCM), which can be applied either longitudinally along the body or rotationally along the body, or both. Existing computational models for calculating dose from CT examinations do not include TCM techniques. Dose calculations using Monte Carlo methods have been previously prepared for constant-current rotational exposures at various positions along the body and for the principle exposure projections for several sets of computational phantoms, including adult male and female and pregnant patients. Dose calculations from CT scans with TCM are prepared by appropriately weighting the existing dose data. Longitudinal TCM doses can be obtained by weighting the dose at the z-axis scan position by the relative tube current at that position. Rotational TCM doses are weighted using the relative organ doses from the principle projections as a function of the current at the rotational angle. Significant dose reductions of 15% to 25% to fetal tissues are found from simulations of longitudinal TCM schemes to pregnant patients of different gestational ages. Weighting factors for each organ in rotational TCM schemes applied to adult male and female patients have also been found. As the application of TCM techniques becomes more prevalent, the need for including TCM in CT dose estimates will necessarily increase. (author)

  14. Dose conversion coefficients calculated using a series of adult Japanese voxel phantoms against external photon exposure

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2008-10-01

    This report presents a complete set of conversion coefficients of organ doses and effective doses calculated for external photon exposure using five Japanese adult voxel phantoms developed at the Japan Atomic Energy Agency (JAEA). At the JAEA, high-resolution Japanese voxel phantoms have been developed to clarify the variation of organ doses due to the anatomical characteristics of Japanese, and three male phantoms (JM, JM2 and Otoko) and two female phantoms (JF and Onago) have been constructed up to now. The conversion coefficients of organ doses and effective doses for the five voxel phantoms have been calculated for six kinds of idealized irradiation geometries from monoenergetic photons ranging from 0.01 to 10 MeV using EGS4, a Monte Carlo code for the simulation of coupled electron-photon transport. The dose conversion coefficients are given as absorbed dose and effective dose per unit air-kerma free-in-air, and are presented in tables and figures. The calculated dose conversion coefficients are compared with those of voxel phantoms based on the Caucasian and the recommended values in ICRP74 in order to discuss (1) variation of organ dose due to the body size and individual anatomy, such as position and shape of organs, and (2) effect of posture on organ doses. The present report provides valuable data to study the influence of the body characteristics of Japanese upon the organ doses and to discuss developing reference Japanese and Asian phantoms. (author)

  15. Calculation of dose distribution for 252Cf fission neutron source in tissue equivalent phantoms using Monte Carlo method

    International Nuclear Information System (INIS)

    Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong

    2001-01-01

    Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf

  16. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    Science.gov (United States)

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  17. Volume 1: Calculating potential to emit releases and doses for FEMP's and NOCs; FINAL

    International Nuclear Information System (INIS)

    HILL, J.S.

    1999-01-01

    The purpose of this document is to provide Hanford Site facilities a handbook for estimating potential emissions and the subsequent offsite doses. General guidelines and information are provided to assist personnel in estimating emissions for use with U.S. Department of Energy (DOE) facility effluent monitoring plans (FEMPs) and regulatory notices of construction (NOCs), per 40 Code of Federal Regulations (CFR) Part 61, Subpart H, and Washington Administrative Code (WAC) Chapter 246-247 requirements. This document replaces Unit Dose Calculation Methods and Summary of Facility Effluent Monitoring Plan Determinations (WHC-EP-0498). Meteorological data from 1983 through 1996, 13-year data set, was used to develop the unit dose factors provided by this document, with the exception of two meteorological stations. Meteorological stations 23 and 24, located at Gable Mountain and the 100-F Area, only have data from 1986 through 1996, 10-year data set. The scope of this document includes the following: Estimating emissions and resulting effective dose equivalents (EDE) to a facility's nearest offsite receptor (NOR) for use with NOCs under 40 CFR Part 61, Subpart H, requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with NOCs under the WAC Chapter 246-247 requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with FEMPs and FEMP determinations under DOE Orders 5400.1 and 5400.5 requirements

  18. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    Energy Technology Data Exchange (ETDEWEB)

    Morgans, D. L. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Lindberg, S. L. [Intera Inc., Austin, TX (United States)

    2017-09-20

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  19. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Budtz-Joergensen, Esben

    2013-01-01

    BACKGROUND: Immune suppression may be a critical effect associated with exposure to perfluorinated compounds (PFCs), as indicated by recent data on vaccine antibody responses in children. Therefore, this information may be crucial when deciding on exposure limits. METHODS: Results obtained from...... follow-up of a Faroese birth cohort were used. Serum-PFC concentrations were measured at age 5 years, and serum antibody concentrations against tetanus and diphtheria toxoids were obtained at ages 7 years. Benchmark dose results were calculated in terms of serum concentrations for 431 children...

  20. Calculation of the dose distribution in water from {sup 71}Ge K-shell x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang H.; Reece, Warren D.; Poston, John W. Sr. [Department of Nuclear Engineering, Texas A and M University, College Station, TX (United States)

    1997-06-01

    The dose distribution in water from {sup 71}Ge K-shell x-rays (E{sub ave}=9.44 eV) was calculated for various source configurations using both analytic and GS4 Monte Carlo calculations. The point source kernel and the buildup factor are presented. The buildup factor for a point source in water has been found to increase up to about 1.1 as radial distance approaches 1 cm. Comparison between {sup 71}Ge and {sup 90}Sr/Y shows a similarity between their relative dose distribution in water. The dose distribution from a disc source was calculated using the EGS4 code and compared with the results from analytic calculation. Excellent agreement was observed, confirming the validity of analytic calculations. The dose rate at 0.01 cm from a {sup 71}Ge disc source was calculated to be about 1.3x10{sup -5} Gy MBq{sup -1}s{sup -1}. Based on the results from his study, {sup 71}Ge activity of the order of 3.7x10{sup 10} Bq({approx}1 Ci) might be necessary to obtain dose rates typical of {sup 90}Sr/Y ophthalmic applicators. The possibility of using {sup 71}Ge as a source of radioactive stents was also investigated. A {sup 71}Ge stent was modelled as a cylindrical shell source and the dose rates were determined by Monte Carlo calculations. Some calculated results are compared with published values for a {sup 32}P-coated stent. The dose rate at 0.01 cm from a {sup 71}Ge stent has been calculated to be about .5x10{sup -3} Gy MBq{sup -1}h{sup -1}, which is much lower than the reported dose rate at the same distance from a {sup 32}P-coated stent. However, an initial source activity of the order of 3.7x10{sup 7} Bq ({approx}1 mCi) would easily result in a typical target dose ({approx}24 Gy) needed for intravascular stent applications. In conclusion, {sup 71}Ge sources could be used as alternatives to beta sources and, unlike high-energy ({approx}MeV) beta sources, may provide easily predictable dose distributions in heterogeneous media and low dose rates, which might be beneficial for

  1. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  2. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  3. Tensit - a simulation tool for migration, risk and dose calculations

    International Nuclear Information System (INIS)

    Jones, J.; Kautsky, U.; Vahlund, C.F.

    2004-01-01

    During the next years the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations for a future repository of spent nuclear fuel. The repository will be situated in crystalline rock at a depth of approximately 500 m. Novel methods based on systems and landscape ecology are developed to understand the interacting mechanisms and finally, to model radionuclide migration in the biosphere using site specific data. These models and methods are later used as part of the overall safety assessment for the repository where also migration in the near field and in the bedrock is considered. In the present paper, a newly developed probabilistic simulation package, TENSIT, is presented. The package is based on pre-existing codes (Matlab, Simulink and the probabilistic engine-at-risk) and is capable of performing radionuclide migration calculations both for the repository and the biosphere. Hence, a platform independent, transparent (well documented and intuitive on a model scale), thoroughly supported, efficient and user friendly (graphical interface for the modeler) code can be developed at a fairly low cost. Comparisons with other codes used for compartment based biosphere modelling and the PSACOIN Level 1B exercise shows on a good agreement on the application scale. Moreover, by basing the package on continuously maintained, pre-existing codes, potential risks associated with a less spread software may be avoided. In addition to the compartment based models based on transfer factors, TENSIT is also able to handle the more complex ecosystem models (based on flow of carbon and nutrients) either separately or in combination with the compartment models. Within the project, biosphere migration calculations have been performed using TENSIT for a watershed in the Forsmark area (one of the studied sites). In this simulation, data from the ongoing site investigation program has been used to define the based model. (author)

  4. SUBDOSA: a computer program for calculating external doses from accidental atmospheric releases of radionuclides

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Houston, J.R.

    1975-06-01

    A computer program, SUBDOSA, was developed for calculating external γ and β doses to individuals from the accidental release of radionuclides to the atmosphere. Characteristics of SUBDOSA are: doses from both γ and β radiation are calculated as a function of depth in tissue, summed and reported as skin, eye, gonadal, and total body dose; doses are calculated for releases within each of several release time intervals and nuclide inventories and atmospheric dispersion conditions are considered for each time interval; radioactive decay is considered during the release and/or transit using a chain decay scheme with branching to account for transitions to and from isomeric states; the dose from gamma radiation is calculated using a numerical integration technique to account for the finite size of the plume; and the program computes and lists the normalized air concentrations at ground level as a function of distance from the point of release. (auth)

  5. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  6. Effects of secondary interactions on the dose calculation in treatments with Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Monteiro, E.

    2004-01-01

    The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)

  7. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  8. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  9. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  10. Application of Monte Carlo method for dose calculation in thyroid follicle

    International Nuclear Information System (INIS)

    Silva, Frank Sinatra Gomes da

    2008-02-01

    The Monte Carlo method is an important tool to simulate radioactive particles interaction with biologic medium. The principal advantage of the method when compared with deterministic methods is the ability to simulate a complex geometry. Several computational codes use the Monte Carlo method to simulate the particles transport and they have the capacity to simulate energy deposition in models of organs and/or tissues, as well models of cells of human body. Thus, the calculation of the absorbed dose to thyroid's follicles (compound of colloid and follicles' cells) have a fundamental importance to dosimetry, because these cells are radiosensitive due to ionizing radiation exposition, in particular, exposition due to radioisotopes of iodine, because a great amount of radioiodine may be released into the environment in case of a nuclear accidents. In this case, the goal of this work was use the code of particles transport MNCP4C to calculate absorbed doses in models of thyroid's follicles, for Auger electrons, internal conversion electrons and beta particles, by iodine-131 and short-lived iodines (131, 132, 133, 134 e 135), with diameters varying from 30 to 500 μm. The results obtained from simulation with the MCNP4C code shown an average percentage of the 25% of total absorbed dose by colloid to iodine- 131 and 75% to short-lived iodine's. For follicular cells, this percentage was of 13% to iodine-131 and 87% to short-lived iodine's. The contributions from particles with low energies, like Auger and internal conversion electrons should not be neglected, to assessment the absorbed dose in cellular level. Agglomerative hierarchical clustering was used to compare doses obtained by codes MCNP4C, EPOTRAN, EGS4 and by deterministic methods. (author)

  11. SU-F-19A-01: APBI Brachytherapy Treatment Planning: The Impact of Heterogeneous Dose Calculations

    International Nuclear Information System (INIS)

    Loupot, S; Han, T; Salehpour, M; Gifford, K

    2014-01-01

    Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reported in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information

  12. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  13. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  14. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  15. Comparison of CT number calibration techniques for CBCT-based dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Alex [The Royal Marsden NHS Foundation Trust, Joint Department of Physics, Institute of Cancer Research, London (United Kingdom); The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom); McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe [The Royal Marsden NHS Foundation Trust, Joint Department of Physics, Institute of Cancer Research, London (United Kingdom); Murray, Julia; Bhide, Shreerang; Harrington, Kevin [The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom); The Institute of Cancer Research, London (United Kingdom); Poludniowski, Gavin [Karolinska University Hospital, Department of Medical Physics, Stockholm (Sweden); Nutting, Christopher [The Institute of Cancer Research, London (United Kingdom); Newbold, Kate [The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom)

    2015-12-15

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT{sub r}); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS{sub auto}), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS{sub auto} provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT{sub r} (0.5 %) and RS{sub auto} (0.6 %) performing best. For lung cases, WL and RS{sub auto} methods generated dose distributions most similar to the ground truth. The RS{sub auto} density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS{sub auto} methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [German] Ziel dieser Arbeit ist der Vergleich und die Validierung mehrerer CT-Kalibrierungsmethoden zur Dosisberechnung auf der Grundlage von Kegelstrahlcomputertomographie

  16. Development of PC based Monte Carlo simulations for the calculation of scanner-specific normalized organ doses from CT

    International Nuclear Information System (INIS)

    Jansen, J. T. M.; Shrimpton, P. C.; Zankl, M.

    2009-01-01

    This paper discusses the simulation of contemporary computed tomography (CT) scanners using Monte Carlo calculation methods to derive normalized organ doses, which enable hospital physicists to estimate typical organ and effective doses for CT examinations. The hardware used in a small PC-cluster at the Health Protection Agency (HPA) for these calculations is described. Investigations concerning optimization of software, including the radiation transport codes MCNP5 and MCNPX, and the Intel and PGI FORTRAN compilers, are presented in relation to results and calculation speed. Differences in approach for modelling the X-ray source are described and their influences are analysed. Comparisons with previously published calculations at HPA from the early 1990's proved satisfactory for the purposes of quality assurance and are presented in terms of organ dose ratios for whole body exposure and differences in organ location. Influences on normalized effective dose are discussed in relation to choice of cross section library, CT scanner technology (contemporary multi slice versus single slice), definition for effective dose (1990 and 2007 versions) and anthropomorphic phantom (mathematical and voxel). The results illustrate the practical need for the updated scanner-specific dose coefficients presently being calculated at HPA, in order to facilitate improved dosimetry for contemporary CT practice. (authors)

  17. A simple formula for depth dose calculation for Co-60 teletherapy beam dosimetry

    International Nuclear Information System (INIS)

    Tripathi, U.B.; Kelkar, N.Y.

    1979-01-01

    Knowledge of dose at all points of interest in the plane of tumour is essential for treatment planning. A very simple formula for scatter dose calculation along the central axis of a Co-60 beam has been derived. This formula uses primary dose at depth d, scatter air ratio at the depth of maximum ionisation and the effective depth of the volume, irradiating the medium. The method for calculation of percentage depth dose at any point in the principal plane has been explained in detail. The simple form of the formulation will help in improving the treatment plans for treatments of lesions using Co-60 teletherapy machines. (orig.) [de

  18. Calculation of rectal dose surface histograms in the presence of time varying deformations

    International Nuclear Information System (INIS)

    Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.

    1996-01-01

    Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field

  19. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  20. Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung-Kee; Lee, Hyung-Sik; Hur, Won-Joo; Hong, Young-Seoub; Park, Sungkwang; Ahn, Kijung; Cho, Heunglae

    2006-01-01

    Background and purpose: To evaluate the effect of an intravenous contrast agent (CA) on dose calculations and its clinical significance in intensity modulated radiation therapy (IMRT) plans for head and neck cancer. Materials and methods: Fifteen patients with head and neck cancer and involved neck nodes were enrolled. Each patient took two sets of computerized tomography (CT) in the same position before and after intravenous CA injections. Target volumes and organs at risk (OAR) were contoured on the enhanced CT, and then an IMRT plan of nine equiangular beams with a 6 MV X-ray was created. After the fusion of non-enhanced and enhanced CTs, the contours and the IMRT plan created from the enhanced CT were copied and placed to the non-enhanced CT. Doses were calculated again from the non-enhanced CT by the same IMRT plan. The radiation doses calculated from the two sets of CTs were compared with regard to planning target volumes (PTV) and the three OARs, both parotid glands and the spinal cord, by Wilcoxon's signed rank test. Results: The doses (maximum, mean, and the dose of 95% of PTV received (D 95% )) of PTV70 and PTV59.4 calculated from the enhanced CTs were lower than those from the non-enhanced CTs (p < 0.05), but the dose differences were less than 1% compared to the doses calculated from the enhanced CTs. The doses of PTV50.4, parotid glands, and spinal cord were not significantly different between the non-enhanced and enhanced CTs. Conclusions: The difference between the doses calculated from the CTs with and without CA enhancement was tolerably small, therefore using intravenous CA could be recommended for the planning CT of head and neck IMRT

  1. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  2. MILDOS - a computer program for calculating environmental radiation doses from uranium recovery operations. Research report

    International Nuclear Information System (INIS)

    Strenge, D.L.; Bander, T.J.

    1981-04-01

    MILDOS is a Fortran Computer Code which calculates the dose commitments received by individuals and the general population within an 80 kilometer radius of an operating uranium recovery facility. In addition air and ground concentrations are presented for individual locations, as well as for a generalized population grid. Extra-regional population doses resulting from transport of radon and export of agricultural produce are also displayed. The transport of radiological emissions from point and area sources is predicted by using a sector-averaged Gaussian plume dispersion model. Mechanisms such as radioactive decay, plume depletion by deposition, ingrowth of daughter products and resuspension of deposited radionuclides are included in the transport model. Alterations in operation throughout the facility's lifetime can be accounted for in the input stream. The pathways considered are: inhalation; external exposure from ground shine and cloud immersion; and ingestion of vegetables, meat and milk. Dose commitments are calculated primarily on the basis of the recommendations of the International Commission on Radiological Protection (ICRP). Predictive 40 CFR 190 and 10 CFR 20 compliances are also performed. This computer code is designed primarily for uranium milling facilities and should not be used for operations with different radionuclides or processes

  3. Effects of microdistribution of tritium on dose calculations

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Kwok, C.S.; Nunes, J.

    1992-06-01

    Literature and data pertaining to the microdosimetry, relative biological effectiveness, subcellular distribution, organ uptake and retention for organically-bound tritium are reviewed. The quality factor for the electron degradation spectrum associated with the radiation field of tritium β-rays in water was calculated. The value was found to be 1.9 ± .2. A related experimental measure of quality with value 1.6 ± .2 and an estimate of 1.3 based on simulation studies are cited. The average value for relative biological effectiveness for a data base of 55 values was found to be 1.8 ± .1. The influence of reference radiation, in vivo versus in vitro methodologies, and the use of tritiated thymidine or tritiated water are discussed. A methodology designed to estimate the effects of subcellular distribution is described and a suitable parameter, the localization factor defined. Estimates of this factor are made for both nuclear-bound and organically-bound tritium. Values of 4 and 1.5 respectively are suggested. Organ uptake studies in rodents following long-term feeding of organically-bound tritium are compared. The tritium is found to be unequally distributed among the tissues studied. The highest specific activity occurs in liver, with the lowest in femur. The specific activity of tritium in tissue-free water slightly exceeds that of organically-bound tritium in liver. Retention studies reveal a three-component exponential decrease of organically-bound tritium. No discernible trends of the periods of the three components with specific organs could be established. Average values of the periods are 1.2 ± .2, 10 ± 2, and 65 ± 8 days. It is concluded that specific enhancement of radiobiological effectiveness due to incorporation of tritium in DNA does probably not occur. The radiotoxicological impact of organically-bound tritium could warrant the use of a radiation weighing factor between 2 and 3

  4. Calculation of cobalt-60 primary and scatter dose in layered heterogeneous phantoms using primary and scatter dose spread arrays

    International Nuclear Information System (INIS)

    Iwasaki, Akira

    1993-01-01

    A method of making 60 Co γ-ray primary and scatter dose spread arrays in water is described. The primary dose spread array is made using forward and backward primary dose spread equations (h 1 and h 2 ), where both equations contain a laterally spread primary dose equation (G), made from measured dose data in a cork phantom. The scatter dose spread array is made using differential scatter-maximum ratio (dSMR) and differential backscatter factor (dBSF) equations (k 1 and k 2 ), where both equations are made to be continuous on the boundary. Primary and scatter dose calculations are performed along the beam axis in layered cork heterogeneous phantoms. It is found, even for 60 Co γ-rays, that when a small tumor in the lung is irradiated with a field that just surrounds the tumor, the beam entrance surface and lateral side of the tumor may obtain no therapeutic dose, because of loss of longitudinal and lateral electronic equilibrium, and when a large tumor in the lung is irradiated with a field just surrounding the tumor, the lateral side of the tumor may obtain no therapeutic dose due to loss of lateral electronic equilibrium. (author)

  5. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 4

    International Nuclear Information System (INIS)

    Williams, G.; Zankl, M.; Drexler, G.

    1984-12-01

    This report considers the contribution from scattered radiation to the dose to organs and tissues which lie outside the useful therapy beams. The results presented are the product of Monte Carlo studies used to determine the tissue doses due to internal scattering of the useful beams only. General cases are calculated in which central target volumes in the trunk are treated with 10 x 14 cm 2 and 14 x 14 cm 2 fields from 200 kV, Co-60, 8 MV and 25 MV therapy equipment. Target volumes in the neck are considered to be treated with 5 x 5 cm 2 fields. Different treatment plans are calculated including rotational therapy. Also two specific cases are more fully analysed, namely for Ankylosing Spondylitis and central abdomen malignant disease in the region of the head of the pancreas. The calculated organ doses are presented in tables as a percentage of the target volume dose. (orig.)

  6. MO-F-CAMPUS-I-01: A System for Automatically Calculating Organ and Effective Dose for Fluoroscopically-Guided Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Rana, V; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to read data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.

  7. Monte-Carlo calculation of irradiation dose content beyond shielding of high-energy accelerators

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Frolov, V.V.

    1975-01-01

    The MARS programme, designed for calculating the three-dimensional internuclear cascade in defence of the accelerators by the Monte Carlo method, is described. The methods used to reduce the dispersion and the system of semi-empirical formulas made it possible to exceed the parameters of the existing programmes. By means of a synthesis of the results, registered by MARS and HAMLET programmes, the dosage fields for homogeneous and heterogeneous defence were evaluated. The results of the calculated absorbed and equivalent dose behind the barrier, irradiated by a proton beam, having the energy of Esub(o)=1/1000 GeV are exposed. The dependence of the high- and low-energy neutron, proton, pion, kaon, muonium and γ-quantum dosage on the initial energy and thickness, on the material and the composition of the defence is investigated

  8. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  9. Independent dose calculation in IMRT for the Tps Iplan using the Clarkson modified integral

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Garrigo, E.; Venencia, D.

    2014-08-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments require a quality assurance (Q A) specific patient before delivery. These controls include the experimental verification in dose phantom of the total plan as well as dose distributions. The use of independent dose calculation (IDC) is used in 3D-Crt treatments; however its application in IMRT requires the implementation of an algorithm that allows considering a non-uniform intensity beam. The purpose of this work was to develop IDC software in IMRT with MLC using the algorithm proposed by Kung (Kung et al. 2000). The software was done using Matlab programming. The Clarkson modified integral was implemented on each flowing, applying concentric rings for the dose determination. From the integral of each field was calculated the dose anywhere. One time finished a planning; all data are exported to a phantom where a Q A plan is generated. On this is calculated the half dose in a representative volume of the ionization chamber and the dose at the center of it. Until now 230 IMRT planning were analyzed carried out ??in the treatment planning system (Tps) Iplan. For each one of them Q A plan was generated, were calculated and compared calculated dose with the Tps, IDC system and measurement with ionization chamber. The average difference between measured and calculated dose with the IDC system was 0.4% ± 2.2% [-6.8%, 6.4%]. The difference between the measured and the calculated doses by the pencil-beam algorithm (Pb) of Tps was 2.6% ± 1.41% [-2.0%, 5.6%] and with the Monte Carlo algorithm was 0.4% ± 1.5% [-4.9%, 3.7%]. The differences of the carried out software are comparable to the obtained with the ionization chamber and Tps in Monte Carlo mode. (author)

  10. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  11. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  12. Calculations radiobiological using the quadratic lineal model in the use of the medium dose rate absorbed in brachytherapy. Pt. 3

    International Nuclear Information System (INIS)

    2002-01-01

    Calculations with the quadratic lineal model for medium rate using the equation dose-effect. Several calculations for system of low dose rate brachytherapy plus telethe