WorldWideScience

Sample records for calcium-sensing receptor structural

  1. Structural mechanism of ligand activation in human calcium-sensing receptor

    Science.gov (United States)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P; Brennan, Sarah C; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X; Cao, Baohua; Chang, Donald D; Quick, Matthias; Conigrave, Arthur D; Colecraft, Henry M; McDonald, Patricia; Fan, Qing R

    2016-01-01

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 PMID:27434672

  2. Extracellular calcium-sensing receptor: structural and functional features and association with diseases

    Directory of Open Access Journals (Sweden)

    O.M. Hauache

    2001-05-01

    Full Text Available The recently cloned extracellular calcium-sensing receptor (CaR is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs or antagonizing it (calcilytic drugs, and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.

  3. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...... FHH, while in homozygous patients as well as in compound heterozygous or dominant negative heterozygous patients, it may result in neonatal severe hyperparathyroidism (NSHPT). Parathyroid surgery is not indicated in FHH and does not lower plasma calcium unless total parathyroidectomy is performed, in...

  4. New concepts in calcium-sensing receptor pharmacology and signalling

    OpenAIRE

    Ward, Donald T.; Riccardi, Daniela

    2012-01-01

    The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca2+o) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca2+ reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretio...

  5. Calcium-sensing receptor activation depresses synaptic transmission

    OpenAIRE

    Phillips, Cecilia G.; Harnett, Mark T.; Chen, Wenyan; Smith, Stephen M.

    2008-01-01

    At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca]o) and thus may impair neurotransmission. Increases in [Ca]o activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits non-selective cation channels (NSCC) at the maj...

  6. Biased agonism of the calcium-sensing receptor

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Hvidtfeldt, Maja; Bräuner-Osborne, Hans

    2012-01-01

    calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated...

  7. The Calcium-Sensing Receptor in the Breast

    OpenAIRE

    VanHouten, Joshua N.; Wysolmerski, John J

    2013-01-01

    Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates PTHrP levels in milk and in the circulation, and increases calcium transport into milk. In contrast, in breast cancer cells the CaSR upregulates PTHrP production. A switch in G-protein usage underlies the opposing effects of the CaSR on PTHrP expression in norm...

  8. Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, Anders A.; Krogsgaard-Larsen, P

    1999-01-01

    7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt) has previously been shown to be a selective non-competitive antagonist at the metabotropic glutamate (mGlu) receptor subtype 1. In this study we have tested the effect of CPCCOEt on mGlu1b, the calcium sensing receptor (...

  9. Association of Calcium-Sensing Receptor (CASR rs 1801725 with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Fateme Rostami

    2012-07-01

    Full Text Available Background: Calcium induces apoptosis in intestinal epithelial cells and subsequently prevents colorectal cancer through ion calcium receptor. Calcium-sensing receptor mutation reduces the expression of this receptor, and subsequently in reduces calcium transportation. Many studies have shown that Calcium-sensing receptor gene polymorphism may increase the risk of colorectal cancer. The purpose of this study is to assess the prevalence of calcium-sensing receptor polymorphisms (rs 1801725 in Iran society and to examine the role of this polymorphism in the increased risk of colorectal cancer (CRC.Materials and Methods: The research was a case-control study. 105 patients with colorectal cancer and 105 controls were randomly studied using polymerase chain reaction and restriction fragment length polymorphism. χ2 test and software 16- SPSS were used for statistical analysis.Results: In patient samples, the frequency of the genotypes TT, GT, GG in gene CASR rs 1801725 was respectively 64.8, 32.4, and 2.9 and the frequency of this polymorphism in control samples was respectively 51.2, 45.7, and 2.9. Frequency of allele G in patient samples was 0/48 and frequency of allele T was 0.25. In addition, Frequency of allele G in control samples was 0.74 and Frequency of allele T was calculated 0.19.Conclusion: The results show that calcium-sensing receptor variant (1801725 rs is not associated with increased risk of colorectal cancer.

  10. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    OpenAIRE

    Yutaka Maruyama; Reiko Yasuda; Motonaka Kuroda; Yuzuru Eto

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi su...

  11. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist.

    Science.gov (United States)

    Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J

    2016-05-01

    Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics. PMID:27386547

  12. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone

    OpenAIRE

    Kos, Claudine H; Karaplis, Andrew C.; Peng, Ji-Bin; Hediger, Matthias A; Goltzman, David; Mohammad, Khalid S.; Guise, Theresa A.; Pollak, Martin R.

    2003-01-01

    The extracellular calcium-sensing receptor (CaR; alternate gene names, CaR or Casr) is a membrane-spanning G protein–coupled receptor. CaR is highly expressed in the parathyroid gland, and is activated by extracellular calcium (Ca2+o). Mice homozygous for null mutations in the CaR gene (CaR–/–) die shortly after birth because of the effects of severe hyperparathyroidism and hypercalcemia. A wide variety of functions have been attributed to CaR. However, the lethal CaR-deficient phenotype has ...

  13. Involvement of the Calcium-sensing Receptor in Human Taste Perception

    OpenAIRE

    Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; MARUYAMA, Yutaka; Miyamura, Naohiro; Eto, Yuzuru

    2009-01-01

    By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-prot...

  14. Diverse roles of extracellular calcium-sensing receptor in the central nervous system

    DEFF Research Database (Denmark)

    Bandyopadhyay, Sanghamitra; Tfelt-Hansen, Jacob; Chattopadhyay, Naibedya

    2010-01-01

    The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its...... cell surface expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. Ca...

  15. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora; Quandt, Dagmar; Meusch, Undine; Rothe, Kathrin; Schubert, Kristin; Schöneberg, Torsten; Schaefer, Michael; Krügel, Ute; Smajilovic, Sanela; Bräuner-Osborne, Hans; Baerwald, Christoph; Wagner, Ulf

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration...... this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  16. The calcium-sensing receptor and calcimimetics in blood pressure modulation

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Yano, Shozo; Jabbari, Reza;

    2011-01-01

    Calcium is a crucial second messenger in the cardiovascular system. However, calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular concentration (Ca(2+)(o)), the calcium-sensing receptor (CaR). The most prominent physiological function...... vascular tone. This review will summarize the current knowledge on the possible functions of the CaR and calcimimetics on blood pressure regulation....... associated with hyperparathyroidism. Although a plethora of studies demonstrated the CaR in heart and blood vessels, exact roles of the receptor in the cardiovascular system still remain to be elucidated. However, several studies point toward a possibility that the CaR might be involved in the regulation of...

  17. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  18. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  19. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    International Nuclear Information System (INIS)

    Research highlights: → Calcium-sensing receptor (CaR) activation stimulates TRP channels. → CaR promoted transient receptor potential C3 (TRPC3) expression. → Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. → TRPC channels activation induced by CaR activator sustained the increased [Ca2+]i to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca2+ overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca2+ overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca2+]i levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca2+ stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca2+]i in the absence of [Ca2+]o and the subsequent restoration of [Ca2+]o sustained the increased [Ca2+]i for a few minutes, whereas, the persisting elevation of [Ca2+]i was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl3) or spermine also resulted in the same effect and the duration of [Ca2+]i increase was also shortened in the absence of [Ca2+]o. In adult and neonatal rat cardiomyocytes, GdCl3 increased the expression of TRPC3 mRNA and protein, which were reversed by SKF96365 but not by inhibitors of the L-type channels and the Na+/Ca2+ exchangers

  20. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  1. A Novel Role for the Calcium Sensing Receptor in Rat Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Shiyun Dong

    2015-01-01

    Full Text Available Background: Diabetic encephalopathy is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations ([Ca2+]i at its onset. The calcium sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic encephalopathy remains unclear. Methods: In this study, diabetic rats were modeled by STZ (50 mg/kg. At the end of 4, 8 and 12 weeks, the CaSR expression in hippocampus was analyzed by Western blot. In neonatal rat hippocampal neurons, the [Ca2+]i was detected by laser scanning confocal microscopy, the production of reactive oxygen species (ROS in mitochondria, the level of NO and the mitochondrial transmembrane potential were measured by MitoSOX, DAF-FM and JC-1, respectively. Results: Our results showed in hippocampal neurons treated with high glucose, CaSR regulated [Ca2+]i through the PLC-IP3 pathway. CaSR expression was decreased and was involved in the changes in [Ca2+]i. Mitochondrial membrane potential, NO release and expression of p-eNOS decreased, while the production of ROS in mitochondria increased. Conclusion: Down-regulation of CaSR expression was accompanied by neuronal injury, calcium disturbance, increased ROS production and decreased release of NO. Up-regulation of CaSR expression attenuated these changes through a positive compensatory protective mechanism to inhibit and delay diabetic encephalopathy in rats.

  2. Calcium-sensing receptor: A new target for therapy of diarrhea.

    Science.gov (United States)

    Cheng, Sam Xianjun

    2016-03-01

    Management of acute diarrhea remains a global challenge, particularly in resource-limiting countries. Oral rehydration solution (ORS), a passive rehydrating therapy developed approximately 40 years ago, remains the mainstay treatment. Although ORS is effective for hydration, since it does not inhibit enterotoxin-mediated excessive secretion, reduced absorption and compromised barrier function - the primary mechanisms of diarrhea, ORS does not offer a rapid relief of diarrhea symptom. There are a few alternative therapies available, yet the use of these drugs is limited by their expense, lack of availability and/or safety concerns. Novel anti-diarrheal therapeutic approaches, particularly those simple affordable therapies, are needed. This article explores intestinal calcium-sensing receptor (CaSR), a newly uncovered target for therapy of diarrhea. Unlike others, targeting this host antidiarrheal receptor system appears "all-inclusive": it is anti-secretory, pro-absorptive, anti-motility, and anti-inflammatory. Thus, activating CaSR reverses changes of both secretory and inflammatory diarrheas. Considering its unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators, it is possible that through targeting of CaSR with a combination of specific nutrients, novel oral rehydrating solutions that are inexpensive and practical to use in all countries may be developed. PMID:26973410

  3. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  4. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System

    Science.gov (United States)

    Mateo-Lozano, Silvia; García, Marta; Rodríguez-Hernández, Carlos J.; de Torres, Carmen

    2016-01-01

    During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators.

  5. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis

    OpenAIRE

    Wang, Wen-Hua; Yi, Xiao-Qian; Han, Ai-Dong; Liu, Ting-Wu; Chen, Juan; Wu, Fei-Hua; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-01-01

    The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca2+ (Ca2+ i) increases in response to a high extracellular calcium (Ca2+ o) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H2O2) and nitr...

  6. Calcium Sensing Receptor Promotes Cardiac Fibroblast Proliferation and Extracellular Matrix Secretion

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    2014-02-01

    Full Text Available Aims: Calcium-sensing receptor (CaR acts as a G protein coupled receptor that mediates the increase of the intracellular Ca2+ concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO. Methods and Results: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca2+]i. Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9. Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. Conclusions: Our results are the first report that CaR plays an important role in Ca2+ signaling involved in cardiac fibrosis through the phospholipase C- inositol 3

  7. Clinical Expression of Calcium Sensing Receptor Polymorphism (A986S) in Normocalcemic and Asymptomatic Hyperparathyroidism.

    Science.gov (United States)

    Díaz-Soto, G; Romero, E; Castrillón, J L P; Jauregui, O I; de Luis Román, D

    2016-03-01

    Normocalcemic and asymptomatic hyperparathyroidism diagnosis are becoming more common. However, their pathophysiology is incompletely known. The aim of the present study was to evaluate the clinical effect of calcium-sensing receptor polymorphism (A986S) in normocalcemic and asymtomatic HPT. Prospective study conducted with 61 consecutive normocalcemic and asymptomatic HPT patients was followed up during a minimum period of 1 year. Secondary causes of hyperparathyroidism were ruled out. Calcium and phosphorus metabolism parameters were evaluated in at least 2 determinations during follow-up to classify as normocalcemic or asymptomatic hyperparathyroidism. Bone mineral density and A986S polymorphism genotype were also analyzed. Thiry-eight patients (62.3%) had the genotype A986A, and 23 (36.7%) patients had A986S (20 patients, 32.8%) or S986S (3 patients, 4.9%). Age, sex, and genotype distributions were comparable in both normocalcemic and asymptomatic hyperparathyroidism. In normocalcemic patients, S allele genotype was associated to statistically significant higher level of intact PTH: 92.0 (SD 18.5) vs. 110.6 (SD 24.4) pg/ml, p<0.05; and remained significant after adjustment by multiple linear regression. In asymptomatic hyperparathyroidism, A986A genotype resulted in a statistically significant higher level of intact PTH, alkaline phosphatase and procollagen amino-terminal propeptide; but only serum calcium remained as an independent predictor of serum intact PTH levels after a multiple linear regression. Bone mineral densitometry between genotypes did not show statistically significant differences. A986S polymorphism of CaSR is an independent predictor of PTH level in normocalcemic hyperparathyroidism patients, but not in asymptomatic hyperparathyroidism. More studies are needed to evaluate the effect of other polymorphisms in normocalcemic and asymptomatic hyperparathyroidism. PMID:26332755

  8. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension.

    Science.gov (United States)

    Tang, Haiyang; Yamamura, Aya; Yamamura, Hisao; Song, Shanshan; Fraidenburg, Dustin R; Chen, Jiwang; Gu, Yali; Pohl, Nicole M; Zhou, Tong; Jiménez-Pérez, Laura; Ayon, Ramon J; Desai, Ankit A; Goltzman, David; Rischard, Franz; Khalpey, Zain; Black, Stephan M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X J

    2016-05-01

    An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension. PMID:26968768

  9. Polymorphisms in the calcium-sensing receptor gene are associated with clinical outcome of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Laia Masvidal

    Full Text Available BACKGROUND: Neuroblastic tumors include the neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Clinical behavior of these developmental malignancies varies from regression to aggressive growth with metastatic dissemination. Several clinical, histological, genetic, and biological features are associated with this diversity of clinical presentations. The calcium-sensing receptor (CaSR is a G-protein coupled receptor with a key role in calcium homeostasis. We have previously reported that it is expressed in benign, differentiated neuroblastic tumors, but silenced by genetic and epigenetic events in unfavorable neuroblastomas. We have now analyzed three functionally relevant polymorphisms clustered at the signal transduction region of the CaSR (rs1801725, rs1042636 and rs1801726 to assess if genetic variants producing a less active receptor are associated with more aggressive disease course. METHODS: Polymorphisms were analyzed in DNA samples from 65 patients using specific Taqman Genotyping Assays. RESULTS: Mildly inactivating variant rs1801725 was associated with clinical stage 4 (P = 0.002 and the histological subgroup of undifferentiated neuroblastomas (P = 0.046. Patients harboring this polymorphism had significantly lower overall (P = 0.022 and event-free survival (P = 0.01 rates than those who were homozygous for the most common allele among Caucasians. However, this single locus genotype was not independently associated with outcome in multivariate analyses. Conversely, the tri-locus haplotype TAC was independently associated with an increased risk of death in the entire cohort (Hazard Ratio = 2.45; 95% Confidence Interval [1.14-5.29]; P = 0.022 and also in patients diagnosed with neuroblastomas (Hazard Ratio = 2.74; 95% Confidence Interval [1.20-6.25]; P = 0.016. CONCLUSIONS: The TAC haplotype includes the moderately inactivating variant rs1801725 and absence of the gain-of-function rs1042636

  10. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease

    Science.gov (United States)

    Chiarini, Anna; Armato, Ubaldo; Liu, Daisong; Dal Prà, Ilaria

    2016-01-01

    In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in

  11. CALCIUM-SENSING RECEPTORS OF HUMAN NEURAL CELLS PLAY CRUCIAL ROLES IN ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Anna eChiarini

    2016-04-01

    Full Text Available In aged subjects, late-onset Alzheimer’s disease (LOAD starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation neurotoxic of amyloid-β42 oligomers (Aβ42-os. In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs activating a set of intracellular signalling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-osCaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression towards upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-osCaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics, like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-osCaSR signalling

  12. The Calcium-Sensing Receptor Is Necessary for the Rapid Development of Hypercalcemia in Human Lung Squamous Cell Carcinoma

    OpenAIRE

    Gwendolen Lorch; Serge Viatchenko-Karpinski; Hsiang-Ting Ho; Dirksen, Wessel P.; Toribio, Ramiro E.; John Foley; Sandor Györke; Rosol, Thomas J.

    2011-01-01

    The calcium-sensing receptor (CaR) is responsible for the regulation of extracellular calcium (Ca2+o) homeostasis. CaR activation has been shown to increase proliferation in several cancer cell lines; however, its presence or function has never been documented in lung cancer. We report that Ca2+o-activated CaR results in MAPK-mediated stimulation of parathyroid hormone-related protein (PTHrP) production in human lung squamous cell carcinoma (SCC) lines and humoral hypercalcemia of malignancy ...

  13. A role for the extracellular calcium-sensing receptor in cell-cell communication in pancreatic islets of langerhans

    OpenAIRE

    Kitsou-Mylona, Isidora; Burns, Christopher; Squires, Paul; Persaud, Shanta; Jones, Peter

    2008-01-01

    Background: The extracellular calcium-sensing receptor (CaR) is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. We have demonstrated previously that pharmacological activation of the CaR stimulates insulin secretion from islet β-cells and insulin-secreting MIN6 cells. Methods: In the present study we have investigated the effects of CaR activation on MIN6 cell proliferation and have used shRNA-mediated ...

  14. Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6-23 cells

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Worm, Jesper; Jacobsen, Stine Engesgaard;

    2012-01-01

    The calcium-sensing receptor (CaSR)-specific allosteric modulator cinacalcet has revolutionized the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. However, its application is limited to patients with end-stage renal disease because of hypocalcemic side effects...... CaSR is poorly understood, the objective of the present study was to investigate biased signaling of CaSR by using rat medullary thyroid carcinoma 6-23 cells as a model of thyroid parafollicular C-cells. By doing concentration-response experiments we focused on the ability of two well known Ca...

  15. A novel mutation in the calcium-sensing receptor gene in an Irish pedigree showing familial hypocalciuric hypercalcemia: a case report.

    LENUS (Irish Health Repository)

    Elamin, Wael F

    2010-01-01

    Familial hypocalciuric hypercalcemia is a rare autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia due to mutations of the calcium-sensing receptor gene. Disorders of calcium metabolism are very common in the elderly, and they can coexist with familial hypocalciuric hypercalcemia in affected families.

  16. In vivo imaging of human breast cancer mouse model with high level expression of calcium sensing receptor at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Baio, Gabriella; Tagliafico, Alberto; Neumaier, Carlo Emanuele [National Cancer Institute, Department of Diagnostic Imaging, IST, Genoa (Italy); Fabbi, Marina; Carbotti, Grazia [National Cancer Institute, Unit of Immunological Therapy, IST, Genoa (Italy); Emionite, Laura; Cilli, Michele [National Cancer Institute, Animal Facility, IST, Genoa (Italy); Salvi, Sandra; Truini, Mauro [National Cancer Institute, Department of Pathology, IST, Genoa (Italy); Ghedin, Piero; Prato, Sabina [General Electric, GE, Milano (Italy)

    2012-03-15

    To demonstrate that manganese can visualise calcium sensing receptor (CaSR)-expressing cells in a human breast cancer murine model, as assessed by clinical 3T magnetic resonance (MR). Human MDA-MB-231-Luc or MCF7-Luc breast cancer cells were orthotopically grown in NOD/SCID mice to a minimum mass of 5 mm. Mice were evaluated on T1-weighted sequences before and after intravenous injection of MnCl{sub 2}. To block the CaSR-activated Ca{sup 2+} channels, verapamil was injected at the tumour site 5 min before Mn{sup 2+} administration. CaSR expression in vivo was studied by immunohistochemistry. Contrast enhancement was observed at the tumour periphery 10 min after Mn{sup 2+} administration, and further increased up to 40 min. In verapamil-treated mice, no contrast enhancement was observed. CaSR was strongly expressed at the tumour periphery. Manganese enhanced magnetic resonance imaging can visualise CaSR-expressing breast cancer cells in vivo, opening up possibilities for a new MR contrast agent. (orig.)

  17. Enhanced expression of the calcium-sensing receptor in reactive astrocytes following ischemic injury in vivo and in vitro.

    Science.gov (United States)

    Pak, Ha-Jin; Riew, Tae-Ryong; Shin, Yoo-Jin; Choi, Jeong-Heon; Jin, Xuyan; Lee, Mun-Yong

    2016-07-15

    We recently demonstrated that the G protein-coupled calcium-sensing receptor (CaSR) is associated with the pathogenesis of ischemic stroke and may be involved in vascular remodeling and astrogliosis. To further substantiate the involvement of CaSR in the astroglial reaction common to ischemic insults, we investigated the temporal and cell type-specific expression patterns of CaSR in the hippocampus after transient forebrain ischemia. CaSR was constitutively expressed in neurons of the pyramidal and granule cell layers, whereas increased CaSR immunoreactivity was observed in reactive astrocytes, but not in activated microglia or macrophages, in the CA1 region of the post-ischemic hippocampus. Astroglial induction of CaSR expression was evident on days 3-7 after reperfusion and appeared to increase progressively through day 28, at which time CaSR expression was prominent in astrocytes with a highly reactive hypertrophic phenotype and elevated levels of glial fibrillary acidic protein. This expression pattern was supported by results of immunoblot analyses. Furthermore, CaSR expression was upregulated in rat primary cortical astrocytes exposed to oxygen-glucose deprivation, which undergo reactive gliosis-like changes. Thus, our results demonstrate that selective and long-lasting astroglial induction of CaSR expression is a common characteristic of ischemic injury and suggest its involvement in the ischemia-induced astroglial reaction. PMID:27288786

  18. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway.

    Science.gov (United States)

    Tang, Bo; Chow, Jimmy Y C; Dong, Tobias Xiao; Yang, Shi-Ming; Lu, De-Sheng; Carethers, John M; Dong, Hui

    2016-07-10

    The calcium sensing receptor (CaSR) is functionally expressed in normal human pancreases, but its pathological role in pancreatic tumorigenesis is currently unknown. We sought to investigate the role of CaSR in pancreatic cancer (PC) and the underlying molecular mechanisms. We revealed that the expression of CaSR was consistently downregulated in the primary cancer tissues from PC patients, which was correlated with tumor size, differentiation and poor survival of the patients. CaSR activation markedly suppressed pancreatic tumorigenesis in vitro and in vivo likely through the Ca(2+) entry mode of Na(+)/Ca(2+) exchanger 1 (NCX1) to induce Ca(2+) entry into PC cells. Moreover, NCX1-mediated Ca(2+) entry resulted in Ca(2+)-dependent inhibition of β-catenin signaling in PC cells, eventually leading to the inhibition of pancreatic tumorigenesis. Collectively, we demonstrate for the first time that CaSR exerts a suppressive function in pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Targeting this specific signaling pathway could be a potential therapeutic strategy for PC. PMID:27108064

  19. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    International Nuclear Information System (INIS)

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  20. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

    Directory of Open Access Journals (Sweden)

    Lu Fang-hao

    2010-06-01

    Full Text Available Abstract Communication between the SR (sarcoplasmic reticulum, SR and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM. Although it has been demonstrated that CaR (calcium sensing receptor activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re, the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  1. Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells

    International Nuclear Information System (INIS)

    Extracellular Ca2+ concentration ([Ca2+]o) regulates the functions of many cell types through a G protein-coupled [Ca2+]o-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca2+]o, neomycin, and gadolinium) failed to increase intracellular Ca2+ concentration ([Ca2+]i), the CaR agonist spermine stimulated an increase in [Ca2+]i that was diminished in buffer without Ca2+ and was abolished after depletion of an intracellular Ca2+ pool with thapsigargin or after blocking IP3- and ryanodine receptor-mediated Ca2+ release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca2+]i and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca2+]i, primarily due to release of IP3- and ryanodine-sensitive intracellular Ca2+ stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC

  2. Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells*

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to s...

  3. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and Filamin A

    OpenAIRE

    Tu, Chia-Ling; Chang, Wenhan; Bikle, Daniel D.

    2011-01-01

    Extracellular Ca2+ (Ca2+o) acting through the calcium-sensing receptor (CaR) induces E-cadherin mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that the CaR regulates cell-cell adhesion through the Fyn/Src tyrosine kinases. Here we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small inter...

  4. Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Aditya J Desai

    Full Text Available The Calcium Sensing Receptor (CaSR plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs, specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has

  5. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR gene.

    Directory of Open Access Journals (Sweden)

    Karen Kapur

    2010-07-01

    Full Text Available Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR gene on 3q13. The top hit with a p-value of 6.3 x 10(-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21, a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4. This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.

  6. Review article: loss of the calcium-sensing receptor in colonic epithelium is a key event in the pathogenesis of colon cancer.

    LENUS (Irish Health Repository)

    Rogers, Ailín C

    2012-03-01

    The calcium-sensing receptor (CaSR) is expressed abundantly in normal colonic epithelium and lost in colon cancer, but its exact role on a molecular level and within the carcinogenesis pathway is yet to be described. Epidemiologic studies show that inadequate dietary calcium predisposes to colon cancer; this may be due to the ability of calcium to bind and upregulate the CaSR. Loss of CaSR expression does not seem to be an early event in carcinogenesis; indeed it is associated with late stage, poorly differentiated, chemo-resistant tumors. Induction of CaSR expression in neoplastic colonocytes arrests tumor progression and deems tumors more sensitive to chemotherapy; hence CaSR may be an important target in colon cancer treatment. The CaSR has a complex role in colon cancer; however, more investigation is required on a molecular level to clarify its exact function in carcinogenesis. This review describes the mechanisms by which the CaSR is currently implicated in colon cancer and identifies areas where further study is needed.

  7. A genetic polymorphism (rs17251221 in the calcium-sensing receptor gene (CASR is associated with stone multiplicity in calcium nephrolithiasis.

    Directory of Open Access Journals (Sweden)

    Yii-Her Chou

    Full Text Available Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221 in the calcium-sensing receptor gene (CASR is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221 and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test: P = 0.008; odds ratio  =  4.79; 95% confidence interval, 1.44-15.92; Yates' correction for chi-square test: P = 0.013. In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis.

  8. The Intron 4 Polymorphism in the Calcium-Sensing Receptor Gene in Diabetes Mellitus and its Chronic Complications, Diabetic Nephropathy and Non-Diabetic Renal Disease

    Directory of Open Access Journals (Sweden)

    Viera Železníková

    2014-10-01

    Full Text Available Background/Aims: Calcium-Sensing Receptor (CaSR significantly affects calcium-phosphate metabolism in kidneys, and it is implicated in the pathogenesis of diabetes mellitus (DM due to its expression in pancreatic F-cells. The role of CaSR as one of the players in pathogenesis of chronic kidney disease (CKD has been speculated. Methods: 158 Type 2 diabetic patients divided into three groups according to occurrence and type of kidney complications, 66 nondiabetic patients CKD, and 93 healthy subjects were enrolled into the study to analyze the role of two CaSR polymorphisms (in the codon 990 and in the intron 4 in ethiopathogenesis of DM and CKD. The Type 2 diabetic groups consisted of 48 patients without any kidney abnormalities, 58 patients with diabetic nephropathy (DN, and 52 patients with nondiabetic renal disease (NDRD. The distribution of genotype and allele frequencies was studied using PCR with the TaqMan Discrimination Assay or followed by the Restriction Fragment Length Polymorphism method, respectively. Results: We have found that the intron 4 polymorphism is a risk factor for the development of DM and CKD, except DN, while the codon 990 does not show any disease association. Conclusion: We conclude that CaSR is a general factor in pancreas and kidney pathologies. i 2014 S. Karger AG, Basel

  9. Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study.

    Directory of Open Access Journals (Sweden)

    Giuseppe Procino

    Full Text Available One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2 and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4 expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK. Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced

  10. Calcium-Sensing Receptor in Human Peripheral Blood T Lymphocytes Is Involved in the AMI Onset and Progression through the NF-κB Signaling Pathway.

    Science.gov (United States)

    Zeng, Jing-Ya; Du, Jing-Jing; Pan, Ying; Wu, Jian; Bi, Hai-Liang; Cui, Bao-Hong; Zhai, Tai-Yu; Sun, Yong; Sun, Yi-Hua

    2016-01-01

    Acute myocardial infarction (AMI) is a condition triggered by an inflammatory process that seriously affects human health. Calcium-sensing receptor (CaSR) in T lymphocytes is involved during the inflammation reaction. However, the relationship between them is not very clear. In this study, we collected human peripheral blood T lymphocytes from patients with AMI and in different stages of percutaneous coronary intervention (PCI) (at the onset of AMI, the first day after PCI (PCI-1), PCI-3, and PCI-5) to study the CaSR and NF-κB pathway protein expression, cytokine release and T cell apoptosis. The results showed that the expressions of CaSR, P-p65, Caspase-12, and the secretions of Th-1 and Th-2 type cytokines were increased at the onset of AMI, especially on the PCI-1. Meanwhile, the apoptosis rate of CD(3+), CD(4+) and CD(8+) T lymphocytes also increased. However, from PCI-3, all the indicators began to decline. In addition, we also found that positive CaSR small interfering RNA (siRNA) transfection in T lymphocytes and NF-κB pathway blocker Bay-11-7082 reversed the increased expressions of CaSR, P-p65, Caspase-12, reduced the secretions of Th-1 and Th-2 type cytokines, and decreased T lymphocytes apoptosis rate not only in the AMI patients but also in the normal controls. All of these results indicated that CaSR in the human peripheral blood T lymphocytes were involved in the AMI onset and progression, which probably was related to the NF-κB pathway. Our study demonstrated the relationship between AMI and CaSR, and will provide new effective prevention theory and new targets for drug treatment. PMID:27563892

  11. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Science.gov (United States)

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  12. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries.

    Science.gov (United States)

    Peng, Xue; Li, Hong-Xia; Shao, Hong-Jiang; Li, Guang-Wei; Sun, Jian; Xi, Yu-Hui; Li, Hong-Zhu; Wang, Xin-Yan; Wang, Li-Na; Bai, Shu-Zhi; Zhang, Wei-Hua; Zhang, Li; Yang, Guang-Dong; Wu, Ling-Yun; Wang, Rui; Xu, Chang-Qing

    2014-11-01

    Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7-21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert's staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an

  13. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  14. Hipercalcemia hipocalciúrica debida a una mutación de novo del gen del receptor sensor de calcio Hypocalciuric hypercalcemia due to de novo mutation of the calcium sensing receptor

    Directory of Open Access Journals (Sweden)

    Marcelo Sarli

    2004-08-01

    Full Text Available El objetivo de este trabajo es presentar el inusual caso clínico de una paciente de 34 años que consultó para establecer diagnóstico de certeza y conducta terapéutica ante una hipercalcemia asintomática, detectada en un examen bioquímico de rutina. La elevación de la calcemia en ausencia de inhibición de la secreción de parathormona orientó hacia una patología paratiroidea. La persistencia de la hipercalcemia concomitante con hipocalciuria y coincidente con una relación clearance de calcio/clearance de creatinina inferior a 0.01, hicieron sospechar el diagnóstico de hipercalcemia hipocalciúrica familiar. La falta de antecedentes familiares llevó a realizar un estudio molecular de la paciente y su grupo familiar. Los resultados de los estudios nos permitieron concluir que la paciente es portadora de una mutación de novo (inactivante del gen del receptor sensor del calcio. Se incluyen los datos del estudio molecular y una breve revisión bibliográfica del tema.The aim of this paper is to refer the unusual case of a 34 years old woman who consulted because of asymptomatic hypercalcemia, detected in a biochemical routine examination. The elevated values of serum calcium without blunted parathyroid hormone secretion suggested a parathyroid pathology. The concomitance of hypocalciuria with hypercalcemia and a calcium clearance/creatinine clearance ratio less than 0.01 reverted the diagnosis of familial hypocalciuric hypercalcemia, the first option. The absence of familial background led to the molecular study of the patient and her family. The latter confirmed the diagnosis of a de novo inactivating mutation of the calcium sensing receptor. Details on the molecular study and a brief review of this subject are included.

  15. Role of Ca2+ and L-Phe in regulating functional cooperativity of disease-associated "toggle" calcium-sensing receptor mutations.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available The Ca(2+-sensing receptor (CaSR regulates Ca(2+ homeostasis in the body by monitoring extracellular levels of Ca(2+ ([Ca(2+]o and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD produce either receptor inactivation (L173P, P221Q or activation (L173F, P221L related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca(2+]o-induced [Ca(2+]i oscillations, inositol-1-phosphate (IP1 accumulation and extracellular signal-regulated kinases (ERK1/2 activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca(2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca(2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu(173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro(221 and Leu(173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.

  16. Reduced Expression of the Extracellular Calcium-Sensing Receptor (CaSR) Is Associated with Activation of the Renin-Angiotensin System (RAS) to Promote Vascular Remodeling in the Pathogenesis of Essential Hypertension

    Science.gov (United States)

    Wang, La-mei; Tang, Na; Zhong, Hua; Liu, Yong-min; Li, Zhen; Feng, Qian; He, Fang

    2016-01-01

    The proliferation of vascular smooth muscle cells (VSMCs), remodeling of the vasculature, and the renin-angiotensin system (RAS) play important roles in the development of essential hypertension (EH), which is defined as high blood pressure (BP) in which secondary causes, such as renovascular disease, are absent. The calcium-sensing receptor (CaSR) is involved in the regulation of BP. However, the underlying mechanisms by which the CaSR regulates BP are poorly understood. In the present study, the role of the CaSR in EH was investigated using male spontaneously hypertensive rats (SHRs) and rat and human plasma samples. The percentages of medial wall thickness to external diameter (WT%), total vessel wall cross-sectional area to the total area (WA%) of thoracic arteries, as well as the percentage of wall area occupied by collagen to total vessel wall area (CA%) were determined. Tissue protein expression and plasma concentrations of the CaSR, cyclic adenosine monophosphate (cAMP), renin, and angiotensin II (Ang II) were additionally assessed. WT%, WA%, and CA% were found to increase with increasing BP, whereas the plasma concentration of CaSR was found to decrease. With increasing BP, the levels of smooth muscle actin and calponin decreased, whereas those of osteopontin and proliferating cell nuclear antigen increased. The CaSR level negatively correlated with the levels of cAMP and Ang II, but positively correlated with those of renin. Our data suggest that reduced expression of the CaSR is correlated with activation of the RAS, which induces increased vascular remodeling and VSMC proliferation, and thereby associated with EH in the SHR model and in the Han Chinese population. Our findings provide new insights into the pathogenesis of EH. PMID:27391973

  17. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    Science.gov (United States)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  18. Extracellular calcium sensing in rat aortic vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Extracellular calcium (Ca2+o) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca2+o stimulates proliferation of the cells. The effects of Ca2+o were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca2+o-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca2+o-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium

  19. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    Science.gov (United States)

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  20. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, T A; Burstein, E S;

    2000-01-01

    the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput...... screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not......, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR....

  1. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  2. Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR

    Science.gov (United States)

    Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.

  3. STRUCTURAL BIOLOGY: A moving story of receptors

    OpenAIRE

    Schwartz, Thue W; Hubbell, Wayne L.

    2008-01-01

    Animals sense light and chemical signals through proteins called G-protein-coupled receptors. The crystal structure of one such receptor in complex with a G-protein fragment shows how these receptors are activated.

  4. Structure, function, and regulation of adrenergic receptors.

    OpenAIRE

    Strosberg, A.D.

    1993-01-01

    Adrenergic receptors for adrenaline and noradrenaline belong to the large multigenic family of receptors coupled to GTP-binding proteins. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors m...

  5. Structural determinants of sigma receptor affinity

    International Nuclear Information System (INIS)

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-[3H]3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent

  6. Structural determinants of sigma receptor affinity

    Energy Technology Data Exchange (ETDEWEB)

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  7. Calcium-sensing receptor: A new target for therapy of diarrhea

    OpenAIRE

    Cheng, Sam Xianjun

    2016-01-01

    Management of acute diarrhea remains a global challenge, particularly in resource-limiting countries. Oral rehydration solution (ORS), a passive rehydrating therapy developed approximately 40 years ago, remains the mainstay treatment. Although ORS is effective for hydration, since it does not inhibit enterotoxin-mediated excessive secretion, reduced absorption and compromised barrier function - the primary mechanisms of diarrhea, ORS does not offer a rapid relief of diarrhea symptom. There ar...

  8. Novel strategies in drug discovery of the calcium-sensing receptor based on biased signaling

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Smajilovic, Sanela; Bräuner-Osborne, Hans

    2012-01-01

    A hallmark of chronic kidney disease is hyperphosphatemia due to renal phosphate retention. Prolonged parathyroid gland exposure to hyperphosphatemia leads to secondary hyperparathyroidism characterized by hyperplasia of the glands and excessive secretion of parathyroid hormone (PTH), which cause...... of hypocalcemia by virtue of it not affecting calcitonin secretion. The present review will focus on recent advancements in understanding signaling and biased signaling of the CaSR, and how that may be utilized to discover new and smarter drugs targeting the CaSR....

  9. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    The hormone leptin is central to obesity, but the molecular processes underlying the activation of the leptin receptor are unknown. To further the understanding of the system, an atomic resolution structure of this cytokine type I receptor in the unbound inactive form and in the activated bound...... receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...

  10. Structure biology of selective autophagy receptors

    Science.gov (United States)

    Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu

    2016-01-01

    Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80] PMID:26698872

  11. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity.

    Science.gov (United States)

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-09-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π-cation motif of stacked residues KWRWRH, a NAG-W-NAG sandwich (where NAG stands for N-acetyl-D-glucosamine) and finally a helix formed by residues 78-85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  12. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  13. Structure, function and regulation of the melanocortin receptors

    OpenAIRE

    Yang, Yingkui

    2011-01-01

    Melanocortin receptors belong to the seven-transmembrane (TM) domain proteins that are coupled to G-proteins and signaled through intracellular cyclic adenosine monophosphate. Many structural features conserved in other G-protein coupled receptors (GPCRs) are found in the melanocortin receptors. There are five melanocortin receptor subtypes and each of the melanocortin receptor subtypes has a different pattern of tissue expression and has its own profile regarding the relative potency of diff...

  14. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling.

    Science.gov (United States)

    Shang, Yi; Filizola, Marta

    2015-09-15

    Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Although substantial research on these important subtypes of G protein-coupled receptors has been conducted over the past two decades to discover ligands with higher specificity and diminished side effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the purpose of drug discovery. PMID:25981301

  15. [Glutamate Metabotropic Receptors: Structure, Localisation, Functions].

    Science.gov (United States)

    Perfilova, V N; Tyurenkov, I N

    2016-01-01

    The data on the structure, location and functions of the metabotropic glutamate receptor is shown. The family consists of 8 mGluRs subtypes and is divided into three groups: I group--mGluRs1/mGluRs5, II group--mGluRs2/mGluRs3, III group--mGluRs4/mGluRs6/mGluRs7/mGluRs8. They are associated with G-protein; signaling in the cells is carried out by IP3 or adenylate cyclase signaling pathways, in the result of which, mGluRs modify glial and neuronal excitability. Receptors are localized in the CNS and periphery in non-neuronal tissues: bone, heart, kidney, pancreas pod and platelets, the gastrointestinal tract, immune system. Their participation in the mechanisms of neurodegenerative diseases, mental and cognitive disorders, autoimmune processes, etc. is displayed. Agonists, antagonists, allosteric modulators of mGluRs are considered as potential medicines for treatment of mental diseases, including depression, fragile X syndrome, anxiety, obsessive-compulsive disorders, Parkinson's disease, etc. PMID:27530046

  16. Melanocortin 1 Receptor: Structure, Function, and Regulation

    Science.gov (United States)

    Wolf Horrell, Erin M.; Boulanger, Mary C.; D’Orazio, John A.

    2016-01-01

    The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts NER. PMID:27303435

  17. Melanocortin 1 Receptor: Structure, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Erin Marissa Wolf Horrell

    2016-05-01

    Full Text Available The melanocortin 1 receptor (MC1R is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair, the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts nucleotide excision repair.

  18. Structural basis for molecular recognition at serotonin receptors.

    Science.gov (United States)

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  19. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, Anders A.; Sheppard, P O;

    1999-01-01

    inositol phosphate production when exposed to the cationic agonists Ca2+, Mg2+, and Ba2+ in transiently transfected tsA cells (a transformed HEK 293 cell line). The pharmacological profile of Ca/1a (EC50 values of 3.3, 2.6, and 3.9 mM for these cations, respectively) was very similar to that of the wild...

  20. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P;

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  1. Structure of a streptococcal adhesion carbohydrate receptor

    International Nuclear Information System (INIS)

    Interactions between complementary protein and carbohydrate structures on different genera of human oral bacteria have been implicated in the formation of dental plaque. The carbohydrate receptor on Streptococcus sanguis H1 that is specific for the adhesion on Capnocytophaga ochracea ATCC 33596 has been isolated from the streptococcal cell wall, purified, and structurally characterized. The hexasaccharide repeating unit of the polysaccharide was purified by reverse-phase, amino-bonded silica, and gel permeation high performance liquid chromatography. Earlier studies established that the repeating unit was a hexasaccharide composed of rhamnose, galactose, and glucose in the ration of 2:3:1, respectively. In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D. 252Californium plasma desorption mass spectrometry of the native, the acetylated and the reduced and acetylated hexasaccharide determined that the molecular mass of the native hexasaccharide was 959, and that the 2 rhamnose residues were linked to each other at the nonreducing terminus of the linear molecule. Methylation analysis revealed the positions of the glycosidic linkages in the hexasaccharide and showed that a galactose residue was present at the reducing end. The structural characterization of the hexasaccharide was completed by one and two dimensional 1H and 13C NMR spectroscopy. Complete 1H and 13C assignments for each glycosyl residue were established by two-dimensional (1H,1H) correlation spectroscopy, homonuclear Hartmann-Hahn, and (13C,1H) correlation experiments. The configurations of the glycosidic linkages were inferred from the chemical shifts and coupling constants of the anomeric 1H and 13C resonances

  2. Functional role, structure, and evolution of the melanocortin-4 receptor.

    Science.gov (United States)

    Schiöth, Helgi B; Lagerström, Malin C; Watanobe, Hajime; Jonsson, Logi; Vergoni, Anna Valeria; Ringholm, Aneta; Skarphedinsson, Jon O; Skuladottir, Gudrun V; Klovins, Janis; Fredriksson, Robert

    2003-06-01

    The melanocortin (MC)-4 receptor participates in regulating body weight homeostasis. We demonstrated early that acute blockage of the MC-4 receptor increases food intake and relieves anorexic conditions in rats. Our recent studies show that 4-week chronic blockage of the MC-4 receptor leads to robust increases in food intake and development of obesity, whereas stimulation of the receptor leads to anorexia. Interestingly, the food conversion ratio was clearly increased by MC-4 receptor blockage, whereas it was decreased in agonist-treated rats in a transient manner. Chronic infusion of an agonist caused a transient increase in oxygen consumption. Our studies also show that the MC-4 receptor plays a role in luteinizing hormone and prolactin surges in female rats. The MC-4 receptor has a role in mediating the effects of leptin on these surges. The phylogenetic relation of the MC-4 receptor to other GPCRs in the human genome was determined. The three-dimensional structure of the protein was studied by construction of a high-affinity zinc binding site between the helices, using two histidine residues facing each other. We also cloned the MC-4 receptor from evolutionary important species and showed by chromosomal mapping a conserved synteny between humans and zebrafish. The MC-4 receptor has been remarkably conserved in structure and pharmacology for more than 400 million years, implying that the receptor participated in vital physiological functions early in vertebrate evolution. PMID:12851300

  3. Structure-Function Studies on the Prolactin Receptor

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg

    Class 1 Cytokine receptors are involved in important biological functions mediated through complex networks of intracellular signaling. However, the molecular details of how signaling is regulated are poorly understood. One of the primary reasons for this limited knowledge is the lack of structural...... information on the intracellular domains (ICDs) of these receptors. The overall aim of this study was to obtain an improved understanding of cytokine receptor signaling through structure-function studies on the prolactin receptor (PRLR). The primary focus of this thesis was to structurally characterize the...... well as structural studies of cytokine receptors. The results presented in this thesis have the potential to inspire future studies on how specific associations and PTMs affect PRLR signaling....

  4. Functional Insights from Glutamate Receptor Ion Channel Structures

    Science.gov (United States)

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  5. LYRA, a webserver for lymphocyte receptor structural modeling

    DEFF Research Database (Denmark)

    Schantz Klausen, Michael; Anderson, Mads Valdemar; Jespersen, Martin Closter;

    2015-01-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a...

  6. Structural features for functional selectivity at serotonin receptors.

    Science.gov (United States)

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  7. Structure and function of Toll receptors and their ligands.

    Science.gov (United States)

    Gay, Nicholas J; Gangloff, Monique

    2007-01-01

    The Toll family of class I transmembrane receptors recognizes and responds to diverse structures associated with pathogenic microorganisms. These receptors mediate initial responses in innate immunity and are required for the development of the adaptive immune response. Toll receptor signaling pathways are also implicated in serious autoimmune diseases such as endotoxic shock and thus are important therapeutic targets. In this review we discuss how microbial structures as different as nucleic acids and lipoproteins can be recognized by the extracellular domains of Toll receptors. We review recent evidence that the mechanism of signal transduction is complex and involves sequential changes in the conformation of the receptor induced by binding of the ligand. Finally, we assess the emerging area of cross talk in the Toll pathways. Recent work suggests that signaling through TLR4 in response to endotoxin is modified by inputs from at least two other pathways acting through beta2 integrins and protein kinase Cepsilon. PMID:17362201

  8. Structural Basis for Molecular Recognition at Serotonin Receptors

    OpenAIRE

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Gao, Xiang; Zhou, Edward X.; Melcher, Karsten; Zhang, Chenghai

    2013-01-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserv...

  9. Structural mechanism of glutamate receptor activation and desensitization.

    Science.gov (United States)

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  10. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    of structural knowledge on their membrane-embedded transmembrane domains (TMDs), which connect the extracellular ligand binding domains to the intracellular signaling platforms. The overall aim of this thesis work was to improve our understanding of the class I cytokine receptor signaling across the membrane...... bilayer via structural characterizations of TMD representatives. To enable structural studies of these domains, an organic-extraction based strategy for efficient production of isotope-labeled TMDs with or without short intrinsically disordered regions was developed. This strategy successfully provided...... ample material of high quality for structural studies with NMR spectroscopy of several class I cytokine receptor TMDs. Furthermore, the structure of a class I cytokine receptor TMD in DHPC micelles was solved with solution-state NMR spectroscopy. Additionally, since structural studies of intact proteins...

  11. Crystal structure of the human σ1 receptor.

    Science.gov (United States)

    Schmidt, Hayden R; Zheng, Sanduo; Gurpinar, Esin; Koehl, Antoine; Manglik, Aashish; Kruse, Andrew C

    2016-04-28

    The human σ1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the σ1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the σ1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human σ1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like β-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein. PMID:27042935

  12. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden (Vanderbilt); (MCW)

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  13. Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis.

    Directory of Open Access Journals (Sweden)

    Kwong-Joo Leck

    Full Text Available How fishes are able to detect trace molecules in large bodies of water is not understood. It is plausible that they use olfactory receptors to detect water-soluble compounds. How the zebra fish Danio Rerio, an organism with only 98 functional olfactory receptors, is able to selectively detect and recognize numerous compounds in water remains a puzzling phenomenon. We are interested in studying the biochemical and molecular mechanisms of olfaction in fish. Here, we report on the study of a bioengineered zebra fish olfactory receptor OR131-2, affinity-purified from a HEK293S tetracycline-inducible system. This receptor was expressed and translocated to the cell plasma membrane as revealed by confocal microscopy. Circular dichroism spectroscopy showed that the purified zebra fish receptor folded into an α-helical structure, as observed for other G-protein coupled receptors (GPCRs. Our study shows that it is possible to produce viable quantities of the zebra fish olfactory receptor. This will not only enable detailed structural and functional analyses, but also aid in the design of biosensor devices in order to detect water-soluble metabolites or its intermediates, which are associated with human health.

  14. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  15. Inexpensive Method for Selecting Receptor Structures for Virtual Screening.

    Science.gov (United States)

    Huang, Zunnan; Wong, Chung F

    2016-01-25

    This article introduces a screening performance index (SPI) to help select from a number of experimental structures one or a few that are more likely to identify more actives among its top hits from virtual screening of a compound library. It achieved this by docking only known actives to the experimental structures without considering a large number of decoys to reduce computational costs. The SPI is calculated by using the docking energies of the actives to all the receptor structures. We evaluated the performance of the SPI by applying it to study eight protein systems: fatty acid binding protein adipocyte FABP4, serine/threonine-protein kinase BRAF, beta-1 adrenergic receptor ADRB1, TGF-beta receptor type I TGFR1, adenosylhomocysteinase SAHH, thyroid hormone receptor beta-1 THB, phospholipase A2 group IIA PA2GA, and cytochrome P450 3a4 CP3A4. We found that the SPI agreed with the results from other popular performance metrics such as Boltzmann-Enhanced Discrimination Receiver Operator Characteristics (BEDROC), Robust Initial Enhancement (RIE), Area Under Accumulation Curve (AUAC), and Enrichment Factor (EF) but is less expensive to calculate. SPI also performed better than the best docking energy, the molecular volume of the bound ligand, and the resolution of crystal structure in selecting good receptor structures for virtual screening. The implications of these findings were further discussed in the context of ensemble docking, in situations when no experimental structure for the targeted protein was available, or under circumstances when quick choices of receptor structures need to be made before quantitative indexes such as the SPI and BEDROC can be calculated. PMID:26651874

  16. Structure and function of serotonin G protein-coupled receptors.

    Science.gov (United States)

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  17. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors.

    Science.gov (United States)

    Burgos, Carlos F; Yévenes, Gonzalo E; Aguayo, Luis G

    2016-09-01

    Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR. PMID:27401877

  18. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  19. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2016-01-01

    structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full......-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered...

  20. Subunit structure of the follitropin receptor

    International Nuclear Information System (INIS)

    Both of the α and β subunits of intact human follitropin (FSH) were radioiodinated with 125I-FSH-sodium iodide and chloramine-T, and could be resolved on polyacrylamide gels (SDS-PAGE). The electrophoretic mobility of radioiodinated FSH α and β subunits as well as the αβ dimer changed markedly depending on the concentration of reducing agents. 125I-FSH (Ka = 1.4 x 1010 M-1), complexes to the receptor on procine granulosa cells or in Triton X-100 extracts, was affinity-crosslinked with a cleavable (nondisulfide) homobifunctional reagent, bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone, solubilized in sodium dodecyl sulfate with or without reducing agents, and electrophoresed. Crosslinked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65 (unreduced 62), 83 (unreduced 76) and 117 (unreduced 110)kDa, in addition to hormone bands. Formation of the three bands requires the 125I-FSH hormone to bind specifically to the receptor with subsequent cross-linking. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22, 18, and 34 kDa components to the FSH αβ dimer. The results of reduction of cross-linked complexes demonstrated the existence of disulfide linkage between the three components. FSH was photoactively derivatized with N-hydroxysuccinimide ester of 4-azidobenzolyl-glycine and radioiodinated for photoaffinity labeling. When derivatized 125I-FSH (Ka = 1.12 1010 M-1) bound to the cell was photolyzed for cross-linking and resolved on the SDS-PAGE, two new bands (106 and 61 kDa) under reducing condition appeared in addition to the hormone bands. Upon reduction with dithiotheitol and second-dimensional electrophoresis, the unreduced 104 kDa (reduced 106 kDa) band released two small components 31 and 14 kDa

  1. LYRA, a webserver for lymphocyte receptor structural modeling

    Science.gov (United States)

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter; Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure. PMID:26007650

  2. Structural basis of receptor sharing by interleukin 17 cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Ely, Lauren K.; Fischer, Suzanne; Garcia, K. Christopher; Stanford-MED

    2010-02-19

    Interleukin 17 (IL-17)-producing helper T cells (T{sub H}-17 cells), together with their effector cytokines, including members of the IL-17 family, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a complex of IL-17 receptor A (IL-17RA) bound to IL-17F in a 1:2 stoichiometry. The mechanism of complex formation was unique for cytokines and involved the engagement of IL-17 by two fibronectin-type domains of IL-17RA in a groove between the IL-17 homodimer interface. Binding of the first receptor to the IL-17 cytokines modulated the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA used a common recognition strategy to bind to several members of the IL-17 family, which allows it to potentially act as a shared receptor in multiple different signaling complexes.

  3. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  4. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R;

    2002-01-01

    structures reveal that AMPA agonists with an isoxazole moiety adopt different binding modes in the receptor, dependent on the substituents of the isoxazole. Br-HIBO displays selectivity among different AMPA receptor subunits, and the design and structure determination of the S1S2J-Y702F mutant in complex...... with Br-HIBO and ACPA have allowed us to explain the molecular mechanism behind this selectivity and to identify key residues for ligand recognition. The agonists induce the same degree of domain closure as AMPA, except for Br-HIBO, which shows a slightly lower degree of domain closure. An excellent...... the functional studies on the full-length receptor, form a powerful platform for the design of new selective agonists....

  5. Structure and organization of heteromeric AMPA-type glutamate receptors.

    Science.gov (United States)

    Herguedas, Beatriz; García-Nafría, Javier; Cais, Ondrej; Fernández-Leiro, Rafael; Krieger, James; Ho, Hinze; Greger, Ingo H

    2016-04-29

    AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling. PMID:26966189

  6. Muscarinic acetylcholine receptor subtypes: localization and structure/function

    DEFF Research Database (Denmark)

    Brann, M R; Ellis, J; Jørgensen, H;

    1993-01-01

    Based on the sequence of the five cloned muscarinic receptor subtypes (m1-m5), subtype selective antibody and cDNA probes have been prepared. Use of these probes has demonstrated that each of the five subtypes has a markedly distinct distribution within the brain and among peripheral tissues. The...... are described, as well as the implied structures of these functional domains....

  7. Structure and Assembly Mechanism for Heteromeric Kainate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L. (NIH)

    2012-10-25

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR57. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K{sub d} 11 nM, 32,000-fold lower than the K{sub d} for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.

  8. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  9. Glutamate receptors: variation in structure-function coupling

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Geballe, Matthew; Snyder, James P;

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...... structural information about the agonist-binding site. Recent studies suggest that despite many structural similarities different family members use different mechanisms to translate agonist binding into channel opening....

  10. Illuminating the structure and function of Cys-loop receptors

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2008-01-01

    . Voltage-clamp fluorometry helps overcome this problem by simultaneously monitoring movements at the channel gate (through changes in current) and conformational rearrangements in a domain of interest (through changes in fluorescence) in real time. Thus, the technique can provide information on both...... transitional and steady state conformations and serves as a real time correlate of the channel structure and its function. Voltage-clamp fluorometry experiments on Cys-loop receptors have yielded a large body of data concerning the mechanisms by which agonists, antagonists and modulators act on these receptors...

  11. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  12. Structural Allostery and Binding of the Transferring Receptor Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  13. μ Opioid receptor: novel antagonists and structural modeling

    Science.gov (United States)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  14. The D3 dopamine receptor: From structural interactions to function.

    Science.gov (United States)

    Fiorentini, Chiara; Savoia, Paola; Bono, Federica; Tallarico, Paola; Missale, Cristina

    2015-09-01

    Novel structural and functional aspects of the dopamine (DA) D3 receptors (D3R) have been recently described. D3R expressed in dopaminergic neurons have been classically considered to play the role of autoreceptors inhibiting, as the D2R, DA release. However, evidence for D3R-mediated neurotrophic and neuroprotective effects on DA neurons suggests their involvement in preventing pathological alterations leading to neurodegeneration. On the other hand, given its localization and functional role at postsynaptic striatal levels, the D3R may also be involved in the pathogenesis of movement disorders and psychiatric diseases. Functional interactions of D3R with other receptor systems are crucial for the modulation of several physiological events. On this line, the discovery that the D3R can form heteromers with other receptors has opened the possibility of uncover novel molecular mechanisms of brain functions and dysfunctions. This paper summarizes the functional and physical interactions of D3R with other receptors both at pre-synaptic sites, where it is co-expressed with the D2R and nicotinic receptors, and at post-synaptic sites where it interacts with the DA D1 receptors (D1R). The biochemical and functional properties of the D1R-D3R heteromer will be especially discussed. Both D1R and D3R have been in fact implicated in several disorders, including schizophrenia and motor dysfunctions. Therefore, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases. PMID:25532864

  15. A combined computational and structural model of the full-length human prolactin receptor

    Science.gov (United States)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-05-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  16. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  17. Structural basis for activation of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine;

    2002-01-01

    Our understanding of how G-protein-coupled receptors (GPCRs) operate at the molecular level has been considerably improved over the last few years. The application of advanced biophysical techniques as well as the availability of high-resolution structural information has allowed insight both int......-expression with the cAMP sensitive Cl- channel CFTR (cystic fibrosis transmembrane conductance regulator) and electrophysiological measurements....

  18. Structure-Based, Rational Design of T Cell Receptors

    OpenAIRE

    Zoete, V; Irving, M.; Ferber, M.; Cuendet, M. A.; Michielin, O

    2013-01-01

    Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding...

  19. In silico discovery of novel Retinoic Acid Receptor agonist structures

    OpenAIRE

    Samuels Herbert H; Schapira Matthieu; Raaka Bruce M; Abagyan Ruben

    2001-01-01

    Abstract Background Several Retinoic Acid Receptors (RAR) agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived...

  20. Structural and Functional Attributes of the Interleukin-36 Receptor.

    Science.gov (United States)

    Yi, Guanghui; Ybe, Joel A; Saha, Siddhartha S; Caviness, Gary; Raymond, Ernest; Ganesan, Rajkumar; Mbow, M Lamine; Kao, C Cheng

    2016-08-01

    Signal transduction by the IL-36 receptor (IL-36R) is linked to several human diseases. However, the structure and function of the IL-36R is not well understood. A molecular model of the IL-36R complex was generated and a cell-based reporter assay was established to assess the signal transduction of recombinant subunits of the IL-36R. Mutational analyses and functional assays have identified residues of the receptor subunit IL-1Rrp2 needed for cytokine recognition, stable protein expression, disulfide bond formation and glycosylation that are critical for signal transduction. We also observed that, overexpression of ectodomain (ECD) of Il-1Rrp2 or IL-1RAcP exhibited dominant-negative effect on IL-36R signaling. The presence of IL-36 cytokine significantly increased the interaction of IL-1Rrp2 ECD with the co-receptor IL-1RAcP. Finally, we found that single nucleotide polymorphism A471T in the Toll-interleukin 1 receptor domain (TIR) of the IL-1Rrp2 that is present in ∼2% of the human population, down-regulated IL-36R signaling by a decrease of interaction with IL-1RAcP. PMID:27307043

  1. A combined computational and structural model of the full-length human prolactin receptor

    DEFF Research Database (Denmark)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W;

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for...

  2. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    Science.gov (United States)

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  3. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  4. Structural basis for simvastatin competitive antagonism of complement receptor 3

    DEFF Research Database (Denmark)

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei;

    2016-01-01

    to the complement fragments iC3b and C3d, but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15......The complement system is an important part of the innate immune response to infection, but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor (CR)3 have been widely sought, but a structural basis for their mode of action is not available. We...

  5. Human antibody-Fc receptor interactions illuminated by crystal structures.

    Science.gov (United States)

    Woof, Jenny M; Burton, Dennis R

    2004-02-01

    Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies. PMID:15040582

  6. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    Science.gov (United States)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. PMID:26572235

  7. Structure and function of the human megalin receptor

    DEFF Research Database (Denmark)

    Dagil, Robert

    extracellular domain of megalin consists of several modular domains, of which the most abundant are the ligand binding complement type (CR) domains, that are divided into four clusters separated by YWTD -propeller domains. The broad ligand binding profile has associated megalin with the unwanted cellular uptake...... trivial task. Recently, structural data has provided direct proof that the -propeller domains from the lipoprotein receptor family actively engage in ligand binding. Previously, these domains were thought to serve as ’spacer regions’ in the extracellular domain. By analyzing the structural data a number...... of simple ligand binding motifs were identified and an analysis of the distribution of these simple motifs in -propeller domains throughout the LRP family was performed in order to identify -propellers capable of ligand binding. The analysis showed that several -propeller domains have ligand binding...

  8. Structure of the STRA6 receptor for retinol uptake.

    Science.gov (United States)

    Chen, Yunting; Clarke, Oliver B; Kim, Jonathan; Stowe, Sean; Kim, Youn-Kyung; Assur, Zahra; Cavalier, Michael; Godoy-Ruiz, Raquel; von Alpen, Desiree C; Manzini, Chiara; Blaner, William S; Frank, Joachim; Quadro, Loredana; Weber, David J; Shapiro, Lawrence; Hendrickson, Wayne A; Mancia, Filippo

    2016-08-26

    Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer. PMID:27563101

  9. EBI2, GPR18 and GPR17--three structurally related, but biologically distinct 7TM receptors

    DEFF Research Database (Denmark)

    Nørregaard, Kristine; Benned-Jensen, Tau; Rosenkilde, Mette Marie

    2011-01-01

    have been deorphanized, many remain orphan, and these orphan receptors constitute a large pool of potential drug targets. This review focuses on one of these orphan targets, the Epstein-Barr Virus-induced receptor 2, EBI2 (or GPR183), together with two structurally related receptors, GPR17 and GPR18...

  10. Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex

    OpenAIRE

    Skiniotis, Georgios; Lupardus, Patrick; Martick, Monika; Walz, Thomas; Garcia, K. Christopher

    2008-01-01

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-Rα). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp13...

  11. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    Science.gov (United States)

    Yoo, Haneul; Lee, Dong Jun; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Tak Cho, Young; Park, Jae Yeol; Chen, Xing; Hong, Seunghun

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species.

  12. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  13. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W. (SVIMR-A); (Hanson)

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  14. Structure and biological properties of scavenger receptor MARCO

    OpenAIRE

    Brännström, Annika

    2002-01-01

    Macrophages are monocyte-derived cells that play an important role in the innate immune response against invading pathogens. These cells express several host defense receptors that can be divided into two classes; those dependent on opsonizing components for recognition of pathogens, and those that can recognize pathogens directly, pattern recognition receptors (PRRs). Class A scavenger receptors are a family of PRRs composed of three members: Scavenger Receptor A (SRA), MAc...

  15. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene;

    2007-01-01

    CONTEXT: The autosomal dominantly inherited condition familial hypocalciuric hypercalcemia (FHH) is characterized by elevated plasma calcium levels, relative or absolute hypocalciuria, and normal to moderately elevated plasma PTH. The condition is difficult to distinguish clinically from primary ...

  16. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  17. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor

    OpenAIRE

    Streltsov, V. A.; Varghese, J N; Carmichael, J A; Irving, R A; Hudson, P.J.; Nuttall, S D

    2004-01-01

    The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-Å structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the “bottom” of the molecule, apparently discontinuous from the antigen-binding paratope and sim...

  18. Compatibility between itinerant synaptic receptors and stable postsynaptic structure

    CERN Document Server

    Sekimoto, Ken

    2009-01-01

    The density of synaptic receptors in front of presynaptic release sites is stabilized in the presence of scaffold proteins, but the receptors and scaffold molecules have local exchanges with characteristic times shorter than that of the receptor-scaffold assembly. We propose a mesoscopic model to account for the regulation of the local density of receptors as quasiequilibrium. It is based on two zones (synaptic and extrasynaptic) and multi-layer (membrane, sub-membrane and cytoplasmic) topological organization. The model includes the balance of chemical potentials associated with the receptor and scaffold protein concentrations in the various compartments. The model shows highly cooperative behavior including a "phase change" resulting in the formation of well-defined post-synaptic domains. This study provides theoretical tools to approach the complex issue of synaptic stability at the synapse, where receptors are transiently trapped yet rapidly diffuse laterally on the plasma membrane.

  19. Structural insights into G-protein-coupled receptor activation☆

    OpenAIRE

    Weis, William I.; Kobilka, Brian K.

    2008-01-01

    G-protein-coupled receptors (GPCRs) are the largest family of eukaryotic plasma membrane receptors, and are responsible for the majority of cellular responses to external signals. GPCRs share a common architecture comprising seven transmembrane (TM) helices. Binding of an activating ligand enables the receptor to catalyze the exchange of GTP for GDP in a heterotrimeric G protein. GPCRs are in a conformational equilibrium between inactive and activating states. Crystallographic and spectroscop...

  20. Structure and Function of Serotonin G protein Coupled Receptors

    OpenAIRE

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a...

  1. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  2. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition. PMID:17077558

  3. Identification of Essential Cannabinoid-binding Domains: STRUCTURAL INSIGHTS INTO EARLY DYNAMIC EVENTS IN RECEPTOR ACTIVATION*

    OpenAIRE

    Shim, Joong-Youn; Bertalovitz, Alexander C.; Kendall, Debra A.

    2011-01-01

    The classical cannabinoid agonist HU210, a structural analog of (−)-Δ9-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identifie...

  4. Structure of the Murine Constitutive Androstane Receptor Complexed to Androstenol: A Molecular Basis for Inverse Agonism

    OpenAIRE

    Shan, Li; Vincent, Jeremy; Brunzelle, Joseph S.; Dussault, Isabelle; Lin, Min; Ianculescu, Irina; Sherman, Mark A.; Forman, Barry M.; Fernandez, Elias J.

    2004-01-01

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a “reverse” paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligan...

  5. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    Science.gov (United States)

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  6. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A;

    2007-01-01

    The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its...... reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a...

  7. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2005-11-01

    Full Text Available Abstract Background: Prostacyclin receptor (IP and thromboxane A2 receptor (TP belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.

  8. Structural Features for Functional Selectivity at Serotonin Receptors

    OpenAIRE

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L.; Stevens, Raymond C.

    2013-01-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or non-canonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies that show that the hallucinogen lysergic acid diethylamide (LSD), its precursor ergotamine (ERG) and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-hydroxytryptamine (5-HT) receptor 5-HT2B, while being relatively unbiased...

  9. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics

    Science.gov (United States)

    Huang, Pengxiang; Chandra, Vikas; Rastinejad, Fraydoon

    2013-01-01

    As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity. PMID:20148675

  10. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism

    Energy Technology Data Exchange (ETDEWEB)

    Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E. (Tennesse)

    2010-03-08

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.

  11. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    Science.gov (United States)

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-01

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6 % success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μm. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. PMID:26990027

  12. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.

    Science.gov (United States)

    Thal, David M; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C; Bures, Mark G; Evans, David A; Weis, William I; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M; Kobilka, Brian K; Christopoulos, Arthur

    2016-03-17

    Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  13. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    Science.gov (United States)

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  14. Ligand binding and micro-switches in 7TM receptor structures

    DEFF Research Database (Denmark)

    Nygaard, Rie; Frimurer, Thomas M; Holst, Birgitte; Rosenkilde, Mette M; Schwartz, Thue W

    2009-01-01

    The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid...... domains (i.e. especially TM-VI), which performs the large, global toggle switch movements connecting ligand binding with intracellular signaling....

  15. Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen*

    OpenAIRE

    Herr, Andrew B.; Farndale, Richard W.

    2009-01-01

    Collagen peptides have been used to identify binding sites for several important collagen receptors, including integrin α2β1, glycoprotein VI, and von Willebrand factor. In parallel, the structures of these collagen receptors have been reported, and their interactions with collagen peptides have been studied. Recently, the three-dimensional structure of the intact type I collagen fiber from rat tail tendon has been resolved by fiber diffraction. It is now possible to map the binding sites of ...

  16. Structural and pharmacological characterization of phenylalanine-based AMPA receptor antagonists at kainate receptors

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Valadés, Elena Antón; Szymanska, Ewa Monika; Johansen, Tommy N; Kastrup, Jette S; Pickering, Darryl S

    2012-01-01

    Continued efforts into the discovery of ligands that target ionotropic glutamate receptors (iGluRs) are important for studies of the physiological roles of the various iGluR subtypes as well as for the search for drugs that can be used in the treatment of diseases of the central nervous system. A...

  17. Insights into function of PSI domains from structure of the Met receptor PSI domain

    International Nuclear Information System (INIS)

    PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel β-sheet and two α-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor

  18. Activation of transient receptor potential ankyrin 1 by quercetin and its analogs.

    Science.gov (United States)

    Nakamura, Toshiyuki; Miyoshi, Noriyuki; Ishii, Takeshi; Nishikawa, Miyu; Ikushiro, Shinichi; Watanabe, Tatsuo

    2016-05-01

    The agonistic activity of quercetin and its analogs towards the transient receptor potential ankyrin 1 (TRPA1) has been experimentally investigated. The human TRPA1 was expressed in HEK293T cells using a tetracycline-inducible system. The activation of TRPA1 was evaluated by a fluo-4 fluorescence assay based on calcium sensing. The results of a structure-activity relationship study led to the selection of six flavonoids, all of which activated the TRPA1 channel in a dose-dependent manner. Notably, the activation of TRPA1 by these flavonoid aglycones was completely inhibited by the co-treatment of the HEK293T cells with the TRPA1-specific antagonist, HC-030031. Several flavonoid glycosides and metabolites were also evaluated, but did not activate the TRPA1 except for methylated quercetin. On the other hand, TRPV1 (vanilloid receptor) did not respond to any of the flavonoids evaluated in this study. Therefore, these data suggest that the flavonoids would be promising ligands for the TRPA1. PMID:26806540

  19. The structure and function of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Rasmussen, Søren Gøgsig Faarup; Kobilka, Brian K

    2009-01-01

    G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein...

  20. Alterations in the structure and DNA binding of Ah receptor in the presence of polyamines

    International Nuclear Information System (INIS)

    Polyamines, putrescine, spermidine, and spermine are organic cations present in all cells. They have multiple regulatory roles in cell growth and differentiation. 2,3,7,8-Tetrachlorodigenzo-p-dioxin (TCDD), and related polycyclic aromatic hydrocarbons exert their adverse effects by binding to an intracellular protein (Ah receptor). Interaction of Ah receptor with specific DNA sequences triggers gene regulatory effects of TCDD. The authors examined the effect of polyamines on the structure and DNA binding of Ah receptor isolated from a human squamous carcinoma cell line, A431. [3H]TCDD-labeled Hf receptor was sedimented in the 9S region of sucrose gradients in hypotenic buffer. Polyamines caused a concentration dependent condensation and precipitation of Ah receptor. In the presence of 1 mM spermine the receptor was completely precipitated which could be recovered from the bottom of the sucrose gradients. This precipitation did not occur with RNase-treated Ah receptor. Incubation of RNase-treated Ah receptor with 1 mM spermidine increased its DNA binding 10-fold compared to controls having equivalent ionic strength. These results suggest that endogenous polyamines may influence the structural organization and gene regulatory effects of TCDD

  1. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    Science.gov (United States)

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210. PMID:21795705

  2. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.; Paulson, James C.; Wilson, Ian A. (Scripps)

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.

  3. Structural Disorder in the Complex of Human Pregnane X Receptor and the Macrolide Antibiotic Rifampicin

    Energy Technology Data Exchange (ETDEWEB)

    Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.; Xue, Yu; Peng, Li; Collins, Jon L.; Wisely, G. Bruce; Lambert, Millard H.; Kliewer, Steven A.; Redinbo, Matthew R. (U. of Texas-SMED); (UNC)

    2010-07-13

    The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexible loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.

  4. Structural Determinants in the Calcitonin Receptor-Like Receptor (Crlr) Important for Cgrp and Adrenomedullin (Am) Receptor Function of Crlr/Receptor-Activity-Modifying Protein (Ramp) 1 and Crlr/Ramp2 Heterodimers

    OpenAIRE

    W. Born; K. Leuthauser; R. Gujer; R. Muff; J.A. Fischer

    2001-01-01

    Cell surface protein cross-linking, coimmmunoprecipitation, and confocal microscopy identified CRLR/RAMP1-, CRLR/RAMP2-, and calcitonin receptor isotype 2 (CTR2)/RAMP1 heterodimers as CGRP-, AM-, and CGRP/amylin receptors, linked to cAMP production. Along these lines, effects of structural alterations in the N-terminal extracellular domain of the human CRLR on cell surface expression as well as the association with RAMP and CGRP or AM have been investigated.

  5. Structure, characterization, and expression of the rat oxytocin receptor gene.

    OpenAIRE

    1995-01-01

    The multiple hormonal and neurotransmitter functions of the nonapeptide oxytocin are mediated by specific oxytocin receptors (OTRs). In most target tissues, the number of OTRs is strongly regulated. Specifically, in the uterus, a dramatic OTR upregulation precedes the onset of parturition. To study the molecular mechanisms underlying OTR regulation, we have isolated and characterized recombinant bacteriophage lambda EMBL3 genomic clones containing the rat OTR gene, using sequence information ...

  6. Subunit structure of the follitropin (FSH) receptor. Photoaffinity labeling of the membrane-bound receptor follitropin complex in situ

    International Nuclear Information System (INIS)

    Human follicle-stimulating hormone (hFSH) was acylated with N-hydroxysuccinimidyl-4-azidobenzoate (HSAB) and radioiodinated (55 microCi/micrograms) for use as a photoaffinity probe to investigate the subunit structure of the FSH receptor in calf testis. After incubation with the photoaffinity probe and photolysis with UV light, the cross-linked hormone-receptor complex was solubilized from the membrane and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of the reducing agent dithiothreitol. Autoradiography of the polyacrylamide gels revealed two major bands, 64 kDa and 84 kDa. These were equivalent in molecular mass to those observed in a previous study in which performed hormone-receptor complexes were solubilized with detergent prior to formation of covalent cross-linkages through the use of homobifunctional cross-linking reagents. Reduction with dithiothreitol resulted in the loss of radioactivity from the 84-kDa band with a concomitant increase in the intensity of the 64-kDa band. Since dithiothreitol increases the dissociation of intact radioiodinated azidobenzoyl-FSH into subunits, it is suggested that the conversion of the 84-kDa band to the 64-kDa band by dithiothreitol is due to the loss of non-cross-linked hFSH subunit from the 84-kDa band and that the two bands observed after photoaffinity labeling arise from covalent bond formation between hFSH and a receptor subunit having a relative molecular weight (Mr) of 48,000. In addition to the predominant photolabeling of the receptor to yield the 64-kDa and 84-kDa bands, several other, less intense bands (54 kDa, 76 kDa, 97 kDa, and 116 kDa) were also consistently observed on autoradiographs

  7. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    Science.gov (United States)

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  8. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G;

    2015-01-01

    The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far...... this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric...... modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different m...

  9. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    Science.gov (United States)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  10. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries.

    OpenAIRE

    Massague, J; Pilch, P F; Czech, M P

    1980-01-01

    Plasma membrane insulin receptors, affinity labeled by covalent crosslinking to receptor-bound 125I-labeled insulin, are shown to appear as a heterogeneous population of three major disulfide-linked complexes (Mr 350,000, 320,000, and 290,000) upon electrophoresis in highly porous dodecyl sulfate/polyacrylamide gels in the absence of reductant. This pattern is consistent in all rat and human tissues that were analyzed. Upon reduction of disulfide bonds, each of these receptor structures is di...

  11. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  12. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  13. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth A. Jacobson

    2015-01-01

    Full Text Available We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs, e.g. adenosine receptors (ARs and P2Y receptors (P2YRs, respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain. Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R, an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.

  14. Large-scale production and protein engineering of G protein-coupled receptors for structural studies

    OpenAIRE

    Milić, Dalibor; Veprintsev, Dmitry B.

    2015-01-01

    Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled recepto...

  15. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    International Nuclear Information System (INIS)

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  16. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    Science.gov (United States)

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  17. Structure of adenovirus bound to cellular receptor car

    Science.gov (United States)

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  18. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  19. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor.

    Science.gov (United States)

    Streltsov, V A; Varghese, J N; Carmichael, J A; Irving, R A; Hudson, P J; Nuttall, S D

    2004-08-24

    The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-A structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the "bottom" of the molecule, apparently discontinuous from the antigen-binding paratope and similar to that observed in cell adhesion molecules. Thus, we suggest that IgNARs originated as cell-surface adhesion molecules coopted to the immune repertoire and represent an evolutionary lineage independent of variable heavy chain/variable light chain type antibodies. Additionally, both 12Y-1 and 12Y-2 form unique crystallographic dimers, predominantly mediated by main-chain framework interactions, which represent a possible model for primordial cell-based interactions. Unusually, the 12Y-2 complementarity-determining region 3 also adopts an extended beta-hairpin structure, suggesting a distinct selective advantage in accessing cryptic antigenic epitopes. PMID:15304650

  20. Reduction of False Positives in Structure-Based Virtual Screening When Receptor Plasticity Is Considered

    Directory of Open Access Journals (Sweden)

    Yaw Awuni

    2015-03-01

    Full Text Available Structure-based virtual screening for selecting potential drug candidates is usually challenged by how numerous false positives in a molecule library are excluded when receptor plasticity is considered. In this study, based on the binding energy landscape theory, a hypothesis that a true inhibitor can bind to different conformations of the binding site favorably was put forth, and related strategies to defeat this challenge were devised; reducing false positives when receptor plasticity is considered. The receptor in the study is the influenza A nucleoprotein, whose oligomerization is a requirement for RNA binding. The structural flexibility of influenza A nucleoprotein was explored by molecular dynamics simulations. The resultant distinctive structures and the crystal structure were used as receptor models in docking exercises in which two binding sites, the tail-loop binding pocket and the RNA binding site, were targeted with the Otava PrimScreen1 diversity-molecule library using the GOLD software. The intersection ligands that were listed in the top-ranked molecules from all receptor models were selected. Such selection strategy successfully distinguished high-affinity and low-affinity control molecules added to the molecule library. This work provides an applicable approach for reducing false positives and selecting true ligands from molecule libraries.

  1. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor prote... (.svg) (.html) (.csml) Show Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. ...PubmedID 17667936 Title Structure, function and regulation of the Toll/IL-1 recep

  2. Structure-function Aspects of Extracellular Leucine-rich Repeat-containing Cell Surface Receptors in Plants

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhang; Bart PHJ Thomma

    2013-01-01

    Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed.

  3. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (Ferrara); (Scripps); (UNC)

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  4. The role of antigenically different virus neuraminidases as structures implicated in receptor-binding processes.

    Science.gov (United States)

    Coimbra, M V; Luiz, M O; Cabral, M C; Couceiro, J N

    1995-06-01

    Influenza A viruses exhibit segmented nucleic acid coding for eight different proteins, two of them as glycoproteins exposed on their lipoprotein envelopes, hemagglutinin (HA) and neuraminidase (NA). Hemagglutinin exhibits receptor-binding activity while neuraminidase develops sialidase cleavage activity which acts on cell receptors. Influenza A strains responsible for human, avian, equine and porcine respiratory infections all over the world present antigenically different hemagglutinin (H1 to H14) and neuraminidase (N1 to N9) structures on their surface. The objective of the present investigation was to study the role of N2, N8, and N9, antigenically diverse neuraminidase structures of human (N2) and animal (N8 and N9) influenza viruses, in the receptor-binding process. Receptor-binding activity of N2 and N8 was analyzed by crossed tests using H3N2 and H3N8 antisera and the hemagglutination inhibition test as a model. Hemagglutinating activity of antigenically different N2 and N8 structures was demonstrable and was inhibited by homologous antisera (N2-H3N2, N8-H3N8) but not by heterologous antisera (N2-H3N8,N8-H3N2). This previously demonstrated N9 hemagglutinating activity was analyzed for receptor-binding specificity using hemagglutination tests and NeuAc alpha2,3Gal and NeuAc alpha2,6Gal derivatized erythrocytes. This highly purified N9 strain was obtained from a virus strain isolated from terns by Dr. Peter Colman (CSIRO Division of Biomolecular Engineering, Parkville, Victoria, Australia). It exhibited receptor-binding specificity for NeuAc alpha2,3Gal sequences, a property similar to that observed in hemagglutinins from avian strains. These results indicate the importance of antigenically different neuraminidase structures as alternative agents for developing receptor-binding activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8547843

  5. Structural Organization of a Full-Length Gp130/LIF-R Cytokine Receptor Transmembrane Complex

    Energy Technology Data Exchange (ETDEWEB)

    Skiniotis, G.; Lupardus, P.J.; Martick, M.; Walz, T.; Garcia, K.C.

    2009-05-26

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-R{alpha}). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6R{alpha} hexameric complex, CNTF/CNTF-R{alpha} heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-R{alpha}/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the 'tall' class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others.

  6. Sequence, Structure and Ligand Binding Evolution of Rhodopsin-Like G Protein-Coupled Receptors: A Crystal Structure-Based Phylogenetic Analysis

    OpenAIRE

    Wolf, Steffen; Grünewald, Stefan

    2015-01-01

    G protein-coupled receptors (GPCRs) form the largest family of membrane receptors in the human genome. Advances in membrane protein crystallization so far resulted in the determination of 24 receptors available as high-resolution atomic structures. We performed the first phylogenetic analysis of GPCRs based on the available set of GPCR structures. We present a new phylogenetic tree of known human rhodopsin-like GPCR sequences based on this structure set. We can distinguish the three separate ...

  7. The VPAC1 receptor: structure and function of a class B GPCR prototype

    Directory of Open Access Journals (Sweden)

    Alain eCouvineau

    2012-11-01

    Full Text Available The class B G protein-coupled receptors (GPCRs represents a small sub-family encompassing 15 members, and are very promising targets for the development of drugs to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs binds Vasoactive Intestinal Peptide (VIP, a neuropeptide widely distributed in central and peripheral nervous system modulating many physiological processes including regulation of exocrine secretions, hormone release, foetal development, immune response... VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC1 receptors. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted of VPAC1 plays a pivotal role in VIP recognition. The use of different approaches such as directed mutagenesis, photoaffinity labeling, Nuclear Magnetic Resonance (NMR, molecular modeling and molecular dynamic simulation has led to demonstrate that: i the central and C-terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is itself structured as a « Sushi » domain; ii the N-terminal end of the VIP molecule interacts with the first transmembrane domain of the receptor where three residues (K143, T144 and T147 play an important role in VPAC1 interaction with the first histidine residue of VIP.

  8. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine Binding Protein as a Structural Surrogate

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette; Balle, Thomas

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs a...

  9. Crystal structure of the Sema-PSI extracellular domain of human RON receptor tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Kinlin L Chao

    Full Text Available Human RON (Recepteur d'Origine Nantais receptor tyrosine kinase is a cell surface receptor for Macrophage Stimulating Protein (MSP. RON mediates signal transduction pathways that regulate cell adhesion, invasion, motility and apoptosis processes. Elevated levels of RON and its alternatively spliced variants are implicated in the progression and metastasis of tumor cells. The binding of MSP α/β heterodimer to the extracellular region of RON receptor induces receptor dimerization and activation by autophosphorylation of the intracellular kinase domains. The ectodomain of RON, containing the ligand recognition and dimerization domains, is composed of a semaphorin (Sema, Plexins-Semaphorins-Integrins domain (PSI, and four Immunoglobulins-Plexins-Transcription factor (IPT domains. High affinity association between MSP and RON is mediated by the interaction between MSP β-chain and RON Sema, although RON activation requires intact RON and MSP proteins. Here, we report the structure of RON Sema-PSI domains at 1.85 Å resolution. RON Sema domain adopts a seven-bladed β-propeller fold, followed by disulfide bond rich, cysteine-knot PSI motif. Comparison with the homologous Met receptor tyrosine kinase reveals that RON Sema-PSI contains distinguishing secondary structural features. These define the receptors' exclusive selectivity towards their respective ligands, RON for MSP and Met for HGF. The RON Sema-PSI crystal packing generates a homodimer with interface formed by the Sema domain. Mapping of the dimer interface using the RON homology to Met, MSP homology to Hepatocyte Growth Factor (HGF, and the structure of the Met/HGF complex shows the dimer interface overlapping with the putative MSPβ binding site. The crystallographically determined RON Sema-PSI homodimer may represent the dimer assembly that occurs during ligand-independent receptor activation and/or the inhibition of the constitutive activity of RONΔ160 splice variant by the soluble RON

  10. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors

    DEFF Research Database (Denmark)

    Fidom, Kimberley; Isberg, Vignir; Hauser, Alexander Sebastian; Mordalski, Stefan; Lehto, Thomas; Bojarski, Andrzej J; Gloriam, David E

    2015-01-01

    We have developed a new method for the building of pharmacophores for G protein-coupled receptors, a major drug target family. The method is a combination of the ligand- and target-based pharmacophore methods and founded on the extraction of structural fragments, interacting ligand moiety and...... ligands are known. 47% of the class A G protein-coupled receptors can be targeted with at least four-element pharmacophores. The fragment libraries can also be used to grow known ligands or for rotamer refinement of homology models. Researchers can download the complete fragment library or a subset...... receptor residue pairs, from crystal structure complexes. We describe the procedure to collect a library with more than 250 fragments covering 29 residue positions within the generic transmembrane binding pocket. We describe how the library fragments are recombined and inferred to build pharmacophores for...

  11. Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery.

    Science.gov (United States)

    Kothiwale, Sandeepkumar; Borza, Corina M; Lowe, Edward W; Pozzi, Ambra; Meiler, Jens

    2015-02-01

    Discoidin domain receptor (DDR) 1 and 2 are transmembrane receptors that belong to the family of receptor tyrosine kinases (RTK). Upon collagen binding, DDRs transduce cellular signaling involved in various cell functions, including cell adhesion, proliferation, differentiation, migration, and matrix homeostasis. Altered DDR function resulting from either mutations or overexpression has been implicated in several types of disease, including atherosclerosis, inflammation, cancer, and tissue fibrosis. Several established inhibitors, such as imatinib, dasatinib, and nilotinib, originally developed as Abelson murine leukemia (Abl) kinase inhibitors, have been found to inhibit DDR kinase activity. As we review here, recent discoveries of novel inhibitors and their co-crystal structure with the DDR1 kinase domain have made structure-based drug discovery for DDR1 amenable. PMID:25284748

  12. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    Science.gov (United States)

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals. PMID:22762186

  13. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  14. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...... very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family....

  15. Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48 were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the "standard" GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature.

  16. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.

    Science.gov (United States)

    Lima, Leandro B; Metzger, Martin; Furigo, Isadora C; Donato, J

    2016-09-01

    Neurons that express the prohormone proopiomelanocortin (POMC) in the arcuate hypothalamic nucleus (Arc) are engaged in the regulation of energy balance and glucose homeostasis. Additionally, POMC neurons are considered key first-order cells regulated by leptin. Interestingly, in the Arc, POMC cells that express the leptin receptor (POMC/LepR+ cells) are found side by side with POMC cells not directly responsive to leptin (POMC/LepR- cells). However, it remains unknown whether these distinct populations innervate different target regions. Therefore, the objective of the present study was to compare the projections of POMC/LepR+ and POMC/LepR- neurons. Using genetically modified LepR-reporter mice to identify leptin receptor-expressing cells and immunohistochemistry to stain POMC-derived peptides (α-MSH or β-endorphin) we confirmed that approximately 80% of Arc β-endorphin-positive neurons co-expressed leptin receptors. POMC/LepR+ and POMC/LepR- axons were intermingled in all of their target regions. As revealed by confocal microscopy, we found an elevated degree of co-localization between α-MSH+ axons and the reporter protein (tdTomato) in all brain regions analyzed, with co-localization coefficients ranging from 0.889 to 0.701. Thus, these two populations of POMC neurons seem to project to the same set of brain structures, although one of the two subtypes of POMC axons was sometimes found to be more abundant than the other in distinct subregions of the same nucleus. Therefore, POMC/LepR+ and POMC/LepR- cells may target separate neuronal populations and consequently activate distinct neuronal circuits within some target nuclei. These findings contribute to unravel the neuronal circuits involved in the regulation of energy balance and glucose homeostasis. PMID:27321158

  17. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Directory of Open Access Journals (Sweden)

    Go Kasuya

    2016-02-01

    Full Text Available P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.

  18. X-ray structure of the mouse serotonin 5-HT3 receptor

    NARCIS (Netherlands)

    Hassaine, Gherici; Deluz, Cedric; Grasso, Luigino; Wyss, Romain; Tol, Menno B.; Hovius, Ruud; Graff, Alexandra; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Li, Xiao-Dan; Poitevin, Frederic; Vogel, Horst; Nury, Hugues

    2014-01-01

    Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structur

  19. Structural differences between liver- and muscle-derived insulin receptors in rats

    International Nuclear Information System (INIS)

    The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The α subunit was identified by specific cross-linking to A14 125I-insulin with disuccinimidyl suberate. Muscle- and liver-derived α subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a M/sub r/ of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the M/sub r/ of muscle- and liver-derived α subunits but did not affect the difference in M/sub r/. Autophosphorylated β subunits migrated with a M/sub r/ of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at M/sub r/ 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that M/sub r/ heterogeneity was due in part to differences in the sialic acid content of β subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action

  20. Structural Basis for Platelet Collagen Responses by the Immune-type Receptor Glycoprotein VI

    Energy Technology Data Exchange (ETDEWEB)

    Horii,K.; Kahn, M.; Herr, A.

    2006-01-01

    Activation of circulating platelets by exposed vessel wall collagen is a primary step in the pathogenesis of heart attack and stroke, and drugs to block platelet activation have successfully reduced cardiovascular morbidity and mortality. In humans and mice, collagen activation of platelets is mediated by glycoprotein VI (GPVI), a receptor that is homologous to immune receptors but bears little sequence similarity to known matrix protein adhesion receptors. Here we present the crystal structure of the collagen-binding domain of human GPVI and characterize its interaction with a collagen-related peptide. Like related immune receptors, GPVI contains 2 immunoglobulin-like domains arranged in a perpendicular orientation. Significantly, GPVI forms a back-to-back dimer in the crystal, an arrangement that could explain data previously obtained from cell-surface GPVI inhibition studies. Docking algorithms identify 2 parallel grooves on the GPVI dimer surface as collagen-binding sites, and the orientation and spacing of these grooves precisely match the dimensions of an intact collagen fiber. These findings provide a structural basis for the ability of an immunetype receptor to generate signaling responses to collagen and for the development of GPVI inhibitors as new therapies for human cardiovascular disease.

  1. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric (Van Andel); (Mayo)

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  2. NOVEL MECHANISMS FOR THE VITAMIN D RECEPTOR (VDR) IN THE SKIN AND IN SKIN CANCER

    OpenAIRE

    Bikle, Daniel D.; Oda, Yuko; Tu, Chia-Ling; Jiang, Yan

    2014-01-01

    The VDR acting with or without its principal ligand 1,25(OH)2D regulates two central processes in the skin, interfollicular epidermal (IFE) differentiation and hair follicle cycling (HFC). Calcium is an important co-regulator with 1,25(OH)2 D at least of epidermal differentiation. Knockout of the calcium sensing receptor (CaSR) in addition to VDR accelerates the development of skin cancer in mice on a low calcium diet. Coactivators such as Mediator 1 (aka DRIP205) and steroid receptor coactiv...

  3. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  4. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  5. Structure-activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling.

    Science.gov (United States)

    Schmidt, Thomas J; Gurrath, Marion; Ozoe, Yoshihisa

    2004-08-01

    The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals. PMID:15246092

  6. Cloning of rat thymic stromal lymphopoietin receptor (TSLPR) and characterization of genomic structure of murine Tslpr gene

    DEFF Research Database (Denmark)

    Blagoev, Blagoy; Nielsen, Mogens M; Angrist, Misha;

    2002-01-01

    , a cytokine involved in B- and T-cell function. We have cloned the TSLP receptor from rat and find that the WSXWX motif commonly found in extracellular domains of cytokine receptors is conserved as a W(T/S)XV(T/A) motif among TSLP receptors from mouse, rat and human. As in the mouse, TSLP receptor is...... is similar to the expression of several other cytokine receptors that have been characterized thus far. We have also characterized the genomic structure of the murine Tslpr gene which shows that in addition to primary sequence homology, it shares a common genomic organization of coding exons with the...

  7. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    Science.gov (United States)

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics. PMID:25686086

  8. A CXCL8 receptor antagonist based on the structure of N-Acetyl-Proline-Glycine-Proline

    OpenAIRE

    Jackson, Patricia L; Noerager, Brett D.; Jablonsky, Michael J; Hardison, Matthew T.; Cox, Bryan D; Patterson, James C.; Dhanapal, Boopathy; Blalock, J Edwin; Muccio, Donald D

    2011-01-01

    A role for the collagen-derived tripeptide, N-acetyl proline-glycine-proline (NAc-PGP), in neutrophil recruitment in chronic airway inflammatory diseases, including COPD and cystic fibrosis, has recently been delineated. Due to structural similarity to an important motif for interleukin-8 (CXCL8) binding to its receptor, NAc-PGP binds to CXCR1/2 receptors, leading to neutrophil activation and chemotaxis. In an effort to develop novel CXCL8 antagonists, we describe the synthesis of four chiral...

  9. CLE Peptides in Plants: Proteolytic Processing,Structure-Activity Relationship, and Ligand-Receptor Interaction

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Gao; Yongfeng Guo

    2012-01-01

    Ligand-receptor signaling initiated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants.Biologically active CLE peptides are released from precursor proteins via proteolytic processing.The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications.This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides,the molecular structure and function of mature CLE ligands,and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).

  10. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    Science.gov (United States)

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well. PMID:27102413

  11. Structure-based rational design of a Toll-like receptor 4 (TLR4 decoy receptor with high binding affinity for a target protein.

    Directory of Open Access Journals (Sweden)

    Jieun Han

    Full Text Available Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4 decoy receptor composed of leucine-rich repeat (LRR modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2. Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.

  12. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca2+-Sensing Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2015-01-01

    Full Text Available Calcium phosphate- (CaP- based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca2+-sensing receptor signaling.

  13. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies. PMID:27335334

  14. Structural Basis for Hydroxycholesterols as Natural Ligands of Orphan Nuclear Receptor ROR[gamma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Lihua; Martynowski, Dariusz; Zheng, Songyang; Wada, Taira; Xie, Wen; Li, Yong (Pitt); (Xiamen)

    2010-09-03

    The retinoic acid-related orphan receptor {gamma} (ROR{gamma}) has important roles in development and metabolic homeostasis. Although the biological functions of ROR{gamma} have been studied extensively, no ligands for ROR{gamma} have been identified, and no structure of ROR{gamma} has been reported. In this study, we showed that hydroxycholesterols promote the recruitment of coactivators by ROR{gamma} using biochemical assays. We also report the crystal structures of the ROR{gamma} ligand-binding domain bound with hydroxycholesterols. The structures reveal the binding modes of various hydroxycholesterols in the ROR{gamma} pocket, with the receptors all adopting the canonical active conformation. Mutations that disrupt the binding of hydroxycholesterols abolish the constitutive activity of ROR{gamma}. Our observations suggest an important role for the endogenous hydroxycholesterols in modulating ROR{gamma}-dependent biological processes.

  15. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α.

    Science.gov (United States)

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  16. Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships

    Directory of Open Access Journals (Sweden)

    K.A. Mankiewicz

    2007-11-01

    Full Text Available Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.

  17. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    Science.gov (United States)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  18. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes

    OpenAIRE

    Dalet, Farfán-García Eunice; Guadalupe, Trujillo-Ferrara José; María del Carmen, Castillo-Hernández; Humberto, Guerra-Araiza Christian; Antonio, Soriano-Ursúa Marvin

    2013-01-01

    In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disord...

  19. Leptin and leptin receptor: Analysis of a structure to function relationship in interaction and evolution from humans to fish

    OpenAIRE

    Prokop, JW; Duff, RJ; Ball, HC; Copeland, DL; Londraville, RL

    2012-01-01

    Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignmen...

  20. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction

    OpenAIRE

    Boege, Fritz; Neumann, Eberhard; Helmreich, Ernst J. M.

    1991-01-01

    Recent information obtained, mainly by recombinant cDNA technology, on structural heterogeneity of hormone and transmitter receptors, of GTP-binding proteins (G-proteins) and, especially, of G-protein-linked receptors is reviewed and the implications of structural heterogeneity for diversity of hormone and transmitter actions is discussed. For the future, three-dimensional structural analysis of membrane proteins participating in signal transmission and transduction pathways is needed in orde...

  1. Structure-function analysis of nucleolin and ErbB receptors interactions.

    Directory of Open Access Journals (Sweden)

    Keren Farin

    Full Text Available BACKGROUND: The ErbB receptor tyrosine kinases and nucleolin are major contributors to malignant transformation. Recently we have found that cell-surface ErbB receptors interact with nucleolin via their cytoplasmic tail. Overexpression of ErbB1 and nucleolin leads to receptor phosphorylation, dimerization and anchorage independent growth. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explored the regions of nucleolin and ErbB responsible for their interaction. Using mutational analyses, we addressed the structure-function relationship of the interaction between ErbB1 and nucleolin. We identified the ErbB1 nuclear localization domain as nucleolin interacting region. This region is important for nucleolin-associated receptor activation. Notably, though the tyrosine kinase domain is important for nucleolin-associated receptor activation, it is not involved in nucleolin/ErbB interactions. In addition, we demonstrated that the 212 c-terminal portion of nucleolin is imperative for the interaction with ErbB1 and ErbB4. This region of nucleolin is sufficient to induce ErbB1 dimerization, phosphorylation and growth in soft agar. CONCLUSIONS/SIGNIFICANCE: The oncogenic potential of ErbB depends on receptor levels and activation. Nucleolin affects ErbB dimerization and activation leading to enhanced cell growth. The C-terminal region of nucleolin and the ErbB1 NLS-domain mediate this interaction. Moreover, when the C-terminal 212 amino acids region of nucleolin is expressed with ErbB1, it can enhance anchorage independent cell growth. Taken together these results offer new insight into the role of ErbB1 and nucleolin interaction in malignant cells.

  2. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    Science.gov (United States)

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  3. Structure of the ligand-binding domain of the EphB2 receptor at 2 Å resolution

    International Nuclear Information System (INIS)

    The crystal structure of the ligand-binding domain of a receptor tyrosine kinase EphB2, an important mediator of cell-cell communication, has been determined at a resolution of 2 Å. The structure confirms the induced-fit mechanism for the binding of ligands to EphB receptors. Eph tyrosine kinase receptors, the largest group of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell–cell communication regulating cell attachment, shape and mobility. Recently, several Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Structural and biophysical studies have established detailed information on the binding and recognition of Eph receptors and ephrins. The initial high-affinity binding of Eph receptors to ephrin occurs through the penetration of an extended G–H loop of the ligand into a hydrophobic channel on the surface of the receptor. Consequently, the G–H loop-binding channel of Eph receptors is the main target in the search for Eph antagonists that could be used in the development of anticancer drugs and several peptides have been shown to specifically bind Eph receptors and compete with the cognate ephrin ligands. However, the molecular details of the conformational changes upon Eph/ephrin binding have remained speculative, since two of the loops were unstructured in the original model of the free EphB2 structure and their conformational changes upon ligand binding could consequently not be analyzed in detail. In this study, the X-ray structure of unbound EphB2 is reported at a considerably higher 2 Å resolution, the conformational changes that the important receptor loops undergo upon ligand binding are described and the consequences that these findings have for the development of Eph antagonists are discussed

  4. Crystal Structure of a TSH Receptor Monoclonal Antibody: Insight Into Graves' Disease Pathogenesis

    OpenAIRE

    Chen, Chun-Rong; Hubbard, Paul A.; Salazar, Larry M.; McLachlan, Sandra M.; Murali, Ramachandran; Rapoport, Basil

    2014-01-01

    The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22–289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' diseas...

  5. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor

    OpenAIRE

    O’Connor, Casey; White, Kate L.; Doncescu, Nathalie; Didenko, Tatiana; Roth, Bryan L.; Czaplicki, Georges; Stevens, Raymond C.; Wüthrich, Kurt; Milon, Alain

    2015-01-01

    The human kappa opioid receptor (KOR) is implicated in addiction, pain, reward, mood, cognition, and perception. Activation of KOR by the neuropeptide dynorphin is critical in mediating analgesia and tolerance. Our solution NMR study of dynorphin (1–13) provided quantitative data on a KOR-bound conformation. Analysis of the peptide structure and dynamics revealed a central helical turn bounded on both sides by flexibly disordered peptide segments. Future drug development will benefit from kno...

  6. Structural Mimicry of A-Loop Tyrosine Phosphorylation by a Pathogenic FGF Receptor 3 Mutation

    OpenAIRE

    Huang, Zhifeng; Chen, Huaibin; Blais, Steven; Neubert, Thomas A.; Li, Xiaokun; Mohammadi, Moosa

    2013-01-01

    The K650E gain-of-function mutation in the tyrosine kinase domain of FGF receptor 3 (FGFR3) causes Thanatophoric Dysplasia type II, a neonatal lethal congenital dwarfism syndrome, and when acquired somatically, it contributes to carcinogenesis. In this report, we determine the crystal structure of the FGFR3 kinase domain harboring this pathogenic mutation and show that the mutation introduces a network of intramolecular hydrogen bonds to stabilize the active-state conformation. In the crystal...

  7. Understanding the structural specificity of Tn antigen for its receptor: an NMR solution study.

    Science.gov (United States)

    D'Amelio, Nicola; Coslovi, Anna; Rossi, Marco; Uggeri, Fulvio; Paoletti, Sergio

    2012-04-01

    The present work aims at understanding the structural basis of the biological recognition of Tn antigen (GalNAc-α-O-L-Ser), a specific epitope expressed by tumor cells, and the role of its amino acidic moiety in the interaction with its receptor (the isolectin B4 extracted from Vicia villosa). An NMR structural characterization of the α and β anomers, based on J couplings and molecular modeling revealed a structure in very good agreement with data reported in literature for variants of the same molecules. In order to demonstrate the involvement of the amino acid in the ligand-receptor recognition, also GalNAc-α-O-D-Ser was studied; the change in the stereochemistry is in fact expected to impact on the interaction only in case the serine is part of the epitope. Relaxation properties in the presence of the receptor clearly indicated a selective recognition of the natural L form, probably due to the formation of a water-mediated hydrogen bond with Asn 129 of the protein. PMID:22341503

  8. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien (Michigan-Med); (Stanford-MED); (UAB, Spain)

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  9. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    Science.gov (United States)

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures. PMID:26978043

  10. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation.

    Directory of Open Access Journals (Sweden)

    Letizia Chiodo

    Full Text Available Nicotinic acetylcholine receptors (nAchRs are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukaryotic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is due to different problems with the template structures: on one side the homology with prokaryotic species is too low, while on the other the open eukaryotic GluCl proved itself unstable in several MD studies and collapsed to a dehydrated, non-conductive conformation, even when bound to an agonist. Aim of this work is to obtain, by a mixing of state-of-the-art homology and simulation techniques, a plausible prediction of the structure (still unknown of the open state of human α7 nAChR complexed with epibatidine, from which it is possible to start structural and functional test studies. To prevent channel closure we employ a restraint that keeps the transmembrane pore open, and obtain in this way a stable, hydrated conformation. To further validate this conformation, we run four long, unbiased simulations starting from configurations chosen at random along the restrained trajectory. The channel remains stable and hydrated over the whole runs. This allows to assess the stability of the putative open conformation over a cumulative time of 1 μs, 800 ns of which are of unbiased simulation. Mostly based on the analysis of pore hydration and size, we suggest that the obtained structure has reasonable chances to be (at least one of the possible structures of the channel in the open conformation.

  11. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders;

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent sig......Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand...

  12. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Nemčovičová, Ivana [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States); Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava (Slovakia); Zajonc, Dirk M., E-mail: dzajonc@liai.org [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States)

    2014-03-01

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor

  13. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    International Nuclear Information System (INIS)

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X6G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor interactions

  14. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models.

    Science.gov (United States)

    Zhang, Xiaorui; Qi, Chunhui; Guo, Yan; Zhou, Wenxia; Zhang, Yongxiang

    2016-09-20

    Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides. PMID:27261743

  15. Modeling structure of G protein-coupled receptors in huan genome

    KAUST Repository

    Zhang, Yang

    2016-01-26

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due to difficulties in crystallization, experimental structure determination remains extremely difficult for human GPCRs, which have been a major barrier in modern structure-based drug discovery. We proposed a new hybrid protocol, GPCR-I-TASSER, to construct GPCR structure models by integrating experimental mutagenesis data with ab initio transmembrane-helix assembly simulations, assisted by the predicted transmembrane-helix interaction networks. The method was tested in recent community-wide GPCRDock experiments and constructed models with a root mean square deviation 1.26 Å for Dopamine-3 and 2.08 Å for Chemokine-4 receptors in the transmembrane domain regions, which were significantly closer to the native than the best templates available in the PDB. GPCR-I-TASSER has been applied to model all 1,026 putative GPCRs in the human genome, where 923 are found to have correct folds based on the confidence score analysis and mutagenesis data comparison. The successfully modeled GPCRs contain many pharmaceutically important families that do not have previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin and Neuropeptide Y receptors. All the human GPCR models have been made publicly available through the GPCR-HGmod database at http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ The results demonstrate new progress on genome-wide structure modeling of transmembrane proteins which should bring useful impact on the effort of GPCR-targeted drug discovery.

  16. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  17. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  18. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications.

    Science.gov (United States)

    Cui, Minghua; Gosu, Vijayakumar; Basith, Shaherin; Hong, Sunhye; Choi, Sun

    2016-01-01

    Transient receptor potential (TRP) channels belong to a superfamily of sensory-related ion channels responding to a wide variety of thermal, mechanical, or chemical stimuli. In an attempt to comprehend the piquancy and pain mechanism of the archetypal vanilloids, transient receptor potential vanilloid (TRPV) 1 was discovered. TRPV1, a well-established member of the TRP family, is implicated in a range of functions including inflammation, painful stimuli sensation, and mechanotransduction. TRPV1 channels are nonselective cation receptors that are gated by a broad array of noxious ligands. Such polymodal-sensor aspect makes the TRPV1 channel extremely versatile and important for its role in sensing burning pain. Besides ligands, TRPV1 signaling can also be modulated by lipids, secondary messengers, protein kinases, cytoskeleton, and several other proteins. Due to its central role in hyperalgesia transduction and inflammatory processes, it is considered as the primary pharmacological pain target. Moreover, understanding the structural and functional intricacies of the channel is indispensable for the therapeutic intervention of TRPV1 in pain and other pathological disorders. In this chapter, we seek to give a mechanistic outlook on the TRPV1 channel. Specifically, we will explore the TRPV1 structure, activation, modulation, ligands, and its therapeutic targeting. However, the major objective of this review is to highlight the fact that TRPV1 channel can be treated as an effective therapeutic target for treating several pain- and nonpain-related physiological and pathological states. PMID:27038373

  19. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    Science.gov (United States)

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229). PMID:27129274

  20. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    Di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-01-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation. PMID:26567894

  1. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  2. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  3. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  4. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    Science.gov (United States)

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  5. Form follows function - the three-dimensional structure of antigen receptor gene loci.

    Science.gov (United States)

    Fugmann, Sebastian D

    2014-04-01

    Antigen receptor genes are assembled during lymphocyte development from individual gene segments by a somatic gene rearrangement process named V(D)J recombination. This process is tightly regulated to ensure the generation of an unbiased broad primary repertoire of immunoglobulins and T cell receptors, and to prevent aberrant recombination products that could initiate lymphomagenesis. One important mode of regulation that has recently been discovered for the immunoglobulin heavy chain (IGH) gene locus is the adoption of distinct three-dimensional structures of the locus. Changes in the spatial conformation are thought to ensure the appropriate access of the V(D)J recombinase machinery at each developmental stage, and the formation of extensive chromosome loops has been implicated in allowing equal access to widely dispersed gene elements. PMID:24549092

  6. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2006-02-01

    Full Text Available G protein-coupled receptors (GPCRs, encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness

  7. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Park, Won-Mee; Sakata, Ichiro;

    2013-01-01

    The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro....../o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via...... ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin...

  8. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  9. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  10. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  11. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex.

    Science.gov (United States)

    Anderson, K; Lai, F A; Liu, Q Y; Rousseau, E; Erickson, H P; Meissner, G

    1989-01-15

    Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle. PMID:2463249

  12. In silico modeling techniques for predicting the tertiary structure of human H4 receptor.

    Science.gov (United States)

    Zaid, Hilal; Raiyn, Jamal; Osman, Midhat; Falah, Mizied; Srouji, Samer; Rayan, Anwar

    2016-01-01

    First cloned in 2000, the human Histamine H4 Receptor (hH4R) is the last member of the histamine receptors family discovered so far, it belongs to the GPCR super-family and is involved in a wide variety of immunological and inflammatory responses. Potential hH4R antagonists are proposed to have therapeutic potential for the treatment of allergies, inflammation, asthma and colitis. So far, no hH4R ligands have been successfully introduced to the pharmaceutical market, which creates a strong demand for new selective ligands to be developed. in silico techniques and structural based modeling are likely to facilitate the achievement of this goal. In this review paper we attempt to cover the fundamental concepts of hH4R structure modeling and its implementations in drug discovery and development, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of hH4R and GPCRs, in regards to computerized techniques for 3-D structure modeling. PMID:26709794

  13. Effect of ConA—receptor interaction on the structure of cell membrane

    Institute of Scientific and Technical Information of China (English)

    DAIJIANWU; KECHUNLIN; 等

    1992-01-01

    Recently,the effect of ligand receptor interaction on the membrane structure of liposomes has been studied extensively,However,little is known about how it exists on biological membranes,In this paper,the effect of Concanavalin A(ConA) receptorinteratcion on the structure of cell membranes was studied by Circular DIchrosim(CD) and 31P Nuclear Magnetic Resonance(NMR).CD results of both the purified macrophage membranes and human erythrocyte hgosts(EG) showed that the conformation of membrane proteins changed after ConA binding.For further research,31P-NMR was used to detect the orgainzation of phosp[holipid molecules on macrophage membranes.After ConA binding,the tendercy to form non bilayer structure increased with the amount of ConA.The changes of 31P-NMR spectra of living macrophages might be partly due to the above stated reason too.In addition,ConA-receptor interaction also induced similar results of 31P-NMR spectra in EG.In contrast,wheat germ agglutinin (WGA),another kind of lectin,rarely showed the same influence.

  14. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    OpenAIRE

    Cash, Jennifer N.; Rejon, Carlis A; McPherron, Alexandra C.; Bernard, Daniel J; Thompson, Thomas B.

    2009-01-01

    Myostatin is a member of the transforming growth factor-β (TGF-β) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-β class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst2...

  15. Structure-Based Evolution of Subtype-Selective Neurotensin Receptor Ligands

    OpenAIRE

    Schaab, Carolin; Kling, Ralf Christian; Einsiedel, Jürgen; Hübner, Harald; Clark, Tim; Seebach, Dieter; Gmeiner, Peter

    2014-01-01

    Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure–activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8–13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8–1...

  16. Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception.

    Directory of Open Access Journals (Sweden)

    Natacha Roudnitzky

    Full Text Available The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype

  17. New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4

    Institute of Scientific and Technical Information of China (English)

    Chen Zhong; Jianping Ding

    2011-01-01

    The G protein-coupled receptor (GPCR) superfamily consists of thousands of integral membrane proteins that exert a wide variety of physiological functions and account for a large portion of the drag targets identified so far.However,structural knowledge of GPCRs is scarce, with crystal structures determined for only a few members including β1and β2 adrenergic receptors, adenosine receptor, rhodopsin,and dopamine D3 receptor [1].

  18. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding.

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  19. No evidence of association between structural polymorphism at the dopamine D3 receptor locus and alcoholism in the Japanese

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Susumu; Muramatsu, Taro; Matsushita, Sachio [National Institute on Alcoholism, Kanagawa (Japan); Murayama, Masanobu [Akagi Kougen Hospital, Gunma (Japan)

    1996-07-26

    Dopaminergic systems mediate reward mechanisms and are involved in reinforcing self-administration of dependence-forming substances, including alcohol. Studies have reported that polymorphisms of the dopamine D2 receptor, whose structure and function are similar to those of the dopamine D3 receptor, increase the susceptibility to alcoholism. The observations led to the examination of the possible association between a structural polymorphism of the D3 receptor gene and alcoholism. Genotyping results, employing a PCR-RFLP method, showed no difference in allele and genotype frequencies of the D3 BalI polymorphism (Ser{sup 9}/Gly{sup 9}) between Japanese alcoholics and controls. Moreover, these frequencies were not altered in alcoholics with inactive aldehyde dehydrogenase-2 (ALDH2), a well-defined negative risk factor for alcoholism. These results strongly suggest that the dopamine D3 receptor is not associated with alcoholism. 19 refs., 1 fig., 1 tab.

  20. Structural basis for integration of GluD receptors within synaptic organizer complexes.

    Science.gov (United States)

    Elegheert, Jonathan; Kakegawa, Wataru; Clay, Jordan E; Shanks, Natalie F; Behiels, Ester; Matsuda, Keiko; Kohda, Kazuhisa; Miura, Eriko; Rossmann, Maxim; Mitakidis, Nikolaos; Motohashi, Junko; Chang, Veronica T; Siebold, Christian; Greger, Ingo H; Nakagawa, Terunaga; Yuzaki, Michisuke; Aricescu, A Radu

    2016-07-15

    Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function. PMID:27418511

  1. Extended and Structurally Supported Insights into Extracellular Hormone Binding, Signal Transduction and Organization of the Thyrotropin Receptor

    OpenAIRE

    Krause, Gerd; Kreuchwig, Annika; Kleinau, Gunnar

    2012-01-01

    The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One ma...

  2. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    Science.gov (United States)

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  3. Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4

    DEFF Research Database (Denmark)

    Butcher, Adrian J; Hudson, Brian D; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been...

  4. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, T.; Chance, M; Palczewski, K

    2009-01-01

    G protein-coupled receptors with seven transmembrane {alpha}-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A2A-adenosine, {beta}1- and {beta}2-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.

  5. Structure and Function of the Intracellular Region of the Plexin-B1 Transmembrane Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Hota, Prasanta K.; Penachioni, Junia Y.; Hamaneh, Mehdi B.; Kim, SoonJeung; Alviani, Rebecca S.; Shen, Limin; He, Hao; Tempel, Wolfram; Tamagnone, Luca; Park, Hee-Won; Buck, Matthias; (Torino); (Toronto); (Case Western U.-Med)

    2010-02-11

    Members of the plexin family are unique transmembrane receptors in that they interact directly with Rho family small GTPases; moreover, they contain a GTPase-activating protein (GAP) domain for R-Ras, which is crucial for plexin-mediated regulation of cell motility. However, the functional role and structural basis of the interactions between the different intracellular domains of plexins remained unclear. Here we present the 2.4 {angstrom} crystal structure of the complete intracellular region of human plexin-B1. The structure is monomeric and reveals that the GAP domain is folded into one structure from two segments, separated by the Rho GTPase binding domain (RBD). The RBD is not dimerized, as observed previously. Instead, binding of a conserved loop region appears to compete with dimerization and anchors the RBD to the GAP domain. Cell-based assays on mutant proteins confirm the functional importance of this coupling loop. Molecular modeling based on structural homology to p120{sup GAP} {center_dot}H-Ras suggests that Ras GTPases can bind to the plexin GAP region. Experimentally, we show that the monomeric intracellular plexin-B1 binds R-Ras but not H-Ras. These findings suggest that the monomeric form of the intracellular region is primed for GAP activity and extend a model for plexin activation.

  6. Probing Structural Variability at the N Terminus of the TSH Receptor with a Murine Monoclonal Antibody That Distinguishes between Two Receptor Conformational Forms

    OpenAIRE

    Hamidi, Sepehr; Chen, Chun-Rong; Murali, Ramachandran; McLachlan, Sandra M.; Rapoport, Basil

    2012-01-01

    Despite elucidation of the crystal structure of M22, a human thyroid-stimulating autoantibody (TSAb) bound to the TSH receptor (TSHR) leucine-rich repeat domain (LRD), the mechanism by which TSAs activate the TSHR and cause Graves' disease remains unknown. A nonstimulatory murine monoclonal antibody, 3BD10, and TSAb interact with the LRD N-terminal cysteine cluster and reciprocally distinguish between two different LRD conformational forms. To study this remarkable phenomenon, we investigated...

  7. Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors.

    Science.gov (United States)

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2014-05-01

    Current methods of G protein coupled receptors (GPCRs) phylogenetic classification are sequence based and therefore inappropriate for highly divergent sequences, sharing low sequence identity. In this study, sequence structure profile based alignment generated by PROMALS3D was used to understand the GPCR Class A Rhodopsin superfamily evolution using the MEGA 5 software. Phylogenetic analysis included a combination of Neighbor-Joining method and Maximum Likelihood method, with 1000 bootstrap replicates. Our study was able to identify potential ligand association for Class A Orphans and putative/unclassified Class A receptors with no cognate ligand information: GPR21 and GPR52 with fatty acids; GPR75 with Neuropeptide Y; GPR82, GPR18, GPR141 with N-arachidonylglycine; GPR176 with Free fatty acids, GPR10 with Tachykinin & Neuropeptide Y; GPR85 with ATP, ADP & UDP glucose; GPR151 with Galanin; GPR153 and GPR162 with Adrenalin, Noradrenalin; GPR146, GPR139, GPR142 with Neuromedin, Ghrelin, Neuromedin U-25 & Thyrotropin-releasing hormone; GPR171 with ATP, ADP & UDP Glucose; GPR88, GPR135, GPR161, GPR101with 11-cis-retinal; GPR83 with Tackykinin; GPR148 with Prostanoids, GPR109b, GPR81, GPR31with ATP & UTP and GPR150 with GnRH I & GnRHII. Furthermore, we suggest that this study would prove useful in re-classification of receptors, selecting templates for homology modeling and identifying ligands which may show cross reactivity with other GPCRs as signaling via multiple ligands play a significant role in disease modulation. PMID:24503482

  8. Structure-Based Prediction of Subtype Selectivity of Histamine H3 Receptor Selective Antagonists in Clinical Trials

    DEFF Research Database (Denmark)

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A., III

    2011-01-01

    applications, including treatment of Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity.(1) However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity......Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H3 histamine receptor (hH3HR) antagonists have been proposed for specific therapeutic...... and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H1, H2, H3, and H4) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol,(2...

  9. Crystal structure of a TSH receptor monoclonal antibody: insight into Graves' disease pathogenesis.

    Science.gov (United States)

    Chen, Chun-Rong; Hubbard, Paul A; Salazar, Larry M; McLachlan, Sandra M; Murali, Ramachandran; Rapoport, Basil

    2015-01-01

    The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22-289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' disease pathogenesis. The 3-dimensional structure of the active A-subunit (in complex with a human TSAb Fab, M22) is known, but the structural difference with inactive A-subunits is unknown. We solved the 3BD10 Fab 3-dimensional crystal structure. Guided by prior knowledge of a portion of its epitope, 3BD10 docked in silico with the known active TSHR-289 monomeric structure. Because both TSAb and 3BD10 recognize the active TSHR A-subunit monomer, this form of the molecule can be excluded as the basis for the active-inactive dichotomy, suggesting, instead a role for A-subunit quaternary structure. Indeed, in silico analysis revealed that M22, but not 3BD10, bound to a TSHR-289 trimer. In contrast, 3BD10, but not M22, bound to a TSHR-289 dimer. The validity of these models is supported experimentally by the temperature-dependent balance between active and inactive TSHR-289. In summary, we provide evidence for a structural basis to explain the conformational heterogeneity of TSHR A-subunits (TSHR-289). The pathophysiologic importance of these findings is that affinity maturation of pathogenic TSAb in Graves' disease is likely to involve a trimer of the shed TSHR A-subunit. PMID:25419797

  10. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen.

    Directory of Open Access Journals (Sweden)

    Arielle Butts

    Full Text Available Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1 the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2 an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3 electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold.

  11. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors.

    Science.gov (United States)

    Singh, Anamika; Kast, Johannes; Dirain, Marvin L S; Huang, Huisuo; Haskell-Luevano, Carrie

    2016-02-17

    The melanocortin system is involved in the regulation of several complex physiological functions. In particular, the melanocortin-3 and -4 receptors (MC3R/MC4R) have been demonstrated to regulate body weight, energy homeostasis, and feeding behavior. Synthetic and endogenous melanocortin agonists have been shown to be anorexigenic in rodent models. Herein, we report synthesis and structure-activity relationship (SAR) studies of 27 nonpeptide small molecule ligands based on an unsymmetrical substituted urea core. Three templates containing key residues from the lead compounds, showing diversity at three positions (R(1), R(2), R(3)), were designed and synthesized. The syntheses were optimized for efficient microwave-assisted chemistry that significantly reduced total syntheses time compared to a previously reported room temperature method. The pharmacological characterization of the compounds on the mouse melanocortin receptors identified compounds 1 and 12 with full agonist activity at the mMC4R, but no activity was observed at the mMC3R when tested up to 100 μM concentrations. The SAR identified compounds possessing aliphatic or saturated cyclic amines at the R(1) position, bulky aromatic groups at the R(2) position, and benzyl group at the R(3) position resulted in mMC4R selectivity over the mMC3R. The small molecule template and SAR knowledge from this series may be helpful in further design of MC3R/MC4R selective small molecule ligands. PMID:26645732

  12. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S. (NWU)

    2010-03-08

    TGF-{beta} ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-{beta} ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.

  13. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment

    OpenAIRE

    Feese, Michael D; Tamada, Taro; Kato, Yoichi; Maeda, Yoshitake; Hirose, Masako; Matsukura, Yasuko; Shigematsu, Hideki; Muto, Takanori; Matsumoto, Atsushi; Watarai, Hiroshi; Ogami, Kinya; Tahara, Tomoyuki; Kato, Takashi; Miyazaki, Hiroshi; Kuroki, Ryota

    2004-01-01

    The cytokine thrombopoietin (TPO), the ligand for the hematopoietic receptor c-Mpl, acts as a primary regulator of megakaryocytopoiesis and platelet production. We have determined the crystal structure of the receptor-binding domain of human TPO (hTPO163) to a 2.5-Å resolution by complexation with a neutralizing Fab fragment. The backbone structure of hTPO163 has an antiparallel four-helix bundle fold. The neutralizing Fab mainly recognizes the C–D crossover loop containing the species invari...

  14. Relationship of Structure and Function of DNA-Binding Domain in Vitamin D Receptor

    Directory of Open Access Journals (Sweden)

    Lin-Yan Wan

    2015-07-01

    Full Text Available While the structure of the DNA-binding domain (DBD of the vitamin D receptor (VDR has been determined in great detail, the roles of its domains and how to bind the motif of its target genes are still under debate. The VDR DBD consists of two zinc finger modules and a C-terminal extension (CTE, at the end of the C-terminal of each structure presenting α-helix. For the first zinc finger structure, N37 and S-box take part in forming a dimer with 9-cis retinoid X receptor (RXR, while V26, R50, P-box and S-box participate in binding with VDR response elements (VDRE. For the second zinc finger structure, P61, F62 and H75 are essential in the structure of the VDR homodimer with the residues N37, E92 and F93 of the downstream of partner VDR, which form the inter-DBD interface. T-box of the CTE, especially the F93 and I94, plays a critical role in heterodimerization and heterodimers–VDRE binding. Six essential residues (R102, K103, M106, I107, K109, and R110 of the CTE α-helix of VDR construct one interaction face, which packs against the DBD core of the adjacent symmetry mate. In 1,25(OH2D3-activated signaling, the VDR-RXR heterodimer may bind to DR3-type VDRE and ER9-type VDREs of its target gene directly resulting in transactivation and also bind to DR3-liked nVDRE of its target gene directly resulting in transrepression. Except for this, 1α,25(OH2D3 ligand VDR-RXR may bind to 1αnVDRE indirectly through VDIR, resulting in transrepression of the target gene. Upon binding of 1α,25(OH2D3, VDR can transactivate and transrepress its target genes depending on the DNA motif that DBD binds.

  15. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  16. Structure and diversity of the T-cell receptor alpha chain in the Mexican axolotl.

    Science.gov (United States)

    Fellah, J S; Kerfourn, F; Dumay, A M; Aubet, G; Charlemagne, J

    1997-01-01

    Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) alpha chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRalpha-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRalpha-V segments were all provided by sequences belonging to the human TCRalpha-V1 family and the mouse TCRalpha-V3 and TCRalpha-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 alpha chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 alpha chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Calpha domain had the typical structure of mammalian and avian Calpha domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. PMID:9002443

  17. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia; Malito, David L.; Kniazeff, Julie; Chen, Yan; Burmakina, Svetlana; Quick, Matthias; Bush, Martin; Javitch, Jonathan A.; Pin, Jean-Philippe; Fan, Qing R. (CNRS-UMR); (Columbia)

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.

  18. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation

    Directory of Open Access Journals (Sweden)

    Anne eSchuemann

    2013-06-01

    Full Text Available Coordinated changes at excitatory and inhibitory synapses are essential for normal brain development and function. It is well established that excitatory neurons undergo structural changes, but our knowledge about inhibitory structural plasticity is rather scarce. Here we present a quantitative analysis of the dynamics of GABAergic boutons in the dendritic region of the hippocampal CA1 area using time-lapse two-photon imaging in organotypic hippocampal cultures from GAD65-GFP mice. We show that ~20% of inhibitory boutons are not stable. They are appearing, disappearing and reappearing at specific locations along the inhibitory axon and reflect immature or incomplete synapses. Furthermore, we observed that persistent boutons show large volume fluctuations over several hours, suggesting that presynaptic content of inhibitory synapses is not constant. Our data show that inhibitory boutons are highly dynamic structures and suggest that inhibitory axons are continuously probing potential locations for inhibitory synapse formation by redistributing presynaptic material along the axon.In addition, we found that neuronal activity affects the exploratory dynamics of inhibitory axons. Blocking network activity rapidly reduces the number of transient boutons, whereas enhancing activity reduces the number of persistent inhibitory boutons, possibly reflecting enhanced competition between boutons along the axon. The latter effect requires signaling through GABAA receptors. We propose that activity-dependent regulation of bouton dynamics contributes to inhibitory synaptic plasticity.

  19. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove.

    Directory of Open Access Journals (Sweden)

    Rich Olson

    2005-08-01

    Full Text Available Neurons in the murine vomeronasal organ (VNO express a family of class Ib major histocompatibility complex (MHC proteins (M10s that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  20. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.; Bjorkman, P.J.; /Caltech /Harvard U.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  1. Structural Studies of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Tetramer in Complex with Its Receptor, Sialyllactose

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ping; Thompson, Thomas B.; Wurzburg, Beth A.; Paterson, Reay G.; Lamb, Robert A.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.

  2. Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution.

    Directory of Open Access Journals (Sweden)

    John A Hammond

    Full Text Available The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional

  3. T3 glycoprotein is functional although structurally distinct on human T-cell receptor γ T lymphocytes

    International Nuclear Information System (INIS)

    The T-cell receptor (TCR) γ gene product occurs in association with T3 (CD3) polypeptides on the surface of human T lymphocytes. TCR γ lymphocytes express arrays of T3 polypeptides distinct from those typically observed on TCR αβ lymphocytes. This report demonstrates that identical T3 γ, δ, and element of polypeptides are synthesized by TCR γ lymphocytes and TCR αβ lymphocytes. However, the processing of T3 δ oligosaccharides is distinct in the two cell types. This observation may suggest distinct quaternary structures of these receptor complexes. Despite these structural differences, the T3 molecule on TCR γ lymphocytes is functional. It is associated with and comodulates with TCR γ and it serves as a substrate from protein kinase C-mediated phosphorylation. Anti-T3 monoclonal antibodies induce a rapid increase in cytoplasmic free calcium, indicating that the receptor complex is involved in signal transduction and triggering of TCR γ lymphocytes

  4. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    Science.gov (United States)

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  5. Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation

    International Nuclear Information System (INIS)

    Expression of internal receptors for MSH is an important criterion for responsiveness to MSH by Cloudman melanoma cells. Here, we show that internal and external receptors for MSH are of identical molecular weights (50-53 kDa) and share common antigenic determinants, indicating a structural relationship between the 2 populations of molecules. The internal receptors co-purified with a sub-cellular fraction highly enriched for small vesicles, many of which were coated. Ultraviolet B light (UVB) acted synergistically with MSH to increase tyrosinase activity and melanin content of cultured Cloudman melanoma cells, consistent with previous findings in the skin of mice and guinea pigs. Preceding the rise in tyrosinase activity in cultured cells, UVB elicited a decrease in internal MSH binding sites and a concomitant increase in external sites. The time frame for the UVB effects on MSH receptors and melanogenesis, 48 hours, was similar to that for a response to solar radiation in humans. Together, the results indicate a key role for MSH receptors in the induction of melanogenesis by UVB and suggest a potential mechanism of action for UVB: redistribution of MSH receptors with a resultant increase in cellular responsiveness to MSH

  6. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES: INTERSPECIES EXTRAPOLATIONS REGARDING ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    Species Differences in Androgen and Estrogen Receptor Structure and Function Among Vertebrates and Invertebrates: Interspecies Extrapolations regarding Endocrine Disrupting Chemicals VS Wilson1, GT Ankley2, M Gooding 1,3, PD Reynolds 1,4, NC Noriega 1, M Cardon 1, P Hartig1,...

  7. The Structure-Function Relationships of Complement Receptor Type 2 (CR2; CD21).

    Science.gov (United States)

    Hannan, Jonathan Paul

    2016-01-01

    Human complement receptor type 2 (CR2; CD21) is a surface-associated glycoprotein which binds to a variety of endogenous ligands, including the complement component C3 fragments iC3b, C3dg and C3d, the low-affinity IgE receptor CD23, and the type I cytokine, interferon-alpha. CR2 links the innate complement-mediated immune response to pathogens and foreign antigens with the adaptive immune response by binding to C3d that is covalently attached to targets, and which results in a cell signalling phenomenon that lowers the threshold for B cell activation. Variations or deletions of the CR2 gene in humans, or the Cr2 gene in mice associate with a variety of autoimmune and inflammatory conditions. A number of infectious agents including Epstein-Barr virus (EBV), Human Immunodeficiency Virus (HIV) and prions also bind to CR2 either directly or indirectly by means of C3d-targeted immune complexes. In this review we discuss the interactions that CR2 undertakes with its best characterized ligands C3d, CD23 and the EBV gp350/220 envelope protein. To date only a single physiologically relevant complex of CR2 with one of its ligands, C3d, has been elucidated. By contrast, the interactions with CD23 and EBV gp350/220, while being important from physiologic and disease-associated standpoints, respectively, are only incompletely understood. A detailed knowledge of the structure-function relationships that CR2 undergoes with its ligands is necessary to understand the implications of using recombinant CR2 in therapeutic or imaging agents, or alternatively targeting CR2 to down-regulate the antibody mediated immune response in cases of autoimmunity. PMID:26916158

  8. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  9. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  10. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    Energy Technology Data Exchange (ETDEWEB)

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip (UBC)

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  11. Conserved structure of amphibian T-cell antigen receptor beta chain.

    Science.gov (United States)

    Fellah, J S; Kerfourn, F; Guillet, F; Charlemagne, J

    1993-07-15

    All jawed vertebrates possess well-differentiated thymuses and elicit T-cell-like cell-mediated responses; however, no surface T-cell receptor (TCR) molecules or TCR genes have been identified in ectothermic vertebrate species. Here we describe cDNA clones from an amphibian species, Ambystoma mexicanum (the Mexican axolotl), that have sequences highly homologous to the avian and mammalian TCR beta chains. The cloned amphibian beta chain variable region (V beta) shares most of the structural characteristics with the more evolved vertebrate V beta and presents approximately 56% amino acid identities with the murine V beta 14 and human V beta 18 families. The two different cloned axolotl beta chain joining regions (J beta) were found to have conserved all the invariant mammalian J beta residues, and in addition, the presence of a conserved glycine at the V beta-J beta junction suggests the existence of diversity elements. The extracellular domains of the two axolotl beta chain constant region isotypes C beta 1 and C beta 2 show an impressively high degree of identity, thus suggesting that a very efficient mechanism of gene correction has been in operation to preserve this structure at least from the early tetrapod evolution. The transmembrane axolotl C beta domains have been less well conserved when compared to the mammalian C beta but they do maintain the lysine residue that is thought to be involved in the charged interaction between the TCR alpha beta heterodimer and the CD3 complex. PMID:8341702

  12. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Luke A [ORNL; Johnson, Christopher L [ORNL; Solovyova, Alexandra [University of Newcastle upon Tyne; Callow, Phil [Institut Laue-Langevin (ILL); Weiss, Kevin L [ORNL; Ridley, Helen [University of Newcastle upon Tyne; Le Brun, Anton P [ORNL; Kinane, Christian [ISIS Facility, Rutherford Appleton Laboratory; Webster, John [ISIS Facility, Rutherford Appleton Laboratory; Holt, Stephen A [ORNL; Lakey, Jeremy H [ORNL

    2012-01-01

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  13. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    Directory of Open Access Journals (Sweden)

    Abagyan Ruben

    2002-01-01

    Full Text Available Abstract Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.

  14. Delineation of structural domains involved in the subtype specificity of tachykinin receptors through chimeric formation of substance P/substance K receptors.

    OpenAIRE

    Y. Yokota; Akazawa, C; Ohkubo, H; Nakanishi, S.

    1992-01-01

    The mammalian tachykinin receptors belong to the family of G protein-coupled receptors and consist of the substance P, substance K and neuromedin K receptors (SPR, SKR and NKR). We constructed 14 chimeric receptors in which seven transmembrane segments were sequentially exchanged between the rat SPR and SKR and examined the subtype specificity of the chimeric receptors by radioligand binding and inositol phosphate measurements after transfection into COS cells. All chimeric receptors showed m...

  15. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor

    OpenAIRE

    Hua, Qing-Xin; Nakagawa, Satoe H.; Wilken, Jill; Ramos, Rowena R.; Jia, Wenhua; Bass, Joseph; Weiss, Michael A.

    2003-01-01

    Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking c...

  16. Micro-structured peptide surfaces for the detection of high-affinity peptide-receptor interactions in living cells.

    Science.gov (United States)

    Lipp, Anna-Maria; Ji, Bozhi; Hager, Roland; Haas, Sandra; Schweiggl, Simone; Sonnleitner, Alois; Haselgrübler, Thomas

    2015-12-15

    Peptide ligands have great potential as selective agents for diagnostic imaging and therapeutic targeting of human cancers. A number of high-throughput assays for screening potential candidate peptides have been developed. Although these screening assays are indispensable for the identification of peptide ligands at a large scale, it is crucial to validate peptide binding and selectivity for targeted receptors in a live-cell context. For testing high-affinity peptide-receptor interactions in the plasma membrane of living cells, we developed cell-resistant, micro-structured glass surfaces with high-density and high-contrast peptide features. Cell adhesion and recruitment of fluorescent receptors to micro-patterned peptides in the live-cell membrane were evaluated by reflection interference contrast (RIC) and total internal reflection (TIRF) microscopy, respectively. To demonstrate both the specificity and modularity of the assay, co-patterning of fluorescent receptors with three different immobilized micro-structured ligands was shown: first, interaction of green fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor expressed in Jurkat cells with immobilized EGF was detected and quantified. Second, using Jurkat cells, we demonstrated specific interaction of yellow fluorescent protein (YFP)-tagged β3 integrin with c(RGDfK) peptide. Third, we identified indirect recruitment of GFP-tagged α5 integrin to an 11-mer peptide. In summary, our results show that the developed micro-structured surfaces are a useful tool for the validation and quantification of peptide-receptor interactions in their natural cellular environment. PMID:26210593

  17. Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold

    DEFF Research Database (Denmark)

    Johansson, Henrik; Boesgaard, Michael Worch; Nørskov-Lauritsen, Lenea; Larsen, Inna; Kuhne, Sebastiaan; Gloriam, David E; Bräuner-Osborne, Hans; Sejer Pedersen, Daniel

    2015-01-01

    G protein-coupled receptors (GPCRs) represent a biological target class of fundamental importance in drug therapy. The GPRC6A receptor is a newly deorphanized class C GPCR that we recently reported for the first allosteric antagonists based on the 2-arylindole privileged structure scaffold (e.g., 1......, and 34b as antagonists at the GPRC6A receptor in the low micromolar range and show that 7 and 34b display >9-fold selectivity for the GPRC6A receptor over related GPCRs, making 7 and 34b the most potent and selective antagonists for the GPRC6A receptor reported to date....

  18. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  19. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi; Young, Matthew A. (Michigan)

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  20. A Specific Cholesterol Binding Site Is Established by the 2.8 Å Structure of the Human [beta][subscript 2]-Adrenergic Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A.; Cherezov, Vadim; Griffith, Mark T.; Roth, Christopher B.; Jaakola, Veli-Pekka; Chien, Ellen Y.T.; Velasquez, Jeffrey; Kuhn, Peter; Stevens, Raymond C. (Scripps)

    2008-07-08

    The role of cholesterol in eukaryotic membrane protein function has been attributed primarily to an influence on membrane fluidity and curvature. We present the 2.8 {angstrom} resolution crystal structure of a thermally stabilized human {beta}{sub 2}-adrenergic receptor bound to cholesterol and the partial inverse agonist timolol. The receptors pack as monomers in an antiparallel association with two distinct cholesterol molecules bound per receptor, but not in the packing interface, thereby indicating a structurally relevant cholesterol-binding site between helices I, II, III, and IV. Thermal stability analysis using isothermal denaturation confirms that a cholesterol analog significantly enhances the stability of the receptor. A consensus motif is defined that predicts cholesterol binding for 44% of human class A receptors, suggesting that specific sterol binding is important to the structure and stability of other G protein-coupled receptors, and that this site may provide a target for therapeutic discovery.

  1. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... domain is directly involved in the molecular contact with uPA. The receptor binds uPA as well as its proenzyme, pro-uPA, in such a manner that the activation cascade can occur directly on the cell surface. Furthermore, the activation rates are enhanced relative to the situation in solution, probably due...

  2. Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice

    OpenAIRE

    Wang, Lixin; Stengel, Andreas; Goebel, Miriam; Martinez, Vicente; Gourcerol, Guillaume; Rivier, Jean; Taché, Yvette

    2010-01-01

    The orexigenic effect of urocortins (Ucn 1, Ucn 2 and Ucn 3) through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF2) in the regulation of food intake using intraperitoneal (ip) injection of Ucns, the selective CRF2 antagonist, astressin2-B, and CRF2 knockout (−/−) mice. Meal structures were monitored using an automated episodic solid food int...

  3. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  4. [Study of the structure of receptor organs of the vestibular apparatus of rats after space flight on "Kosmos-1667"].

    Science.gov (United States)

    Lychakov, D V; Pashchinin, A N; Boiadzhieva-Mikhaĭlova, A; Khristov, I

    1989-01-01

    The receptor organs of the vestibular apparatus of rats flown for 7 days on Cosmos-1667 were examined. Serial sections were examined by light microscopy, some utriculus sections by electron microscopy, and otolith membranes by scanning electron microscopy. The fixation method used revealed a distinct structural heterogeneity of the receptor epithelium. In the striola area of the utriculus and sacculus as well as in the central apical area of cristae there are receptor cells surrounded by enlarged cup-like nerve endings. The nerve endings occupy over 70% of the cup-receptor cell complex. The area incorporating the enlarged nerve endings differs in size from animal to animal and from left to right ear in the same animal. The flown rat that was the first to be killed after recovery showed a very well pronounced asymmetry: in the right ear enlarged cups were seen all over the epithelium while in the left ear they were located in distinct spots. Since such changes were not identified in the remaining flown and control rats, it is concluded that they were produced by space flight effects but remained reversible and disappeared after recovery. This paper describes the causes responsible of the changes and their structural and functional relevances as well as other structural modifications that should be considered during vestibular studies. PMID:2593603

  5. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  6. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    Science.gov (United States)

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  7. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    Energy Technology Data Exchange (ETDEWEB)

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.; Bernard, Daniel J.; Thompson, Thomas B.; (UCIN); (McGill); (NIH)

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuous electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.

  8. Structure-dependent activities of polybrominated diphenyl ethers and hydroxylated metabolites on zebrafish retinoic acid receptor.

    Science.gov (United States)

    Zhao, Jing; Zhu, Xiangwei; Xu, Ting; Yin, Daqiang

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs), a group of potential endocrine-disrupting chemicals (EDCs) have been shown to disrupt retinoid homeostasis in different species in both laboratory and field studies. However, the molecular mechanisms of interactions with the retinoic acid receptor (RAR) are not fully understood. Zebrafish have proven useful for investigating mechanisms of chemical toxicity. In the present study, a reporter gene assay was used to investigate the activities of 11 PBDEs and six OH-PBDEs with different degrees of bromination on zebrafish RAR. All tested OH-PBDEs induced RAR transcriptional activity; however, of the 11 PBDEs examined, only BDE28 and BDE154 affected the RAR transcriptional activity. Homology modeling and molecular docking were employed to simulate the interactions of PBDEs/OH-PBDEs with zebrafish RARs and to identify binding affinities to analyze the specialization of the interaction between RARs and PBDEs/OH-PBDEs. The results showed that although these compounds could bind with RARs, the effects of PBDEs/OH-PBDEs on RAR transcriptional activity did not depend on their RAR-binding abilities. The present study is the first attempt to demonstrate that OH-PBDEs could induce RAR transcriptional activity by binding directly with RAR; these effects are possibly related to the structure of the compounds, especially their hydroxylation and bromination. Most of the PBDEs could not directly interact with the RAR. PMID:25077655

  9. Discovery of novel GPVI receptor antagonists by structure-based repurposing.

    Directory of Open Access Journals (Sweden)

    Lewis Taylor

    Full Text Available Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing.

  10. Diversity and structure of human T-cell receptor α-chain variable region genes

    International Nuclear Information System (INIS)

    The nucleotide sequences of 27 T-cell receptor α-chain variable region (V/sub α/)-containing cDNA clones isolated from a cDNA library derived from human peripheral blood lymphocytes were determined. Eighteen different V/sub α/ and 26 different joining (J/sub α/) gene segments are utilized in these clones. The V/sub α/ gene segments belong to 12 different subfamilies, each containing from one to seven members. Comparisons with the 16 different V/sub α/ and 21 different Jα sequences previously reported suggest that the germ-line repertoires for these gene segments are greater than previously estimated. Flexibility in the sites of gene segment joining and possibly N-region diversification also contribute to human α-chain diversity. Comparisons of human V/sub α/ regions indicate a high degree of variability spread uniformly across the entire V/sub α/ region without obvious hypervariable regions. However, amino acids important for the maintenance of V gene structure are conserved

  11. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

    Science.gov (United States)

    Franco, Rafael; Martínez-Pinilla, Eva; Lanciego, José L.; Navarro, Gemma

    2016-01-01

    Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor–receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery. PMID:27065866

  12. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    Science.gov (United States)

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. PMID:21642011

  13. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    Science.gov (United States)

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  14. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.

    Science.gov (United States)

    Fernández-Carvajal, Asia M; Encinar, José A; Poveda, José Antonio; de Juan, Entilio; Martínez-Pinna, Juan; Ivorra, Isabel; Ferragut, José Antonio; Morales, Andrés; González-Ros, José Manuel

    2006-01-01

    Ligand-gated ion channels (LGICs) constitute an important family of complex membrane proteins acting as receptors for neurotransmitters (Barnard, 1992; Ortells and Lunt, 1995). The nicotinic acetylcholine receptor (nAChR) from Torpedo is the most extensively studied member of the LGIC family and consists of a pentameric transmembrane glycoprotein composed of four different polypeptide subunits (alpha, beta, gamma, and delta) in a 2:1:1:1 stoichiometry (Galzi and Changeux, 1995; Hucho et al., 1996) that are arranged pseudosymmetrically around a central cation-selective ion channel. Conformational transitions, from the closed (nonconducting), to agonist-induced open (ion-conducting), to desensitized (nonconducting) states, are critical for functioning of the nAChR (Karlin, 2002). The ability of the nAChR to undergo these transitions is profoundly influenced by the lipid composition of the bilayer (Barrantes, 2004). Despite existing information on lipid dependence of AChR function, no satisfactory explanation has been given on the molecular events by which specific lipids exert such effects on the activity of an integral membrane protein. To date, several hypotheses have been entertained, including (1) indirect effects of lipids through the alteration of properties of the bilayer, such as fluidity (an optimal fluidity hypothesis [Fong and McNamee, 1986]) or membrane curvature and lateral pressure (Cantor, 1997; de Kruijff, 1997), or (2) direct effects through binding of lipids to defined sites on the transmembrane portion of the protein (Jones and McNamee, 1988; Blanton and Wang, 1990; Fernández et al., 1993; Fernández-Ballester et al., 1994), which has led to the postulation of a possible role of certain lipids as peculiar allosteric ligands of the protein. In this paper we have reconstituted purified AChRs from Torpedo into complex multicomponent lipid vesicles in which the phospholipid composition has been systematically altered. Stopped-flow rapid kinetics of

  15. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  16. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus

    OpenAIRE

    Tocchini-Valentini, Guiseppe D.; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-01

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalo...

  17. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    International Nuclear Information System (INIS)

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), α-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis

  18. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    Science.gov (United States)

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  19. Structural basis of RNA recognition and activation by innate immune receptor RIG-I

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fuguo; Ramanathan, Anand; Miller, Matthew T.; Tang, Guo-Qing; Gale, Jr., Michael; Patel, Smita S.; Marcotrigiano, Joseph (Rutgers); (RWJ-Med); (UW-MED)

    2012-05-29

    Retinoic-acid-inducible gene-I (RIG-I; also known as DDX58) is a cytoplasmic pathogen recognition receptor that recognizes pathogen-associated molecular pattern (PAMP) motifs to differentiate between viral and cellular RNAs. RIG-I is activated by blunt-ended double-stranded (ds)RNA with or without a 5'-triphosphate (ppp), by single-stranded RNA marked by a 5'-ppp and by polyuridine sequences. Upon binding to such PAMP motifs, RIG-I initiates a signalling cascade that induces innate immune defences and inflammatory cytokines to establish an antiviral state. The RIG-I pathway is highly regulated and aberrant signalling leads to apoptosis, altered cell differentiation, inflammation, autoimmune diseases and cancer. The helicase and repressor domains (RD) of RIG-I recognize dsRNA and 5'-ppp RNA to activate the two amino-terminal caspase recruitment domains (CARDs) for signalling. Here, to understand the synergy between the helicase and the RD for RNA binding, and the contribution of ATP hydrolysis to RIG-I activation, we determined the structure of human RIG-I helicase-RD in complex with dsRNA and an ATP analogue. The helicase-RD organizes into a ring around dsRNA, capping one end, while contacting both strands using previously uncharacterized motifs to recognize dsRNA. Small-angle X-ray scattering, limited proteolysis and differential scanning fluorimetry indicate that RIG-I is in an extended and flexible conformation that compacts upon binding RNA. These results provide a detailed view of the role of helicase in dsRNA recognition, the synergy between the RD and the helicase for RNA binding and the organization of full-length RIG-I bound to dsRNA, and provide evidence of a conformational change upon RNA binding. The RIG-I helicase-RD structure is consistent with dsRNA translocation without unwinding and cooperative binding to RNA. The structure yields unprecedented insight into innate immunity and has a broader impact on other areas of biology, including

  20. STRUCTURAL CONSEQUENCES OF THE POLYMORPHISM Q223R IN THE HUMAN LEPTIN RECEPTOR: A MOLECULAR DYNAMICS STUDY

    Directory of Open Access Journals (Sweden)

    Jonathan P. Carrillo-Vázquez

    2013-01-01

    Full Text Available Leptin Receptor (LEPR is a component of a signaling pathway related to appetite and energy expenditure. Single Nucleotide Polymorphisms (SNP of Leptin receptor gene (lepr have been proposed as possible modulator of adipose tissue and body weight. The main phenomenological consequence reported of these SNPs is the modulation of the LEP-LEPR interaction promoting the weight gain. Particularly, Q223R polymorphism has been associated with human obesity in some populations. In this work, we analyze the structural effects of Q223R substitution in a model of the extracellular region of LEPR comparing the stability between LEPR-Q and its Q223R variant (rs1137101 by Molecular Dynamics (MD simulations. These results showed different behavior between both molecules after one nanosecond (ns of simulation and significant differences in the secondary structure content were evidenced.

  1. Structural characterisation of Toll-like receptor 1 (TLR1) and Toll-like receptor 6 (TLR6) in elephant and harbor seals.

    Science.gov (United States)

    Woodman, Sally; Gibson, Amanda J; García, Ana Rubio; Contreras, Guillermo Sanchez; Rossen, John W; Werling, Dirk; Offord, Victoria

    2016-01-01

    Pinnipeds are a diverse clade of semi-aquatic mammals, which act as key indicators of ecosystem health. Their transition from land to marine environments provides a complex microbial milieu, making them vulnerable to both aquatic and terrestrial pathogens, thereby contributing to pinniped population decline. Indeed, viral pathogens such as influenza A virus and phocine distemper virus (PDV) have been identified as the cause of several of these mass mortality events. Furthermore, bacterial infection with mammalian Brucella sp. and methicillin-resistant Staphylococcus aureus strains have also been observed in marine mammals, posing further risk to both co-habiting endangered species and public health. During these disease outbreaks, mortality rates have varied amongst different pinniped species. Analyses of innate immune receptors at the host-pathogen interface have previously identified variants which may drive these species-specific responses. Through a combination of both sequence- and structure-based methods, this study characterises members of the Toll-like receptor (TLR) 1 superfamily from both harbour and elephant seals, identifying variations which will help us to understand these species-specific innate immune responses, potentially aiding the development of specific vaccine-adjuvants for these species. PMID:26827833

  2. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  3. Kinetic and structural analysis of mutant CD4 receptors that are defective in HIV gp120 binding

    OpenAIRE

    Wu, Hao; Myszka, David G.; Tendian, Susan W.; Brouillette, Christie G.; Sweet, Ray W.; Chaiken, Irwin M.; Hendrickson, Wayne A.

    1996-01-01

    The T-cell antigen coreceptor CD4 also serves as the receptor for the envelope glycoprotein gp120 of HIV. Extensive mutational analysis of CD4 has implicated residues from a portion of the extracellular amino-terminal domain (D1) in gp120 binding. However, none of these proteins has been fully characterized biophysically, and thus the precise effects on molecular structure and binding interactions are unknown. In the present study, we produced soluble versions of three...

  4. Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor ECR in insects.

    Science.gov (United States)

    Iwema, Thomas; Chaumot, Arnaud; Studer, Romain A; Robinson-Rechavi, Marc; Billas, Isabelle M L; Moras, Dino; Laudet, Vincent; Bonneton, François

    2009-04-01

    Understanding how the variability of protein structure arises during evolution and leads to new structure-function relationships ultimately promoting evolutionary novelties is a major goal of molecular evolution and is critical for interpreting genome sequences. We addressed this issue using the ecdysone receptor (ECR), a major developmental factor that controls development and reproduction of arthropods. The functional ECR is a heterodimer of two nuclear receptors: ECR, which binds ecdysteroids, and its obligatory partner ultraspirade (USP), which is orthologous to the retinoid X receptor of vertebrates. Both genes underwent a dramatic increase of evolutionary rate in Mecopterida, the major insect terminal group containing Dipteras and Lepidopteras. We therefore questioned the implication of this event in terms of coevolution of their dimerization interface. A structural comparison revealed a 30% larger ligand-binding domain (LBD) heterodimerization surface in the Lepidoptera Heliothis when compared with basal insects, associated with a symmetrization of the interface, which is exceptional for nuclear receptors. Reconstruction of ancestral sequences and homology modeling of the ancestral Mecopterida ECR-USP reveal that this enlarged dimerization surface is a synapomorphy for Mecopterida. Furthermore, we show that the residues implicated in the new dimerization surface underwent specific evolutionary constraints in Mecopterida indicative of their new and conserved role in the dimerization interface. Most of all, the novel surface originates from a 15 degrees torsion of a subdomain of USP LBD toward its partner ECR, which is a long-range consequence of the peculiar position of a Mecopterida-specific insertion in loop L1-3, located outside of the interaction surface, in a less crucial domain of the partner protein. These results indicate that the coevolution between ECR and USP occurred through a novel mechanism of intramolecular epistasis that will undoubtedly be

  5. Interaction of neurosteroids with NMDA receptors: Current Insight into Structure-Activity Relationships and Their Neuroprotective Effect

    Czech Academy of Sciences Publication Activity Database

    Kudová, Eva; Chodounská, Hana; Slavíková, Barbora; Kapras, Vojtěch; Valeš, Karel; Rambousek, Lukáš; Borovská, Jiřina; Vyklický, Vojtěch; Krausová, Barbora; Vyklický ml., Ladislav

    Torino : -, 2013. [International Meeting Steroids and Nervous System /7./. 16.02.2013-20.02.2013, Toronto] R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/12/1464 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : neurosteroid * NMDA-receptor * structure-activity relationship * pregnanolone Subject RIV: CC - Organic Chemistry; ED - Physiology (FGU-C)

  6. Fringe Benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors

    OpenAIRE

    Rana, Nadia A.; Haltiwanger, Robert S.

    2011-01-01

    The Notch family of receptors plays essential roles in many phases of development, and dysregulation of Notch activity is increasingly recognized as a player in many diseases. O-Glycosylation of the Notch extracellular domain is essential for Notch activity, and tissue-specific alterations in the glycan structures are known to regulate activity. Here we review recent advances in identification and characterization of the enzymes responsible for glycosylating Notch and molecular mechanisms for...

  7. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern.

    Science.gov (United States)

    Contos, J J; Chun, J

    2001-04-18

    The extracellular signaling molecule, lysophosphatidic acid (LPA), mediates proliferative and morphological effects on cells and has been proposed to be involved in several biological processes including neuronal development, wound healing, and cancer progression. Three mammalian G protein-coupled receptors, encoded by genes designated lp (lysophospholipid) receptor or edg (endothelial differentiation gene), mediate the effects of LPA, activating similar (e.g. Ca(2+) release) as well as distinct (neurite retraction) responses. To understand the evolution and function of LPA receptor genes, we characterized lp(A3)/Edg7 in mouse and human and compared the expression pattern with the other two known LPA receptor genes (lp(A1)/Edg2 and lp(A2)/Edg4non-mutant). We found mouse and human lp(A3) to have nearly identical three-exon genomic structures, with introns upstream of the coding region for transmembrane domain (TMD) I and within the coding region for TMD VI. This structure is similar to lp(A1) and lp(A2), indicating a common ancestral gene with two introns. We localized mouse lp(A3) to distal Chromosome 3 near the varitint waddler (Va) gene, in a region syntenic with the human lp(A3) chromosomal location (1p22.3-31.1). We found highest expression levels of each of the three LPA receptor genes in adult mouse testes, relatively high expression levels of lp(A2) and lp(A3) in kidney, and moderate expression of lp(A2) and lp(A3) in lung. All lp(A) transcripts were expressed during brain development, with lp(A1) and lp(A2) transcripts expressed during the embryonic neurogenic period, and lp(A3) transcript during the early postnatal period. Our results indicate both overlapping as well as distinct functions of lp(A1), lp(A2), and lp(A3). PMID:11313151

  8. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  9. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    Science.gov (United States)

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants. PMID:27059958

  10. Virus-resembling nano-structures for near infrared fluorescence imaging of ovarian cancer HER2 receptors

    Science.gov (United States)

    Guerrero, Yadir A.; Bahmani, Baharak; Singh, Sheela P.; Vullev, Valentine I.; Kundra, Vikas; Anvari, Bahman

    2015-10-01

    Ovarian cancer remains the dominant cause of death due to malignancies of the female reproductive system. The capability to identify and remove all tumors during intraoperative procedures may ultimately reduce cancer recurrence, and lead to increased patient survival. The objective of this study is to investigate the effectiveness of an optical nano-structured system for targeted near infrared (NIR) imaging of ovarian cancer cells that over-express the human epidermal growth factor receptor 2 (HER2), an important biomarker associated with ovarian cancer. The nano-structured system is comprised of genome-depleted plant-infecting brome mosaic virus doped with NIR chromophore, indocyanine green, and functionalized at the surface by covalent attachment of monoclonal antibodies against the HER2 receptor. We use absorption and fluorescence spectroscopy, and dynamic light scattering to characterize the physical properties of the constructs. Using fluorescence imaging and flow cytometry, we demonstrate the effectiveness of these nano-structures for targeted NIR imaging of HER2 receptors in vitro. These functionalized nano-materials may provide a platform for NIR imaging of ovarian cancer.

  11. Structure-function relationships of peptides forming the calcin family of ryanodine receptor ligands.

    Science.gov (United States)

    Xiao, Liang; Gurrola, Georgina B; Zhang, Jing; Valdivia, Carmen R; SanMartin, Mario; Zamudio, Fernando Z; Zhang, Liming; Possani, Lourival D; Valdivia, Héctor H

    2016-05-01

    Calcins are a novel family of scorpion peptides that bind with high affinity to ryanodine receptors (RyRs) and increase their activity by inducing subconductance states. Here, we provide a comprehensive analysis of the structure-function relationships of the eight calcins known to date, based on their primary sequence, three-dimensional modeling, and functional effects on skeletal RyRs (RyR1). Primary sequence alignment and evolutionary analysis show high similarity among all calcins (≥78.8% identity). Other common characteristics include an inhibitor cysteine knot (ICK) motif stabilized by three pairs of disulfide bridges and a dipole moment (DM) formed by positively charged residues clustering on one side of the molecule and neutral and negatively charged residues segregating on the opposite side. [(3)H]Ryanodine binding assays, used as an index of the open probability of RyRs, reveal that all eight calcins activate RyR1 dose-dependently with Kd values spanning approximately three orders of magnitude and in the following rank order: opicalcin1 > opicalcin2 > vejocalcin > hemicalcin > imperacalcin > hadrucalcin > maurocalcin > urocalcin. All calcins significantly augment the bell-shaped [Ca(2+)]-[(3)H]ryanodine binding curve with variable effects on the affinity constants for Ca(2+) activation and inactivation. In single channel recordings, calcins induce the appearance of a subconductance state in RyR1 that has a unique fractional value (∼20% to ∼60% of the full conductance state) but bears no relationship to binding affinity, DM, or capacity to stimulate Ca(2+) release. Except for urocalcin, all calcins at 100 nM concentration stimulate Ca(2+) release and deplete Ca(2+) load from skeletal sarcoplasmic reticulum. The natural variation within the calcin family of peptides offers a diversified set of high-affinity ligands with the capacity to modulate RyRs with high dynamic range and potency. PMID:27114612

  12. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Science.gov (United States)

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A

    1996-09-01

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  13. Functional and structural interaction of (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Arias, Hugo R; Fedorov, Nikolai B; Benson, Lisa C; Lippiello, Patrick M; Gatto, Greg J; Feuerbach, Dominik; Ortells, Marcelo O

    2013-01-01

    The interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function. We tested whether (-)-reboxetine binds to the luminal [(3)H]imipramine site. The results indicate that, although (-)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4β2 nAChR ion channels. Patch-clamp results also indicate that (-)-reboxetine progressively inhibits the hα4β2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (-)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6' and 14'. In addition, we found a (-)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (-)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (-)-reboxetine may be produced (at least partially) by its inhibitory action on hα4β2 nAChRs. PMID:23010362

  14. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins. PMID:18840687

  15. A family of human receptors structurally related to Drosophila Toll

    OpenAIRE

    Rock, Fernando L.; Hardiman, Gary; Timans, Jackie C.; Kastelein, Robert A.; Bazan, J. Fernando

    1998-01-01

    The discovery of sequence homology between the cytoplasmic domains of Drosophila Toll and human interleukin 1 receptors has sown the conviction that both molecules trigger related signaling pathways tied to the nuclear translocation of Rel-type transcription factors. This conserved signaling scheme governs an evolutionarily ancient immune response in both insects and vertebrates. We report the molecular cloning of a class of putative human receptors with a protein architecture that is similar...

  16. Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor

    OpenAIRE

    Iwema, Thomas; Billas, Isabelle ML; Beck, Yannick; Bonneton, François; Nierengarten, Hélène; Chaumot, Arnaud; Richards, Geoff; Laudet, Vincent; Moras, Dino

    2007-01-01

    Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium ...

  17. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    OpenAIRE

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant t...

  18. Structural development of stapled short helical peptides as vitamin D receptor (VDR)-coactivator interaction inhibitors.

    Science.gov (United States)

    Misawa, Takashi; Demizu, Yosuke; Kawamura, Megumi; Yamagata, Nanako; Kurihara, Masaaki

    2015-03-01

    We developed several stabilized helical heptapeptides (DPI-01-10) composed of l-leucine residues, an α,α-disubstituted α-amino acid (α-aminoisobutyric acid [Aib] or hydroxymethylserine [Hms]), and a stapled side chain as inhibitors of vitamin D receptor (VDR)-coactivator interactions. The inhibitory activity of these peptides against VDR-coactivator interactions was evaluated using a receptor cofactor assay system, and DPI-08 demonstrated strong activity (IC50: 3.2μM). PMID:25637122

  19. Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

    OpenAIRE

    Lee, Ki-Young; Choi, Hye-Seung; Choi, Ho-Sung; Chung, Ka Young; Lee, Bong-Jin; Maeng, Han-Joo; Seo, Min-Duk

    2016-01-01

    The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercet...

  20. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  1. Capturing state-dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights.

    Science.gov (United States)

    Payghan, Pavan V; Bera, Indrani; Bhattacharyya, Dhananjay; Ghoshal, Nanda

    2016-08-01

    The γ-amino butyric acid type A receptors (GABAA-Rs) are the key players in the mammalian brain that meditate fast inhibitory neurotransmission events. The structural integrity of these ligand-gated ion channel controls chloride ion permeability, which in turn monitors important pharmacological functions. Despite ample studies on GABAA-Rs, there was a need for a study on full-length receptor structures, devoted to track structure-function correlations based on their dynamic behavior consideration. We have employed molecular dynamics simulations accompanied by other biophysical methods to shed light on sequential and unaddressed questions like How GABAA-R structure facilitates the entry of GABA molecules at its two orthosteric binding sites? After entry, what structural features and changes monitor site-wise GABA binding differences? In the same context, what are the roles and responsibilities of loops such as C and F? On physiologically relevant time scales, how open to close state transition occurs? How salt bridges such as E155-R207 and E153-R207 maintain state-dependent C-loop structures? In an attempt, our simulation study unravels the complete course of GABA binding-unbinding pathway. This provides us with the relevant understanding of state-dependent dynamic events of GABAA-Rs. PMID:26372345

  2. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    International Nuclear Information System (INIS)

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode

  3. Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure.

    Science.gov (United States)

    Rozbeský, Daniel; Adámek, David; Pospíšilová, Eliška; Novák, Petr; Chmelík, Josef

    2016-09-01

    Mouse Nkrp1a receptor is a C-type lectin-like receptor expressed on the surface of natural killer cells that play an important role against virally infected and tumor cells. The recently solved crystal structure of Nkrp1a raises questions about a long loop region which was uniquely extended from the central region in the crystal. To understand the functional significance of the loop, the solution structure of Nkrp1a using nuclear magnetic resonance (NMR) spectroscopy was determined. A notable difference between the crystal and NMR structure of Nkrp1a appears in the conformation of the long loop region. While the extended loop points away from the central core and mediates formation of a domain swapped dimer in the crystal, the solution structure is monomeric with the loop tightly anchored to the central region. The findings described the first solution structure in the Nkrp1 family and revealed intriguing similarities and differences to the crystal structure. Proteins 2016; 84:1304-1311. © 2016 Wiley Periodicals, Inc. PMID:27238500

  4. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Zhu Peng

    2011-08-01

    Full Text Available Abstract Background Chemosensory receptors, which are all G-protein-coupled receptors (GPCRs, come in four types: odorant receptors (ORs, vomeronasal receptors, trace-amine associated receptors and formyl peptide receptor-like proteins. The ORs are the most important receptors for detecting a wide range of environmental chemicals in daily life. Most fish OR genes have been identified from genome databases following the completion of the genome sequencing projects of many fishes. However, it remains unclear whether these OR genes from the genome databases are actually expressed in the fish olfactory epithelium. Thus, it is necessary to clone the OR mRNAs directly from the olfactory epithelium and to examine their expression status. Results Eighty-nine full-length and 22 partial OR cDNA sequences were isolated from the olfactory epithelium of the large yellow croaker, Larimichthys crocea. Bayesian phylogenetic analysis classified the vertebrate OR genes into two types, with several clades within each type, and showed that the L. crocea OR genes of each type are more closely related to those of fugu, pufferfish and stickleback than they are to those of medaka, zebrafish and frog. The reconciled tree showed 178 duplications and 129 losses. The evolutionary relationships among OR genes in these fishes accords with their evolutionary history. The fish OR genes have experienced functional divergence, and the different clades of OR genes have evolved different functions. The result of real-time PCR shows that different clades of ORs have distinct expression levels. Conclusion We have shown about 100 OR genes to be expressed in the olfactory epithelial tissues of L. crocea. The OR genes of modern fishes duplicated from their common ancestor, and were expanded over evolutionary time. The OR genes of L. crocea are closely related to those of fugu, pufferfish and stickleback, which is consistent with its evolutionary position. The different expression

  5. Associations of growth hormone secretagogue receptor (GHSR) genes polymorphisms and protein structure changes with carcass traits in sheep.

    Science.gov (United States)

    Bahrami, A; Miraei-Ashtiani, S R; Mehrabani-Yeganeh, H

    2012-09-01

    Growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor that binds ghrelin, plays an important role in the central regulation of pituitary growth hormone secretion, food intake, and energy homeostasis. Ghrelin receptor (GHSR) modulates many physiological effects and therefore is a candidate gene for sheep production performance. Polymorphism of the GHSR gene was detected by PCR-SSCP and DNA sequencing methods in 463 individuals. Two different structures in protein and nine single nucleotide polymorphisms (SNPs) were identified. The evaluation of the associations between these SSCP patterns with carcass traits suggests a positive effect of genotype TT and B structure on carcass weight, and body length (P<0.05). In addition, the animal with TC had greater abdominal fat than those with TT and CC (P<0.05) while CC genotype contributed to low blood cholesterol (P=0.04). The results confirm the hints suggesting that GHSR is a preferential target for further investigation on mutations that influence carcass trait variations. PMID:22735618

  6. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  7. Structure-Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators

    DEFF Research Database (Denmark)

    Chalikiopoulos, Alexander; Thiele, Stefanie; Malmgaard-Clausen, Mikkel;

    2013-01-01

    Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridine...... bipyridine (23). The structure-activity relationships contribute to small-molecule drug development, and the novel chelators constitute valuable tools for studies of structural mechanisms for chemokine receptor activation....

  8. Mapping the Structural Requirements in the CB1 Cannabinoid Receptor Transmembrane Helix II for Signal Transduction

    OpenAIRE

    Kapur, Ankur; Samaniego, Patrick; Thakur, Ganesh A.; Makriyannis, Alexandros; Abood, Mary E.

    2008-01-01

    Amino acid residues in the transmembrane domains of the CB1 receptor are important for ligand recognition and signal transduction. We used site-directed mutagenesis to identify the role of two novel and adjacent residues in the transmembrane helix II domain, Ile2.62 and Asp2.63. We investigated the role of the conserved, negatively charged aspartate at position 2.63 in cannabinoid receptor (CB1) function by substituting it with asparagine (D2.63N) and glutamate (D2.63E). In addition, the effe...

  9. Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies.

    Science.gov (United States)

    Podder, Avijit; Pandey, Deeksha; Latha, N

    2016-04-01

    Dopamine receptors (DR) are neuronal cell surface proteins that mediate the action of neurotransmitter dopamine in brain. Dopamine receptor D2 (DRD2) that belongs to G-protein coupled receptors (GPCR) family is a major therapeutic target for of various neurological and psychiatric disorders in human. The third inter cellular loop (ICL3) in DRD2 is essential for coupling G proteins and several signaling scaffold proteins. A mutation in ICL3 can interfere with this binding interface, thereby altering the DRD2 signaling. In this study we have examined the deleterious effect of serine to cysteine mutation at position 311 (S311C) in the ICL3 region that is implicated in diseases like schizophrenia and alcoholism. An in silico structure modeling approach was employed to determine the wild type (WT) and mutant S311C structures of DRD2, scaffold proteins - Gαi/o and NEB2. Protein-ligand docking protocol was exercised to predict the interactions of natural agonist dopamine with both the WT and mutant structures of DRD2. Besides, atomistic molecular dynamics (MD) simulations were performed to provide insights into essential dynamics of the systems-unbound and dopamine bound DRD2 (WT and mutant) and three independent simulations for Gαi, Gαo and NEB2 systems. To provide information on intra-molecular arrangement of the structures, a comprehensive residue interactions network of both dopamine bound WT and mutant DRD2 protein were studied. We also employed a protein-protein docking strategy to find the interactions of scaffold proteins - Gαi/o and NEB2 with both dopamine bound WT and mutant structures of DRD2. We observed a marginal effect of the mutation in dopamine binding mechanism on the trajectories analyzed. However, we noticed a significant structural alteration of the mutant receptor which affects Gαi/o and NEB2 binding that can be causal for malfunctioning in cAMP-dependent signaling and Ca(+) homeostasis in the brain dopaminergic system leading to

  10. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  11. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T A; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K

    2011-01-01

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist...

  12. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Madsen, Mette; Storm, Tina;

    2010-01-01

    Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin and...

  13. Structural and functional studies on the stalk of the transferrin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Dukovski, Danijela; Li, Zongli [Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Kelly, Deborah F. [Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Mack, Eric [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 (United States); Walz, Thomas, E-mail: twalz@hms.harvard.edu [Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States); Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (United States)

    2009-04-17

    Transferrin (Tf) is an iron carrier protein that consists of two lobes, the N- and C-lobes, which can each bind a Fe{sup 3+} ion. Tf binds to its receptor (TfR), which mediates iron delivery to cells through an endocytotic pathway. Receptor binding facilitates iron release from the Tf C-lobe, but impedes iron release from the N-lobe. An atomic model of the Tf-TfR complex based on single particle electron microscopy (EM) indicated that receptor binding is indeed likely to hinder opening of the N-lobe, thus interfering with its iron release. The atomic model also suggested that the TfR stalks could form additional contacts with the Tf N-lobes, thus potentially further slowing down its iron release. Here, we show that the TfR stalks are unlikely to make strong interactions with the Tf N-lobes and that the stalks have no effect on iron release from the N-lobes of receptor-bound Tf.

  14. Structure and variability of Toll-like receptor genes in Grey Partridge (Perdix perdix)

    Czech Academy of Sciences Publication Activity Database

    Tomášek, Oldřich; Vinkler, Michal; Bainová, H.; Opatová, Pavlína; Bryjová, Anna; Bryja, Josef; Albrecht, Tomáš

    Tübingen : Eberhard Karls Universität Tübingen, 2011. s. 1030. [ Congress of the European Society for Evolutionary Biology ESEB /13./. 20.08.2011-25.08.2011, Tübingen] Institutional research plan: CEZ:AV0Z60930519 Keywords : Grey Partridge * Toll-like receptor Subject RIV: EG - Zoology

  15. Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor

    DEFF Research Database (Denmark)

    Brakebusch, C; Varfolomeev, E E; Batkin, M; Wallach, D

    1994-01-01

    mutations in the spacer on the shedding indicate that the process is independent of the amino acid side-chain identity in this region except for a limited dependence on the identity of 1 residue (Val-173), located downstream to the putative major cleavage site of the receptor. It is strongly affected...

  16. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

    Science.gov (United States)

    Matsuda, L A; Lolait, S J; Brownstein, M J; Young, A C; Bonner, T I

    1990-08-01

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. PMID:2165569

  17. Higher-Resolution Structure of the Human Insulin Receptor Ectodomain: Multi-Modal Inclusion of the Insert Domain.

    Science.gov (United States)

    Croll, Tristan I; Smith, Brian J; Margetts, Mai B; Whittaker, Jonathan; Weiss, Michael A; Ward, Colin W; Lawrence, Michael C

    2016-03-01

    Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding. PMID:26853939

  18. In vitro modification of substituted cysteines as tool to study receptor functionality and structure-activity relationships.

    Science.gov (United States)

    Rathmann, Daniel; Pedragosa-Badia, Xavier; Beck-Sickinger, Annette G

    2013-08-15

    Mutagenic investigations of expressed membrane proteins are routine, but the variety of modifications is limited by the twenty canonical amino acids. We describe an easy and effective cysteine substitution mutagenesis method to modify and investigate distinct amino acids in vitro. The approach combines the substituted cysteine accessibility method (SCAM) with a functional signal transduction readout system using different thiol-specific reagents. We applied this approach to the prolactin-releasing peptide receptor (PrRPR) to facilitate biochemical structure-activity relationship studies of eight crucial positions. Especially for D(6.59)C, the treatment with the positively charged methanethiosulfonate (MTS) ethylammonium led to an induced basal activity, whereas the coupling of the negatively charged MTS ethylsulfonate nearly reconstituted full activity, obviously by mimicking the wild-type charged side chain. At E(5.26)C, W(5.28)C, Y(5.38)C, and Q(7.35)C, accessibility was observed but hindered transfer into the active receptor conformation. Accordingly, the combination of SCAM and signaling assay is feasible and can be adapted to other G-protein-coupled receptors (GPCRs). This method circumvents the laborious way of inserting non-proteinogenic amino acids to investigate activity and ligand binding, with rising numbers of MTS reagents allowing selective side chain modification. This method pinpoints to residues being accessible but also presents potential molecular positions to investigate the global conformation. PMID:23624320

  19. Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes.

    Science.gov (United States)

    Rárová, Lucie; Steigerová, Jana; Kvasnica, Miroslav; Bartůněk, Petr; Křížová, Kateřina; Chodounská, Hana; Kolář, Zdeněk; Sedlák, David; Oklestkova, Jana; Strnad, Miroslav

    2016-05-01

    Structure-activity relationship analysis and profiling of a library of AB-functionalized cholestane derivatives closely related to brassinosteroids (BRs) were performed to examine their antiproliferative activities and activities on steroid hormone receptors. Some of the compounds were found to have strong cytotoxic activity in several human normal and cancer cell lines. The presence of a 3-hydroxy or 3-oxo group and 2,3-vicinal diol or 3,4-vicinal diol moiety were found to be necessary for optimum biological activity, as well as a six-membered B ring. According to the profiling of all steroid receptors in both agonist and antagonist mode, the majority of the cholestanes were weakly active or inactive compared to the natural ligands. Estrogenic activity was detected for two compounds, two compounds possessed antagonistic properties on estrogen receptors and seven compounds showed agonistic activity. Two active cholestane derivatives were shown to strongly influence cell viability, proliferation, cell cycle distribution, apoptosis and molecular pathways responsible for these processes in hormone-sensitive/insensitive (MCF7/MDA-MB-468) breast cancer cell lines. PMID:26976651

  20. Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection.

    Directory of Open Access Journals (Sweden)

    John J Miles

    Full Text Available Despite the ∼10(18 αβ T cell receptor (TCR structures that can be randomly manufactured by the human thymus, some surface more frequently than others. The pinnacles of this distortion are public TCRs, which exhibit amino acid-identical structures across different individuals. Public TCRs are thought to result from both recombinatorial bias and antigen-driven selection, but the mechanisms that underlie inter-individual TCR sharing are still largely theoretical. To examine this phenomenon at the atomic level, we solved the co-complex structure of one of the most widespread and numerically frequent public TCRs in the human population. The archetypal AS01 public TCR recognizes an immunodominant BMLF1 peptide, derived from the ubiquitous Epstein-Barr virus, bound to HLA-A*0201. The AS01 TCR was observed to dock in a diagonal fashion, grasping the solvent exposed peptide crest with two sets of complementarity-determining region (CDR loops, and was fastened to the peptide and HLA-A*0201 platform with residue sets found only within TCR genes biased in the public response. Computer simulations of a random V(DJ recombination process demonstrated that both TCRα and TCRβ amino acid sequences could be manufactured easily, thereby explaining the prevalence of this receptor across different individuals. Interestingly, the AS01 TCR was encoded largely by germline DNA, indicating that the TCR loci already comprise gene segments that specifically recognize this ancient pathogen. Such pattern recognition receptor-like traits within the αβ TCR system further blur the boundaries between the adaptive and innate immune systems.

  1. Solution structure of α-conotoxin PIA, a novel antagonist of α6 subunit containing nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    α-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing α6 and α3 subunits. α-conotoxin PIA displays 75-fold higher affinity for rat α6/α3β2β3 nAChRs than for rat α3β2 nAChRs. We have determined the three-dimensional structure of α-conotoxin PIA by nuclear magnetic resonance spectroscopy. The α-conotoxin PIA has an 'ω-shaped' overall topology as other α4/7 subfamily conotoxins. Yet, unlike other neuronally targeted α4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I β-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in α-conotoxins MII and GIC. By comparing the structure of α-conotoxin PIA with other functionally related α-conotoxins we suggest structural features in α-conotoxin PIA that may be associated with its unique receptor recognition profile

  2. The Crystal Structure of Iron-free Human Serum Transferrin Provides Insight into Inter-lobe Communication and Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wally,J.; Halbrooks, P.; Vonrhein, C.; Rould, M.; Everse, S.; Mason, A.; Buchanan, S.

    2006-01-01

    Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependant process. The binding and release of iron results in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF) which was independently determined by two methods: (1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7 Angstroms resolution using a MAD phasing strategy, by substituting the nine methionines in hTF with selenomethionine and (2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7 Angstroms by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human TF and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 deg and 49.5 deg rotations are required to open the N- and C-lobe, respectively, (compared to closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.

  3. Structural Insights into the Activation of Human Relaxin Family Peptide Receptor 1 by Small-Molecule Agonists.

    Science.gov (United States)

    Hu, Xin; Myhr, Courtney; Huang, Zaohua; Xiao, Jingbo; Barnaeva, Elena; Ho, Brian A; Agoulnik, Irina U; Ferrer, Marc; Marugan, Juan J; Southall, Noel; Agoulnik, Alexander I

    2016-03-29

    The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1. PMID:26866459

  4. Using Molecular Initiating Events to Develop a Structural Alert Based Screening Workflow for Nuclear Receptor Ligands Associated with Hepatic Steatosis.

    Science.gov (United States)

    Mellor, Claire L; Steinmetz, Fabian P; Cronin, Mark T D

    2016-02-15

    In silico models are essential for the development of integrated alternative methods to identify organ level toxicity and lead toward the replacement of animal testing. These models include (quantitative) structure-activity relationships ((Q)SARs) and, importantly, the identification of structural alerts associated with defined toxicological end points. Structural alerts are able both to predict toxicity directly and assist in the formation of categories to facilitate read-across. They are particularly important to decipher the myriad mechanisms of action that result in organ level toxicity. The aim of this study was to develop novel structural alerts for nuclear receptor (NR) ligands that are associated with inducing hepatic steatosis and to show the vast number of existing data that are available. Current knowledge on NR agonists was extended with data from the ChEMBL database (12,713 chemicals in total) of bioactive molecules and from studying NR ligand-binding interactions within the protein database (PDB, 624 human NR structure files). A computational structural alert based workflow was developed using KNIME from these data using molecular fragments and other relevant chemical features. In total, 214 structural features were recorded computationally as SMARTS strings, and therefore, they can be used for grouping and screening during drug development and hazard assessment and provide knowledge to anchor adverse outcome pathways (AOPs) via their molecular initiating events (MIEs). PMID:26787004

  5. Structure, dynamics and interactions of the N-terminal domain of the androgen receptor

    OpenAIRE

    De Mol, Eva

    2014-01-01

    [spa] El cáncer de próstata (PCa) es el segundo tipo de cáncer más común en hombres después del cáncer de pulmón. Alrededor de 1.1 millones de hombres en todo el mundo se les diagnosticó PCa durante el año 2012. El cáncer de próstata depende esencialmente de la estimulación de los andrógenos para el crecimiento y la supervivencia celular. El receptor androgénico (AR) es un receptor de hormonas nuclear que es activado por las hormonas andrógenas y la proteína mediante la cual los efectos fisio...

  6. Molecular structure of purinergic P2X receptors and their expression in hypothalamus and pituitary

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Balík, Aleš; Jindřichová, Marie; Vávra, Vojtěch

    2008-01-01

    Roč. 57, Suppl.3 (2008), S23-S38. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/07/0681; GA AV ČR(CZ) IAA5011408; GA AV ČR(CZ) IAA500110702; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : purinergic P2X receptors * hypothalamus * pituitary Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.653, year: 2008

  7. Efficient cell-free production of olfactory receptors: Detergent optimization, structure, and ligand binding analyses

    OpenAIRE

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-01-01

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we repor...

  8. Structural investigations on N'-substituted N-acylguanidines - Intermolecular interactions with solvents, anions and receptors

    OpenAIRE

    Kleinmaier, Roland

    2011-01-01

    Acylguanidines are an abundant class of compounds with various applications in organic and pharmaceutical chemistry. Within the subgroup of N’-substituted and especially monoalkylated N-acylguanidines, highly potent and selective ligands for G protein coupled receptors have been identified in recent years. In the field of molecular recognition, acylguanidines are valued for their ability to form strong fork-like hydrogen bond (H-bond) interactions with carboxylate anions. Although their basic...

  9. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors

    OpenAIRE

    Tomizawa, Motohiro; Casida, John E.

    1999-01-01

    The major nitroimine insecticide imidacloprid (IMI) and the nicotinic analgesics epibatidine and ABT-594 contain the 6-chloro-3-pyridinyl moiety important for high activity and/or selectivity. ABT-594 has considerable nicotinic acetylcholine receptor (AChR) subtype specificity which might carry over to the chloropyridinyl insecticides. This study considers nine IMI analogues for selectivity in binding to immuno-isolated α1, α3 and α7 containing nicotinic AChRs and to purported α4β2 nicotinic ...

  10. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  11. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors.

    OpenAIRE

    Morrissette, J; Krätzschmar, J.; Haendler, B; el-Hayek, R; Mochca-Morales, J; Martin, B M; Patel, J.R.; Moss, R.L.; Schleuning, W. D.; Coronado, R

    1995-01-01

    Helothermine, a protein from the venom of the Mexican beaded lizard (Heloderma horridum horridum), was found to inhibit [3H]ryanodine binding to cardiac and skeletal sarcoplasmic reticulum, to block cardiac and skeletal ryanodine receptor channels incorporated into planar bilayers, and to block Ca(2+)-induced Ca2+ release triggered by photolysis of nitr-5 in saponin-permeabilized trabeculae from rat ventricle. Cloning of the helothermine cDNA revealed that the protein is composed of 223 amino...

  12. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  13. The serotonin receptor 7 and the structural plasticity of brain circuits

    Science.gov (United States)

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  14. The serotonin receptor 7 and the structural plasticity of brain circuits

    Directory of Open Access Journals (Sweden)

    Floriana eVolpicelli

    2014-09-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT modulates numerous physiological processes in the nervous system. Together with its function as neurotrasmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.

  15. Bispyrimidines as potent histamine H(4) receptor ligands: delineation of structure-activity relationships and detailed H(4) receptor binding mode.

    Science.gov (United States)

    Engelhardt, Harald; Schultes, Sabine; de Graaf, Chris; Nijmeijer, Saskia; Vischer, Henry F; Zuiderveld, Obbe P; Dobler, Julia; Stachurski, Katharina; Mayer, Moriz; Arnhof, Heribert; Scharn, Dirk; Haaksma, Eric E J; de Esch, Iwan J P; Leurs, Rob

    2013-06-13

    The basic methylpiperazine moiety is considered a necessary substructure for high histamine H4 receptor (H4R) affinity. This moiety is however also the metabolic hot spot for various classes of H4R ligands (e.g., indolcarboxamides and pyrimidines). We set out to investigate whether mildly basic 2-aminopyrimidines in combination with the appropriate linker can serve as a replacement for the methylpiperazine moiety. In the series of 2-aminopyrimidines, the introduction of an additional 2-aminopyrimidine moiety in combination with the appropriate linker lead to bispyrimidines displaying pKi values for binding the human H4R up to 8.2. Furthermore, the methylpiperazine replacement results in compounds with improved metabolic properties. The attempt to transfer the knowledge generated in the class of bispyrimidines to the indolecarboxamides failed. Combining the derived structure-activity relationships with homology modeling leads to new detailed insights in the molecular aspects of ligand-H4R binding in general and the binding mode of the described bispyrimidines in specific. PMID:23668417

  16. Structure of Foot-and-mouth Disease virus serotype A1061 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation

    Science.gov (United States)

    Foot-and-mouth Disease viruses (FMDVs) target epithelial cells via integrin receptors, but can acquire the capacity to bind cell-surface heparan sulphate (or alternative receptors) on passage in cell culture. Vaccine viruses must be propagated in cell culture and, hence, some rationale for the selec...

  17. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, Mette M

    2008-01-01

    The Epstein-Barr induced receptor 2 (EBI2) is a lymphocyte-expressed orphan seven transmembrane-spanning (7TM) receptor that signals constitutively through Galphai, as shown, for instance by guanosine 5'-O-(3-thio)triphosphate incorporation. Two regions of importance for the constitutive activity...

  18. Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.

    Science.gov (United States)

    Di Pizio, Antonella; Levit, Anat; Slutzki, Michal; Behrens, Maik; Karaman, Rafik; Niv, Masha Y

    2016-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane (TM) proteins that play a key role in human physiology. The GPCR superfamily comprises about 800 members, classified into several classes, with rhodopsin-like Class A being the largest and most studied thus far. A huge component of the human repertoire consists of the chemosensory GPCRs, including ∼400 odorant receptors, 25 bitter taste receptors (TAS2Rs), which are thought to guard the organism from consuming poisons, and sweet and umami TAS1R heteromers, which indicate the nutritive value of food. The location of the binding site of TAS2Rs is similar to that of Class A GPCRs. However, most of the known bitter ligands are agonists, with only a few antagonists documented thus far. The agonist-to-antagonist ratios of Class A GPCRs vary, but in general are much lower than for TAS2Rs. For a set of well-studied GPCRs, a gradual change in agonists-to-antagonists ratios is observed when comparing low (10 μM)- and high (10 nM)-affinity ligand sets from ChEMBL and the DrugBank set of drugs. This shift reflects pharmaceutical bias toward the therapeutically desirable pharmacology for each of these GPCRs, while the 10 μM sets possibly represent the native tendency of the receptors toward either agonists or antagonists. Analyzing ligand-GPCR interactions in 56 X-ray structures representative of currently available structural data, we find that the N-terminus, TM1 and TM2 are more involved in binding of antagonists than of agonists. On the other hand, ECL2 tends to be more involved in binding of agonists. This is of interest, since TAS2Rs harbor variations on the typical Class A sequence motifs, including the absence of the ECL2-TM3 disulfide bridge. This suggests an alternative mode of regulation of conformational states for TAS2Rs, with potentially less stabilized inactive state. The comparison of TAS2Rs and Class A GPCRs structural features and the pharmacology of the their ligands highlights the intricacies of

  19. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  20. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    International Nuclear Information System (INIS)

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled (2H/15N/13C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding KD values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  1. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, Maciej; Morin, Sebastien; Sass, Hans-Juergen [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland); Kebbel, Fabian [University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum (Switzerland); Grzesiek, Stephan, E-mail: stephan.grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2013-01-15

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ({sup 2}H/{sup 15}N/{sup 13}C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected {alpha}-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1{beta} were assessed by surface plasmon resonance yielding K{sub D} values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  2. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  3. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    OpenAIRE

    Lin-Yan Wan; Yan-Qiong Zhang; Meng-Di Chen; You-Qin Du; Chang-Bai Liu; Jiang-Feng Wu

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket...

  4. Structural Characterization of the Boca/Mesd Maturation Factors for LDL-Receptor-Type β-Propeller Domains

    Science.gov (United States)

    Collins, Mark N.; Hendrickson, Wayne A.

    2011-01-01

    SUMMARY Folding and trafficking of low density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, is mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD β-propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation and x-ray crystallography were used to define a conserved core comprised of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold with two distinct β-sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of non-specific hydrophobic interactions that may play a role in the chaperone activity of Boca/Mesd family. PMID:21397184

  5. Structural Characterization of the Boca/Mesd Maturation Factors for LDL-Receptor-Type beta Propeller Domains

    Energy Technology Data Exchange (ETDEWEB)

    M Collins; W Hendrickson

    2011-12-31

    Folding and trafficking of low-density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, are mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD {beta} propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation, and X-ray crystallography were used to define a conserved core composed of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold with two distinct {beta} sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of nonspecific hydrophobic interactions that may play a role in the chaperone activity of the Boca/Mesd family.

  6. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    Institute of Scientific and Technical Information of China (English)

    Jessica; Mwinyi; Christa; Wenger; Jyrki; J; Eloranta; Gerd; A; Kullak-Ublick

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/ NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, whi...

  7. Structural requirements for the interaction of human IgA with the human polymeric Ig receptor.

    Science.gov (United States)

    Lewis, Melanie J; Pleass, Richard J; Batten, Margaret R; Atkin, Julie D; Woof, Jenny M

    2005-11-15

    Transport of polymeric IgA onto mucosal surfaces to become secretory IgA is mediated by the polymeric Ig receptor (pIgR). To study the interaction of human dimeric IgA (dIgA) (the predominant form of IgA polymer) with the human pIgR (hpIgR), we generated recombinant wild-type dIgA1 and dIgA2m(1) and various mutant dIgA1 and analyzed their interaction with a recombinant human secretory component and membrane-expressed hpIgR. We found that wild-type dIgA1 and dIgA2m(1) bound to recombinant human secretory component with similar affinity and were transcytosed by the hpIgR to the same extent. Mutation of the IgA Calpha2 domain residue Cys311 to Ser reduced binding to hpIgR, possibly through disruption of noncovalent interactions between the Calpha2 domain and domain 5 of the receptor. Within the Calpha3 domain of IgA1, we found that combined mutation of residues Phe411, Val413, and Thr414, which lie close to residues previously implicated in hpIgR binding, abolished interaction with the receptor. Mutation of residue Lys377, located very close to this same region, perturbed receptor interaction. In addition, 4 aa (Pro440-Phe443), which lie on a loop at the domain interface and form part of the binding site for human FcalphaRI, appear to contribute to hpIgR binding. Lastly, use of a monomeric IgA1 mutant lacking the tailpiece revealed that the tailpiece does not occlude hpIgR-binding residues in IgA1 monomers. This directed mutagenesis approach has thus identified motifs lying principally across the upper surface of the Calpha3 domain (i.e., that closest to Calpha2) critical for human pIgR binding and transcytosis. PMID:16272325

  8. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, P.; Dupuy, J.; Inamura, A.; Kiso, M.; Stevens, R.C.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  9. Structural and thermodynamic bases for the design of pure prolactin receptor antagonists: X-ray structure of Del1-9-G129R-hPRL

    DEFF Research Database (Denmark)

    Jomain, Jean-Baptiste; Tallet, Estelle; Broutin, Isabelle; Hoos, Sylviane; van Agthoven, Jan; Ducruix, Arnaud; Kelly, Paul A; Kragelund, Birthe B; England, Patrick; Goffin, Vincent

    2007-01-01

    antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological......, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site...... 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual...

  10. Insights into structure-activity relationship of GABAA receptor modulating coumarins and furanocoumarins.

    Science.gov (United States)

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F; Kopp, Brigitte; Hering, Steffen

    2011-10-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (I(GABA)) by a selection of 18 coumarin derivatives on recombinant α(1)β(2)γ(2S) GABA(A) receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC(50)=14 ± 1 μM) and oxypeucedanin (EC(50)=25 ± 8 μM) displayed the highest efficiency with I(GABA) potentiation of 116 ± 4 % and 547 ± 56 %, respectively. I(GABA) enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish I(GABA) modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin - comprising three hydrophobic and one aromatic feature - identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABA(A) receptor modulators. PMID:21749864

  11. Structural Requirements of N-Substituted Spiropiperidine Analogues as Agonists of Nociceptin/Orphanin FQ Receptor

    Directory of Open Access Journals (Sweden)

    Ling Yang

    2011-12-01

    Full Text Available The nociceptin/orphanin FQ (NOP receptor is involved in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have great potential to be developed into anxiolytics. In this work, both the ligand- and receptor-based three-dimensional quantitative structure–activity relationship (3D-QSAR studies were carried out using comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA techniques on 103 N-substituted spiropiperidine analogues as NOP agonists. The resultant optimal ligand-based CoMSIA model exhibited Q2 of 0.501, R2ncv of 0.912 and its predictive ability was validated by using an independent test set of 26 compounds which gave R2pred value of 0.818. In addition, docking analysis and molecular dynamics simulation (MD were also applied to elucidate the probable binding modes of these agonists. Interpretation of the 3D contour maps, in the context of the topology of the active site of NOP, provided insight into the NOP-agonist interactions. The information obtained from this work can be used to accurately predict the binding affinity of related agonists and also facilitate the future rational design of novel agonists with improved activity.

  12. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    The genomic gene coding for the human β2-adrenergic receptor (β2AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β2AR properties. Southern blot analyses with β2AR-specific probes show that a single β2AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β2AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  13. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector.

    Science.gov (United States)

    Goritschnig, Sandra; Steinbrenner, Adam D; Grunwald, Derrick J; Staskawicz, Brian J

    2016-05-01

    Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation. PMID:26725254

  14. Activation of tachykinin, neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation.

    Science.gov (United States)

    Thakar, Amit; Sylar, Elise; Flynn, Francis W

    2012-12-01

    The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression. PMID:22985858

  15. Novel information on the epitope of an inverse agonist monoclonal antibody provides insight into the structure of the TSH receptor.

    Directory of Open Access Journals (Sweden)

    Chun-Rong Chen

    Full Text Available The TSH receptor (TSHR comprises an extracellular leucine-rich domain (LRD linked by a hinge region to the transmembrane domain (TMD. Insight into the orientation of these components to each other is required for understanding how ligands activate the receptor. We previously identified residue E251 at the LRD-hinge junction as contributing to coupling TSH binding with receptor activation. However, a single residue cannot stabilize the LRD-hinge unit. Therefore, based on the LRD crystal structure we selected for study four other potential LRD-hinge interface charged residues. Alanine substitutions of individual residues K244, E247, K250 and R255 (as well as previously known E251A did not affect TSH binding or function. However, the cumulative mutation of these residues in varying permutations, primarily K250A and R255A when associated with E251A, partially uncoupled TSH binding and function. These data suggest that these three residues, spatially very close to each other at the LRD base, interact with the hinge region. Unexpectedly and most important, monoclonal antibody CS-17, a TSHR inverse agonist whose epitope straddles the LRD-hinge, was found to interact with residues K244 and E247 at the base of the convex LRD surface. These observations, together with the functional data, exclude residues K244 and E247 from the TSHR LRD-hinge interface. Further, for CS-17 accessibility to K244 and E247, the concave surface of the TSHR LRD must be tilted forwards towards the hinge region and plasma membrane. Overall, these data provide insight into the mechanism by which ligands either activate the TSHR or suppress its constitutive activity.

  16. Crystal structure of the urokinase receptor in a ligand-free form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai; Lin, Lin; Ploug, Michael; Huang, Mingdong

    2012-01-01

    -terminal fragment (ATF) to 3.2 Å. The structure of uPAR(H47C/N259C) in complex with ATF resembles the wild-type uPAR·ATF complex, demonstrating that these mutations do not perturb the uPA binding properties of uPAR. The present structure of uPAR(H47C/N259C) provides the first structural definition of uPAR in its...

  17. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran

    2015-01-01

    associated with microbes and apoptotic or necrotic cells. Complement not only protects against pathogens but also maintains body homeostasis. Activation of complement leads to cleavage of the complement proteins C4, C3 and C5, and their fragments have effector functions through binding to pathogen surfaces...... small fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens....... An important outcome of the regulators is the degradation of C3b to iC3b. Phagocytic receptor αMβ2 integrin (also called CR3, CD11b/CD18, or Mac-1) on leukocytes engages the opsonized activator subsequently to C3b cleavage into iC3b. Apoptotic cells activate complement leading to iC3b deposition and...

  18. Polymeric Structure and Host Toll-like Receptor 4 Dictate Immunogenicity of NY-ESO-1 Antigen in Vivo*

    Science.gov (United States)

    Liu, Yanan; Tian, Xiaoli; Leitner, Wolfgang W.; Aldridge, Michael E.; Zheng, Junying; Yu, Zhiya; Restifo, Nicholas P.; Weiss, Richard; Scheiblhofer, Sandra; Xie, Chong; Sun, Ren; Cheng, Genhong; Zeng, Gang

    2011-01-01

    In search of intrinsic factors that contribute to the distinctively strong immunogenicity of a non-mutated cancer/testis antigen, we found that NY-ESO-1 forms polymeric structures through disulfide bonds. NY-ESO-1 binding to immature dendritic cells was dependent on its polymeric structure and involved Toll-like receptor-4 (TLR4) on the surface of immature dendritic cells in mouse and human. Gene gun-delivered plasmid encoding the wild-type NY-ESO-1 readily induced T cell-dependent antibody (Ab) responses in wild-type C57BL/10 mice but not TLR4-knock-out C57BL/10ScNJ mice. Disrupting polymeric structures of NY-ESO-1 by cysteine-to-serine (Cys-to-Ser) substitutions lead to diminished immunogenicity and altered TLR4-dependence in the induced Ab response. To demonstrate its adjuvant effect, NY-ESO-1 was fused with a major mugwort pollen allergen Art v 1 and a tumor-associated antigen, carbonic anhydrase 9. Plasmid DNA vaccines encoding the fusion genes generated robust immune responses against otherwise non-immunogenic targets in mice. Polymeric structure and TLR4 may play important roles in rendering NY-ESO-1 immunogenic and thus serve as a potent molecular adjuvant. NY-ESO-1 thus represents the first example of a cancer/testis antigen that is a also damage-associated molecular pattern. PMID:21900253

  19. [Preparation of Transmembrane Fragments Growth Hormone Receptor GHR in a Cell-Free Expression System for Structural Studies].

    Science.gov (United States)

    Bocharova, O V; Kuzmichev, P K; Urban, A S; Goncharuk, S A; Bocharov, E V; Arsenyev, A S

    2015-01-01

    Growth hormone somatotropin and its membrane receptor GHR, belonging to a superfamily of the type I receptors possessing tyrosine kinase activity, are involved in the intercellular signal transduction cascade and regulate a number of important physiological and pathological processes in humans. Binding with somatotropin triggers a transition of GHR between two alternative dimer states, resulting in an allosteric activation of JAK2 tyrosine kinase in the cell cytoplasm. Transmembrane domain of GHR directly involved in this complex conformational transition. It has presumably two dimerization interfaces corresponding to the "unliganded" and the active state of GHR. In order to study the molecular basis of biochemical signal transduction mechanism across the cell membrane, we have developed an efficient cell-free production system of a TM fragment of GHR, which contains its TM domain flanked by functionally important juxtamembrane regions (GHRtm residues 254-298). The developed system allows to obtain -1 mg per 1 ml of reaction mixture of 13C- and 15N-isotope-labeled protein for structural and dynamic studies of the GHR TM domain dimerization in the membrane-mimicking medium by high-resolution heteronuclear NMR spectroscopy. PMID:27125024

  20. Characterisation of SNP haplotype structure in chemokine and chemokine receptor genes using CEPH pedigrees and statistical estimation

    Directory of Open Access Journals (Sweden)

    Clark Vanessa J

    2004-03-01

    Full Text Available Abstract Chemokine signals and their cell-surface receptors are important modulators of HIV-1 disease and cancer. To aid future case/control association studies, aim to further characterise the haplotype structure of variation in chemokine and chemokine receptor genes. To perform haplotype analysis in a population-based association study, haplotypes must be determined by estimation, in the absence of family information or laboratory methods to establish phase. Here, test the accuracy of estimates of haplotype frequency and linkage disequilibrium by comparing estimated haplotypes generated with the expectation maximisation (EM algorithm to haplotypes determined from Centre d'Etude Polymorphisme Humain (CEPH pedigree data. To do this, they have characterised haplotypes comprising alleles at 11 biallelic loci in four chemokine receptor genes (CCR3, CCR2, CCR5 and CCRL2, which span 150 kb on chromosome 3p21, and haplotyes of nine biallelic loci in six chemokine genes [MCP-1(CCL2, Eotaxin(CCL11, RANTES(CCL5, MPIF-1(CCL23, PARC(CCL18 and MIP-1α(CCL3 ] on chromosome 17q11-12. Forty multi-generation CEPH families, totalling 489 individuals, were genotyped by the TaqMan 5'-nuclease assay. Phased haplotypes and haplotypes estimated from unphased genotypes were compared in 103 grandparents who were assumed to have mated at random. For the 3p21 single nucleotide polymorphism (SNP data, haplotypes determined by pedigree analysis and haplotypes generated by the EM algorithm were nearly identical. Linkage disequilibrium, measured by the D' statistic, was nearly maximal across the 150 kb region, with complete disequilibrium maintained at the extremes between CCR3-Y17Y and CCRL2-1243V. D'-values calculated from estimated haplotypes on 3p21 had high concordance with pairwise comparisons between pedigree-phased chromosomes. Conversely, there was less agreement between analyses of haplotype frequencies and linkage disequilibrium using estimated haplotypes when

  1. The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 1. The structure of receptors, their ligand binding repertoires and ability to initiate intracellular signaling

    Directory of Open Access Journals (Sweden)

    Szczepan Józefowski

    2012-02-01

    Full Text Available  Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR, which include scavenger receptors (SR. The class A SR, SR-A/CD204 and MARCO, are characterized by the presence of collagenous and SR cysteine-rich domains in their extracellular portions. Both receptors are expressed mainly on macrophages and dendritic cells. Thanks to their ability to bind to a wide range of polyanionic ligands, the class A SR may participate in numerous functions of these cells, such as endocytosis, and adhesion to extracellular matrix and to other cells. Among SR-A ligands are oxidized lipoproteins and β-amyloid fibrils, which link SR-A to the pathogenesis of arteriosclerosis and Alzheimer’s disease. Despite the demonstration of class A SR involvement in so many processes, the lack of selective ligands precluded reaching definite conclusions concerning their signaling abilities. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO trigger intracellular signaling, modulating pro-inflammatory and microbicidal activities of macrophages. Surprisingly, despite similarities in structure and ligand binding repertoires, SR-A and MARCO exert opposite effects on interleukin-12 (IL-12 production in macrophages. SR-A ligation also stimulated H2O2 and IL-10 production, but had no effect on the release of several other cytokines. These limited effects of specific SR-A ligation contrast with generalized enhancement of immune responses observed in SR-A-deficient mice. Recent studies have revealed that many of these effects of SR-A deficiency may be caused by compensatory changes in the expression of other receptors and/or disinhibition of signal transduction from receptors belonging to the Toll/IL-1R family, rather than by the loss of the receptor function of SR-A.

  2. Screening of 397 chemicals and development of a quantitative structure-activity relationship model for androgen receptor antagonism

    DEFF Research Database (Denmark)

    Vinggaard, Annemarie; Niemelä, Jay Russell; Wedebye, Eva Bay; Jensen, Gunde Egeskov

    2008-01-01

    We have screened 397 chemicals for human androgen receptor (AR) antagonism by a sensitive reporter gene assay to generate data for the development of a quantitative structure-activity relationship (QSAR) model. A total of 523 chemicals comprising data on 292 chemicals from our laboratory and data...... synthetic androgen R1881. The MultiCASE expert system was used to construct a QSAR model for AR antagonizing potential. A "5 Times, 2-Fold 50% Cross Validation" of the model showed a sensitivity of 64%, a specificity of 84%, and a concordance of 76%. Data for 102 chemicals were generated for an external...... validation of the model resulting in a sensitivity of 57%, a specificity of 98%, and a concordance of 92% of the model. The model was run on a set of 176103 chemicals, and 47% were within the domain of the model. Approximately 8% of chemicals was predicted active for AR antagonism. We conclude that the...

  3. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    Science.gov (United States)

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  4. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    Science.gov (United States)

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  5. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Science.gov (United States)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  6. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Science.gov (United States)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-01-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs. PMID:27485575

  7. Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species.

    Science.gov (United States)

    Matthews, J B; Fertuck, K C; Celius, T; Huang, Y-W; Fong, C J; Zacharewski, T R

    2002-10-01

    The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERalphadef), mouse beta (Gal4-mERbetadef), chicken (Gal4-cERalphadef), green anole (Gal4-aERalphadef), Xenopus (Gal4-xERdef) or rainbow trout alpha ERs (Gal4-rtERalphadef). The efficacy of 17beta-estradiol (E2) in inducing reporter gene expression was similar among the different constructs overall, with EC(50) values ranging from 0.05 to 0.7nM. However, Gal4-rtERalphadef had an EC(50) value at 37 degrees C of 28nM, though at 20 degrees C an EC(50) value of 1nM was observed. Despite a similar response to E2 treatment among the ERs, many differences were observed in the magnitude of the response to other structurally diverse chemicals. For example, coumestrol induced Gal4-mERbetadef- and Gal4-aERdef-mediated reporter gene expression 164- and 8-fold greater, respectively, than mediated with the other Gal4-ERs. As well, in contrast to results with other Gal4-ERs, alpha-zearalenol consistently induced Gal4-rtERalphadef-mediated reporter gene activity at lower concentrations than did E2. Overall, the results demonstrate that selected estrogenic compounds exhibit a differential ability to induce reporter gene activity mediated by ERs from different vertebrate species. These data also highlight the importance of incubation temperature when examining rtERalpha-mediated activity. PMID:12477484

  8. The androgen receptor: Functional structure and expression in transplanted human prostate tumors and prostate tumor cell lines

    OpenAIRE

    Trapman, Jan; Ris-Stalpers, Carolyn; Korput, J. A G M; Kuiper, George; Faber, P.W.; Romijn, Johannes; Mulder, Eppo; Brinkmann, Albert

    1990-01-01

    markdownabstractAbstract The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines an...

  9. GABA-A receptor-mediated signaling alters the structure of spontaneous activity in the developing retina

    OpenAIRE

    Wang, Chih-Tien; Blankenship, Aaron G.; Anishchenko, Anastasia; Elstrott, Justin; Fikhman, Michael; Nakanishi, Shigetada; Feller, Marla B

    2007-01-01

    Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA-A receptors. Here, we demonstrate that during a developmental period when activation of GABA-A receptors causes membrane depolarization, tonic activation of GABA-A receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA-A receptor agonist muscimol blocked spontaneous correlated increases in intr...

  10. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR. Crystal structures of a number of Class B GPCR extracellular domains (ECD bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  11. Functional and structural characterization of axonal opioid receptors as targets for analgesia

    Science.gov (United States)

    Mambretti, Egle M; Kistner, Katrin; Mayer, Stefanie; Massotte, Dominique; Kieffer, Brigitte L; Hoffmann, Carsten; Reeh, Peter W; Brack, Alexander; Asan, Esther

    2016-01-01

    Background Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. Results Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl

  12. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway.

    Science.gov (United States)

    Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen

    2016-05-01

    DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. PMID:27032044

  13. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The colony stimulating factor-1 receptor (CSF-1R and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs, are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR and facilitated its departure from the kinase domain (KD. In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.

  14. Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding.

    OpenAIRE

    Wlodawer, A; A. Pavlovsky; Gustchina, A.

    1993-01-01

    Crystal and NMR structures of helical cytokines--interleukin-4 (IL-4), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-2 (IL-2)--have been compared. Root mean square deviations in the C alpha coordinates for the conserved regions of the helices were 1-2 A between different cytokines, about twice the differences observed for independently determined crystal and solution structures of IL-4. Considerable similarity in amino acid sequence in the areas expected to intera...

  15. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics.

    Science.gov (United States)

    Ruiz-Gómez, Gloria; Hawkins, John C; Philipp, Jenny; Künze, Georg; Wodtke, Robert; Löser, Reik; Fahmy, Karim; Pisabarro, M Teresa

    2016-01-01

    Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands. PMID:27123592

  16. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10 Receptor-1 Mimetics.

    Directory of Open Access Journals (Sweden)

    Gloria Ruiz-Gómez

    Full Text Available Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1, which are relevant for its interaction with interleukin-10 (IL-10 has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands.

  17. Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.; De, N; Bae, N; Wang, Q; Sondermann, H

    2009-01-01

    Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data and crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.

  18. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen; Mata, Douglas A.; Li, Kunpeng; Yin, Changcheng; Zhang, Jingqiang; Tao, Yizhi Jane; (Sun Yat-Sen); (Rice); (Peking)

    2009-08-25

    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsid protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.

  19. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function.

    Science.gov (United States)

    Tost, Heike; Kolachana, Bhaskar; Hakimi, Shabnam; Lemaitre, Herve; Verchinski, Beth A; Mattay, Venkata S; Weinberger, Daniel R; Meyer-Lindenberg, Andreas

    2010-08-01

    The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance. PMID:20647384

  20. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A [Maryland

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  1. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    International Nuclear Information System (INIS)

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a 15N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern of residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site

  2. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor.

    Science.gov (United States)

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T N; Gregory, Karen J; Tosh, Dilip K; Christopoulos, Arthur; Jacobson, Kenneth A; May, Lauren T

    2016-07-01

    Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  3. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    Science.gov (United States)

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-04-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.

  4. Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranathan, K.; Mandiyan, V; Ekkati, A; Bae, J; Schlessinger, J; Jorgensen, W

    2010-01-01

    Fibroblast growth factors (FGFs) play important roles in embryonic development, angiogenesis, wound healing, and cell proliferation and differentiation. In search of inhibitors of FGFR1 kinase, 2.2 million compounds were docked into the ATP binding site of the protein. A co-crystal structure, which shows two alternative conformations for the nucleotide binding loop, is reported. Docking was performed on both conformations and, ultimately, 23 diverse compounds were purchased and assayed. Following hit validation, two compounds 10 and 16, a benzylidene derivative of pseudothiohydantoin and a thienopyrimidinone derivative, respectively, were discovered that inhibit FGFR1 kinase with IC{sub 50} values of 23 and 50 {micro}M. Initial optimization of 16 led to the more unsaturated 40, which has significantly enhanced potency, 1.9 {micro}M. The core structures represent new structural motifs for FGFR1 kinase inhibitors. The study also illustrates complexities associated with the choice of protein structures for docking, possible use of multiple kinase structures to seek selectivity, and hit identification.

  5. Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation.

    Science.gov (United States)

    Kucharski, R; Mitri, C; Grau, Y; Maleszka, R

    2007-06-01

    G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee. PMID:17372777

  6. Crystal structure of activin receptor type IIB kinase domain from human at 2.0 Å resolution

    OpenAIRE

    Han, Seungil; Loulakis, Pat; Griffor, Matt; Xie, Zhi

    2007-01-01

    Activin receptor type IIB (ActRIIB), a type II TGF-β serine/threonine kinase receptor, is integral to the activin and myostatin signaling pathway. Ligands such as activin and myostatin bind to activin type II receptors (ActRIIA, ActRIIB), and the GS domains of type I receptors are phosphorylated by type II receptors. Myostatin, a negative regulator of skeletal muscle growth, is regarded as a potential therapeutic target and binds to ActRIIB effectively, and to a lesser extent, to ActRIIA. The...

  7. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  8. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    Directory of Open Access Journals (Sweden)

    Zaheer Ul-Haq

    Full Text Available Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1. This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein.

  9. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; Choi, Hee-Jung; Rosenbaum, Daniel M;

    2007-01-01

    transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These...... differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs....

  10. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka; Walz, Thomas; Lu, Chafen; Springer, Timothy A

    2008-01-01

    in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of...... the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF...

  11. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew;

    2014-01-01

    variants (CFP and YFP, respectively) of green fluorescent protein at various positions in the GluA2 AMPAR subunit to enable measurements of intra- receptor conformational changes using Fo¨ rster Resonance Energy Transfer (FRET) in live cells. We identify dual CFP/YFP-tagged GluA2 subunit con- structs that...... retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  12. A novel dualistic profile of an allosteric AMPA receptor modulator identified through studies on recombinant receptors, mouse hippocampal synapses and crystal structures

    DEFF Research Database (Denmark)

    Christiansen, G B; Harbak, Barbara; Hede, S E;

    2015-01-01

    Positive allosteric modulators (PAMs) of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors receive increasing interest as therapeutic drugs and have long served as important experimental tools in the study of the molecular mechanisms underlying glutamate-mediated neurotra...

  13. G Protein-Coupled Receptor Family C 6A (GPRC6A: Possible molecular target in Bone Receptor acoplado a proteína G familia C6A: Posible blanco molecular en hueso

    Directory of Open Access Journals (Sweden)

    Armando Luis Negri

    2010-12-01

    Full Text Available GPRC6A is a recently identified member of family C of G protein-coupled receptors (GPCRs that is closely related to the calcium-sensing receptor CASR. It has recently been shown that GPRC6A extracellular cations and amino acids and requires both extracellular cations and amino acids for optimal stimulation in vitro. The study of the ligand profile of GPRC6A has shown that l-ornithine is the most potent and efficacious l-amino acid agonist, followed by several other aliphatic, neutral, and basic amino acids. Some studies show cation-dependent activation of GPRC6A, but compared to CASR, much higher extracellular calcium concentrations are needed to activate this receptor. Furthermore, the divalent cation Mg(2+ was found to be a positive modulator of the l-ornithine response. GPRC6A may be a candidate for the elusive extracellular calcium-sensing mechanism known to be present in osteoblasts, which respond to high local Ca²+ concentrations. GPRC6A has also been proposed as a candidate receptor for ostocalcin, regulating energy metabolism and as a molecular target for the action of strontium on bone.El GPRC6A es un miembro recientemente identificado de la familia C de receptores acoplados a proteínas G (GPCRs que está estrechamente emparentado con el receptor sensor de calcio (CASR. Se ha demostrado que este receptor es capaz de sensar cationes extracelulares y aminoácidos y que requiere tanto de los cationes extracelulares y de los aminoácidos para su óptima estimulación in vitro. El estudio del perfil de ligandos ha mostrado que la l-ornithine es el más potente eficaz l-aminoácido agonista seguido de varios otros aminoácidos alifáticos, neutros, y básicos. Algunos estudios han mostrado la activación por cationes del GPRC6A, pero comparado con el CASR, se necesitan concentraciones extracelulares más altas de calcio para activar este receptor. Es más, el Mg(2+ ha mostrado ser un modulador positivo de la respuesta a la l-ornithine. Se

  14. A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: uncovering structural determinants of desensitization properties.

    Science.gov (United States)

    Lee, Hee-Kyoung; Zhang, Liuyin; Smith, Misty D; Walewska, Aleksandra; Vellore, Nadeem A; Baron, Riccardo; McIntosh, J Michael; White, H Steve; Olivera, Baldomero M; Bulaj, Grzegorz

    2015-01-01

    Neurotensin receptors have been studied as molecular targets for the treatment of pain, schizophrenia, addiction, or cancer. Neurotensin (NT) and Contulakin-G, a glycopeptide isolated from a predatory cone snail Conus geographus, share a sequence similarity at the C-terminus, which is critical for activation of neurotensin receptors. Both peptides are potent analgesics, although affinity and agonist potency of Contulakin-G toward neurotensin receptors are significantly lower, as compared to those for NT. In this work, we show that the weaker agonist properties of Contulakin-G result in inducing significantly less desensitization of neurotensin receptors and preserving their cell-surface density. Structure-activity relationship (SAR) studies suggested that both glycosylation and charged amino acid residues in Contulakin-G or NT played important roles in desensitizing neurotensin receptors. Computational modeling studies of human neurotensin receptor NTS1 and Contulakin-G confirmed the role of glycosylation in weakening interactions with the receptors. Based on available SAR data, we designed, synthesized, and characterized an analog of Contulakin-G in which the glycosylated amino acid residue, Gal-GalNAc-Thr10, was replaced by memantine-Glu10 residue. This analog exhibited comparable agonist potency and weaker desensitization properties as compared to that of Contulakin-G, while producing analgesia in the animal model of acute pain following systemic administration. We discuss our study in the context of feasibility and safety of developing NT therapeutic agents with improved penetration across the blood-brain barrier. Our work supports engineering peptide-based agonists with diverse abilities to desensitize G-protein coupled receptors and further emphasizes opportunities for conotoxins as novel pharmacological tools and drug candidates. PMID:25713532

  15. A Marine Analgesic Peptide, Contulakin-G, and Neurotensin are Distinct Agonists for Neurotensin Receptors: Uncovering Structural Determinants of Desensitization Properties

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung eLee

    2015-02-01

    Full Text Available Neurotensin receptors have been studied as molecular targets for the treatment of pain, schizophrenia, addiction, or cancer. Neurotensin (NT and Contulakin-G, a glycopeptide isolated from a predatory cone snail Conus geographus, share a sequence similarity at the C-terminus, which is critical for activation of neurotensin receptors. Both peptides are potent analgesics, although affinity and agonist potency of Contulakin-G toward neurotensin receptors are significantly lower, as compared to those for NT. In this work, we show that the weaker agonist properties of Contulakin-G result in inducing significantly less desensitization of neurotensin receptors and preserving their cell-surface density. Structure-activity relationship (SAR studies suggested that both glycosylation and charged amino acid residues in Contulakin-G or NT played important roles in desensitizing neurotensin receptors. Computational modeling studies of human neurotensin receptor NTS1 and Contulakin-G confirmed the role of glycosylation in weakening interactions with the receptors. Based on available SAR data, we designed, synthesized and characterized an analog of Contulakin-G in which the glycosylated amino acid residue, Gal-GalNAc-Thr10, was replaced by memantine-Glu10 residue. This analog exhibited comparable agonist potency and weaker desensitization properties as compared to that of Contulakin-G, while producing analgesia in the animal model of acute pain following systemic administration. We discuss our study in the context of feasibility and safety of developing NT therapeutic agents with improved penetration across the blood-brain barrier. Our work supports engineering peptide-based agonists with diverse abilities to desensitize G-protein coupled receptors and further emphasizes opportunities for conotoxin as novel pharmacological tools and drug candidates.

  16. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1, Val1, Asn2, Gln3, His4, Ser8, His9, Glu12, Tyr15, Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3, Ala4] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15, Leu16] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln3, Ala4, Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  17. Structure of the human CD97 gene: Exon shuffling has generated a new type of seven-span transmembrane molecule related to the secretin receptor superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.; Van Lier, R.A.W. [Univ. of Amsterdam (Netherlands); Hartmann, E. [Max-Delbrueck-Centre for Molecular Medicine, Berlin-Buch (Germany)

    1996-02-15

    This article reports on the structure and genetic mapping of the human CD97 gene, a homologue to the secretin receptor superfamily of cell surface proteins. The detailed organization of the gene, which maps to the short arm of chromosome 19, is given. 18 refs., 1 fig., 1 tab.

  18. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    International Nuclear Information System (INIS)

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  19. Structure and dynamics of the pore-lining helix of the nicotinic receptor : MD simulations in water, lipid bilayers, and transbilayer bundles

    NARCIS (Netherlands)

    Law, RJ; Forrest, LR; Ranatunga, KM; La Rocca, P; Tieleman, DP; Sansom, MSP

    2000-01-01

    Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central L

  20. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen;

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive m...

  1. Distinctive Structure of the EphA3/Ephrin-A5 Complex Reveals a Dual Mode of Eph Receptor Interaction for Ephrin-A5.

    Directory of Open Access Journals (Sweden)

    Garry Jason Forse

    Full Text Available The Eph receptor tyrosine kinase/ephrin ligand system regulates a wide spectrum of physiological processes, while its dysregulation has been implicated in cancer progression. The human EphA3 receptor is widely upregulated in the tumor microenvironment and is highly expressed in some types of cancer cells. Furthermore, EphA3 is among the most highly mutated genes in lung cancer and it is also frequently mutated in other cancers. We report the structure of the ligand-binding domain of the EphA3 receptor in complex with its preferred ligand, ephrin-A5. The structure of the complex reveals a pronounced tilt of the ephrin-A5 ligand compared to its orientation when bound to the EphA2 and EphB2 receptors and similar to its orientation when bound to EphA4. This tilt brings an additional area of ephrin-A5 into contact with regions of EphA3 outside the ephrin-binding pocket thereby enlarging the size of the interface, which is consistent with the high binding affinity of ephrin-A5 for EphA3. This large variation in the tilt of ephrin-A5 bound to different Eph receptors has not been previously observed for other ephrins.

  2. Kinetic and structural analysis of mutant CD4 receptors that are defective in HIV gp120 binding

    Science.gov (United States)

    Wu, Hao; Myszka, David G.; Tendian, Susan W.; Brouillette, Christie G.; Sweet, Ray W.; Chaiken, Irwin M.; Hendrickson, Wayne A.

    1996-01-01

    The T-cell antigen coreceptor CD4 also serves as the receptor for the envelope glycoprotein gp120 of HIV. Extensive mutational analysis of CD4 has implicated residues from a portion of the extracellular amino-terminal domain (D1) in gp120 binding. However, none of these proteins has been fully characterized biophysically, and thus the precise effects on molecular structure and binding interactions are unknown. In the present study, we produced soluble versions of three mutant CD4 molecules (F43V, G47S, and A55F) and characterized their structural properties, thermostability, and ability to bind gp120. Crystallographic and thermodynamic analysis showed minimal structural alterations in the F43V and G47S mutant proteins, which have solvent-exposed mutant side chains. In contrast, some degree of disorder appears to exist in the folded state of A55F, as a result of mutating a buried side chain. Real time kinetic measurements of the interaction of the mutant proteins with gp120 showed affinity decreases of 5-fold for G47S, 50-fold for A55F, and 200-fold for F43V. Although both rate constants for the binding reaction were affected by these mutations, the loss in affinity was mainly due to a decrease in on rates, with less drastic changes occurring in the off rates. These observations suggest the involvement of conformational adaptation in the CD4–gp120 interaction. Together, the structural and kinetic data confirm that F43V is a critical residue in gp120 recognition site, which may also include main chain interactions at residue Gly-47. PMID:8986758

  3. Structure, sequence, expression, and chromosomal localization of the human V{sub 1a} vasopressin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Thibonnier, M.; Graves, M.K.; Wagner, M.S. [Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States)] [and others

    1996-02-01

    We recently reported the structure and functional expression of a human V{sub 1a} vasopressin receptor (V{sub 1a}R) cDNA isolated from human liver cDNA libraries. To understand further the expression and regulation of the V{sub 1a}R, we now describe the genomic characteristics, tissue expression, chromosomal localization, and regional mapping of the human V{sub 1a}R gene, AVPR1A. Tissue distribution of the human V{sub 1a}R mRNA explored by Northern blot analysis of various human tissues or organs revealed the presence of a 5.5-kb mRNA transcript expressed in the liver and to a lesser degree in the heart, the kidney, and skeletal muscle. Screening of human genomic libraries revealed that the human AVPR1A gene is included entirely within a 6.4-kb rated by a 2.2-kb intron located before the corresponding seventh transmembrane domain of the receptor sequence. The first exon also contains 2 kb of 5{prime}-untranslated region, and the second exon includes 1 kb of 3{prime}-untranslated region. 5{prime}-RACE analysis of human liver mRNA by PCR localized the V{sub 1a}R mRNA transcription start site 1973 bp upstream of the translation the intron sequence were used as primers in polymerase chain reaction (PCR) analysis of human/rodent somatic cell hybrids. AVPR1A was localized by PCR analysis of a somatic cell hybrid panel to chromosome 12. Fluorescence in situ hybridization using a yeast artificial chromosome physically mapped AVPR1A to region 12q14-q15. 34 refs., 4 figs.

  4. State of affairs: Design and structure-activity relationships of reversible P2Y12 receptor antagonists.

    Science.gov (United States)

    Zetterberg, Fredrik; Svensson, Peder

    2016-06-15

    Myocardial infarction and stroke are the most common causes of mortality and morbidity in the developed world. Therefore the search for antiplatelet therapy has been in focus for the last decades, in particular the search for new P2Y12R antagonists. The first P2Y12R drug developed, clopidogrel, is a major success but there is still room for improvement with respect to bleeding profile and non-responders. These liabilities could be due to the fact that clopidogrel is a pro-drug and upon activation binds covalently to the receptor. Therefore a lot of effort has gone into identifying reversible inhibitors. One recent example is ticagrelor, which in clinical studies have been shown to be safer and even reduce rate of death from vascular events as compared head to head with clopidogrel. We here review the medicinal chemistry strategies used in the design of new reversible P2Y12R antagonists. In addition, we also present structure based design studies based on the recently published agonist and antagonist X-ray structures of P2Y12R. PMID:27133596

  5. A structural model of the pore-forming region of the skeletal muscle ryanodine receptor (RyR1.

    Directory of Open Access Journals (Sweden)

    Srinivas Ramachandran

    2009-04-01

    Full Text Available Ryanodine receptors (RyRs are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1 give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca(2+ over K(+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca(2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K(+ but not Ca(2+. Our simulations with G4898R likewise show a decrease in the preference of Ca(2+ over K(+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level.

  6. Structure-based Engineering of Species Selectivity in the Interaction Between Urokinase and its Receptor: Implication for Preclinical Cancer Therapy

    International Nuclear Information System (INIS)

    The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) is decisive for cell surface-associated plasminogen activation. Because plasmin activity controls fibrinolysis in a variety of pathological conditions, including cancer and wound healing, several intervention studies have focused on targeting the uPA · uPAR interaction in vivo. Evaluations of such studies in xenotransplanted tumor models are, however, complicated by the pronounced species selectivity in this interaction. We now report the molecular basis underlying this difference by solving the crystal structure for the murine uPA · uPAR complex and demonstrate by extensive surface plasmon resonance studies that the kinetic rate constants for this interaction can be swapped completely between these orthologs by exchanging only two residues. This study not only discloses the structural basis required for a successful rational design of the species selectivity in the uPA · uPAR interaction, which is highly relevant for functional studies in mouse models, but it also suggests the possible development of general inhibitors that will target the uPA · uPAR interaction across species barriers.

  7. Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity.

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    Full Text Available Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.

  8. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    Science.gov (United States)

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  9. Production of functional human vitamin A transporter/RBP receptor (STRA6 for structure determination.

    Directory of Open Access Journals (Sweden)

    Conor J Breen

    Full Text Available STRA6 is a plasma membrane protein that mediates the transport of vitamin A, or retinol, from plasma retinol binding protein (RBP into the cell. Mutations in human STRA6 are associated with Matthew-Wood syndrome, which is characterized by severe developmental defects. Despite the obvious importance of this protein to human health, little is known about its structure and mechanism of action. To overcome the difficulties frequently encountered with the production of membrane proteins for structural determination, STRA6 has been expressed in Pichia pastoris as a fusion to green fluorescent protein (GFP, a strategy which has been a critical first step in solving the crystal structures of several membrane proteins. STRA6-GFP was correctly targeted to the cell surface where it bound RBP. Here we report the large-scale expression, purification and characterisation of STRA6-GFP. One litre of culture, corresponding to 175 g cells, yielded about 1.5 mg of pure protein. The interaction between purified STRA6 and its ligand RBP was studied by surface plasmon resonance-based binding analysis. The interaction between STRA6 and RBP was not retinol-dependent and the binding data were consistent with a transient interaction of 1 mole RBP/mole STRA6.

  10. Profound Asymmetry in the Structure of the cAMP-free cAMP Receptor Protein (CRP) from Mycobacterium tuberculosisS⃞

    OpenAIRE

    Gallagher, D. Travis; Smith, Natasha; Kim, Sook-Kyung; Robinson, Howard; Reddy, Prasad T.

    2009-01-01

    The cyclic AMP receptor protein (CRP, also called catabolite gene activator protein or CAP) plays a key role in metabolic regulation in bacteria and has become a widely studied model allosteric transcription factor. On binding its effector cAMP in the N-terminal domain, CRP undergoes a structural transition to a conformation capable of specific DNA binding in the C-terminal domain and transcription initiation. The crystal structures of Escherichia coli CRP (EcCRP) in ...

  11. Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist.

    Science.gov (United States)

    Merk, Daniel; Lamers, Christina; Ahmad, Khalil; Carrasco Gomez, Roberto; Schneider, Gisbert; Steinhilber, Dieter; Schubert-Zsilavecz, Manfred

    2014-10-01

    The ligand activated transcription factor nuclear farnesoid X receptor (FXR) is involved as a regulator in many metabolic pathways including bile acid and glucose homeostasis. Therefore, pharmacological activation of FXR seems a valuable therapeutic approach for several conditions including metabolic diseases linked to insulin resistance, liver disorders such as primary biliary cirrhosis or nonalcoholic steatohepatitis, and certain forms of cancer. The available FXR agonists, however, activate the receptor to the full extent which might be disadvantageous over a longer time period. Hence, partial FXR activators are required for long-term treatment of metabolic disorders. We here report the SAR of anthranilic acid derivatives as FXR modulators and development, synthesis, and characterization of compound 51, which is a highly potent partial FXR agonist in a reporter gene assay with an EC50 value of 8 ± 3 nM and on mRNA level in liver cells. PMID:25255039

  12. Identification of potent and selective retinoic acid receptor gamma (RARγ) antagonists for the treatment of osteoarthritis pain using structure based drug design.

    Science.gov (United States)

    Hughes, Norman E; Bleisch, Thomas J; Jones, Scott A; Richardson, Timothy I; Doti, Robert A; Wang, Yong; Stout, Stephanie L; Durst, Gregory L; Chambers, Mark G; Oskins, Jennifer L; Lin, Chaohua; Adams, Lisa A; Page, Todd J; Barr, Robert J; Zink, Richard W; Osborne, Harold; Montrose-Rafizadeh, Chahrzad; Norman, Bryan H

    2016-07-15

    A series of triaryl pyrazoles were identified as potent pan antagonists for the retinoic acid receptors (RARs) α, β and γ. X-ray crystallography and structure-based drug design were used to improve selectivity for RARγ by targeting residue differences in the ligand binding pockets of these receptors. This resulted in the discovery of novel antagonists which maintained RARγ potency but were greater than 500-fold selective versus RARα and RARβ. The potent and selective RARγ antagonist LY2955303 demonstrated good pharmacokinetic properties and was efficacious in the MIA model of osteoarthritis-like joint pain. This compound demonstrated an improved margin to RARα-mediated adverse effects. PMID:27261179

  13. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    Science.gov (United States)

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor. PMID:26789491

  14. Novel Information on the Epitope of an Inverse Agonist Monoclonal Antibody Provides Insight into the Structure of the TSH Receptor

    OpenAIRE

    Chen, Chun-Rong; Salazar, Larry M.; McLachlan, Sandra M.; Rapoport, Basil

    2012-01-01

    The TSH receptor (TSHR) comprises an extracellular leucine-rich domain (LRD) linked by a hinge region to the transmembrane domain (TMD). Insight into the orientation of these components to each other is required for understanding how ligands activate the receptor. We previously identified residue E251 at the LRD-hinge junction as contributing to coupling TSH binding with receptor activation. However, a single residue cannot stabilize the LRD-hinge unit. Therefore, based on the LRD crystal str...

  15. Activation of tachykinin Neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation

    OpenAIRE

    Thakar, Amit; Sylar, Elise; Flynn, Francis W.

    2012-01-01

    The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, ...

  16. Structure of the active core of human stem cell factor and analysis of binding to its receptor Kit

    OpenAIRE

    Jiang, Xuliang; Gurel, Ogan; Mendiaz, Elizabeth A.; Stearns, George W.; Clogston, Christi L.; Lu, Hsieng S; Osslund, Timothy D.; Syed, Rashid S.; Langley, Keith E.; Hendrickson, Wayne A

    2000-01-01

    Stem cell factor (SCF) is an early-acting hematopoietic cytokine that elicits multiple biological effects. SCF is dimeric and occurs in soluble and membrane-bound forms. It transduces signals by ligand- mediated dimerization of its receptor, Kit, which is a receptor tyrosine kinase related to the receptors for platelet-derived growth factor (PDGF), macrophage colony-stimulating factor, Flt-3 ligand and vascular endothelial growth factor (VEGF). All of these have extracellular ligand-binding p...

  17. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.; Cherezov, Vadim; Chien, Ellen Y.T.; Lane, J. Robert; IJzerman, Adriaan P.; Stevens, Raymond C. (Scripps); (Leiden/Amsterdam)

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.

  18. Crystal Structure of Human Interferon-[lamda]1 in Complex with Its High-Affinity Receptor Interferon-[lamda]R1

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, Zachary; Magracheva, Eugenia; Li, Wei; Zdanov, Alexander; Kotenko, Sergei V.; Wlodawer, Alexander (NJMS); (NCI)

    2010-12-01

    Interferon (IFN)-{lambda}1 [also known as interleukin (IL)-29] belongs to the recently discovered group of type III IFNs. All type III IFNs initiate signaling processes through formation of specific heterodimeric receptor complexes consisting of IFN-{lambda}R1 and IL-10R2. We have determined the structure of human IFN-{lambda}1 complexed with human IFN-{lambda}R1, a receptor unique to type III IFNs. The overall structure of IFN-{lambda}1 is topologically similar to the structure of IL-10 and other members of the IL-10 family of cytokines. IFN-{lambda}R1 consists of two distinct domains having fibronectin type III topology. The ligand-receptor interface includes helix A, loop AB, and helix F on the IFN site, as well as loops primarily from the N-terminal domain and inter-domain hinge region of IFN-{lambda}R1. Composition and architecture of the interface that includes only a few direct hydrogen bonds support an idea that long-range ionic interactions between ligand and receptor govern the process of initial recognition of the molecules while hydrophobic interactions finalize it.

  19. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity

    Directory of Open Access Journals (Sweden)

    Norio Matsushima

    2015-08-01

    Full Text Available The NOD-like receptors (NLRs and Toll-like receptors (TLRs are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs that are responsible for ligand interactions. In LRRs short β-strands stack parallel and then the LRRs form a super helical arrangement of repeating structural units (called a coil of solenoids. The structures of the LRR domains of NLRC4, NLRP1, and NLRX1 in NLRs and of TLR1-5, TLR6, TLR8, TLR9 in TLRs have been determined. Here we report nine geometrical parameters that characterize the LRR domains; these include four helical parameters from HELFIT analysis. These nine parameters characterize well the LRR structures in NLRs and TLRs; the LRRs of NLR adopts a right-handed helix. In contrast, the TLR LRRs adopt either a left-handed helix or are nearly flat; RP105 and CD14 also adopt a left-handed helix. This geometrical analysis subdivides TLRs into four groups consisting of TLR3/TLR8/TLR9, TLR1/TLR2/TRR6, TLR4, and TLR5; these correspond to the phylogenetic tree based on amino acid sequences. In the TLRs an ascending lateral surface that consists of loops connecting the β-strand at the C-terminal side is involved in protein, protein/ligand interactions, but not the descending lateral surface on the opposite side.

  20. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.

    Science.gov (United States)

    Ujčíková, H; Brejchová, J; Vošahlíková, M; Kagan, D; Dlouhá, K; Sýkora, J; Merta, L; Drastichová, Z; Novotný, J; Ostašov, P; Roubalová, L; Parenti, M; Hof, M; Svoboda, P

    2014-01-01

    Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine (micro-OR, delta-OR and kappa-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein alpha and beta subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidative stress and alteration of brain energy metabolism occurred. The number of delta-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of delta-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of delta-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating participation of cholesterol-enriched membrane domains in agonist-specific internalization of delta-OR. In HEK293 cells stably expressing delta-OR-G(i)1alpha fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged. Hydrophobic interior of isolated PM became more "fluid", chaotically organized and accessible to water molecules

  1. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M. (VA); (UCLA); (Vanderbilt); (UCSF)

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  2. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    This chapter describes the displacement of 3H-23390 and 3H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3H-SCH 23390 and 3H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  3. A simple, quick and high-yield preparation of the human thromboxane A2 receptor in full size for structural studies1

    Science.gov (United States)

    Ruan, Ke-He; Cervantes, Vanessa; Wu, Jiaxin

    2008-01-01

    Human thromboxane A2 receptor (TP), a G protein-coupled receptor (GPCR), is one of the most promising targets for developing the next generation of anti-thrombosis and hypertension drugs. However, obtaining a sufficient amount of the full sized and active membrane protein has been the major obstacle for structural elucidation that reveals the molecular mechanisms of the receptor activation and drug designs. Here we report an approach for the simple, quick, and high-yield preparation of the purified and active full sized TP in an amount suitable for structural studies. Glycosylated human TP was highly expressed in Sf-9 cells using an optimized baculovirus (BV) expression system. The active receptor was extracted and solubilized by several different detergents for comparison, and was finally purified to a single band at a nearly perfect ratio of 1:0.9 ± 0.05 (ligand:receptor molecule) in ligand binding using a Ni-column with a relatively low yield. However, a high-yield purification (milligram quantity) of the TP protein, from a modulate scale of transfected Sf-9 cell culture, has been achieved by quick and simple purification steps, which include DNA-digestion, DM detergent-extraction, centrifugation and FPLC-purification. The purity and quantity of the purified TP, using the high-yield approach, was suitable for protein structural studies as evidenced by SDS-PAGE, Western blot analyses, ligand binding assays, and a feasibility test using high-resolution 1D and 2D 1H NMR spectroscopic analyses. These studies provide a basis for the high-yield expression and purification of the GPCR for the structural and functional characterization using biophysics approaches. PMID:18529068

  4. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  5. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Ann Hye-Ryong; Liu, Heli; Focia, Pamela J.; Chen, Xiaoyan; Lin, P. Charles; He, Xiaolin (Vanderbilt); (NWU)

    2010-07-13

    Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFR{beta}, showing that two PDGF-B protomers clamp PDGFR{beta} at their dimerization seam. The PDGF-B:PDGFR{beta} interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFR{beta}. Calorimetric data also shows that the membrane-proximal homotypic PDGFR{alpha} interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.

  6. Genomic structure of metabotropic glutamate receptor 7 and comparison of genomic structures of extracellular domains of mGluR family

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Metabotropic glutamate receptor 7, coupled with a chemical neurotransmitter L-glutamate, plays an important role in the development of many psychiatric and neurological disorders. To study the biological and genetic mechanism of the mGluR7-related diseases, a physical map covering the full-length mGluR7 genomic sequence has been constructed through seed clone screening and fingerprinting database searching. These BAC clones in the physical map have been sequenced with shotgun strategy and assembled by Phred-Phrap-Consed software; the error rate of the final genomic sequence is less than 0.01%. mGluR7 spans 880 kb genomic region, the GC content and repeat content of mGluR7 genomic sequence are 38% and 37.5% respectively. mGluR7 has a typical "house-keeping" promoter and consists of 11 exons, with introns ranging from 6 kb to 285 kb. mGluR7a and mGluR7b are two known alternatively splicing variants. Comparing the genomic structures of extracellular domains of mGluR family, their genomic structures can be subdivided into three groups, which are consistent with that of proteins. Although the genomic organization of mGluR7's group is conserved, the majority of introns in the extracellular segments vary dramatically. It is an obvious trend of the increasing intron size inverse proportion to phylogenetic time. Variation of genomic structure is higher than that of protein, which is attributed to the species characteristic regulation of gene expression.

  7. The Structural Role of Antibody N-Glycosylation in Receptor Interactions.

    Science.gov (United States)

    Subedi, Ganesh P; Barb, Adam W

    2015-09-01

    Asparagine(N)297-linked glycosylation of immunoglobulin G (IgG) Fc is required for binding to FcγRIIa, IIb, and IIIa, although it is unclear how it contributes. We found the quaternary structure of glycosylated Fc was indistinguishable from aglycosylated Fc, indicating that N-glycosylation does not maintain relative Fc Cγ2/Cγ3 domain orientation. However, the conformation of the C'E loop, which contains N297, was significantly perturbed in the aglycosylated Fc variant. The conformation of the C'E loop as measured with a range of Fc variants shows a strong correlation with FcγRIIIa affinity. These results indicate that the primary role of the IgG1 Fc N-glycan is to stabilize the C'E loop through intramolecular interactions between carbohydrate and amino acid residues, and preorganize the FcγRIIIa interface for optimal binding affinity. The features that contribute to the capacity of the IgG1 Fc N-glycan to restrict protein conformation and tune binding affinity are conserved in other antibodies including IgG2-IgG4, IgD, IgE, and IgM. PMID:26211613

  8. Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates.

    Directory of Open Access Journals (Sweden)

    Claudia Stäubert

    Full Text Available The family of trace amine-associated receptors (TAAR comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the G(s protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3-5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species.

  9. Biophysical and Biochemical Characterization of Avian Secretory Component Provides Structural Insights into the Evolution of the Polymeric Ig Receptor.

    Science.gov (United States)

    Stadtmueller, Beth M; Yang, Zhongyu; Huey-Tubman, Kathryn E; Roberts-Mataric, Helena; Hubbell, Wayne L; Bjorkman, Pamela J

    2016-08-15

    The polymeric Ig receptor (pIgR) transports polymeric Abs across epithelia to the mucosa, where proteolytic cleavage releases the ectodomain (secretory component [SC]) as an integral component of secretory Abs, or as an unliganded protein that can mediate interactions with bacteria. SC is conserved among vertebrates, but domain organization is variable: mammalian SC has five domains (D1-D5), whereas avian, amphibian, and reptilian SC lack the D2 domain, and fish SC lacks domains D2-D4. In this study, we used double electron-electron resonance spectroscopy and surface plasmon resonance binding studies to characterize the structure, dynamics, and ligand binding properties of avian SC, avian SC domain variants, and a human SC (hSC) variant lacking the D2 domain. These experiments demonstrated that, unlike hSC, which adopts a compact or "closed" domain arrangement, unliganded avian SC is flexible and exists in both closed and open states, suggesting that the mammalian SC D2 domain stabilizes the closed conformation observed for hSC D1-D5. Experiments also demonstrated that avian and mammalian pIgR share related, but distinct, mechanisms of ligand binding. Together, our data reveal differences in the molecular recognition mechanisms associated with evolutionary changes in the pIgR protein. PMID:27412418

  10. Molecular mechanism of agonism and inverse agonism in the melanocortin receptors: Zn(2+) as a structural and functional probe

    DEFF Research Database (Denmark)

    Holst, Birgitte; Schwartz, Thue W

    2003-01-01

    Among the rhodopsin-like 7TM receptors, the MC receptors are functionally unique because their high constitutive signaling activity is regulated not only by endogenous peptide agonists-MSH peptides-but also by endogenous inverse agonists, namely, the proteins agouti and AGRP. Moreover, the metal...

  11. Structure-function relationships for the interleukin 2 receptor: location of ligand and antibody binding sites on the Tac receptor chain by mutational analysis.

    OpenAIRE

    1988-01-01

    The Tac protein plays a role in high- and low-affinity interleukin 2 (IL-2) receptors. A mutational survey of this molecule identified several small segments in which the binding of IL-2 was particularly sensitive to amino acid substitutions. Two of the segments (residues 1-6 and 35-43) located in the exon 2-encoded region of the molecule overlapped the apparent binding sites of three monoclonal antibodies (anti-Tac, GL439, and H31) that block high- and low-affinity Tac-IL-2 interactions, thu...

  12. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  13. A C-terminal segment of the V1R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    International Nuclear Information System (INIS)

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V1 vascular vasopressin receptor (V1R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V1R has been cloned, expressed, purified and crystallized. The crystals belong to space group P21, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V1R

  14. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    International Nuclear Information System (INIS)

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2 = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2 = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables prediction of both

  15. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Regina [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  16. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  17. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A.

    Science.gov (United States)

    Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi

    2015-06-01

    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. PMID:25826155

  18. Three-dimensional solution structure and conformational plasticity of the N-terminal scavenger receptor cysteine-rich domain of human CD5.

    Science.gov (United States)

    Garza-Garcia, Acely; Esposito, Diego; Rieping, Wolfgang; Harris, Richard; Briggs, Cherry; Brown, Marion H; Driscoll, Paul C

    2008-04-18

    The lymphocyte receptor CD5 influences cell activation by modifying the strength of the intracellular response initiated by antigen engagement. Regulation through CD5 involves the interaction of one or more of its three scavenger receptor cysteine-rich domains present in the extracellular region. Here, we present the 3D solution structure of a non-glycosylated double mutant of the N-terminal domain of human CD5 expressed in Escherichia coli (eCD5d1m), which has enhanced solubility compared to the non-glycosylated wild-type (eCD5d1). In common with a glycosylated form expressed in Pichia pastoris, the [(15)N,(1)H]-correlation spectra of both eCD5d1 and eCD5d1m exhibit non-uniform temperature-dependent signal intensities, indicating extensive conformational fluctuations on the micro-millisecond timescale. Although approximately one half of the signals expected for the domain are absent at 298 K, essentially complete resonance assignments and a solution structure could be obtained at 318 K. Because of the sparse nature of the experimental restraint data and the potentially important contribution of conformational exchange to the nuclear Overhauser effect peak intensity, we applied inferential structure determination to calculate the eCD5d1m structure. The inferential structure determination ensemble has similar features to that obtained by traditional simulated annealing methods, but displays superior definition and structural quality. The eCD5d1m structure is similar to other members of the scavenger receptor cysteine-rich superfamily, but the position of the lone alpha helix differs due to interactions with the unique N-terminal region of the domain. The availability of an experimentally tractable form of CD5d1, together with its 3D structure, provides new tools for further investigation of its function within intact CD5. PMID:18339402

  19. Tsh receptor

    OpenAIRE

    Frauman, Albert

    2013-01-01

    The TSH receptor is a member of the G protein-coupled receptor(GPCR)family. It is one of the glycoprotein hormone receptors, which also includes the FSH and LH/CG receptors. The TSH receptor mediates the action of the pituitary-derived glycoprotein, TSH (thyroid stimulating hormone, thyrotropin or thyrotrophin). TSH binds to the TSH receptor which is located on thyroid follicular cells (but is also expressed in extrathyroidal sites). Glycosylation of the TSH receptor occurs, as does cleavage ...

  20. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  1. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R2 = 0.71, STL R2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results have

  2. Synaptically Released Matrix Metalloproteinase Activity in Control of Structural Plasticity and the Cell Surface Distribution of GluA1-AMPA Receptors

    OpenAIRE

    Zsuzsanna Szepesi; Eric Hosy; Blazej Ruszczycki; Monika Bijata; Marta Pyskaty; Arthur Bikbaev; Martin Heine; Daniel Choquet; Leszek Kaczmarek; Jakub Wlodarczyk

    2014-01-01

    Synapses are particularly prone to dynamic alterations and thus play a major role in neuronal plasticity. Dynamic excitatory synapses are located at the membranous neuronal protrusions called dendritic spines. The ability to change synaptic connections involves both alterations at the morphological level and changes in postsynaptic receptor composition. We report that endogenous matrix metalloproteinase (MMP) activity promotes the structural and functional plasticity of local synapses by its ...

  3. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus.

    Science.gov (United States)

    Tocchini-Valentini, Giuseppe D; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-16

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalochordate amphioxus (Branchiostoma floridae), an invertebrate chordate that predates the genome duplication that produced the three vertebrates RXRs (alpha, beta, and gamma). Here we report the crystal structure of a novel apotetramer conformation of the AmphiRXR ligand-binding domain, which shows some similarity with the structures of the arthropods RXR/USPs. AmphiRXR adopts an apo antagonist conformation with a peculiar conformation of helix H11 filling the binding pocket. In contrast to the arthropods RXR/USPs, which cannot be activated by any RXR ligands, our functional data show that AmphiRXR, like the vertebrates/mollusk RXRs, is able to bind and be activated by RXR ligands but less efficiently than vertebrate RXRs. Our data suggest that amphioxus RXR is, functionally, an intermediate between arthropods RXR/USPs and vertebrate RXRs. PMID:18986992

  4. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.

    Science.gov (United States)

    Yang, Yuedong; Zhan, Jian; Zhou, Yaoqi

    2016-07-01

    Structure-based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this "ab initio" approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT-Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD-E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding-homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org. © 2016 Wiley Periodicals, Inc. PMID:27074979

  5. The lux autoinducer-receptor interaction in Vibrio harveyi: binding parameters and structural requirements for the autoinducer.

    Science.gov (United States)

    Cao, J G; Wei, Z Y; Meighen, E A

    1995-01-01

    To assess the binding parameters and the structure-function relationship of the Vibrio harveyi lux autoinducer, N-(D-3-hydroxybutanoyl)homoserine lactone (D-HBHL), to light emission, a series of acylhomoserine lactone analogues were synthesized and their effects on the stimulation of luminescence of an autoinducer-deficient mutant of V. harveyi, D1, examined. Of the analogues with 3-hydroxyacyl chains, only N-(3-hydroxyvaleryl)homoserine lactone (HVHL) could act as an inducer, with about 85% of the potency of D-HBHL in stimulation of luminescence; the apparent Kd of the putative receptor for HVHL was 3.8 microM, close to that for the natural autoinducer (1.4 microM). Analogues with longer 3-hydroxyacyl chains, N-(3-hydroxyhexanoyl)homoserine lactone and N-(3-hydroxyheptanoyl)homoserine lactone, acted as competitive inhibitors of HBHL with apparent KI values of 77 and 53 microM respectively. Replacement of the 3-hydroxybutanoyl moiety with a 3-methylbutanoyl or 3-methoxybutanoyl group created weak competitive inhibitors, N-(isovaleryl)- and N-(3-methoxybutanoyl)- homoserine lactones, with apparent KI values of 150 and 360 microM respectively. Two other analogues, N-(2-hydroxybutanoyl)- and N-(4-hydroxybutanoyl)-homoserine lactone, could neither stimulate nor inhibit luminescence. The approach used in these studies to demonstrate binding of autoinducer analogues at the same site, as well as measurement of the relative dissociation constant, may be of value in analysing analogues activating or inhibiting luminescence and other processes that are under control of acylhomoserine lactone autoregulators. PMID:8526853

  6. Association of kinase insert domain-containing receptor (KDR) gene polymorphism/ haplotypes with recurrent spontaneous abortion and genetic structure

    Science.gov (United States)

    Shahsavari, Shiva; Noormohammadi, Zahra; Zare Karizi, Shohreh

    2015-01-01

    Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size. PMID:27141535

  7. STRUCTURAL CONSEQUENCES OF THE POLYMORPHISM Q223R IN THE HUMAN LEPTIN RECEPTOR: A MOLECULAR DYNAMICS STUDY

    OpenAIRE

    Jonathan P. Carrillo-Vázquez; Brenda Chimal-Vega; Beatriz Zamora-López; Marchat, Laurence A.; Claudia G. Benítez-Cardoza; César A.S. Reyes-López; Absalom Zamorano-Carrillo

    2013-01-01

    Leptin Receptor (LEPR) is a component of a signaling pathway related to appetite and energy expenditure. Single Nucleotide Polymorphisms (SNP) of Leptin receptor gene (lepr) have been proposed as possible modulator of adipose tissue and body weight. The main phenomenological consequence reported of these SNPs is the modulation of the LEP-LEPR interaction promoting the weight gain. Particularly, Q223R polymorphism has been associated with human obesity in some populations. In this work, we ana...

  8. Probing the structure and function of the estrogen receptor ligand binding domain by analysis of mutants with altered transactivation characteristics.

    OpenAIRE

    Eng, F C; Lee, H.S.; Ferrara, J; Willson, T M; White, J H

    1997-01-01

    We have developed a genetic screen for the yeast Saccharomyces cerevisiae to isolate estrogen receptor (ER) mutants with altered transactivation characteristics. Use of a "reverse" ER, in which the mutagenized ligand binding domain was placed at the N terminus of the receptor, eliminated the isolation of truncated constitutively active mutants. A library was screened with a low-affinity estrogen, 2-methoxyestrone (2ME), at concentrations 50-fold lower than those required for activation of the...

  9. Multiparameter flow cytometric analysis of a pH sensitive formyl peptide with application to receptor structure and processing kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Fay, S.P.; Domalewski, M.D.; Houghton, T.G. (Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)); Habbersett, R.; Posner, R.G. (Los Alamos National Lab., NM (United States)); Pierson, E.; Muthukumaraswamy, N.; Freer, R.J. (Medical College of Virginia, Richmond, VA (United States)); Whitaker, J.; Haugland, R.P. (Molecular Probes, Eugene, OR (United States)) (and others)

    1994-02-01

    Environmentally sensitive molecules have many potential cellular applications. The authors have investigated the utility of a pH sensitive ligand for the formyl peptide receptor, CHO-Met-Leu-Phe-Phe-Lys (SNAFL)-OH (SNAFL-seminaphthofluorescein), because in previous studies protonation has been used to explain the quenching when the fluorescinated formyl pentapeptide ligand binds to this receptor. Moreover, acidification in intracellular compartments is a general mechanism occurring in cells during processing of ligand-receptor complexes. Because the protonated form of SNAFL is excited at 488 nm with emission at 530 nm and the unprotonated form is excited at 568 nm with emission at 650 nm, the ratio of protonated and unprotonated forms can be examined by multiparameter flow cytometry. The authors found that the receptor-bound ligand is sensitive to both the extracellular and intracellular pH. There is a small increase in the pK[sub a] of the ligand upon binding to the receptor consistent with protonation in the binding pocket. Once internalized, spectral changes in the probe consistent with acidification and ligand dissociation from the receptor are observed. 22 refs., 4 figs.

  10. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  11. X-Ray Crystal Structure of the Ancestral 3-Ketosteroid Receptor-Progesterone-Mifepristone Complex Shows Mifepristone Bound at the Coactivator Binding Interface

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Jennifer K.; Ortlund, Eric A. [Emory-MED

    2013-12-12

    Steroid receptors are a subfamily of nuclear receptors found throughout all metazoans. They are highly important in the regulation of development, inflammation, and reproduction and their misregulation has been implicated in hormone insensitivity syndromes and cancer. Steroid binding to SRs drives a conformational change in the ligand binding domain that promotes nuclear localization and subsequent interaction with coregulator proteins to affect gene regulation. SRs are important pharmaceutical targets, yet most SR-targeting drugs have off-target pharmacology leading to unwanted side effects. A better understanding of the structural mechanisms dictating ligand specificity and the evolution of the forces that created the SR-hormone pairs will enable the design of better pharmaceutical ligands. In order to investigate this relationship, we attempted to crystallize the ancestral 3-ketosteroid receptor (ancSR2) with mifepristone, a SR antagonist. Here, we present the x-ray crystal structure of the ancestral 3-keto steroid receptor (ancSR2)-progesterone complex at a resolution of 2.05 Å. This improves upon our previously reported structure of the ancSR2-progesterone complex, permitting unambiguous assignment of the ligand conformation within the binding pocket. Surprisingly, we find mifepristone, fortuitously docked at the protein surface, poised to interfere with coregulator binding. Recent attention has been given to generating pharmaceuticals that block the coregulator binding site in order to obstruct coregulator binding and achieve tissue-specific SR regulation independent of hormone binding. Mifepristone’s interaction with the coactivator cleft of this SR suggests that it may be a useful molecular scaffold for further coactivator binding inhibitor development.

  12. Structural Basis for Small Molecule NDB (N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a Selective Antagonist of Farnesoid X Receptor α (FXRα) in Stabilizing the Homodimerization of the Receptor.

    Science.gov (United States)

    Xu, Xing; Xu, Xin; Liu, Peng; Zhu, Zhi-yuan; Chen, Jing; Fu, Hai-an; Chen, Li-li; Hu, Li-hong; Shen, Xu

    2015-08-01

    Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research. PMID:26100621

  13. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure.

    Science.gov (United States)

    Busnelli, Marta; Kleinau, Gunnar; Muttenthaler, Markus; Stoev, Stoytcho; Manning, Maurice; Bibic, Lucka; Howell, Lesley A; McCormick, Peter J; Di Lascio, Simona; Braida, Daniela; Sala, Mariaelvina; Rovati, G Enrico; Bellini, Tommaso; Chini, Bice

    2016-08-11

    Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers. PMID:27420737

  14. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists.

    Science.gov (United States)

    Zhang, Lihui; Liu, Tianjun; Wang, Xia; Wang, Jinan; Li, Guohui; Li, Yan; Yang, Ling; Wang, Yonghua

    2014-01-01

    The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease. PMID:23665268

  15. New insight to structure-function relationship of GalNAc mediated primary interaction between insecticidal Cry1Ac toxin and HaALP receptor of Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Anindita Sengupta

    Full Text Available Over the last few decades Cry1Ac toxin has been widely used in controlling the insect attack due to its high specificity towards target insects. The pore-forming toxin undergoes a complex mechanism in the insect midgut involving sequential interaction with specific glycosylated receptors in which terminal GalNAc molecule plays a vital role. Recent studies on Cry toxins interactions with specific receptors revealed the importance of several amino acid residues in domain III of Cry1Ac, namely Q509, N510, R511, Y513 and W545, serve as potential binding sites that surround the putative GalNAc binding pocket and mediate the toxin-receptor interaction. In the present study, alanine substitution mutations were generated in the Cry1Ac domain III region and functional significance of those key residues was monitored by insect bioassay on Helicoverpa armigera larvae. In addition, ligand blot analysis and SPR binding assay was performed to monitor the binding characteristics of Cry1Ac wild type and mutant toxins towards HaALP receptor isolated from Helicoverpa armigera. Mutagenesis data revealed that, alanine substitutions in R511, Y513 and W545 substantially impacted the relative affinity towards HaALP receptor and toxicity toward target insect. Furthermore, in silico study of GalNAc-mediated interaction also confirmed the important roles of these residues. This structural analysis will provide a detail insight for evaluating and engineering new generation Cry toxins to address the problem of change in insect behavioral patterns.

  16. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  17. P2X receptors.

    Science.gov (United States)

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  18. Binding of phylogenetically distant Bacillus thuringiensis cry toxins to a Bombyx mori aminopeptidase N suggests importance of Cry toxin's conserved structure in receptor binding.

    Science.gov (United States)

    Shinkawa, A; Yaoi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-07-01

    We investigated the binding proteins for three Cry toxins, Cry1Aa, Cry1Ac, and the phylogenetically distant Cry9Da, in the midgut cell membrane of the silkworm. In a ligand blot experiment, Cry1Ac and Cry9Da bound to the same 120-kDa aminopeptidase N (APN) as Cry1Aa. A competition experiment with the ligand blot indicated that the three toxins share the same binding site on several proteins. The values of the dissociation constants of the three Cry toxins and 120-kDa APN are as low as the case of other Cry toxins and receptors. These results suggest that distantly related Cry toxins bind to the same site on the same proteins, especially with APN. We propose that the conserved structure in these three toxins includes the receptor-binding site. PMID:10387111

  19. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    Directory of Open Access Journals (Sweden)

    Lin-Yan Wan

    2015-11-01

    Full Text Available Vitamin D Receptor (VDR belongs to the nuclear receptor (NR superfamily. Whereas the structure of the ligand binding domain (LBD of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D3 signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA, corepressor (CoR, and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains.

  20. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling.

    Science.gov (United States)

    Wan, Lin-Yan; Zhang, Yan-Qiong; Chen, Meng-Di; Du, You-Qin; Liu, Chang-Bai; Wu, Jiang-Feng

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP) and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D₃ signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA), corepressor (CoR), and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains. PMID:26593892