WorldWideScience

Sample records for calcium-induced calcium release

  1. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Science.gov (United States)

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  2. A calcium-induced calcium release mechanism mediated by calsequestrin.

    Science.gov (United States)

    Lee, Young-Seon; Keener, James P

    2008-08-21

    Calcium (Ca(2+))-induced Ca(2+) release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca(2+) with ryanodine receptors (RyRs) and inducing Ca(2+) release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lumenal Ca(2+) may also participate in regulating RyR gating through calsequestrin (CSQ), the SR lumenal Ca(2+) buffer. We investigate how SR Ca(2+) release via RyR is regulated by Ca(2+) and calsequestrin (CSQ). First, a mathematical model of RyR kinetics is derived based on experimental evidence. We assume that the RyR has three binding sites, two cytosolic sites for Ca(2+) activation and inactivation, and one SR lumenal site for CSQ binding. The open probability (P(o)) of the RyR is found by simulation under controlled cytosolic and SR lumenal Ca(2+). Both peak and steady-state P(o) effectively increase as SR lumenal Ca(2+) increases. Second, we incorporate the RyR model into a CICR model that has both a diadic space and the junctional SR (jSR). At low jSR Ca(2+) loads, CSQs are more likely to bind with the RyR and act to inhibit jSR Ca(2+) release, while at high SR loads CSQs are more likely to detach from the RyR, thereby increasing jSR Ca(2+) release. Furthermore, this CICR model produces a nonlinear relationship between fractional jSR Ca(2+) release and jSR load. These findings agree with experimental observations in lipid bilayers and cardiac myocytes. PMID:18538346

  3. Sulfhydryl oxidation overrides Mg(2+) inhibition of calcium-induced calcium release in skeletal muscle triads.

    OpenAIRE

    Donoso, P; Aracena, P; Hidalgo, C.

    2000-01-01

    We studied the effect of oxidation of sulfhydryl (SH) residues on the inhibition by Mg(2+) of calcium-induced calcium release (CICR) in triad-enriched sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. Vesicles were either passively or actively loaded with calcium before eliciting CICR by dilution at pCa 4.6-4.4 in the presence of 1.2 mM free [ATP] and variable free [Mg(2+)]. Native triads exhibited a significant inhibition of CICR by Mg(2+), with a K(0.5) approximately 50 ...

  4. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Directory of Open Access Journals (Sweden)

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  5. Somatic ATP release from guinea pig sympathetic neurons does not require calcium-induced calcium release from internal stores

    OpenAIRE

    Merriam, Laura A.; Locknar, Sarah A.; Girard, Beatrice M.; Parsons, Rodney L.

    2010-01-01

    Prior studies indicated that a Ca2+-dependent release of ATP can be initiated from the soma of sympathetic neurons dissociated from guinea pig stellate ganglia. Previous studies also indicated that Ca2+-induced Ca2+ release (CICR) can modulate membrane excitability in these same neurons. As Ca2+ release from internal stores is thought to support somatodendritic transmitter release in other neurons, the present study investigated whether CICR is essential for somatic ATP release from dissociat...

  6. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  7. Nerve evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium induced calcium release

    OpenAIRE

    Gitterman, D P; Evans, R.J.

    2001-01-01

    Contractile responses to short trains of nerve stimulation have been characterized in small, medium and large arteries from the rat mesenteric circulation (5th – 6th, 2nd – 3rd and 1st order, respectively). In addition, sources of calcium for smooth muscle contraction have been investigated.Nerve stimulation (10 pulses at 10 Hz) evoked reproducible contractions. The P2 receptor antagonist suramin (100 μM) reduced constrictions by 65.3±7.4, 82.7±3.3 and 3.1±6.1% in small, medium and large arte...

  8. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Georgi Z Genchev

    Full Text Available The interaction between calcium and the regulatory site(s of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N(2-OE(12/N(9-OE(12 in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.

  9. Analysis of calcium-induced effects on the conformation of fengycin

    Science.gov (United States)

    Nasir, Mehmet Nail; Laurent, Pascal; Flore, Christelle; Lins, Laurence; Ongena, Marc; Deleu, Magali

    2013-06-01

    Fengycin is a natural lipopeptide with antifungal and eliciting properties and able to inhibit the activity of phospholipase A2. A combination of CD, FT-IR, NMR and fluorescence spectroscopic techniques was applied to elucidate its conformation in a membrane-mimicking environment and to investigate the effect of calcium ions on it. We mainly observed that fengycin adopts a turn conformation. Our results showed that calcium ions are bound by the two charged glutamates. The calcium binding has an influence on the fengycin conformation and more particularly, on the environment of the tyrosine residues. The modulation of the fengycin conformation by the environmental conditions may influence its biological properties.

  10. Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells.

    Science.gov (United States)

    Puschner, B; Schacht, J

    1997-08-01

    Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both. PMID:9282907

  11. Dissecting the calcium-induced differentiation of human primary keratinocytes stem cells by integrative and structural network analyses.

    Directory of Open Access Journals (Sweden)

    Kiana Toufighi

    2015-05-01

    Full Text Available The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55% are composed of non-dynamic and dynamic gene products ('di-chromatic', 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.

  12. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    Science.gov (United States)

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  13. Platelet-activating factor in Iberian pig spermatozoa: receptor expression and role as enhancer of the calcium-induced acrosome reaction.

    Science.gov (United States)

    Bragado, M J; Gil, M C; Garcia-Marin, L J

    2011-12-01

    Platelet-activating factor (PAF) is a phospholipid involved in reproductive physiology. PAF receptor is expressed in some mammalian spermatozoa species where it plays a role in these germ-cell-specific processes. The aim of this study is to identify PAF receptor in Iberian pig spermatozoa and to evaluate PAF's effects on motility, viability and acrosome reaction. Semen samples from Iberian boars were used. PAF receptor identification was performed by Western blotting. Spermatozoa motility was analysed by computer-assisted sperm analysis system, whereas spermatozoa viability and acrosome reaction were evaluated by flow cytometry. Different PAF concentrations added to non-capacitating medium during 60 min have no effect on any spermatozoa motility parameter measured. Acrosome reaction was rapid and potently induced by 1 μm calcium ionophore A23187 showing an effect at 60 min and maximum at 240 min. PAF added to a capacitating medium is not able to induce spermatozoa acrosome reaction at any time studied. However, PAF, in the presence of A23187, significantly accelerates and enhances the calcium-induced acrosome reaction in a concentration-dependent manner in Iberian boar spermatozoa. Exogenous PAF does not affect at all spermatozoa viability, whereas slightly exacerbated the A23187-induced loss in viability. This work demonstrates that PAF receptor is expressed in Iberian pig spermatozoa and that its stimulation by PAF regulates the calcium-induced acrosome reaction. This work contributes to further elucidate the physiological regulation of the most relevant spermatozoa functions for successful fertilization: acrosome reaction. PMID:22023717

  14. Further observations on the utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1980-01-01

    1 The relation between A23187-induced histamine release and the energy metabolism of the rat mast cells has been studied. 2 Ethacrynic acid was used as an inhibitor of calcium-induced histamine release from mast cells primed with the ionophore A23187, and to study calcium-induced changes in the a......1 The relation between A23187-induced histamine release and the energy metabolism of the rat mast cells has been studied. 2 Ethacrynic acid was used as an inhibitor of calcium-induced histamine release from mast cells primed with the ionophore A23187, and to study calcium-induced changes...

  15. Data on the calcium-induced mobility shift of myristoylated and non-myristoylated forms of neurocalcin delta

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-01-01

    This data article presents the differences observed between the myristoylated and non-myristoylated forms of the neuronal calcium sensor protein, neurocalcin delta (NCALD). Analysis of the myristoylated and non-myristoylated versions of the protein by mass spectrometry provided difference in mass values consistent with addition of myristoyl group. In the presence of calcium, mobility retardation was observed upon electrophoresis of the protein in native gels. The retardation was dose-dependent and was exhibited by both the myristoylated and non-myristoylated forms of the protein. PMID:27054169

  16. Biphasic release of indomethacin from HPMC/pectin/calcium matrix tablet: I. Characterization and mechanistic study.

    Science.gov (United States)

    Wu, Baojian; Chen, Zhukang; Wei, Xiuli; Sun, Ningyun; Lu, Yi; Wu, Wei

    2007-11-01

    Calcium-induced crosslinking of pectin acts as the dominating factor controlling drug release from pectin-based matrices. The same interaction was employed to modify indomethacin release from HPMC/pectin/calcium matrix in this study. The aim was to characterize the release profiles, and to study the formulation variables and the underlying mechanisms. The matrix tablet was made up of pectin HM 70, calcium chloride and HPMC K4M, and prepared by the wet granulation method. In vitro release was performed in water and characterized by the power law. Matrix erosion was evaluated by studying the weight loss and pectin release. Biphasic release of indomethacin from the HPMC/pectin/calcium matrix tablet was observed, and extraordinary power law exponent n values of over 1.0 were observed. Increase in calcium amount led to more significant retardation on drug release. The two power law parameters, n and K, correlated to the amount of calcium in the matrix. A lag time of over 4 h can be achieved at HPMC/pectin/calcium chloride amount of 100 mg/100 mg/100 mg. Both matrix weight loss and pectin release were linearly correlated to indomethacin release, indicating erosion-controlled drug release mechanisms. The hybrid matrix showed retarded erosion and hydration rate, which served as the basis for retarded indomethacin release. It is concluded that the pectin/calcium interaction can be employed to modify drug release from HPMC/pectin/calcium matrix tablet with biphasic release patterns for potential timed or site-specific drug delivery. PMID:17540549

  17. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN.

    Science.gov (United States)

    Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C

    2015-10-01

    Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. PMID:26111116

  18. Calcium-induced cation ordering and large resistivity decrease in Pr0.3CoO2

    Science.gov (United States)

    Brázda, Petr; Palatinus, Lukáš; Drahokoupil, Jan; Knížek, Karel; Buršík, Josef

    2016-09-01

    Structure of layered cobaltates Pr0.3CoO2 and (PrCa)0.3CoO2 were investigated by electron diffraction tomography and powder X-ray diffraction. The effect of the calcium substitution on thermoelectric properties was evaluated. The structure consists of hexagonal sheets of edge-sharing CoO6 octahedra interleaved by cationic monolayers. The cations form a 2-dimensional a√3×a√3 superstructure in the a-b plane. While Pr0.3CoO2 showed no layer order in the [001] direction, introduction of calcium resulted in the formation of a superstructure spanning over six cationic layers along the [001]. This superstructure model appears to be valid also for the description of the superstructures of CaxCoO2 and SrxCoO2 with x about 1/3. Thanks to the increased number of charge carriers, the substitution of Ca2+ for Pr3+ significantly lowers the electric resistivity, while keeping quite high thermopower around 100 μV K-1, though the character of resistivity remained semiconducting.

  19. 1H NMR and rheological studies of the calcium induced gelation process in aqueous low methoxy pectin solutions

    International Nuclear Information System (INIS)

    The 1H NMR relaxometry in combination with water proton spin-spin relaxation time measurements and rheology have been applied to study the ionic gelation of 1% W/W aqueous low methoxyl pectin solution induced by divalent Ca2+ cations from a calcium chloride solution. The model-free approach to the analysis of 1H NMR relaxometry data has been used to separate the information on the static (β) and dynamic (τc) behaviour of the system tested. The 1H NMR results confirm that the average mobility of both water and the pectin molecules is largely dependent on the concentration of the cross-linking agent. The character of this dependency (β, τc and T2 vs. CaCl2 concentration ). is consistent with the two stage gelation process of low methoxy pectin, in which the formation of strongly linked dimer associations (in the range of 0-2.5 mM CaCl2) is followed by the appearance of weak inter-dimer aggregations (for CaCl2 ≥ 3.5 mM). The presence of the weak gel structure for the sample with 3.5 mM CaCl2 has been confirmed by rheological measurements. Apart from that, the T1 and T2 relaxation times have been found to be highly sensitive to to the syneresis phenomenon, which can be useful to monitor the low methoxyl pectin gel network stability. (author)

  20. Blockade of L-type calcium channel in myocardium and calcium-induced contractions of vascular smooth muscle by by CPU 86017

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Hui-juan HU; Jing ZHAO; Xue-mei HAO; Dong-mei YANG; Pei-ai ZHOU; Cai-hong WU

    2004-01-01

    AIM: To assess the blockade by CPU 86017 on the L-type calcium channels in the myocardium and on the Ca2+related contractions of vascular smooth muscle. METHODS: The whole-cell patch-clamp was applied to investigate the blocking effect of CPU 86017 on the L-type calcium current in isolated guinea pig myocytes and contractions by KC1 or phenylephrine (Phe) of the isolated rat tail arteries were measured. RESULTS: Suppression of the L-type current of the isolated myocytes by CPU 86017 was moderate, in time- and concentration-dependent manner and with no influence on the activation and inactivation curves. The IC50 was 11.5 μmol/L. Suppressive effect of CPU 86017 on vaso-contractions induced by KC1 100 mmol/L, phenylephrine I μmol/Lin KH solution (phase 1),Ca2+ free KH solution ( phase 2), and by addition of CaCI2 into Ca2+-free KH solution (phase 3) were observed. The IC50 to suppress vaso-contractions by calcium entry via the receptor operated channel (ROC) and Voltage-dependent channel (VDC) was 0.324 μmol/L and 16.3 μmol/L, respectively. The relative potency of CPU 86017 to suppress vascular tone by Ca2+ entry through ROC and VDC is 1/187 of prazosin and 1/37 of verapamil, respectively.CONCLUSION: The blocking effects of CPU 86017 on the L-type calcium channel of myocardium and vessel are moderate and non-selective. CPU 86017 is approximately 50 times more potent in inhibiting ROC than VDC.

  1. Computational study of a calcium release-activated calcium channel

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  2. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  3. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts.

    Science.gov (United States)

    Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying

    2016-10-01

    Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. PMID:27391035

  4. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction

    OpenAIRE

    Mackenzie, L; Roderick, H Llewelyn; Berridge, MJ; Conway, SJ; Bootman, MD

    2004-01-01

    We examined the regulation of calcium signalling in atrial cardiomyocytes during excitation-contraction coupling, and how changes in the distribution of calcium impacts on contractility. Under control conditions, calcium transients originated in subsarcolemmal locations and showed local regeneration through activation of calcium-induced calcium release from ryanodine receptors. Despite functional ryanodine receptors being expressed at regular (~2 μm) intervals throughout atrial myocytes, the ...

  5. Complex actions of ionomycin in cultured cerebellar astrocytes affecting both calcium-induced calcium release and store-operated calcium entry

    DEFF Research Database (Denmark)

    Müller, Margit S; Obel, Linea Lykke Frimodt; Waagepetersen, Helle S;

    2013-01-01

    The polyether antibiotic ionomycin is a common research tool employed to raise cytosolic Ca(2+) in almost any cell type. Although initially thought to directly cause physicochemical translocation of extracellular Ca(2+) into the cytosol, a number of studies have demonstrated that the mechanism of...

  6. Mercury-induced apoptosis and necrosis in murine macrophages: role of calcium-induced reactive oxygen species and p38 mitogen-activated protein kinase signaling

    International Nuclear Information System (INIS)

    The current study characterizes the mechanism by which mercury, a toxic metal, induces death in murine macrophages. The cytotoxic EC50 of mercury ranged from 62.7 to 81.1 μM by various assays in J774A.1 cultures; accordingly, we employed 70 μM of mercuric chloride in most experiments. Mercury-induced intracellular calcium modulated reactive oxygen species (ROS) production, which resulted in both cell apoptosis and necrosis indicated by annexin V binding and caspase-3 activity, and propidium-iodide binding. Calcium antagonists abolished ROS production. Mercury stimulated p38 mitogen-activated protein kinase (MAPK) and additively stimulated lipopolysaccharide-activated p38. Mercury-activated p38 was decreased by pretreatment of cells with antioxidants, N-acetylcysteine (NAC) and silymarin, indicating that mercury-induced ROS were involved in p38 activation. Mercury increased the expression of tumor necrosis factor α (TNFα); antioxidants and a specific p38 inhibitor decreased this effect. Pretreatment with antioxidants, p38 inhibitor, and anti-TNFα antibody decreased mercury-induced necrosis; however, anti-TNFα antibody did not decrease mercury-induced apoptosis. Results suggest that mercury-induced macrophage death is a mix of apoptosis and necrosis employing different pathways. P38-mediated caspase activation regulates mercury-induced apoptosis and p38-mediated TNFα regulates necrosis in these cells. Calcium regulates ROS production and mercury-induced ROS modulate downstream p38 that regulates both apoptosis and necrosis

  7. Connexins regulate calcium signaling by controlling ATP release

    OpenAIRE

    Cotrina, Maria Luisa; Lin, Jane H.-C.; Alves-Rodrigues, Alexandra; Liu, Shujun; Li, Jiang; Azmi-Ghadimi, Hooman; Kang, Jian; Naus, Christian C.G.; Nedergaard, Maiken

    1998-01-01

    Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhibited by Cl− channel blockers. Calcium wave propagation also was reduced by purinergic receptor antag...

  8. Intracellular calcium release modulates polycystin-2 trafficking

    Directory of Open Access Journals (Sweden)

    Miyakawa Ayako

    2013-02-01

    Full Text Available Abstract Background Polycystin-2 (PC2, encoded by the gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD, functions as a calcium (Ca2+ permeable ion channel. Considerable controversy remains regarding the subcellular localization and signaling function of PC2 in kidney cells. Methods We investigated the subcellular PC2 localization by immunocytochemistry and confocal microscopy in primary cultures of human and rat proximal tubule cells after stimulating cytosolic Ca2+ signaling. Plasma membrane (PM Ca2+ permeability was evaluated by Fura-2 manganese quenching using time-lapse fluorescence microscopy. Results We demonstrated that PC2 exhibits a dynamic subcellular localization pattern. In unstimulated human or rat proximal tubule cells, PC2 exhibited a cytosolic/reticular distribution. Treatments with agents that in various ways affect the Ca2+ signaling machinery, those being ATP, bradykinin, ionomycin, CPA or thapsigargin, resulted in increased PC2 immunostaining in the PM. Exposing cells to the steroid hormone ouabain, known to trigger Ca2+ oscillations in kidney cells, caused increased PC2 in the PM and increased PM Ca2+ permeability. Intracellular Ca2+ buffering with BAPTA, inositol 1,4,5-trisphosphate receptor (InsP3R inhibition with 2-aminoethoxydiphenyl borate (2-APB or Ca2+/Calmodulin-dependent kinase inhibition with KN-93 completely abolished ouabain-stimulated PC2 translocation to the PM. Conclusions These novel findings demonstrate intracellular Ca2+-dependent PC2 trafficking in human and rat kidney cells, which may provide new insight into cyst formations in ADPKD.

  9. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    OpenAIRE

    Punit Fulzele; Sudhindra Baliga; Nilima Thosar; Debaprya Pradhan

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized wat...

  10. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release.

    OpenAIRE

    Simon, S M; Llinás, R R

    1985-01-01

    Quantitative modeling indicates that, in presynaptic terminals, the intracellular calcium concentration profile during inward calcium current is characterized by discrete peaks of calcium immediately adjacent to the calcium channels. This restriction of intracellular calcium concentration suggests a remarkably well specified intracellular architecture such that calcium, as a second messenger, may regulate particular intracellular domains with a great degree of specificity.

  11. Cytotoxicity, calcium release, and pH changes generated by novel calcium phosphate cement formulations.

    Science.gov (United States)

    Khashaba, Rania M; Lockwood, Petra E; Lewis, Jill B; Messer, Regina L; Chutkan, Norman B; Borke, James L

    2010-05-01

    Few published studies describe the biological properties of calcium phosphate cements (CPCs) for dental applications. We measured several biologically relevant properties of 3 CPCs over an extended (8 wk) interval. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light-activated modified polyalkenoic acid, or 35% w/w polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs, respectively. Set cements were placed in direct contact with L929 fibroblasts for up to 8 weeks. Media Ca(+2) and pH were determined by atomic absorption spectroscopy and pH electrode respectively. Cell mitochondrial function was measured by MTT assay. Type I cements suppressed mitochondrial activity > 90% (vs. Teflon controls), but significantly (p 90% at all times. Type III cements elevated mitochondrial activity significantly after 7 wks. The pH profiles approached neutrality by 24 h, and all cements released calcium into the storage medium at all periods (24 h - 8 wk). We concluded that several types of cements had long-term biological profiles that show promise for dental applications. PMID:20235188

  12. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  13. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  14. Tailored sequential drug release from bilayered calcium sulfate composites

    International Nuclear Information System (INIS)

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  15. Release of Crude Oil from Silica and Calcium Carbonate Surfaces

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Yan, Wei; Stenby, Erling Halfdan;

    2016-01-01

    on the bare surfaces, surfaces with an adsorbed oil layer, and surfaces after being exposed to aqueous salt solutions. This showed that the silica surface became more hydrophobic after oil adsorption, while the wettability of the calcium carbonate surface was not significantly changed by adsorption of an oil...... oil was investigated by exposing the surfaces with an adsorbed oil layer to a series of NaCl and CaCl2 solutions of decreasing salt concentrations. Here, it was found that the oil release from silica was achieved only by injections of low-salinity solutions, and it is suggested that this observation...... or reduction in ion bridging in the presence of high-salinity NaCl, while the low-salinity effect again was attributed to an expansion of the electrical double layer....

  16. Spontaneous Neurotransmitter Release Depends on Intracellular Rather than ER Calcium Stores in Cultured Xenopus NMJ

    Institute of Scientific and Technical Information of China (English)

    GE Song; LI Ruxin; QI Lei; HE Xiangping; XIE Zuoping

    2006-01-01

    Calcium ions are important in many vital neuron processes, including spontaneous neurotransmitter release. Extracellular calcium has long been known to be related to spontaneous neurotransmitter release, but the detailed mechanism for the effect of intracellular Ca2+ on synaptic release has not yet been understood. In this research, 1,2-bis-(o-aminophenoxy)-ethane-N, N, N', N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM) was used to combine with cytosolic free Ca2+ in a calcium free medium of cultured Xenopus neuromuscular junctions (NMJ). The spontaneous synaptic current (SSC) frequency was obviously reduced. Then, drugs were applied to interrupt and activate the Ca2+ release channels in the endoplasmic reticulum (ER) membrane, but the SSC frequency was not affected. The results show that spontaneous neurotransmitter release depends on intracellular rather than ER calcium in cultured Xenopus NMJ without extracellular calcium.

  17. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  18. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes

    Directory of Open Access Journals (Sweden)

    Michele Miragoli

    2016-01-01

    Full Text Available Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.

  19. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  20. Kinetics of release of methylene blue immobilized in calcium alginate microparticles

    OpenAIRE

    Inal Bakhytkyzy; R. Ussenkyzy; D. Rahimbaeva

    2013-01-01

    The swelling kinetics of microparticles obtained with different concentrations of calcium chloride was studied to learn the ability of sodium alginate to gelation. To increase the effect of prolongation it is necessary to obtain microparticles with sustained release of drugs. For this purpose the drying kinetics of alginate microparticles was investigated. Also the kinetics of release of methylene blue immobilized in calcium alginate microparticles was studied. It was found that the release o...

  1. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release.

    Science.gov (United States)

    Xie, Chunling; Li, Ping; Liu, Yan; Luo, Fei; Xiao, Xiufeng

    2016-10-01

    Nanotube structures such as TiO2 nanotube (TNT) arrays produced by self-ordering electrochemical anodization have been extensively explored for drug delivery applications. In this study, we presented a new implantable drug delivery system that combined mesoporous calcium silicate coating with nanotube structures to achieve a controllable drug release of water soluble and antiphlogistic drug loxoprofen sodium. The results showed that the TiO2 nanotubes/mesoporous calcium silicate composites were successfully fabricated by a simple template method and the deposition of mesoporous calcium silicate increased with the soaking time. Moreover, the rate of deposition of biological mesoporous calcium silicate on amorphous TNTs was better than that on anatase TNTs. Further, zinc-incorporated mesoporous calcium silicate coating, produced by adding a certain concentration of zinc nitrate into the soaking system, displayed improved chemical stability. A significant improvement in the drug release characteristics with reduced burst release and sustained release was demonstrated. PMID:27287140

  2. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    Directory of Open Access Journals (Sweden)

    García Juan F

    2009-02-01

    Full Text Available Abstract Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest

  3. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  4. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Punit Fulzele

    2011-01-01

    Full Text Available Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca ++ and OH− release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey′s post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points.

  5. EFFECT OF PH AND TIME ON CALCIUM RELEASE FROM SOUND ENAMEL: AN ATOMIC SPECTROMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Shetty Shishir

    2013-06-01

    Full Text Available Dental Caries is a disease of great concern which affects people of all races in all places, the exact etiology of caries though unknown; it is well established that the release of calcium and phosphate from hydroxyapatite crystal is due to decreased pH of saliva. However the relationship between calcium release, pH and time is not well documented.The present study was designed to assess the calcium release from intact enamel when subjected to different pH at different time intervals. The enamel samples were subjected to acid challenge using Acetate buffer of pH of 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 and buffer solution were analyzed for calcium release at specific time intervals for each pH using atomic absorption spectrometry. The results show that the rate of calcium release significantly increased from pH 5.0 to 3.5, however the calcium release was very little in pH 5.5 to 6.5. From the observations made from this study we can conclude that sound enamel is resistant to acid attack between pH of 5 to 5.5 and Time plays an important role in the reaction of enamel to acid.

  6. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina

    Science.gov (United States)

    Werginz, Paul; Rattay, Frank

    2016-08-01

    Objective. In spite of intense theoretical and experimental investigations on electrical nerve stimulation, the influence of reversed ion currents on network activity during extracellular stimulation has not been investigated so far. Approach. Here, the impact of calcium current reversal on neurotransmitter release during subretinal stimulation was analyzed with a computational multi-compartment model of a retinal bipolar cell (BC) that was coupled with a four-pool model for the exocytosis from its ribbon synapses. Emphasis was laid on calcium channel dynamics and how these channels influence synaptic release. Main results. Stronger stimulation with anodic pulses caused transmembrane voltages above the Nernst potential of calcium in the terminals and, by this means, forced calcium ions to flow in the reversed direction from inside to the outside of the cell. Consequently, intracellular calcium concentration decreased resulting in a reduced vesicle release or preventing release at all. This mechanism is expected to lead to a pronounced ring-shaped pattern of exocytosis within a group of neighbored BCs when the stronger stimulated cells close to the electrode fail in releasing vesicles. Significance. Stronger subretinal stimulation causes failure of synaptic exocytosis due to reversal of calcium flow into the extracellular space in cells close to the electrode.

  7. Maitotoxin: Effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells

    International Nuclear Information System (INIS)

    Maitotoxin (MTX) increases formation of [3H]inositol phosphates from phosphoinositides and release of [3H]arachidonic acid from phospholipids in pheochromocytoma PC12 cells. Formation of [3H]inositol phosphates is detected within 1 min of incubation even with concentrations as low as 0.3 ng/ml (90 pm) MTX, whereas release of [3H]arachidonic acid is not detected until 20 min even with concentrations as high as 1 ng/ml (300 pm) MTX. Stimulation of arachidonic acid release can be detected at 0.03 ng/ml (9 pm) MTX, whereas 0.1 ng/ml (30 pm) MTX is the threshold for detection of phosphoinositide breakdown. Organic and inorganic calcium channel blockers, except Cd2+ and a high concentration of Mn2+, have no effect on MTX-elicited phosphoinositide breakdown, whereas inorganic blockers (e.g., Co2+, Mn2+, Cd2+), but not organic blockers (nifedipine, verapamil, diltiazem), inhibit MTX-stimulated arachidonic acid release. All calcium channel blockers, however, inhibited MTX-elicited influx of 45Ca2+ and the MTX-elicited increase in internal Ca2+ measured with fura-2 was markedly reduced by nifedipine. MTX-elicited phosphoinositide breakdown and arachidonic acid release are abolished or reduced, respectively, in the absence of extracellular calcium plus chelating agent. The calcium ionophore A23187 has little or no effect alone but, in combination with MTX, A23187 inhibits MTX-elicited phosphoinositide breakdown and enhances arachidonic acid release, the latter even in the absence of extracellular calcium. The results suggest that different sites and/or mechanisms are involved in stimulation of calcium influx, breakdown of phosphoinositides, and release of arachidonic acid by MTX

  8. Altered calcium-induced exocytosis in neutrophils from allergic patients.

    Science.gov (United States)

    Liu, Dongfang; Zhang, Jicheng; Wu, Jianmin; Zhang, Chunguang; Xu, Tao

    2004-08-01

    We have investigated the exocytotic characteristics of neutrophils from allergic patients and healthy volunteers employing the whole cell membrane capacitance (Cm) measurement. The mean serum IgE level from allergic patients (423.75 +/- 12.75 IU/ml) determined by chemiluminescence immunoassay was much higher than that of healthy volunteers (28.47 +/- 16.68 IU/ml). Intracellular dialysis of buffered Ca2+ and GTPgammaS triggered biphasic exocytosis. The total capacitance increment displayed a steep dependence on pipette free Ca2+ concentration ([Ca2+]p), with maximal stimulation achieved at 10 microM. A significant decrease in the total capacitance increment was observed in the allergic group at [Ca2+]p >10 microM. Moreover, at submaximal stimulatory [Ca2+]p of 1 microM, the maximal rate of exocytosis in allergic patients (Vmax = 20.75 +/- 6.19 fF/s) was much faster than that of the healthy control group (Vmax = 7.97 +/- 2.49 fF/s). On the other hand, the Ca2+-independent exocytosis stimulated by GTPgammaS displayed no significant difference in either the total membrane capacitance increments or the maximal rate of exocytosis. The results suggest that hypersecretion of neutrophils in allergic diseases may involve the development of abnormal Ca2+-dependent exocytosis. PMID:15205559

  9. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  10. Asenapine modulates nitric oxide release and calcium movements in cardiomyoblasts

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-01-01

    Full Text Available Objective: To examine the effects of asenapine on nitric oxide (NO release and Ca2+ transients in H9C2 cell line, which were either subjected to peroxidation or not. Materials and Methods: H9C2 were treated with asenapine alone or in presence of intracellular kinase blockers, serotoninergic and dopaminergic antagonists, and voltage Ca2+ channels inhibitors. Experiments were also performed in H9C2 treated with hydrogen peroxide. NO release and intracellular Ca2+ were measured through specific probes. Results: In H9C2, asenapine differently modulated NO release and Ca2+ movements depending on peroxidative condition. The Ca2+ pool mobilized by asenapine mainly originated from the extracellular space and was slightly affected by thapsigargin. Moreover, the effects of asenapine were reduced or prevented by kinases blockers, dopaminergic and serotoninergic receptors inhibitors, and voltage Ca2+ channels blockers.Conclusions: On the basis of our findings, we can conclude that asenapine by interacting with its specific receptors, exerts dual effects on NO release and Ca2+ homeostasis in H9C2; this would be of particular clinical relevance when considering their role in cardiac function modulation.

  11. Regulation of dendritic calcium release in striatal spiny projection neurons

    OpenAIRE

    Plotkin, Joshua L.; Shen, Weixing; Rafalovich, Igor; Sebel, Luke E.; Day, Michelle; Chan, C. Savio; Surmeier, D. James

    2013-01-01

    The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca2+ channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answ...

  12. Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters

    Science.gov (United States)

    Nicholl, Peter A.; Howlett, Susan E.

    2006-01-01

    Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…

  13. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    Science.gov (United States)

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  14. Aβ42 oligomers selectively disrupt neuronal calcium release.

    Science.gov (United States)

    Lazzari, Cristian; Kipanyula, Maulilio J; Agostini, Mario; Pozzan, Tullio; Fasolato, Cristina

    2015-02-01

    Accumulation of amyloid-β (Aβ) peptides correlates with aging and progression of Alzheimer's disease (AD). Aβ peptides, which cause early synaptic dysfunctions, spine loss, and memory deficits, also disturb intracellular Ca(2+) homeostasis. By cytosolic and endoplasmic reticulum Ca(2+) measurements, we here define the short-term effects of synthetic Aβ42 on neuronal Ca(2+) dynamics. When applied acutely at submicromolar concentration, as either oligomers or monomers, Aβ42 did not cause Ca(2+) release or Ca(2+) influx. Similarly, 1-hour treatment with Aβ42 modified neither the resting cytosolic Ca(2+) level nor the long-lasting Ca(2+) influx caused by KCl-induced depolarization. In contrast, Aβ42 oligomers, but not monomers, significantly altered Ca(2+) release from stores with opposite effects on inositol 1,4,5-trisphosphate (IP3)- and caffeine-induced Ca(2+) mobilization without alteration of the total store Ca(2+) content. Ca(2+) dysregulation by Aβ42 oligomers involves metabotropic glutamate receptor 5 and requires network activity and the intact exo-endocytotic machinery, being prevented by tetrodotoxin and tetanus toxin. These findings support the idea that Ca(2+) store dysfunction is directly involved in Aβ42 neurotoxicity and represents a potential therapeutic target in AD-like dementia. PMID:25453559

  15. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium

    DEFF Research Database (Denmark)

    Larsen, Trine R; Rossen, Sine; Gramsbergen, Jan B

    2008-01-01

    ). Basal (i.e. spontaneous) DA release was only detected in the presence of pargyline and nomifensine (PN), and was highly dependent on calcium and sensitive to TTX. Basal DA release increased 2.4-fold between week 3 (1st DA release experiment) and week 4 in vitro (3rd DA release experiment), DA tissue...

  16. A slow release calcium delivery system for the study of reparative dentine formation.

    Science.gov (United States)

    Hunter, A R; Kirk, E E; Robinson, D H; Kardos, T B

    1998-06-01

    Several liquid, semi-solid and solid delivery systems were formulated and tested to devise a method of reproducibly administering accurate micro-doses of calcium into a 700 microns diameter cavity in a rat maxillary incisor tooth, in the absence of hydroxyl ions. Development of this delivery system was necessary to facilitate studies of the mechanisms of pulpal repair and odontoblast differentiation. The principal requirements for the delivery system were that it should be easily administered into a small pulp exposure in the rat incisor and that a greater than 1000-fold range in calcium ion concentrations could be incorporated and delivered for a period of 2-3 days, preferably in an acidic environment to minimize the effect of non-specific nucleation under alkaline conditions. Poly- (ethylene) glycol microspheres were found to be an ideal vehicle. Under the in vitro dissolution conditions used, complete release of all calcium salts occurred within 12-15 hours, except for the very water-insoluble calcium stearate. It was anticipated that the release of calcium ions would be significantly more prolonged in vivo because of the physical constraints of the prepared cavity as well as the restricted access to fluid flow. PMID:9863419

  17. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    Science.gov (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  18. Preparation of calcium chloride-loaded solid lipid particles and heat-triggered calcium ion release

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huangying; Kim, Jin-Chul [Kangwon National University, Chunchon (Korea, Republic of)

    2015-08-15

    CaCl{sub 2}-loaded solid lipid particles (SLPs) were prepared by a melt/emulsification/solidification method. CaCl{sub 2} microparticles (1-5 μm) could be obtained in a mortar with aid of the dispersant (Tween 80/Span80 (35/65, w/w)) when the ratio of CaCl{sub 2} to dispersant was 2 : 0.1 (w/w). SLP was prepared by dispersing 0.42 g of micronized CaCl{sub 2} particles in 2 g of molten PBSA, emulsifying the mixture at 85 .deg. C in 40 ml of Tween 20 solution (0.5% w/v), and quenching the emulsion in an ice bath. The diameter of CaCl{sub 2}-loaded SLP was 10-150 μm. The unenveloped CaCl{sub 2} could be removed by dialysis and the specific loading of CaCl{sub 2} in SLP was 0.036mg/mg. An EDS spectrum of CaCl{sub 2}-loaded SLP, which was dialyzed, showed that the unenveloped CaCl{sub 2} was completely removed. Any excipients (dispersant, Tween 20, CaCl{sub 2}) had little effect on the melting point of SLPs. No appreciable amount of Ca2+ was released in 20-50 .deg. C for 22 h. But the release degree at 60 .deg. C was significant (about 2.3%) during the same period. The matrix of the lipid particle was in a liquid state at 60 .deg. C, so CaCl{sub 2} particles could move freely and contact the surrounding water, leading to the release. At 70 .deg. C, the release degree at a given time was a few times higher than that obtained at 60 .deg. C.

  19. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct

    DEFF Research Database (Denmark)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the...... distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30...... suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption....

  20. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J;

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are...... potassium releases CGRP, and the release is regulated by Ca2+ ions and voltage-gated calcium channels....... potassium induced CGRP release. In the absence of calcium ions (Ca2+) and in the presence of a cocktail of blockers, the stimulated CGRP release from dura mater was reduced almost to the same level as basal CGRP release. In the TG ω-conotoxin GVIA inhibited the potassium induced CGRP release significantly...

  1. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J;

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are...... potassium releases CGRP, and the release is regulated by Ca2+ ions and voltage-gated calcium channels....... potassium induced CGRP release. In the absence of calcium ions (Ca2+) and in the presence of a cocktail of blockers, the stimulated CGRP release from dura mater was reduced almost to the same level as basal CGRP release. In the TG ¿-conotoxin GVIA inhibited the potassium induced CGRP release significantly...

  2. Effects of coronal leakage on concentration of hydrogen ions and calcium release of several calcium hydroxide pastes over different periods of time

    Directory of Open Access Journals (Sweden)

    Mariana Pires Crespo

    2013-10-01

    Full Text Available PURPOSE: To evaluate the effects of coronal leakage on concentration of hydrogen ions (pH and calcium release of several calcium hydroxide pastes, over different periods of time. MATERIAL AND METHODS:  Fifty extracted human mandibular central incisors (n=10 were instrumented up to the F2 instrument and assigned to the following intracanal dressing: G1- Calen, G2- Calen with 0.4% chlorhexidine (CHX, G3- Calcium hydroxide with camphorated paramonochlorophenol (CPMC and glycerin, G4- Calen, but temporary filling material maintained during all test (positive control and G5- Root canal without intracanal dressing (negative control. All groups were immersed in distilled water for 7 days. In sequence, the temporary filling materials were removed, except in controls groups. All specimens were individually mounted on a specific device and only its root again immersed in distilled water. Concentration of hydrogen ions and calcium release by calcium hydroxide pastes in distilled water were evaluated in 24h, 7, 14 and 28 days. The results were submitted to ANOVA test (p = 0.05. After 28 days, root canals from experimental groups were examined in SEM. RESULTS: G1, G2, G3 and G4 presented similar pH values and calcium release and did not differ from each other (p>0.05, up to 7 days. After this time G1, G2 and G3 presented values lower values than G4 (p<0.05. In SEM analysis, calcium hydroxide residues were observed in all experimental groups. CONCLUSIONS: After 7 days, coronal leakage decreased the concentration of hydrogen ions and calcium ion release provided by all calcium hydroxide pastes.

  3. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.

    Science.gov (United States)

    Zhang, Tianxi; Bowers, Keith E; Harrison, Joseph H; Chen, Shulin

    2010-01-01

    Being a non-renewable resource and a source of potential water pollution, phosphorus could be recovered from animal manure in the form of struvite (MgNH4PO4.6H2O) to be used as a slow-release fertilizer. It was found recently that the majority of phosphorus in anaerobically digested dairy effluent is tied up in a fine suspended calcium-phosphate solid, thus becoming unavailable for struvite formation. Acidification and use of a chelating agent were investigated for converting the calcium-associated phosphorus in the digested effluent to dissolved phosphate ions, so that struvite can be produced. The results demonstrated that the phosphorus in the effluent was released into the solution by lowering the pH. In addition, the phosphorus concentration in the solution increased significantly with increased ethylenediaminetetraacetic acid (EDTA) concentration, as EDTA has a high stability constant with calcium. Most of the phosphorus (91%) was released into the solution after adding EDTA. Further, the freed phosphorus ion precipitated out as struvite provided that sufficient magnesium ions (Mg2+) were present in the solution. Furthermore, the phase structure of the solid precipitate obtained from the EDTA treatment matched well with standard struvite, based on the data from X-ray diffraction analysis. These results provide methods for altering the forms of phosphorus for the design and application of phosphorus-removal technologies for dairy wastewater management. PMID:20112536

  4. Mechanism of histamine release from rat mast cells induced by the ionophore A23187: effects of calcium and temperature

    DEFF Research Database (Denmark)

    Johansen, Torben

    1978-01-01

    1 The mechanism of histamine release from a pure population of rat mast cells induced by the lipid soluble antibiotic, A23187, has been studied and compared with data for anaphylactic histamine release reported in the literature. 2 Histamine release induced by A23187 in the presence of calcium 10...

  5. Histamine release induced from rat mast cells by the ionophore A23187 in the absence of extracellular calcium

    DEFF Research Database (Denmark)

    Johansen, Torben

    1980-01-01

    Isolated rat mast cells were used to study whether ionophore A23187 could induce histamine release by mobilizing cellular calcium. The histamine release was a slow process which was completed after about 20 min incubation with A23187. The A23187-induced histamine release was inhibited after...

  6. A highly calcium-selective cation current activated by intracellular calcium release in MDCK cells.

    Science.gov (United States)

    Delles, C; Haller, T; Dietl, P

    1995-08-01

    1. The whole-cell patch clamp technique and fluorescence microscopy with the Ca2+ indicators fura-2 and fluo-3 were used to measure the whole-cell current and the free intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells. 2. In a Ca(2+)-free bath solution, thapsigargin (TG) caused a transient increase of [Ca2+]i. Subsequent addition of Ca2+ caused a long lasting elevation of [Ca2+]i. 3. In a Ca(2+)-free bath solution, extracellular application of TG, ATP or ionomycin, or intracellular application of inositol 1,4,5-trisphosphate (IP3), caused a small but significant inward current (Iin) and a transient outward Ca(2+)-dependent K+ current (IK(Ca)), consistent with intracellular Ca2+ release. Subsequent addition of Ca2+ induced a prominent Iin with a current density of -4.2 +/- 0.7 pA pF-1. This Iin was unaffected by inositol 1,3,4,5-tetrakisphosphate (IP4). 4. Na+ replacement by mannitol, N-methyl-D-glucamine+ (NMG+), aminomethylidin-trimethanol+ (Tris+) or choline+ reduced Iin by 54, 65, 52 and 56%, respectively. This indicates an apparent Ca2+ selectivity over Na+ of 26:1. Iin was, however, unaffected by replacing Cl- with gluconate- or by the K+ channel blocker charybdotoxin (CTX). 5. Iin was completely blocked by La3+ (IC50 = 0.77 microM). Consistently, La3+ completely reversed the TG-induced elevation of [Ca2+]i. SK&F 96365 (1-[3-(4-methoxyphenyl)-propoxyl]-1-(4-methoxy-phenyl)-ethyl-1H-im idazole) HCl did not inhibit the TG-induced Iin. It did, however, exhibit a biphasic effect on [Ca2+]i, consisting of an initial Ca2+ decay and a subsequent Ca2+ elevation. La3+ completely reversed the SK&F 96365-induced elevation of [Ca2+]i. 6. In the absence of Na+, Iin was dependent on the bath Ca2+ concentration (EC50 = 1.02 mM). Ca2+ replacement by Ba2+ or Mn2+ resulted in a reduction of Iin by 95 and 94%, respectively. 7. From these experiments we conclude that Ca2+ release from intracellular Ca2+ stores, induced by different independent

  7. Radioligand assay of cardiac calcium release channel and its application in SHR

    International Nuclear Information System (INIS)

    Purpose: To establish the best condition in assaying the calcium release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum (CSR), and analyse the CSR ryanodine receptor in spantanous hypertensive rat (SHR). Methods: 3H-ryanodine was used as a radioligand to analyse the binding in Sprague Dawley rat cardiac homogenate in following conditions: varied protein concentrations, different free calcium concentrations, different incubation time. The effect of sarcoplasmic reticulum purifying process and ryanodine competitive binding were also studied. Using these best conditions, SHR and control group (WKY) CSR ryanodine receptor were studied. Results: 1) There was a positive linear correlation between 3H-ryanodine binding and the homogenate protein concentration. 2) When the free calcium concentration was 30 μmol/L∼1 mmol/L, the 3H-ryanodine binding reached the maximum. While the free calcium concentration was lower than 1 μmol/L, there was no 3H-ryanodine binding. 3) The 3H-ryanodine binding kept increasing during incubation, from 0 to 60 min, and equilibrium reached by 90 min. 4) The ryanodine specifically inhibited 3H-ryanodine binding in cardiac homogenate. 5) During the sarcoplasmic reticulum purifying process, the 3H-ryanodine binding in a unit amount of cardiac homogenate decreased with the centrifugal force and times applied in centrifugation. 6) SHR and WKY CSR ryanodine receptor saturation curve and Scatchard analysis showed this method produced a very high level of specific binding, up to 45 nmol/L ryanodine, which inferred a single class of binding sites. The Bmax value of CSR ryanodine receptor in SHR left ventricle was significantly higher than that in WKY (P3H-ryanodine can be used as a radioligand to analyse the calcium release channel in cardiac homogenate, and ryanodine receptor may play an important role in hypertensive left ventricular remodeling process

  8. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair.

    Science.gov (United States)

    Almeida, J Carlos; Wacha, András; Gomes, Pedro S; Alves, Luís C; Fernandes, M Helena Vaz; Salvado, Isabel M Miranda; Fernandes, M Helena R

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS-SiO2 have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS-SiO2-CaO-SrO, was prepared with the incorporation of 0.05mol of titanium per mol of SiO2. Calcium and strontium were added using the respective acetates as sources, following a sol-gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. PMID:26952443

  9. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    International Nuclear Information System (INIS)

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers

  10. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  11. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  12. Calcium binding-mediated sustained release of minocycline from hydrophilic multilayer coatings targeting infection and inflammation.

    Directory of Open Access Journals (Sweden)

    Zhiling Zhang

    Full Text Available Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca(2+ is less stable at acidic pH, enabling 'smart' drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca(2+ concentration, and Ca(2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca(2+ binding affinity, enabling its use in a variety of biomedical applications.

  13. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L.; Suozzo, M.; Ryan, K.A.; Napp, D.; Schneider, A.S.

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  14. Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Samigullin, D.; Bukharaeva, E. A.; Vyskočil, František; Nikolsky, E. E.

    2005-01-01

    Roč. 54, č. 1 (2005), s. 129-132. ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA5011411; GA ČR(CZ) GA305/02/1333 Grant ostatní: RFBR(RU) 05-04-49723; Russian Science Support Foundation(RU) 1063.2003.4; GA-(RU) MK-2153.2003.04 Institutional research plan: CEZ:AV0Z50110509 Keywords : quantal release * synaptic latency * calcium Subject RIV: ED - Physiology Impact factor: 1.806, year: 2005

  15. Stimulatory effects of maitotoxin on insulin release in insulinoma HIT cells: Role of calcium uptake and phosphoinositide breakdown

    International Nuclear Information System (INIS)

    In hamster insulinoma (HIT) cells, maitotoxin (MTX) induces a time-dependent and concentration-dependent release of insulin that requires the presence of extracellular calcium. The response is nearly completely blocked by cinnarizine and cadmium, but is not inhibited by the L-type calcium channel blocker nifedipine or by manganese. MTX induces 45Ca+ uptake in these cells in a dose-dependent mode, and the uptake is blocked with cinnarizine, nifedipine and cadmium, and is partially inhibited by manganese. MTX induces phosphoinositide breakdown in HIT cells, and the response is partially blocked by cadmium, but is not affected by nifedipine, cinnarizine or manganese. High concentrations of potassium ions also induce insulin release and calcium uptake in HIT cells. Both effects of potassium are blocked partially by nifedipine, cadmium and cinnarizine. High concentrations of potassium do not induce phosphoinositide breakdown in HIT cells. The results suggest that MTX-elicited release of insulin is attained by two mechanisms: (1) a nifedipine-sensitive action, which results from MTX-induced activation of L-type calcium channels, which can be mimicked with high potassium concentrations; and (2) a nifedipine-insensitive action, which may be initiated by the activation of phosphoinositide breakdown by MTX. Such an activation of phospholipase C would result in the formation of 1,4,5-inositol trisphosphate, a release of intracellular calcium and then release of insulin to the extracellular space. Cinnarizine is proposed to block both MTX-elicited mechanisms, the first by blockade of calcium channels and the second by blocking 1,4,5-inositol trisphosphate-induced release of internal calcium. Either mechanism alone appears capable of eliciting release of insulin

  16. Effects of Arecoline on Calcium Channel Currents and Caffeine-induced Calcium Release in Isolated Single Ventricular Myocyte of Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    林先明; 李真; 胡本容; 夏国瑾; 姚伟星; 向继洲

    2002-01-01

    Summary: The effects of Arecoline (Are) on calcium mobilization were investigated. In isolatedsingle ventricular myocyte of guinea pig, patch clamp whole cell recording techniques were used torecord the current of L-type calcium channel and cytosolic Ca2+ level ([Ca2+]i) labeled with fluo-rescence probe Fluo-3/AM was measured under a laser scanning confocal microscope. Results re-vealed that Are (3-100 μmol/L) could inhibit L-type calcium current in a concentration-depen-dent manner and the value of IC50 was 33. 73μmol/L (n= 5). In the absence of extracellular calci-um, the resting levels of [Ca2+]i was not affected by Are (n=6, P>0. 05), but pretreatmentwith Are (30 μmol/L) could significantly inhibit the [Ca2+]i elevation induced by caffeine (10mmol/L, n = 6, P < 0. 01). It was concluded that Are could inhibit not only calcium influxthrough L-type calcium channel but also calcium release from sarcoplasmic reticulum.

  17. Hydrogen ion and calcium releasing of mTA fillapex® and mTA-based formulations

    Directory of Open Access Journals (Sweden)

    Milton Carlos Kuga

    2011-07-01

    Full Text Available Introduction: MTA is composed of various metal oxides, calcium oxide and bismuth. It has good biological properties and is indicated in cases of endodontic complications. Several commercial formulations are available and further studies are necessary to evaluate these materials. Objective: To evaluate pH and calcium releasing of MTA Fillapex® compared with gray and white MTA. Material and methods: Gray and white MTA (Angelus and MTA Fillapex® (Angelus were manipulated and placed into polyethylene tubes and immersed in distilled water. The pH of these solutions was measured at 24 hours, 7 days and 14 days. Simultaneously, at these same aforementioned periods, these materials’ calcium releasing was quantified, through atomic absorption spectrophotometry. The results were submitted to ANOVA, with level of significance at 5%. Results: Concerning to pH, the materials present similar behaviors among each other at 24 hours (p > 0.05. At 7 and 14 days, MTA Fillapex® provided significantly lower pH values than the other materials (p < 0.05. Regarding to calcium releasing, at 24 hours and 7 days, MTA Fillapex® provided lower releasing than the other materials (p < 0.05. After 14 days, differences were found between MTA Fillapex® and gray MTA (p < 0.05. Conclusion: All materials showed alkaline pH and calcium releasing, with significantly lower values for MTA Fillapex® sealer.

  18. Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets

    OpenAIRE

    Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit

    2004-01-01

    The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared...

  19. Effects of inorganic mercury (Hg{sup 2+}) on calcium channel currents and catecholamine release from bovine chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Weinsberg, F. [Medical Inst. of Environmental Hygiene, Heinrich Heine University, Duesseldorf (Germany); Bickmeyer, U. [Medical Inst. of Environmental Hygiene, Heinrich Heine University, Duesseldorf (Germany); Wiegand, H. [Medical Inst. of Environmental Hygiene, Heinrich Heine University, Duesseldorf (Germany)

    1995-01-01

    The effects of Hg{sup 2+} on calcium channel currents and the potassium-evoked catecholamine release of bovine chromaffin cells in culture were examined. The effects of Cd{sup 2+} were studied for comparison. Calcium channel currents were recorded in the whole-cell configuration of the patch-clamp technique. In a concentration of 100 {mu}M, Hg{sup 2+} blocked the currents completely; 100 {mu}M Cd{sup 2+} had the same effect. Potassium-evoked catecholamine release from chromaffin cells was measured at different timepoints with HPLC under control conditions and in the presence of different Hg{sup 2+} concentrations. Low Hg{sup 2+} concentrations (0.1 and 1 {mu}M) did not affect the amount of the catecholamines epinephrine (E) and norepinephrine (NE) which was released. Under identical conditions 1 {mu}M Cd{sup 2+} also had no effect on release. With 10 {mu}M Hg{sup 2+} there was a time-dependent increase in the potassium-evoked catecholamine release (by 27% after 8 min). The E/NE ratio was not altered. In contrast to this, the release was slightly reduced with 10 {mu}M Cd{sup 2+}. In the presence of 100 {mu}M Hg{sup 2+}, there was a reduction of the release during an early phase, followed by an increase. The calcium channel block by 100 {mu}M Cd{sup 2+} also reduced the release significantly. Catecholamine release of bovine chromaffin cells is driven into two opposite directions by Hg{sup 2+}. On the one hand, a calcium channel block reduces the release, while on the other hand effects occur which can increase the release. Both tendencies occur simultaneously, but have different concentration- and time-dependencies. The catecholamine output at a given timepoint reflects the `sum` of these different effects. (orig.)

  20. Ions Release and pH of Calcium Hydroxide-, Chlorhexidine- and Bioactive Glass-Based Endodontic Medicaments.

    Science.gov (United States)

    Carvalho, Ceci Nunes; Freire, Laila Gonzales; Carvalho, Alexandre Pinheiro Lima de; Duarte, Marco Antonio Húngaro; Bauer, José; Gavini, Giulio

    2016-01-01

    This study evaluated pH and release of calcium, sodium and phosphate ions from different medications in human dentin. Fifty premolars were prepared and randomly divided into groups: (CHX) - 2% chlorhexidine gel; (CHX + CH) - CHX + calcium hydroxide PA; (CH) - CH + propylene glycol 600; (NPBG) - experimental niobium phosphate bioactive glass + distilled water; (BG) - bioactive glass (Bio-Gran) + distilled water. The specimens were immersed in deionized water and the pH variations were measured. The quantification of ions in the solutions was made by inductively coupled plasma - atomic emission spectroscopy (ICP/AES) at 10 min, 24 h, 7, 14, 21 and 30 days. The results were analyzed by ANOVA and Tukey`s test, with a significance level of 5%. CH had the highest level of calcium ions release at 30 days, while CHX and BG released more sodium ions. BG, NPBG and CHX released a higher amount of phosphate ions. The pH of CH was significantly higher compared with the other groups. CH favored the greatest increase of pH and calcium ions release. The bioactive glasses released more sodium and phosphate ions and presented an alkaline pH immediately and after 30 days. PMID:27224568

  1. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  2. Synthesis, characterization, and in vitro release of diclofenac sodium from hybrid nanostructured magnetite-calcium pectinate

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Raj Kumar, E-mail: duttafcy@iitr.ernet.in; Sahu, Saurabh, E-mail: saurabhsahu12@gmail.com [Indian Institute of Technology Roorkee, Analytical Chemistry Laboratory, Department of Chemistry (India); Reddy, V. R., E-mail: vrreddy@csr.res.in [UGC-DAE Consortium for Scientific Research (India)

    2012-08-15

    A stable spherical nanostructured calcium pectinate loaded with diclofenac sodium (DS) and functionalized by superparamagnetic iron oxide nanoparticles, referred as MCPDS, was developed as a potential magnetically targeted drug delivery system. The sizes of the MCPDS were in the range of 100-200 nm in dried condition, confirmed by scanning electron microscopy and transmission electron microscopy. In the aqueous medium, the sizes of MCPDS were in the range 300 {+-} 50 nm, measured by dynamic light scattering technique. The X-ray diffraction and {sup 57}Fe Moessbauer spectroscopy confirmed magnetite phase in MCPDS. The magnetic property of the MCPDS nanostructures was confirmed from high saturation magnetization (44.05 emu/g), measured using a vibrating sample magnetometer. The superparamagnetic property of MCPDS was characterized by superconducting quantum unit interference device magnetometry and corroborated by Moessbauer spectroscopy. The loading efficiency of DS in MCPDS was measured by UV-Vis spectrophotometry and corroborated by thermal analysis. The in vitro release of the drug from MCPDS in simulated gastrointestinal fluids and in phosphate buffer solution was found to be pH sensitive and exhibited sustained release property. The cumulative drug release agreed well with that of swelling controlled diffusion mechanism, given by the Korsemeyer Peppas model.

  3. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. II. Physicochemical characterization of calcium-alginate, calcium-pectinate and calcium-alginate-pectinate pellets.

    Science.gov (United States)

    Pillay, V; Fassihi, R

    1999-05-20

    Pellets of calcium-alginate, calcium-pectinate and calcium-alginate-pectinate were produced via crosslinking in an aqueous medium for site-specific drug delivery in the gastrointestinal tract. A comparative study of their physicochemical characteristics by means of texture analysis, modulated temperature differential scanning calorimetry (MTDSC), scanning electron microscopy and swelling dynamics under different pH conditions was undertaken. It was found that the incorporation of low methoxylated pectin (i.e., degree of methoxylation approximately 35%) together with alginate appears to influence the degree of crosslinking and subsequently the physical, mechanical and resilience behavior. In general, texture analysis of various pellets indicated that both strength and resilience profiles were in the order of calcium-alginate>/=calcium-alginate-pectinate>calcium-pectinate. Calcium-alginate pellets were found to be viscoelastic, while calcium-pectinate was highly brittle. Through the application of MTDSC, depolymerization transitions, reversing and non-reversing heat flow were determined and interpreted for each formulation. Scanning electron microscopy and micro-thermal analysis revealed distinct morphological differences in each case. The influence of and nature of crosslinking, and textural properties of such pellets on drug release rate modulation is discussed. PMID:10332058

  4. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    Directory of Open Access Journals (Sweden)

    Mário Tanomaru-Filho

    2011-02-01

    Full Text Available OBJECTIVE: Hydroxyl (OH- and calcium (Ca++ ion release was evaluated in six materials: G1 Sealer 26, G2 White mineral trioxide aggregate (MTA, G3 Epiphany, G4 Epiphany + 10% calcium hydroxide (CH, G5 Epiphany + 20% CH, and G6 zinc oxide and eugenol. MATERIAL AND METHODS: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. RESULTS: G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05. G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. CONCLUSIONS: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH- and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material.

  5. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Science.gov (United States)

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A

    1996-09-01

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  6. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

    Directory of Open Access Journals (Sweden)

    Javier Alamilla

    Full Text Available The medial nucleus of the trapezoid body (MNTB is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO is of interest because this immature inhibitory projection is known to undergo tonotopic refinement during an early postnatal period, and because during this period individual MNTB terminals in the LSO transiently release glycine GABA and glutamate. Developmental changes in calcium-dependent release are understood to be required to allow various auditory nuclei to follow high frequency activity; however, little is known about maturation of calcium-dependent release in the MNTB-LSO pathway, which has been presumed to have less stringent requirements for high-fidelity temporal following. In acute brainstem slices of rats age postnatal day 1 to 15 we recorded whole-cell responses in LSO principal neurons to electrical stimulation in the MNTB in order to measure sensitivity to external calcium, the contribution of different voltage-gated calcium channel subtypes to vesicular release, and the maturation of these measures for both GABA/glycine and glutamate transmission. Our results establish that release of glutamate at MNTB-LSO synapses is calcium-dependent. Whereas no significant developmental changes were evident for glutamate release, GABA/glycine release underwent substantial changes over the first two postnatal weeks: soon after birth L-type, N-type, and P/Q-type voltage-gated calcium channels (VGCCs together mediated release, but after hearing onset P/Q-type VGCCs predominated. Blockade of P/Q-type VGCCs reduced the estimated quantal number for GABA/gly and glutamate transmission at P5-8 and the frequency of evoked miniature glycinergic events at P12-15, without apparent effects on spontaneous release of

  7. 5-Hydroxytryptamino-induced calcium sparks in cultured rat stomach fundus smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    张小玲; 阎宏涛; 闫炀

    2003-01-01

    With a new fluorescence probe of Ca2+, STDIn-AM, 5-hydroxytryptamino (5-HT)-induced spontaneous calcium release events (calcium sparks) in cultured rat stomach fundus smooth muscle cells (SFSMC) are investigated by laser scanning confocal microscope. The mechanisms of initiation of Ca2+ sparks, propagating Ca2+ waves and their relation to E-C coupling are discussed. After the extracellular [Ca2+] is increased to 10 mmol/L, addition of 5-HT causes hot spots throughout the cytoplasm, which is brighter near the plasmalemma. The amplitude of the event is at least two times greater than the standard deviation of fluorescence intensity fluctuations measured in the neighboring region and the duration of the Ca2+ signal is over 100 ms. The results suggest that 5-HT acts by the way of 5-HT2 receptors on SFSMC, then through 5-HT2 receptors couples IP3/Ca2+ and DG/PKC double signal transduction pathways to cause Ca2+ release from intracellular Ca2+ stores and followed Ca2+ influx possibly through calcium release-activated calcium influx. The acceptor of activated 5-HT2 can also cause membrane depolarization, which then stimulates the L-type Ca2+ channels leading to Ca2+ influx. Thenthe local Ca2+ entry mentioned above activates ryanodine-sensitive Ca2+ releasechannels (RyR) on sarcoplasmic reticulum (SR) to cause local Ca2+ release events (Ca2+ sparks) through calcium-induced calcium release (CICR).

  8. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  9. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Constance Hammond

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  10. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  11. Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Lauryl E. Campbell

    2014-01-01

    Full Text Available This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32–42°C. A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  12. Differential release of eicosanoids by bradykinin, arachidonic acid and calcium ionophore A23187 in guinea-pig isolated perfused lung.

    OpenAIRE

    Bakhle, Y. S.; Moncada, S.; de Nucci, G.; Salmon, J A

    1985-01-01

    The effects of infusions of bradykinin (0.2 microM), calcium ionophore A23187 (0.5 microM) and arachidonic acid (13 microM) on the release of eicosanoids from the guinea-pig isolated perfused lung were investigated using radioimmunoassay for thromboxane B2 (TXB2), 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha), PGE2, leukotriene B4 (LTB4) and LTC4 and bioassay using the superfusion cascade. Bradykinin released more 6-oxo-PGF1 alpha than TXB2, whereas arachidonic acid and ionophore released m...

  13. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard;

    2015-01-01

    deposited in landfills for construction and demolition waste or other types of landfills, depending on the local waste management system. Hence, the potential release of nano-Ti under landfill conditions is relevant to investigate. In this study we used a standard waste material characterization method to...... waste material to the landfill leachate, it is expected that the calcium and organic matter content in the liquid will affect the stability of the nanoparticles. The concentration of calcium in the landfill percolate is expected to decrease the stability of the particles due to compression of the...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  14. Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications.

    Science.gov (United States)

    Ghosh, Shreya; Wu, Victoria; Pernal, Sebastian; Uskoković, Vuk

    2016-03-30

    Osteomyelitis, an infectious disease predominantly tied to poor sanitary conditions in underdeveloped regions of the world, is in need of inexpensive, easily in situ synthesizable and administrable materials for its treatment. The results of this study stem from the attempt to create one such affordable and minimally invasive therapeutic platform in the form of a self-setting, injectable cement with a tunable drug release profile, composed of only nanoparticulate hydroxyapatite, the synthetic version of the bone mineral. Cements comprised two separately synthesized hydroxyapatite powders, one of which, HAP2, was precipitated abruptly, retaining the amorphous nature longer, and the other one of which, HAP1, was precipitated at a slower rate, more rapidly transitioning to the crystalline structure. Cements were made with four different weight ratios of the two hydroxyapatite components: 100/0, 85/15, 50/50, and 0/100 with respect to HAP1 and HAP2. Both the setting and the release rates measured on two different antibiotics, vancomycin and ciprofloxacin, were controlled using the weight ratio of the two hydroxyapatite components. Various inorganic powder properties were formerly used to control drug release, but here we demonstrate for the first time that the kinetics of the mechanism of formation of a solid compound can be controlled to produce tunable drug release profiles. Specifically, it was found that the longer the precursor calcium phosphate component of the cement retains the amorphous nature of the primary precipitate, the more active it was in terms of speeding up the diffusional release of the adsorbed drug. The setting rate was, in contrast, inversely proportional to the release rate and to the content of this active hydroxyapatite component, HAP2. The empirical release profiles were fitted to a set of equations that could be used to tune the release rate to the therapeutic occasion. All of the cements loaded with vancomycin or ciprofloxacin inhibited the

  15. Involvement of phospholipase C and intracellular calcium signaling in the gonadotropin-releasing hormone regulation of prolactin release from lactotrophs of tilapia (Oreochromis mossambicus)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Weber, G M; Strom, C N;

    2005-01-01

    Gonadotropin-releasing hormone (GnRH) is a potent stimulator of prolactin (PRL) secretion in various vertebrates including the tilapia, Oreochromis mossambicus. The mechanism by which GnRH regulates lactotroph cell function is poorly understood. Using the advantageous characteristics of the teleost...... pituitary gland from which a nearly pure population of PRL cells can be isolated, we examined whether GnRH might stimulate PRL release through an increase in phospholipase C (PLC), inositol triphosphate (IP3), and intracellular calcium (Ca(i)2+) signaling. Using Ca(i)2+ imaging and the calcium-sensitive dye...... fura-2, we found that chicken GnRH-II (cGnRH-II) induced a rapid dose-dependent increase in Ca(i)2+ in dispersed tilapia lactotrophs. The Ca(i)2+ signal was abolished by U-73122, an inhibitor of PLC-dependent phosphoinositide hydrolysis. Correspondingly, cGnRH-II-induced tPRL188 secretion was inhibited...

  16. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  17. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    Science.gov (United States)

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation. PMID:11273716

  18. Soil Manganese and Iron Released due to Calcium Salts:Bioavailability to Pepper (Capsicum frutescens L.)

    Institute of Scientific and Technical Information of China (English)

    SI You-Bin; ZHOU Jing; ZHOU Dong-Mei; CHEN Huai-Man

    2004-01-01

    Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P < 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.

  19. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    Science.gov (United States)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  20. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  1. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors

    OpenAIRE

    Minghui eChen; David eKrizaj; Thoreson, Wallace B

    2014-01-01

    Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy (TIRFM) a...

  2. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  3. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release

    OpenAIRE

    1983-01-01

    To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0 microM) abolished or prevented aftercontractions and transient depolarizations by the papillary muscles without affecting any of the other sequ...

  4. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  5. Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    technique, superfused, and permeabilized by 20 microM digitonin for 12 min. The calcium concentration was varied with Ca ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) buffers [0 (5 MM EGTA without calcium), 17, 73, 170, 440, or 700 nM and 1.5, 15 or 150 microM]. These...

  6. Abnormal Calcium "Sparks" in Cardiomyocytes of Post-myocardial Infarction Heart

    Institute of Scientific and Technical Information of China (English)

    Kai HUANG; Dan HUANG; Shengquan FU; Chongzhe YANG; Yuhua LIAO

    2008-01-01

    In ischemic hypertrophic myocardium, contractile dysfunction can be attributed to the decreased calcium induced calcium release (CICR) in cytoplasm. This study aimed to investigate the electrophysiological properties and the expression of L calcium channel subunits in post-MI myocardium. The ischemic heart remodeling model was established in SD rats. The expressions of calcium channel subunits were determined by realtime RT-PCR. Whole cell patch clamp was used to record the electrophysiological properties of L calcium channel. The results showed that the L calcium channel agonist Bayk 8644 induced the significantly decreased CICR in the rat cardiomyocyte 6weeks after myocardial infarction (MI). In the post-MI cardiomyocytes, the amplitude of ICaL decreased dramatically and the inactivation curve of the current shifted to more negative potential. At mRNA level, the expression of the calcium channel alphalc, beta2c subunits decreased dramatically in the ventricle of post-MI rats. The expression of alpha2/delta subunit, however, remained constant.It is concluded that the abnormal expression of the L calcium channel subunits in post-MI cardiomyocytes contributes to the ICaL decrease at early stage of the ischemic remodeling in cardiomyocytes,which leads to the decreased CICR in the cell and contractile dysfunction of myocardium.

  7. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    Directory of Open Access Journals (Sweden)

    Surbhi Sawhney

    2015-10-01

    Conclusions: Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies.

  8. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  9. Inhibition of anaphylactic histamine release from heterologously sensitized mast cells: differential effects of drugs which interfere with calcium influx.

    Directory of Open Access Journals (Sweden)

    Kurose,Masao

    1981-11-01

    Full Text Available Drug effects were studied on anaphylactic histamine release from rat mast cells sensitized in vitro with mouse IgE antibody. When histamine release was elicited by adding Ca-++ at various times after antigen-stimulation of sensitized cells in Ca++-free medium, the drugs to be tested were added shortly before each Ca++ addition. Quercetin was effective only when added before or immediately after antigen. Theophylline and disodium cromoglycate (DSCG were active irrespective of the time interval between antigen and Ca++ addition. Verapamil was more effective when added before or simultaneously with antigen than when added later. When tested in the two-stage experiments, quercetin showed inhibition only in Stage 1 and verapamil was inhibitive primarily in Stage 1, while theophylline and DSCG wee only inhibitive in Stage 2. It seems that quercetin selectively and verapamil primarily act to block calcium-gate opening resulting from antigen-antibody interaction on the mast cell membrane, while theophylline and DSCG selectively inhibit the passage of calcium through open calcium channels.

  10. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. PMID:26738968

  11. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.

    Science.gov (United States)

    Balkowiec, Agnieszka; Katz, David M

    2002-12-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion. PMID:12451139

  12. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling.

    Directory of Open Access Journals (Sweden)

    Katharine L Dobson

    Full Text Available Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites-a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission.Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20 Wistar rats.Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine--intracellular calcium release, and cAMP signalling--had no impact on these effects.We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections.

  13. Endomorphin-2 is released from newborn rat primary sensory neurons in a frequency- and calcium-dependent manner.

    Science.gov (United States)

    Scanlin, Heather L; Carroll, Elizabeth A; Jenkins, Victoria K; Balkowiec, Agnieszka

    2008-05-01

    Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture enzyme-linked immunosorbent assay (ELISA), in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways. PMID:18513316

  14. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani

    International Nuclear Information System (INIS)

    Nano-sized calcium carbonate (nano-CC) was studied in terms of acting as a carrier for a pesticide. Nano-CC was prepared by reaction of calcium chloride and sodium carbonate by the reversed-phase microemulsion method and then loaded with the pesticide validamycin. The resulting material was characterized by X-ray diffraction analysis and scanning electron microscopy. The loading efficiency, sustained-release performance, germicidal efficacy, and stability also were investigated. The size of the loaded nano-CC can be adjusted to between 50 to 200 nm by varying the water/surfactant molar ratio from 30/1 to 10/1, and the loading efficiency can be increased to about 20% by increasing the size of the nano-CC. The material displayed better germicidal efficacy against Rhizoctonia solani compared to conventional technical validamycin after about 7 days, and the time of the release of validamycin was extended to 2 weeks. Given the loading efficiency, stability, sustained-release performance and good environmental compatibility of the material, the method for its preparation may be extended to other hydrophilic pesticide. (author)

  15. Discrepancy in calcium release from the sarcoplasmic reticulum and intracellular acidic stores for the protection of the heart against ischemia/reperfusion injury.

    Science.gov (United States)

    Khalaf, Aseel; Babiker, Fawzi

    2016-09-01

    We and others have demonstrated a protective effect of pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection are not completely clear. In the present study, we evaluated the effects of calcium release from the sarcoplasmic reticulum (SR) and the novel intracellular acidic stores (AS). Isolated rat hearts (n = 6 per group) were subjected to coronary occlusion followed by reperfusion using a modified Langendorff system. Cardiac hemodynamics and contractility were assessed using a data acquisition program, and cardiac injury was evaluated by creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. The hearts were also subjected to PPC (3 cycles of 30 s of left ventricle (LV) pacing alternated with 30 s of right atrium (RA) pacing) and/or were treated during reperfusion with agonists or antagonists of release of calcium from SR or AS. PPC significantly (P < 0.05) normalized LV, contractility, and coronary vascular dynamics and significantly (P < 0.001) decreased heart enzyme levels compared to the control treatments. The blockade of SR calcium release resulted in a significant (P < 0.01) recovery in LV function and contractility and a significant reduction in CK and LDH levels (P < 0.01) when applied alone or in combination with PPC. Interestingly, the release of calcium from AS alone or in combination with PPC significantly improved LV function and contractility (P < 0.05) and significantly decreased the CK and LDH levels (P < 0.01) compared to the control treatments. An additive effect was produced when agonism of calcium release from AS or blockade of calcium release from the SR was combined with PPC. Calcium release from AS and blockade of calcium release from the SR protect the heart against I

  16. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory.

    Science.gov (United States)

    Higashida, Haruhiro

    2016-07-01

    Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca(2+)) concentrations [(Ca(2+)) i ] in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca(2+)] i via Ca(2+) mobilization through ryanodine receptors on intracellular Ca(2+) pools that are sensitive to both Ca(2+) and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca(2+)] i increases by Ca(2+) influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca(2+) signal amplifiers. Thus, OT release is not simply due to depolarization-secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca(2+)] i elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder. PMID:26586001

  17. Calcium permeability changes and neurotransmitter release in cultured rat brain neurons. I. Effects of stimulation on calcium fluxes

    International Nuclear Information System (INIS)

    The permeability of neuronal membranes to Ca2+ is of great importance for neurotransmitter release. The temporal characteristics of Ca2+ fluxes in intact brain neurons have not been completely defined. In the present study 45Ca2+ was used to examine the kinetics of Ca2+ influx and efflux from unstimulated and depolarized rat brain neurons in culture. Under steady-state conditions three cellular exchangeable Ca2+ pools were identified in unstimulated cells: 1) a rapidly exchanging pool (t1/2 = 7 s) which represented about 10% of the total cellular Ca2+ and was unaffected by the presence of Co2+, verapamil, or tetrodotoxin; 2) a slowly exchanging pool (t1/2 = 360 s) which represented 42% of the total cellular Ca2+ and was inhibited by Co2+, but not by verapamil or tetrodotoxin; 3) a very slowly exchanging pool (t1/2 = 96 min) which represented 48% of the total cell Ca2+ was observed only in the prolonged efflux experiments. The rate of exchange of 45Ca2+ in the unstimulated cells was dependent on the extracellular Ca2+ concentration (half-saturation at 70 microM). Depolarization of the neurons with elevated K+ causes a rapid and sustained 45Ca2+ uptake. The cellular Ca2+ content increased from 56 nmol/mg protein in unstimulated cells to 81 nmol/mg protein during 5 min of depolarization. The kinetics of the net 45Ca2+ uptake by the stimulated neurons was consistent with movement of the ion with a first order rate constant of 0.0096 s-1 (t1/2 = 72 s) into a single additional compartment. The other cellular Ca2+ pools were apparently unaffected by stimulation. The stimulated 45Ca2+ uptake was inhibited by Co2+ and by the Ca2+ channel blocker verapamil but not by the Na+ channel blocker tetrodotoxin. Ca2+ uptake into this compartment was dependent on the extracellular Ca2+ concentration (half-saturation at 0.80 mM Ca2+)

  18. Involvement of multiple calcium channels in neurotransmitter release from cultured sympathetic neurons

    International Nuclear Information System (INIS)

    The release of neurotransmitters has been defined to be a Ca++ dependent process, however, the role of Ca++ channels in the release process is unclear. Primary cultures of sympathetic nerves from superior cervical ganglia were used to examine the specific actions of dihydropyridine (DHP) drugs. In nerve cultures, 3H-norepinepharine (NE) was taken up in a desipramine blockable fashion and released on exposure to high external K+ concentrations. NE release was virtually abolished by Co++ (3 mM) or in Ca++ free media, demonstrating the Ca++ dependence of the release. However, the antagonist DHP, nimodipine, was ineffective in blocking transmitter release in concentrations up to 10-5M. In contrast, the agonist DHP, Bay K8644 (10-6M), significantly enhanced transmitter release by 35-40% of control. This enhancement was blocked down to control levels by nimodipine (10-6M). The authors have also demonstrated high affinity 3H-nitrendipine binding sites (B/sub max/ = 179 fmoles/mg, Kd = 0.25 nM) on these sympathetic neuronal membranes. These data suggest that DHP sensitive Ca++ channels, which have been shown to modulate SP release from DRG neurons in culture are not usually involved in NE release from sympathetic neurons. However, prolonged opening of these channels by the DHP agonist, Bay K8644, increases the overall Ca++ influx into sympathetic nerves to enhance transmitter release

  19. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles

    International Nuclear Information System (INIS)

    A platelet membrane preparation, enriched in plasma membrane markers, took up 45Ca2+ in exchange for intravesicular Na+ and released it after the addition of inositol 1,4,5-trisphosphate (IP3). The possibility that contaminating dense tubular membrane (DTS) vesicles contributed the Ca2+ released by IP3 was eliminated by the addition of vanadate to inhibit Ca+-ATPase-mediated DTS Ca2+ sequestration and by the finding that only plasma membrane vesicles exhibit Na+-dependent Ca2+ uptake. Ca2+ released by IP3 was dependent on low extravesicular Ca2+ concentrations. IP3-induced Ca2+ release was additive to that released by Na+ addition while GTP or polyethylene glycol (PEG) had no effect. These results strongly suggest that IP3 facilitates extracellular Ca2+ influx in addition to release from DTS membranes

  20. Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse

    OpenAIRE

    Schnee, M.E.; Santos-Sacchi, J; Castellano-Muñoz, M.; Kong, J-H.; Ricci, A.J.

    2011-01-01

    Sensory hair cell ribbon synapses respond to graded stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses is rapid and non rate limiting. Real time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca2+, however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca2+-d...

  1. Dual pathways of calcium entry in spike and plateau phases of luteinizing hormone release from chicken pituitary cells: sequential activation of receptor-operated and voltage-sensitive calcium channels by gonadotropin-releasing hormone

    International Nuclear Information System (INIS)

    It has previously been shown that, in pituitary gonadotrope cells, the initial rise in cytosolic Ca2+ induced by GnRH is due to a Ca2+ mobilization from intracellular stores. This raises the possibility that the initial transient spike phase of LH release might be fully or partially independent of extracellular Ca2+. We have therefore characterized the extracellular Ca2+ requirements, and the sensitivity to Ca2+ channel blockers, of the spike and plateau phases of secretion separately. In the absence of extracellular Ca2+ the spike and plateau phases were inhibited by 65 +/- 4% and 106 +/- 3%, respectively. Both phases exhibited a similar dependence on concentration of extracellular Ca2+. However, voltage-sensitive Ca2+ channel blockers D600 and nifedipine had a negligible effect on the spike phase, while inhibiting the plateau phase by approximately 50%. In contrast, ruthenium red, Gd3+ ions, and Co2+ ions inhibited both spike and plateau phases to a similar extent as removal of extracellular Ca2+. A fraction (35 +/- 4%) of spike phase release was resistant to removal of extracellular Ca2+. This fraction was abolished after calcium depletion of the cells by preincubation with EGTA in the presence of calcium ionophore A23187, indicating that it depends on intracellular Ca2+ stores. Neither absence of extracellular Ca2+, nor the presence of ruthenium red or Gd3+ prevented mobilization of 45Ca2+ from intracellular stores by GnRH. We conclude that mobilization of intracellular stored Ca2+ is insufficient by itself to account for full spike phase LH release

  2. Dual pathways of calcium entry in spike and plateau phases of luteinizing hormone release from chicken pituitary cells: sequential activation of receptor-operated and voltage-sensitive calcium channels by gonadotropin-releasing hormone

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.S.; Wakefield, I.K.; King, J.A.; Mulligan, G.P.; Millar, R.P.

    1988-04-01

    It has previously been shown that, in pituitary gonadotrope cells, the initial rise in cytosolic Ca2+ induced by GnRH is due to a Ca2+ mobilization from intracellular stores. This raises the possibility that the initial transient spike phase of LH release might be fully or partially independent of extracellular Ca2+. We have therefore characterized the extracellular Ca2+ requirements, and the sensitivity to Ca2+ channel blockers, of the spike and plateau phases of secretion separately. In the absence of extracellular Ca2+ the spike and plateau phases were inhibited by 65 +/- 4% and 106 +/- 3%, respectively. Both phases exhibited a similar dependence on concentration of extracellular Ca2+. However, voltage-sensitive Ca2+ channel blockers D600 and nifedipine had a negligible effect on the spike phase, while inhibiting the plateau phase by approximately 50%. In contrast, ruthenium red, Gd3+ ions, and Co2+ ions inhibited both spike and plateau phases to a similar extent as removal of extracellular Ca2+. A fraction (35 +/- 4%) of spike phase release was resistant to removal of extracellular Ca2+. This fraction was abolished after calcium depletion of the cells by preincubation with EGTA in the presence of calcium ionophore A23187, indicating that it depends on intracellular Ca2+ stores. Neither absence of extracellular Ca2+, nor the presence of ruthenium red or Gd3+ prevented mobilization of 45Ca2+ from intracellular stores by GnRH. We conclude that mobilization of intracellular stored Ca2+ is insufficient by itself to account for full spike phase LH release.

  3. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  4. In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property.

    Science.gov (United States)

    Yang, Tiezhu; Wan, Zhanghui; Liu, Zhiyuan; Li, Haihong; Wang, Hao; Lu, Nan; Chen, Zhenhua; Mei, Xifan; Ren, Xiuli

    2016-06-01

    In this paper, we facilitated the preparation of uniform calcium carbonate nanospheres and the encapsulation of anticancer drug (Doxorubicin, Dox) in one step by a facile bio-inspired mineralization method at room temperature. Hesperidin (Hesp), a natural originated flavanone glycoside, was introduced as crystallization modifier. The obtained Dox encapsulated CaCO3 nanospheres (Dox@CaCO3-Hesp NSs) having a narrow size range of ~200nm. The drug loading/release studies reveal that these Dox@CaCO3-Hesp NSs have a drug loading efficiency (DLE) of 83% and drug loading content (DLC) of 14wt%. Besides, the release of Dox from Dox@CaCO3-Hesp NSs was pH depended. At pH=7.4, only a small amount (~28%) of Dox was released. While at pH=5.0, all amount of incorporated Dox was released. Confocal laser scanning microscopy (CLSM) image reveals the Dox@CaCO3-Hesp NSs can internalize the cells. These results suggest the Dox@CaCO3-Hesp NSs can be potentially used to utilize pH-responsive delivery of anticancer drugs. PMID:27040233

  5. Membrane sialic acid influences basophil histamine release by interfering with calcium dependence

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Skov, P S;

    1987-01-01

    The influence of the cell membrane content of sialic acid on basophil histamine release was examined in vitro in allergic patients and normal controls. Enzymatical removal of sialic acid enhanced histamine release induced by allergen and anti-IgE, whereas an increase in membrane sialic acid content...

  6. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available BACKGROUND: Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. METHODS AND FINDINGS: Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. CONCLUSIONS: These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  7. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    International Nuclear Information System (INIS)

    The effect of ethanol on muscarine-stimulated release of [3H]NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of [3H]NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on [3H]NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of [3H]NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release

  8. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    International Nuclear Information System (INIS)

    The effect of ethanol on muscarine-stimulated release of l-[3H]norepinephrine ([3H]NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of [3H]NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on [3H]NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of [3H]NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++

  9. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets

    International Nuclear Information System (INIS)

    The effects of tetracaine on insulin release and 45Ca2+ handling by rat pancreatic islets have been studied under basal, glucose-stimulated, and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45Ca2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca2+

  10. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress1[OPEN

    Science.gov (United States)

    Evans, Matthew J.; Choi, Won-Gyu

    2016-01-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1. PMID:27261066

  11. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    Science.gov (United States)

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. PMID:27261066

  12. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: wponun@yahoo.com [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education. 328 Si Ayuthaya Rd., Bangkok 10400 (Thailand); Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2013-04-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m{sup 2}g{sup −1}. The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also

  13. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    International Nuclear Information System (INIS)

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m2g−1. The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also bioactive by in vitro

  14. Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution

    International Nuclear Information System (INIS)

    The degradability of fibrous wollastonite (CaSiO3) in an aqueous solution of acetic acid and leaching of Ca2+ ions were investigated in the temperature range from 22 to 50 oC. The Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) was used for the assessment of calcium and other selected cations in the leaching medium. The amount of calcium in the solvent can be significantly enhanced through leaching at higher temperature. Fibrous silica particles are the main by-product of the leaching process. The properties of by-product were examined by thermal analysis (simultaneous TG-DTA-EGA), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The formation of silica layer on the surface of fibrous wollastonite particles is an important factor in the leaching process. Particles were covered by the silica layer and wollastonite core size was continually decreasing during leaching. The shape of resulting silica particles shows no significant changes during this process. Specific surface of the formed fibrous silica particles strongly depends on the leaching temperature.

  15. A Specific Transitory Increase in Intracellular Calcium Induced by Progesterone Promotes Acrosomal Exocytosis in Mouse Sperm.

    Science.gov (United States)

    Romarowski, Ana; Sánchez-Cárdenas, Claudia; Ramírez-Gómez, Héctor V; Puga Molina, Lis del C; Treviño, Claudia L; Hernández-Cruz, Arturo; Darszon, Alberto; Buffone, Mariano G

    2016-03-01

    During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca(2+) ([Ca(2+)]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca(2+)]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca(2+)]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca(2+)]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca(2+)]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca(2+)]i originating in the sperm head promotes the initiation of AR. PMID:26819478

  16. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  17. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    OpenAIRE

    M. J. Fernández-Sanjurjo; E. Alvarez-Rodríguez; A. Núñez-Delgado; M. L. Fernández-Marcos; Romar-Gasalla, A.

    2014-01-01

    The objective of this work was to study nutrients release from two compressed nitrogen–potassium–phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0–20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of ...

  18. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    OpenAIRE

    M. J. Fernández-Sanjurjo; E. Alvarez-Rodríguez; Núñez-Delgado, A.; M. L. Fernández-Marcos; A. Romar-Gasalla

    2014-01-01

    We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the ...

  19. Results of critical velocity experiments with barium, strontium, and calcium releases from CRRES satellite

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hampton, D. L.; Delamere, P. A.

    1994-01-01

    As part of the NASA Combined Release and Radiation Effects Satellite (CRRES) chemical release program in September 1990, two Ba and also one each Sr and Ca canisters of a boron-titanium thermite mixture, which vaporizes the element on ignition, were released near perigee after dusk in the South Pacific to study the critical velocity effect proposed by Alfven. The critical velocities of these three elements are 2.7, 3.5, and 5.4 km/s respectively, all well below the orbital velocity of 9.4 km/s. On September 10, 1990, a Sr and Ba pair (G-13, or critical ionization velocity (CIV) I) was released near Rarotonga at approximately 515 km altitude in a background electron density of 3.4 x 10(exp 6)/cu cm. On September 14, 1990, G-14 or CIV II released a Ca and Ba pair west of New Caledonia near 595 km at an electron density of 1.5 x 10(exp 6)/cu cm. Ions of all three elements were observed with low-light level imagers from two aircraft after they had transited up the magnetic field lines into the sunlight. Emissions from the spherically expanding neutral gas shells below the solar terminator, observed with cameras filtered for the Ba(+) ion line at 4554 A and also in unfiltered imagers for approximately 15 s after release, are probably due to excitation by hot electrons created in the CIV process. The ions created clearly lost much of their energy, which we now show can be explained by elastic collisions: Ba(+) + O. Inventories of the observed ions indicate yields of 0.15% and 1.84% for Ba in the first and second experiments, 0.02% for Sr and 0.27% for Ca. Ionization from all the releases continued along the satellite trajectory much longer (greater than 45 s) than expected for a CIV process. The ion production along the satellite track versus time typically shows a rapid rise to a peak in a few seconds followed by an exponential decrease to a level essentially constant rate. The characteristic distances for CIV I and II are 47 and 62 km, respectively. We interpret the

  20. Relationship between calcium entry and ACh release in K+ -stimulated rat brain synaptosomes

    International Nuclear Information System (INIS)

    This paper examines the pattern of Ca++ entry-dependent ACh release in relation to the kinetics of Ca++ entry, and its inactivation in rat brain synaptosomes exposed to 50 mM K0+ for short and prolonged durations. Intrasynaptosomal ACh was radiolabeled from tritium-choline in the presence of 20 um Paraoxon to inhibit the acetylcholinesterase activity. The release of tritium-ACh was studied in superfused synaptosomal beds formed on glass microfiber filters and by rapid filtration. The intermittent stimulation of superfused synaptosomal beds by 3-min pulses of 50 mM K+ evoked decremental output of tritium-ACh which reached nearly undetectable levels after the fifth stimulus

  1. Automated Detection of Elementary Calcium Release Events Using the À Trous Wavelet Transform

    OpenAIRE

    Wegner, F. v.; Both, M.; Fink, R H A

    2005-01-01

    We developed an algorithm for the automated detection and analysis of elementary Ca2+ release events (ECRE) based on the two-dimensional nondecimated wavelet transform. The transform is computed with the “à trous” algorithm using the cubic B-spline as the basis function and yields a multiresolution analysis of the image. This transform allows for highly efficient noise reduction while preserving signal amplitudes. ECRE detection is performed at the wavelet levels, thus using the whole spectra...

  2. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites

    OpenAIRE

    Ludwig, Mike; Sabatier, Nancy; Bull, Philip M.; Landgraf, Rainer; Dayanithi, Govindan; Leng, Gareth

    2002-01-01

    Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals1–4. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and m...

  3. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

    OpenAIRE

    1993-01-01

    The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potenti...

  4. Role of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release

    OpenAIRE

    Kennedy, Eleanor; Wollheim, Claes

    1998-01-01

    Glucose-stimulated insulin release from pancreatic beta cells involves a complex series of signalling pathways. In many forms of diabetes, lesions in this process cause or aggravate the diabetic phenotype. A common motif in these cascades is the elevation of intracellular Ca2+ both in the cytosolic compartment ([Ca2+]c) and within the mitochondria ([Ca2+]m). These parameters can be effectively monitored using the photoprotein aequorin which can be targeted to subcellular compartments by trans...

  5. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    Directory of Open Access Journals (Sweden)

    M. J. Fernández-Sanjurjo

    2014-07-01

    Full Text Available We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16 were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first percolates, reaching a steady state when 1426 mm water have percolated, which is equivalent to approximately 1.5 years of rainfall in the geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K, Ca and Mg were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with composition 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident.

  6. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis

    OpenAIRE

    Wang, Wen-Hua; Yi, Xiao-Qian; Han, Ai-Dong; Liu, Ting-Wu; Chen, Juan; Wu, Fei-Hua; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-01-01

    The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca2+ (Ca2+ i) increases in response to a high extracellular calcium (Ca2+ o) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H2O2) and nitr...

  7. Calcium sulfate spinal cord scaffold: a study on degradation and fibroblast growth factor 1 loading and release.

    Science.gov (United States)

    Åberg, Jonas; Eriksson, Olof; Spens, Erika; Nordblom, Jonathan; Mattsson, Per; Sjödahl, Johan; Svensson, Mikael; Engqvist, Håkan

    2012-02-01

    Currently, there is no regenerative strategy for the spinal cord that is part of clinical standard of core. Current paths usually include combinations of scaffold materials and active molecules. In a recent study, a permanent dental resin scaffold for treatment of spinal cord injury was designed. The results from studies on rats were promising. However, for potential clinical use, a biodegradable scaffold material that facilitates drug delivery and the regeneration of the spinal cord needs to be developed. Also a biodegradable material is expected to allow a better evaluation of the efficacy of the surgical method. In this article, the suitability of hardened calcium sulfate cement (CSC) for use as degradable spinal cord scaffolds is investigated in bench studies and in vitro studies. Compressive strength, degradation and microstructure, and the loading capability of heparin-activated fibroblast growth factor 1 (FGF1) via soaking were evaluated. The CSC could easily be injected into the scaffold mold and the obtained scaffolds had sufficient strength to endure the loads applied during surgery. When hardened, the CSC formed a porous microstructure suitable for loading of active substances. It was shown that 10 min of FGF1 soaking was enough to obtain a sustained active FGF1 release for 20-35 days. The results showed that CSC is a promising material for spinal cord scaffold fabrication, since it is biodegradable, has sufficient strength, and allows loading and controlled release of active FGF1. PMID:20624845

  8. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    Science.gov (United States)

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  9. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    Science.gov (United States)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-12-01

    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  10. Preparation of Surfactant-free Core-Shell Poly(lactic acid) / Calcium Phosphate Hybrid Particles and Their Drug Release Characteristics

    International Nuclear Information System (INIS)

    We propose surfactant-free core-shell poly(lactic acid) (PLA) / calcium phosphate (CaP) hybrid particles as drug delivery carriers. These particles were prepared by biomineralization process using ultrasonic irradiation, and their drug release profiles were investigated. Drug release rate was earlier when particles were prepared by PLA with a low molecular weight, and/or by Ca(CH3COO)2 and (NH4)2HPO4. Also, these were shown good protein adsorption. This work indicates that these particles have sustained-release ability without initial burst and can do targeting capability by biomolecule conjugation.

  11. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    OpenAIRE

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.; Varani, James

    2012-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable ef...

  12. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    The release of lysosomal enzymes, collagenase, and previously incorporated 45Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45Ca release decreased. When the bones escaped from calcitonin inhibition, both 45Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  13. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions. PMID:26861499

  14. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH.

    Science.gov (United States)

    Zeeb, Benjamin; Saberi, Amir Hossein; Weiss, Jochen; McClements, David Julian

    2015-03-21

    Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium alginate beads filled with lipid droplets stabilized by non-ionic, cationic, anionic, or zwitterionic emulsifiers. Oil-in-water emulsions stabilized by Tween 60, DTAB, SDS, or whey protein were prepared by microfluidization, mixed with various alginate solutions, and then microgels were formed by simple extrusion into calcium solutions. The microgels were placed into a series of buffer solutions with different pH values (2 to 11). Lipid droplets remained encapsulated under acidic and neutral conditions, but were released under highly basic conditions (pH 11) due to hydrogel swelling when the alginate concentration was sufficiently high. Lipid droplet release increased with decreasing alginate concentration, which could be attributed to an increase in the pore size of the hydrogel matrix. These results have important implications for the design of delivery systems to entrap and control the release of lipophilic bioactive components within filled hydrogel particles. PMID:25646949

  15. Drug release behavior of a pH/temperature sensitive calcium alginate/poly(N-acryloylglycine bead with core-shelled structure

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available In this study, a novel pH/temperature sensitive hydrogel bead with core-shelled structure, composed of calcium alginate (Ca-alginate and poly((N-acryloylglycine (PAG, was prepared using as a drug delivery system. The equilibrium swelling has indicated the distinct sensitivities of the beads to pH value and temperature. In pH = 7.4 phosphate buffer solution (PBS, the cumulative release amount of indomethacin loaded in the core of the beads was about 83.5% within 650 min, whereas this value only reached 16.6% in pH = 2.1 PBS. In addition, the release rate of indomethacin was much faster at 37°C than that at 24°C. The experimental results have showed that the Ca-alginate/PAG beads have a potential application for the pH/temperature-controlled drug release carrier in the biomedical field.

  16. Large isoforms of UNC-89 (obscurin are required for muscle cell architecture and optimal calcium release in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Patrick M Spooner

    Full Text Available Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction.

  17. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile

    Directory of Open Access Journals (Sweden)

    Bronckers Antonius LJJ

    2006-02-01

    Full Text Available Abstract Background Polymethyl-methacrylate (PMMA beads releasing antibiotics are used extensively to treat osteomyelitis, but require surgical removal afterwards because they do not degrade. Methods As an alternative option, this report compares the in vitro gentamicin release profile from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types. Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then every 24 h, for 21 days, the release fluid was exchanged and the gentamicin concentration was measured. The activity of released gentamicin was tested on Staphylococcus aureus. Results All combinations showed initial burst-release of active gentamicin, two cements had continuous-release (17 days. The relative release of all cements (36–85% and granules (30–62% was higher than previously reported for injectable PMMA-cements (up to 17% and comparable to other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas the granules released all gentamicin that had adhered to the surface. Conclusion The high release achieved shows great promise for clinical application of these biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst or sustained may be achieved.

  18. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.

    Science.gov (United States)

    Wang, Xiao; Weinberg, Seth H; Hao, Yan; Sobie, Eric A; Smith, Gregory D

    2015-03-01

    Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks. PMID:25485896

  19. Compatibility Studies of Atorvastatin Calcium with Selected Excipients By Means of Thermal and FT-IR Spectroscopic Methods for the Development of Immediate Release Tablet

    Directory of Open Access Journals (Sweden)

    Bipul Nath

    2016-05-01

    Full Text Available The objectives of present investigation is to evaluate the compatibility of Atorvastatin calcium with immediate release excipients and to optimize the tablet which release is best comparable with innovator product by varying different super disintegrants. Various excipients used were sodium starch glycollate, cross carmellose sodium, cross-povidone, lactose, micro crystalline cellulose, mannitol, sodium lauryl sulfate, magnesium stearate, and stearic acid. Thermal characterization of the drug was done by DSC and FT-IR. From the DSC studies, the excipients such as microcrystalline cellulose (Avicel 101, magnesium stearate, mannitol, sodium lauryl sulfate were found to have physical interactions with Atorvastatin. Immediate release tablet was prepared by direct compression method and its release profile was compared with the marketed IR tablet. The prepared tablet have conform the pharmacopoeial limit for hardness, thickness, friability, weight variation and content uniformity. Formulation F11 containing two super disintegrants have shown the disintegration time less than 25 sec and better dissolution than all other formulations releasing more than 80% of the drug after 20 minutes. Kinetic data reveals that the drug release follows best order by Higuchi model, followed by korsemeyer peppas, zero order and first order mechanisms. The results of accelerated stability studies as per ICH guidelines indicated that the tablet was stable as there were no any significant physical changes after the study.

  20. Effect of particle size of calcium phosphate based bioceramic drug delivery carrier on the release kinetics of ciprofloxacin hydrochloride: an in vitro study

    Science.gov (United States)

    Sasikumar, Swamiappan

    2013-09-01

    Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier. Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier. The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fluid, at 37.3°C. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic λ max of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.

  1. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    Science.gov (United States)

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation. PMID:17942746

  2. Hydrogeochemical signatures of catchment evolution - the role of calcium and sulphate release in the constructed Hühnerwasser ("Chicken Creek") catchment

    Science.gov (United States)

    Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph

    2016-04-01

    The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing

  3. The effect of calcium antagonists on atrial natriuretic peptide (ANP) release from the rat heart during rapid cardiac pacing.

    Science.gov (United States)

    Doubell, A F

    1989-05-01

    The diuresis associated with rapid atrial rhythms is a well recognized clinical entity (Wood, 1963). Atrial natriuretic peptide (ANP) levels are elevated during rapid atrial rhythms (Hirata et al., 1987), including during rapid atrial pacing (Rankin et al., 1986; Schiebinger and Linden 1986; Walsh et al., 1987), and may contribute to the associated diuresis. Calcium channel antagonists are often used to treat atrial tachycardias but the effect this may have on ANP secretion and subsequent compensatory responses, such as a diuresis, is unknown. Reported here are experiments demonstrating that the increase in ANP secretion that accompanies rapid atrial pacing of the isolated perfused rat heart is abolished by calcium channel antagonists. This effect is not limited to a single class of calcium channel antagonists and could be demonstrated with Verapamil and Nifedipine. Although extrapolation to the in vivo situation should always be done with care, the results reported here contribute towards clarifying the effect of the calcium channel antagonists on the ANP response to rapid heart rates. PMID:2528639

  4. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells.

    Science.gov (United States)

    Chung, Chooryung J; Kim, Euiseong; Song, Minju; Park, Jeong-Won; Shin, Su-Jung

    2016-05-01

    Mineral trioxide aggregate (MTA) is considered a pulp-capping agent of choice, but has the drawback of a long setting time. This study aimed to assess two different types of calcium-silicate cements as pulp-capping agents, by investigating their in vitro cytotoxicity and angiogenic effects in human pulp cells. ProRoot MTA, Endocem Zr, and Retro MTA were prepared as set or freshly mixed pellets. Human pulp-derived cells were grown in direct contact with these three cements, Dycal, or no cement, for 7 days. Initial cell attachment, viability, calcium release, and the levels of vascular endothelial growth factor (VEGF), angiogenin, and basic fibroblast growth factor (FGF-2) were evaluated statistically using a linear mixed model (P calcium concentration compared with the control group (P  0.05). We demonstrate that Retro MTA, which has a short setting time, has similar biocompatibility and angiogenic effects on human pulp cells, and can therefore potentially be as effective in pulp capping as ProRoot MTA. Endocem Zr showed intermittent cytotoxicity and elicited lower levels of VEGF and angiogenin expression. PMID:25596932

  5. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    Science.gov (United States)

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  6. A COMPARATIVE ANALYSIS ON CALCIUM RELEASE FROM ENAMEL AFTER TREATMENT WITH VARIOUS REMINERALIZING AGENTS AT A PH 4.5 : AN ATOMIC ABSORBTION SPECTROMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Shetty Shishir

    2013-07-01

    Full Text Available Focus of this study was to compare the amount of calcium released from enamel treated with different remineralizing agents at pH 4.5 using atomic spectrophotometric analysis. The present study was designed to assess the calcium release from enamel when subjected to an acid challenge. Enamel samples were divided into four groups of which intact enamel served the purpose of control group and other three groups were based on the remineralizing agents used (CPP-ACP [GC Tooth Mousse], CPP-ACPF [GC Tooth Mousse Plus], 0.044 % Sodium Fluoride [Phosflur]. All the groups of enamel samples were initially demineralized and followed up with remineralisation by adopting the pH cycling model. Acetate buffer was prepared at a specific pH of 4.5. The enamel samples were subjected to acid challenge in presence of a magnetic stirrer and buffer solution were pipetted at specific time intervals for pH 4.5. The solutions collected were transferred into sterile containers and subjected to atomic spectrometry analysis.

  7. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  8. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells.

    Science.gov (United States)

    Ren, Jian; Wu, Jun Hua

    2012-05-01

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E(2)) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E(2) elevated [Ca(2+)]( i ) and increased Ca(2+) oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E(2) mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E(2) activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E(2) induces the non-genomic responses Ca(2+) release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E(2) responses. PMID:22392527

  9. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    OpenAIRE

    Asmat, T. M.; Agarwal, V; Rath, S.; Hildebrandt, J.-P.; Hammerschmidt, S.

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell...

  10. NUTRIENT RELEASE FROM CONTROLLLED-RELEASE FERTILIZERS IN ACID SUBSTRATE IN A GREENHOUSE ENVIRONMENT: II.LEACHATE CALCIUM, MAGNESIUM, IRON MANGANESE, ZINC, COPPER, AND MOLYBDENUM CONCENTRATIONS

    Science.gov (United States)

    Leachate from containerized substrate containing one of four different controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were monitored for concentrations of Ca, Mg, Fe, Mn, Zn, Cu and Mo during a 47-week period. Environmental and cultural practices simulated an unheated gr...

  11. Inhibition of anaphylactic histamine release from heterologously sensitized mast cells: differential effects of drugs which interfere with calcium influx.

    OpenAIRE

    Kurose, Masao

    1981-01-01

    Drug effects were studied on anaphylactic histamine release from rat mast cells sensitized in vitro with mouse IgE antibody. When histamine release was elicited by adding Ca-++ at various times after antigen-stimulation of sensitized cells in Ca++-free medium, the drugs to be tested were added shortly before each Ca++ addition. Quercetin was effective only when added before or immediately after antigen. Theophylline and disodium cromoglycate (DSCG) were active irrespective of the time interva...

  12. Rapid kinetic analysis of the calcium-release channels of skeletal muscle sarcoplasmic reticulum: The effect of inhibitors

    International Nuclear Information System (INIS)

    During excitation of skeletal muscle fibers, Ca ions stored in the cisternal compartments of the sarcoplasmic reticulum (SR) are released to the cytosol within milliseconds. In this study, the kinetics of the fast release of Ca were analyzed by means of a newly developed rapid filtration apparatus. Isolated SR vesicles of cisternal origin were preloaded with 1 mM 45CaCl2, Ca efflux was studied after dilution into media of various composition. The effect of extravesicular Ca on the gating of the Ca-release channels and its susceptibility to the influence of drugs were thoroughly investigated. In the presence of 1 mM MgCl2 and 3 mM ATP, highest rates of Ca release were observed at a free Ca concentration between 1 and 50 μM. In the lower micromolar Ca range, compounds such as neomycin and FLA 365 inhibited the release monophasically and with an IC50 of 0.37 and 3.4 μM, respectively. At Ca concentrations between 10 and 50 μM, the inhibitors could not block Ca release effectively. Close analysis of the dose-response curves revealed a biphasic pattern, indicative of the presence of two substrates of the Ca-release channel, displaying high- and low-affinity binding sites for the inhibitors. The results indicate the existence of various open substrates of the Ca channels that can be distinguished pharmacologically. Effective blockade of rapid Ca release requires inhibition of all substrates coexisting under a given condition

  13. Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation

    OpenAIRE

    Yulia Timofeeva; Kirill Volynski

    2015-01-01

    Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca(2+) buffers that shape [Ca(2+)] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca(2+) faster than any other characterized endogenous neuronal Ca(2+) buffer. Direct effects of calmodulin on fast presynaptic Ca(2+) dynamics and vesicular release however have not been studied in detail. Using expe...

  14. Calcium Dysregulation Induces Apoptosis-inducing Factor Release: Cross-talk Between PARP-1- and Calpain- Signaling Pathways

    OpenAIRE

    Vosler, Peter S.; Sun, Dandan; Wang, Suping; Gao, Yanqin; Kintner, Douglas B.; Signore, Armando P.; Cao, Guodong; Chen, Jun

    2009-01-01

    Recent discoveries show that caspase-independent cell death pathways are a pervasive mechanism in neurodegenerative diseases, and apoptosis-inducing factor (AIF) is an important effector of this mode of neuronal death. There are currently two known mechanisms underlying AIF release following excitotoxic stress, PARP-1 and calpain. To test whether there is an interaction between PARP-1 and calpain in triggering AIF release, we used the NMDA toxicity model in rat primary cortical neurons. Expos...

  15. Ultrastructure of cardiac muscle in reptiles and birds: optimizing and/or reducing the probability of transmission between calcium release units.

    Science.gov (United States)

    Perni, Stefano; Iyer, V Ramesh; Franzini-Armstrong, Clara

    2012-06-01

    It is known that cardiac myocytes contain three categories of calcium release units (CRUs) all bearing arrays of RyR2: peripheral couplings, constituted of an association of the junctional SR (jSR) with the plasmalemma; dyads, associations between jSR and T tubules; internal extended junctional jSR (EjSR)/corbular jSR that is not associated with plasmalemma/T tubules. The bird hearts, even if fast beating (e.g., in finch and hummingbird) have no T tubules, despite fiber sizes comparable to those of mammalian ventricle, but are rich in EjSR/corbular SR. The heart of small lizard also lacks T tubule, but it has only peripheral couplings and compensates for lack of internal CRUs by the small diameter of its cells. We have extended previous information on chicken heart to finch and lizard by establishing a spatial relationship between RyR2 clusters in jSR of peripheral couplings and clusters of intra-membrane particles identifiable as voltage sensitive calcium channels (CaV1.2) in the adjacent plasmalemma. This provides the structural basis for initiation of the heart beat in all three species. Further we evaluated the distances separating peripheral couplings from each other and between EjSR/corbular SR sites within the bird muscles in all three hearts. The distances suggest that peripheral coupling sites are most likely to act independently of each other and that a calcium wave-front propagation from one internal CRU site to the other across the level of the Z line, may be marginally successful in the chicken, but certainly very effective in the finch. PMID:22576825

  16. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Meng YANG; Wen-xie XU; Xing-lan LI; Hui-ying XU; Jia-bin SUN; Bin MEI; Hai-feng ZHENG; Lian-hua PIAO; De-gang XING; Zhai-liu LI

    2005-01-01

    Aim: To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (IKCa) in gastric myocytes. Methods: Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. Results: Hyposmotic membrane stretch and AA increased both IK(Ca) and spontaneous transient outward currents significantly.Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in IK(Ca). The hyposmotic membrane stretch-induced increase in IK(Ca) was significantly suppressed by dimethyleicosadienoic acid (100 μmol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in IK(Ca). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in IK(Ca) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in IK(Ca); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in IK(Ca). Conclusion:Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca2+ influx, which triggers Ca2+-induced Ca2+ release and elicits activation of IK(Ca) in gastric antral circular myocytes of the guinea pig.

  17. Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation

    Directory of Open Access Journals (Sweden)

    Yulia Timofeeva

    2015-07-01

    Full Text Available Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca2+ buffers that shape [Ca2+] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca2+ faster than any other characterized endogenous neuronal Ca2+ buffer. Direct effects of calmodulin on fast presynaptic Ca2+ dynamics and vesicular release however have not been studied in detail. Using experimentally constrained three-dimensional diffusion modeling of Ca2+ influx–exocytosis coupling at small excitatory synapses we show that, at physiologically relevant concentrations, Ca2+ buffering by calmodulin plays a dominant role in inhibiting vesicular release and in modulating short-term synaptic plasticity. We also propose a novel and potentially powerful mechanism for short-term facilitation based on Ca2+-dependent dynamic dislocation of calmodulin molecules from the plasma membrane within the active zone.

  18. Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intraterminal calcium

    OpenAIRE

    Bonanno, Giambattista; Sala, Roberta; Cancedda, Laura; Cavazzani, Paolo; Cossu, Massimo; Raiteri, Maurizio

    2000-01-01

    The release of [3H]-dopamine ([3H]-DA) from human neocortex nerve terminals was studied in synaptosomes prepared from brain specimens removed in neurosurgery and exposed during superfusion to different releasing stimuli.Treatment with 15 mM KCl, 100 μM 4-aminopyridine, 1 μM ionomycin or 30 mM caffeine elicited almost identical overflows of tritium. Removal of external Ca2+ ions abolished the overflow evoked by K+ or ionomycin and largely prevented that caused by 4-aminopyridine; the overflow ...

  19. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  20. One, two and three photon excitation in laser scanning fluorescence microscopy: Live cell measurements of phospholipase hydrolysis, serotonin release and calcium sparks

    Science.gov (United States)

    Williams, Rebecca Marie

    1997-10-01

    This work consists primarily of an examination of three live cell processes as measured by Multiphoton Excitation Laser Scanning Microscopy (MPE-LSM). One of the factors that can severely limit both the speed of acquisition and the total amount of information derived from a live cell fluorescence imaging experiment is illumination induced fluorophore photobleaching. Here a new technique is described for the measurement of fluorophore photobleaching under laser scanning conditions. Photobleaching quantum yields for fluorescein under both one- and two-photon illumination are reported. Two of the live cell measurements are carried out using RBL-2H3 cells, a well-characterized mucosal mast cell line, which secrete histamine, serotonin and other inflammatory mediators in response to allergenic stimulation. Exogenous phospholipase A2 (PLA2) hydrolysis of RBL-2H3 cell plasma membranes is measured using both linear and nonlinear imaging of reporter doubly acyl-labeled phospholipid probes. The RBL-2H3 cells, normally resistant to exogenous PLA2 hydrolysis, experience a 3-5 fold enhancement of enzymatic activity upon allergenic stimulation. Previously it has been shown that serotonin (5- hydroxytryptamine, 5-HT) distributions can be imaged in RBL-2H3 cells using a three-photon process to excite native 5-HT fluorescence (Maiti, 1997). Here three-photon excitation imaging measurements of the secretion process are reported. The third live cell study is a characterization of spontaneous calcium 'sparking' activity found in developing skeletal muscle cell cultures using MPE-LSM and confocal microscopy in conjunction with the calcium indicator dyes Indo-1 and Fluo-3. Double stain imaging experiments reveal that spark activity is most likely to occur in perinuclear regions. Because of their magnitudes of release (105-106 ions) and mitigation by ryanodine, the sparks are proposed to be the result of calcium conduction through T-type calcium channels in early excitation

  1. Influence of calcium-induced aggregation on the sensitivity of aminobis(methylenephosphonate)-containing potential MRI contrast agents.

    Science.gov (United States)

    Henig, Jörg; Mamedov, Ilgar; Fouskova, Petra; Tóth, Éva; Logothetis, Nikos K; Angelovski, Goran; Mayer, Hermann A

    2011-07-18

    A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca(2+) was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca(2+)-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L(1), L(2), L(3), and L(4), respectively). Upon addition of Ca(2+), the r(1) relaxivity of their Gd(3+) complexes decreased up to 61% of the initial value for the best compounds GdL(3) and GdL(4). The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y(3+) analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca(2+). (31)P NMR experiments on EuL(1) and EuL(4) indicated the coordination of a phosphonate to the Ln(3+) for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd(3+) complexes. log K(H1) values for all complexes lie between 6.12 and 7.11 whereas log K(H2) values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu(3+) complexes confirmed the coordination of a phosphonate group to the Ln(3+) center in EuL(1). Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r(1). Variable temperature (17)O NMR experiments evidenced high water exchange rates on GdL(1), GdL(2), and GdL(3) comparable to that of the aqua ion. PMID:21671565

  2. Calcium-Induced Alteration of Mitochondrial Morphology and Mitochondrial-Endoplasmic Reticulum Contacts in Rat Brown Adipocytes

    OpenAIRE

    Golic, I.; K. Velickovic; Markelic, M.; Stancic, A.; Jankovic, A.; Vucetic, M.; Otasevic, V.; B. Buzadzic; Korac, B.; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown ad...

  3. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Science.gov (United States)

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  4. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  5. Purification and Characterization of a Psychrophilic, Calcium-Induced, Growth-Phase-Dependent Metalloprotease from the Fish Pathogen Flavobacterium psychrophilum

    OpenAIRE

    Secades, P; Alvarez, B.; Guijarro, J. A.

    2001-01-01

    Flavobacterium psychrophilum is a fish pathogen that commonly affects salmonids. This bacterium produced an extracellular protease with an estimated molecular mass of 55 kDa. This enzyme, designated Fpp1 (F. psychrophilum protease 1), was purified to electrophoretic homogeneity from the culture supernatant by using ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic chromatography, and size exclusion chromatography. On the basis of its biochemical characteristics, Fpp1 ca...

  6. Melatonin Inhibition of Gonadotropin-releasing Hormone-induced Calcium Signaling and Hormone Secretion in neonatal Pituitary Gonadotrophs

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Balík, Aleš; Mazna, Petr

    Enfield: Science Publishers, 2008 - (Haldar, C.; Singaravel, M.; Pandi-Perumal, S.), s. 59-82 ISBN 978-1-57808-518-7 R&D Projects: GA AV ČR(CZ) IAA500110702; GA ČR(CZ) GA305/07/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : melatonin * gonadotropin-releasing hormone * anterior pituitary Subject RIV: ED - Physiology

  7. Synergistic stimulation of superoxide release from neutrophils by 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE) and mezerein requires extracellular calcium

    International Nuclear Information System (INIS)

    Mezerein, an activator of Protein Kinase C, stimulates the release of large quantities of superoxide (O2-) by guinea pig peritoneal neutrophils at optimal concentrations. The calcium ionophore A23187, or the leukotriene 5-HETE, did not affect the rate of O2- release at optimal levels of mezerein, but dramatically increased the sensitivity of these cells to suboptimal concentrations of mezerein. The concentrations of mezerein required to effect half-maximal stimulation in the presence and absence of ionophore A23187 were ca. 1 x 10-10 and 2 x 10-9M, respectively. This synergy exhibited a partial requirement for extracellular Ca+2 when ionophore A23187 was employed, and a near absolute requirement for that cation when 5-HETE was utilized. Neutrophils stimulated with an optimal amount of mezerein exhibited a translocation of Protein Kinase C activity from the soluble to a particulate fraction. This translocation was not observed in cells simulated synergistically. Ionophore A23187 and 5-HETE increased the binding of [3H]phorbol 12,13-dibutyrate to neutrophils by ca. 30 and 50%, respectively

  8. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: thh@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)

    2014-04-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  9. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  10. Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves

    OpenAIRE

    Tuan, Hoang-Trong Minh; Williams, George S.B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet

    2011-01-01

    A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...

  11. Purification and partial characterization of a calcium-stimulated protease from the cyanobacterium, Anabaena variabilis.

    Science.gov (United States)

    Lockau, W; Massalsky, B; Dirmeier, A

    1988-03-01

    A calcium-stimulated protease was purified to apparent homogeneity from the heterocyst-forming cyanobacterium Anabaena variabilis ATCC 29413. As judged from experiments with inhibitors and chromogenic peptide substrates, the enzyme is a serine protease with a substrate specificity like trypsin. Its apparent relative molecular mass is 52,000. Calcium depletion inhibits the enzymic activity by 92%. Half-maximal activity requires about 0.5 microM free Ca2+. The enzyme binds to a hydrophobic column in a calcium-dependent manner, indicating calcium-induced exposure of a hydrophobic domain. The possible role of the protease in heterocyst differentiation is discussed. PMID:3127208

  12. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload

    Science.gov (United States)

    Zhang, Haifei; Cannell, Mark B.; Kim, Shang Jin; Watson, Judy J.; Norman, Ruth; Calaghan, Sarah C.; Orchard, Clive H.; James, Andrew F.

    2015-01-01

    Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release. PMID:26713852

  13. Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels

    Science.gov (United States)

    Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai

    2016-01-01

    Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons. PMID:27353765

  14. Nitric oxide protects the heart from ischemia-induced apoptosis and mitochondrial damage via protein kinase G mediated blockage of permeability transition and cytochrome c release

    Directory of Open Access Journals (Sweden)

    Jekabsone Aiste

    2009-08-01

    Full Text Available Abstract Background Heart ischemia can rapidly induce apoptosis and mitochondrial dysfunction via mitochondrial permeability transition-induced cytochrome c release. We tested whether nitric oxide (NO can block this damage in isolated rat heart, and, if so, by what mechanisms. Methods Hearts were perfused with 50 μM DETA/NO (NO donor, then subjected to 30 min stop-flow ischemia or ischemia/reperfusion. Isolated heart mitochondria were used to measure the rate of mitochondrial oxygen consumption and membrane potential using oxygen and tetraphenylphosphonium-selective electrodes. Mitochondrial and cytosolic cytochrome c levels were measured spectrophotometrically and by ELISA. The calcium retention capacity of isolated mitochondria was measured using the fluorescent dye Calcium Green-5N. Apoptosis and necrosis were evaluated by measuring the activity of caspase-3 in cytosolic extracts and the activity of lactate dehydrogenase in perfusate, respectively. Results 30 min ischemia caused release of mitochondrial cytochrome c to the cytoplasm, inhibition of the mitochondrial respiratory chain, and stimulation of mitochondrial proton permeability. 3 min perfusion with 50 μM DETA/NO of hearts prior to ischemia decreased this mitochondrial damage. The DETA/NO-induced blockage of mitochondrial cytochrome c release was reversed by a protein kinase G (PKG inhibitor KT5823, or soluble guanylate cyclase inhibitor ODQ or protein kinase C inhibitors (Ro 32-0432 and Ro 31-8220. Ischemia also stimulated caspase-3-like activity, and this was substantially reduced by pre-perfusion with DETA/NO. Reperfusion after 30 min of ischemia caused no further caspase activation, but was accompanied by necrosis, which was completely prevented by DETA/NO, and this protection was blocked by the PKG inhibitor. Incubation of isolated heart mitochondria with activated PKG blocked calcium-induced mitochondrial permeability transition and cytochrome c release. Perfusion of non

  15. Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease

    Directory of Open Access Journals (Sweden)

    Erick Omar Hernández-Ochoa

    2016-01-01

    Full Text Available The skeletal muscle Ca2+ release channel, also known as ryanodine receptor type 1 (RyR1, is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca2+ channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca2+, several intracellular compounds (e.g., ATP, and modulatory proteins (e.g., calmodulin. Dominant and recessive mutations in RyR1, as well as acquired channel alterations, are the underlying cause of various skeletal muscle diseases. The aim of this mini review is to summarize several current aspects of RyR1 function, structure, regulation, and to describe the most common diseases caused by hereditary or acquired RyR1 malfunction.

  16. Correlation between inhibition of calcium—dependent apoptosis by cyclosporin A and calcium transportation in HL—60 cells

    Institute of Scientific and Technical Information of China (English)

    HUANGQIQING; MINGFANG; 等

    1996-01-01

    Both calcium ionophore A23187 and endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (Tg) could increse intracellular free calcium concentration and induce apoptosis in some cell lines.In the present study,we found that HL-60 cells treated with A23187 (1μg/ml) for 4h or with Tg(0.5μg/ml) for 2h showed typical characteristics of apoptosis.Pretreatment with nontoxic concentration of cyclosporin A (CsA) (1μg/ml) could block these effects.Flow cytometric analysis of intracellular Ca2+ after staining with fluo-3 AM showed that CsA did not prevent the increase of intracellular calcium induced by A23187 or Tg,but it could maintain the high level of intracellular Ca2+ for a long time.These results suggest that CsA may prevent calcium-induced apoptosis by blocking the transportation of Ca2+ in HL-60 cells.

  17. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.

    Science.gov (United States)

    Tomasi, Mirta; Canato, Marta; Paolini, Cecilia; Dainese, Marco; Reggiani, Carlo; Volpe, Pompeo; Protasi, Feliciano; Nori, Alessandra

    2012-02-01

    Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. In vivo reintroduction of CASQ1 was carried out by cDNA electro transfer in flexor digitorum brevis muscle of the mouse. Exogenous CASQ1 was found to be correctly targeted to the junctional SR (jSR), as judged by immunofluorescence and confocal microscopy; terminal cisternae (TC) lumen was filled with electron dense material and its width was significantly increased, as judged by electron microscopy; peak amplitude of Ca(2+) transients was significantly increased compared with null muscle fibers transfected only with green fluorescent protein (control); and finally, transfected fibers were able to sustain cytosolic Ca(2+) concentration during prolonged tetanic stimulation. Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure. PMID:22049211

  18. Extent of use of immediate-release formulations of calcium channel blockers as antihypertensive monotherapy by primary care physicians: multicentric study from Bahrain.

    Directory of Open Access Journals (Sweden)

    Sequeira R

    2002-07-01

    Full Text Available BACKGROUND: The issue of cardiovascular safety of calcium channel blockers (CCBs has been widely debated in view of reflex increase in sympathetic activity induced by immediate release (IR / short acting formulations. It is generally agreed that such CCBs should not be used alone in the management of hypertension. AIMS: We have determined the extent to which primary care physicians prescribe CCBs as monotherapy, especially the immediate release formulations, in the management of uncomplicated hypertension and diabetic hypertension - with an emphasis upon the age of the patients. SETTING, DESIGN AND METHODS: A retrospective prescription-based study was carried out in seven out of 18 Health Centres in Bahrain. The study involved a registered population of 229,300 representing 46% of registered individuals, and 35 physicians representing 43% of all primary care physicians. The data was collected between November 1998 and January 1999 using chronic dispensing cards. RESULTS: In all categories CCBs were the third commonly prescribed antihypertensive as monotherapy, with a prescription rate of 11.1% in uncomplicated hypertension, 18% in diabetic hypertension and 20.1% in elderly patients above 65 years of age. Nifedipine formulations were the most extensively prescribed CCBs. Almost half of the CCB-treated patients were on IR-nifedipine, whereas IR-diltiazem and IR-verapamil, and amlodipine were infrequently prescribed. CONCLUSION: Prescription of IR-formulations of CCBs as monotherapy by primary care physicians does not conform with recommended guidelines. In view of concerns about the safety of such practice, measures to change the prescribing pattern are required.

  19. Oxidation of RyR2 Has a Biphasic Effect on the Threshold for Store Overload-Induced Calcium Release.

    Science.gov (United States)

    Waddell, Helen M M; Zhang, Joe Z; Hoeksema, Katie J; McLachlan, Julia J; McLay, Janet C; Jones, Peter P

    2016-06-01

    At the single-channel level, oxidation of the cardiac ryanodine receptor (RyR2) is known to activate and inhibit the channel depending on the level of oxidation. However, the mechanisms through which these changes alter the activity of RyR2 in a cellular setting are poorly understood. In this study, we determined the effect of oxidation on a common form of RyR2 regulation; store overload-induced Ca(2+) release (SOICR). We found that oxidation resulted in concentration and time-dependent changes in the activation threshold for SOICR. Low concentrations of the oxidant H2O2 resulted in a decrease in the threshold for SOICR, which led to an increase in SOICR events. However, higher concentrations of H2O2, or prolonged exposure, reversed these changes and led to an increase in the threshold for SOICR. This increase in the threshold for SOICR in most cells was to such an extent that it led to the complete inhibition of SOICR. Acute exposure to high concentrations of H2O2 led to an initial decrease and then increase in the threshold for SOICR. In the majority of cells the increased threshold could not be reversed by the application of the reducing agent dithiothreitol. Therefore, our data suggest that low levels of RyR2 oxidation increase the channel activity by decreasing the threshold for SOICR, whereas high levels of RyR2 oxidation irreversibly increase the threshold for SOICR leading to an inhibition of RyR2. Combined, this indicates that oxidation regulates RyR2 by the same mechanism as phosphorylation, methylxanthines, and mutations, via changes in the threshold for SOICR. PMID:27276257

  20. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Science.gov (United States)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  1. Pulp response to high fluoride releasing glass ionomer, silver diamine fluoride, and calcium hydroxide used for indirect pulp treatment: An in-vivo comparative study

    Directory of Open Access Journals (Sweden)

    Atish Korwar

    2015-01-01

    Full Text Available Aims and Objectives: The study aims at determining pulp response of two high fluoride releasing materials silver diamine fluoride (SDF and Type VII glass ionomer cement (GIC when used as indirect pulp treatment (IPT materials. Materials and Methods: Deep Class V cavities were made on four first premolars indicated for extraction for orthodontic reasons. SDF, Type VII GIC, and calcium hydroxide base are given in three premolars, and one is kept control. Premolars were extracted 6 weeks after the procedure and subjected to histopathological examination to determine the pulp response. The results were analyzed using Chi-square test. Results: No inflammatory changes were observed in any of the groups. Significantly more number of specimens in SDF and Type VII GIC groups showed tertiary dentin deposition (TDD when compared to control group. No significant difference was seen in TDD when intergroup comparison was made. Odontoblasts were seen as short cuboidal cells with dense basophilic nucleus in SDF and Type VII GIC group. Conclusion: The study demonstrated TDD inducing ability of SDF and Type VII GIC and also established the biocompatibility when used as IPT materials.

  2. [Contribution of synaptic release mechanisms to the building of sensory maps].

    Science.gov (United States)

    Gaspar, Patricia; Nicol, Xavier; Narboux-Nême, Nicolas; Rebsam, Alexandra

    2015-01-01

    Numerous neurotransmitters have been implicated in neurodevelopmental processes. In addition, developing neurons show an abundance of vesicles in the growth cones, and express proteins of the SNARE complex early on. This has led to propose a role for vesicular fusion machinery in axonal growth and synapse formation. However, as the molecular machinery of vesicular fusion started to unveil, and knockouts for the major proteins of this complex were generated, it came as a surprise that none of these proteins was essential for the construction of brain architecture, although they were crucial for vital functions of the organism, leading to early mortality of exocytosis mutants. Because of this early death, conditional ablation of these genes in well-defined neuronal populations was necessary to study their role at later stages of neural circuit development, when activity-dependent mechanisms are best defined. Early studies showed that mutants of Munc18-1, a gene essential for both constitutive and calcium triggered release, were required for target dependent cell survival but not for axon growth or early refinement of topographic targeting, at least in the retinotectal system. Conditional knockout of the Rim1 and Rim2 genes allowed to interrogate more specifically the role of calcium-triggered release. Rims (rab interacting molecules) play a key role in the assembly of calcium channels and their coupling to the SNARE complex alters calcium-triggered release with little effect on constitutive release. When Rim1/Rim2 genes were ablated in the thalamus, layer IV neurons failed to organize into barrel structures, and to form the characteristic asymmetric distribution of their dendrites. More surprisingly, thalamocortical axons still organized in precise topographic maps and formed well differentiated synapses despite considerable reduction of calcium-induced synaptic release. However, this reduction in release probability altered axon targeting in the visual system where

  3. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  4. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  5. Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units.

    Directory of Open Access Journals (Sweden)

    Simone Guarnieri

    Full Text Available The neuronal Growth Associated Protein 43 (GAP43, also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in

  6. Total body neutron activation analysis of calcium: calibration and normalisation

    International Nuclear Information System (INIS)

    An irradiation system has been designed, using a neutron beam from a cyclotron, which optimises the uniformity of activation of calcium. Induced activity is measured in a scanning, shadow-shield whole-body counter. Calibration has been effected and reproducibility assessed with three different types of phantom. Corrections were derived for variations in body height, depth and fat thickness. The coefficient of variation for repeated measurements of an anthropomorphic phantom was 1.8% for an absorbed dose equivalent of 13 mSv (1.3 rem). Measurements of total body calcium in 40 normal adults were used to derive normalisation factors which predict the normal calcium in a subject of given size and age. The coefficient of variation of normalised calcium was 6.2% in men and 6.6% in women, with the demonstration of an annual loss of 1.5% after the menopause. The narrow range should make single measurements useful for diagnostic purposes. (author)

  7. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  8. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  9. "Caged calcium" in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents

    OpenAIRE

    1989-01-01

    We have studied calcium-activated potassium current, IK(Ca), and calcium-activated nonspecific cation current, INS(Ca), in Aplysia bursting pacemaker neurons, using photolysis of a calcium chelator (nitr-5 or nitr-7) to release "caged calcium" intracellularly. A computer model of nitr photolysis, multiple buffer equilibration, and active calcium extrusion was developed to predict volume-average and front-surface calcium concentration transients. Changes in arsenazo III absorbance were used to...

  10. Calcium Oscillations

    OpenAIRE

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlyin...

  11. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    OpenAIRE

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dy...

  12. Calcium-dependent molecular spring elements in the giant protein titin

    OpenAIRE

    Labeit, Dietmar; Watanabe, Kaori; Witt, Christian; Fujita, Hideaki; Wu, Yiming; Lahmers, Sunshine; Funck, Theodor; Labeit, Siegfried; Granzier, Henk

    2003-01-01

    Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: ≈28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the...

  13. Glutamate (mGluR-5 gene expression in brain regions of streptozotocin induced diabetic rats as a function of age: role in regulation of calcium release from the pancreatic islets in vitro

    Directory of Open Access Journals (Sweden)

    Paulose CS

    2009-11-01

    Full Text Available Abstract Metabotrophic glutamate receptors (mGluRs modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5 in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.

  14. Sodium/Calcium Exchangers Selectively Regulate Calcium Signaling in Mouse Taste Receptor Cells

    OpenAIRE

    Szebenyi, Steven A.; Laskowski, Agnieszka I.; Medler, Kathryn F.

    2010-01-01

    Taste cells use multiple signaling mechanisms to generate appropriate cellular responses to discrete taste stimuli. Some taste stimuli activate G protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). While the signaling mechanisms that initiate calcium signals have been described in taste cells, the calcium clearance mechanisms (CCMs) that contrib...

  15. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  16. Release of transforming growth factor beta 1 and platelet derived growth factor type AB from canine platelet gels obtained by the tube method and activated with calcium salts

    Directory of Open Access Journals (Sweden)

    RF Silva

    2013-01-01

    Full Text Available The objectives of this study were: 1 to measure the concentrations of transforming growth factor beta 1 (TGF-β1 and platelet-derived growth factor type AB (PDGF-AB in plasma and platelet gel (PG activated with calcium salts (gluconate or chloride in dogs, and 2 to determine correlations between cell results and growth factors (GF concentrations. Blood samples were collected from fourteen Brazilian Fila dogs. EDTA was used to obtain whole blood and plasma while ACD-A solution was used to prepare platelet concentrates (PC. Calcium salts were added to PC to induce their gelification. Platelet and leukocyte count was performed before PC activation. The concentration of growth factors in PG supernatants and plasma was determined by ELISA. Statistically significant differences (P < 0.01 between platelet and leukocyte count were observed when comparing whole blood and PC. No statistically significant differences were found between the concentrations of TGF-β1 and PDGF-AB in PC and plasma according to the calcium salt used for the activation of PC. The TGF-β1 concentration was highly correlated with the number of platelets concentrated in the PC. This methodology was useful for producing PG with therapeutic potential for canine regenerative medicine.

  17. Characterization of calcium and magnesium binding domains of human 5-lipoxygenase

    International Nuclear Information System (INIS)

    Two calcium binding sites, separated by about 9.3 A, present in the loops that connect the β-sheets of N-terminal domain contain the ligating residues F14, A15, G16, D79, and D18, D19, L76, respectively. Magnesium is found to bind in regions, which are marginally different owing to the disparity in the ionic radii of Ca2+ and Mg2+. The entropy analysis on the loops of 5-lipoxygenase, implementing the wormlike chain model, explains that the N-terminal β-barrel is well suited to accommodate calcium binding sites. The large buried side chain area of W102 (compared to W13 and W75) and comparatively smaller fraction of side chain exposed to polar atoms corroborate the calcium induced higher affinity to phosphatidylcholine (PC). However, W80 lying in close proximity of the calcium binding sites is expected to have considerable PC affinity but negligible calcium induced effect on PC binding

  18. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates

    Directory of Open Access Journals (Sweden)

    Silva Raul F

    2012-07-01

    Full Text Available Abstract Background The clinical use of autologous platelet concentrates (also known as platelet-rich plasma on the field of regenerative therapy, in the last decade has been the subject of several studies especially in equine medicine and surgery. The objectives of this study was: 1 to describe and compare the cellular population in whole blood, lower fraction (A and upper fraction (B of platelet concentrates, 2 to measure and compare the transforming growth factor beta 1 (TGF-β1 concentration in plasma and both platelet concentrates after be activated with calcium gluconate or batroxobin plus calcium gluconate and, 3 to determine correlations between cell counts in platelet concentrates and concentrations of TGF-β1. Blood samples were taken from 16 dogs for complete blood count, plasma collection and platelet concentrates preparation. The platelet concentrates (PC were arbitrarily divided into two fractions, specifically, PC-A (lower fraction and PC-B (upper fraction. The Platelet concentrates were analyzed by hemogram. After activated with calcium gluconate or batroxobin plus calcium gluconate, TGF-β1 concentration was determined in supernatants of platelet concentrates and plasma. Results There were differences statistically significant (P 1 concentration between whole blood, plasma and both platelet concentrates. A significant correlation was found between the number of platelets in both platelet concentrates and TGF-β1 concentration. Platelet collection efficiency was 46.34% and 28.16% for PC-A and PC-B, respectively. TGF-β1 concentration efficiency for PC activated with calcium gluconate was 47.75% and 31.77%, for PC-A and PC-B, respectively. PC activated with batroxobin plus CG showed 46.87% and 32.24% for PC-A and PC-B, respectively. Conclusions The methodology used in this study allows the concentration of a number of platelets and TGF-β1 that might be acceptable for a biological effect for clinical or experimental use as a

  19. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca2+-dependent enzymes such as protein

  20. The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site.

    Directory of Open Access Journals (Sweden)

    Yanina D Álvarez

    Full Text Available It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca(2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca(2+ current. Accordingly, in the present work we found that the Ca(2+ current flowing through P/Q-type Ca(2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca(2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K(+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca(2+ channels.

  1. Release of transforming growth factor beta 1 and platelet derived growth factor type AB from canine platelet gels obtained by the tube method and activated with calcium salts

    OpenAIRE

    RF Silva; GC Santana; FOP Leme; JU Carmona; CMF Rezende

    2013-01-01

    The objectives of this study were: 1) to measure the concentrations of transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor type AB (PDGF-AB) in plasma and platelet gel (PG) activated with calcium salts (gluconate or chloride) in dogs, and 2) to determine correlations between cell results and growth factors (GF) concentrations. Blood samples were collected from fourteen Brazilian Fila dogs. EDTA was used to obtain whole blood and plasma while ACD-A solution was used t...

  2. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  3. Dihydropyridine-sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: interactions with somatostatin, dopamine, and estrogens

    International Nuclear Information System (INIS)

    In the present work, we determined the activity of voltage-dependent dihydropyridine (DHP)-sensitive Ca2+ channels related to PRL, GH, and LH secretion in primary cultures of pituitary cells from male or female rats. We investigated their modulation by 17 beta-estradiol (E2) and their involvement in dopamine (DA) and somatostatin (SRIF) inhibition of PRL and GH release. BAY-K-8644 (BAYK), a DHP agonist which increases the opening time of already activated channels, stimulated PRL and GH secretion in a dose-dependent manner. The effect was more pronounced on PRL than on GH release. BAYK-evoked hormone secretion was further amplified by simultaneous application of K+ (30 or 56 mM) to the cell cultures; in parallel, BAYK-induced 45Ca uptake by the cells was potentiated in the presence of depolarizing stimuli. In contrast, BAYK was unable to stimulate LH secretion from male pituitary cells, but it potentiated LHRH- as well as K+-induced LH release; it had only a weak effect on LH secretion from female cell cultures. Basal and BAYK-induced pituitary hormone release were blocked by the Ca2+ channel antagonist nitrendipine. Under no condition did BAYK affect the hydrolysis of phosphoinositides or cAMP formation. Pretreatment of female pituitary cell cultures with E2 (10(-9) M) for 72 h enhanced LH and PRL responses to BAYK, but was ineffective on GH secretion. DA (10(-7) M) inhibited basal and BAYK-induced PRL release from male or female pituitary cells treated or not treated with E2 (10(-9) M). SRIF (10(-9) and 10(-8) M) reversed BAYK-evoked GH release to the same extent in cell cultures derived from male or female animals. It was ineffective on BAYK-induced PRL secretion in the absence of E2, but antagonized it after E2 pretreatment. The effect was dependent upon the time of steroid treatment and was specific, since 17 alpha-estradiol was inactive

  4. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45Ca2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45Ca2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45Ca2+ release. IP3 strongly stimulated 45Ca2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45Ca2+ efflux suggests that IP3 activated a Ca2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction

  5. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.; Smith, L.; Higgins, B.L.

    1985-11-25

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased UVCaS efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked UVCaS release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked UVCaS release. IP3 strongly stimulated UVCaS efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced UVCaS efflux suggests that IP3 activated a CaS channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction.

  6. Calcium phosphate bone cement containing ABK and PLLA. Sustained release of ABK, the BMD of the femur in rats, and histological examination

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, T.; Tanaka, A.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ., Tokyo (Japan). Dept. of Orhtopaedic Surgery

    2001-07-01

    Bone cement was prepared by mixing CPC95 (Mitsubishi Material Co., Ltd.), ABK, and PLLA at a ratio of 14 : 1 : 2. In vitro, Antibiotic sustained release tests were performed by the total amount exchange method. In animal experiments, the bone cement was infused into the right femur of 18-month-old female SD rats. After 1, 2, 4, or 6 months, the BMD was determined by DXA in the bilateral femoral bones. In addition, hard tissue specimens were prepared, and the state of bone formation was observed. The release of the antibiotic was 1.73 {mu}g/ml until 18 days after administration, maintaining a concentration over the MIC80 for MRSA. In the animal experiments, the BMD significantly increased after 2 - 4 months. In the hard tissue specimens, direct binding on the bone-cement interface and bone formation in the cement were observed after 1 month. (orig.)

  7. CB1 cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substande P release in cultured rat dorsal root ganglion cells

    OpenAIRE

    Ohshita, Kyoko

    2005-01-01

    Cannabinoids have been reported to have analgesic properties in animals of acute nociception or of inflammatory and neuropathic pain models, but the mechanisms by which they exert such alleviative effects are not yet fully understood. We investigated whether the CB1- cannabinoid-receptor agonist HU210 modulates the capsaicin-induced 45Ca2+ influx and substance P like-immunoreactivity (SPLI) release in cultured rat dorsal root ganglion (DRG) cells. HU210 attenuated the capsaicin-induced 45Ca2+...

  8. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits

    OpenAIRE

    Xiao, Yang; LI, LAI-LAI; Guo, Jing-Jing; XU, WEN-PING; Wang, Yan-Yan; Wang, Yi

    2014-01-01

    This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was signifi...

  9. The effect of dimethylsulfoxide on the calcium paradox.

    OpenAIRE

    Ruigrok, T. J.; Moes, D.; Slade, A.M.; Nayler, W. G.

    1981-01-01

    Reperfusion of isolated rat hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). Experiments were undertaken to study the effect of dimethylsulfoxide (DMSO) on the occurrence of the calcium paradox in rat heart muscle. DMSO (1.4 mol/l) was added to the calcium-free or the reperfusion medium. Cell damage was quantitated in terms of creatine kinase (CK) release, cardiac electrogram (CEG) changes, and ultras...

  10. Deciphering Ligand Specificity of a Clostridium thermocellum Family 35 Carbohydrate Binding Module (CtCBM35) for Gluco- and Galacto- Substituted Mannans and Its Calcium Induced Stability

    OpenAIRE

    Ghosh, Arabinda; Luís, Ana Sofia; Brás, Joana L. A.; Pathaw, Neeta; Nikhil K. Chrungoo; Fontes, Carlos M. G. A.; Goyal, Arun

    2013-01-01

    This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displ...

  11. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  12. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or...

  13. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  14. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol

    OpenAIRE

    Breckenridge, David G.; Stojanovic, Marina; Marcellus, Richard C.; Shore, Gordon C

    2003-01-01

    Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731–6740), implicating ER-mitochondria cros...

  15. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle α-actinin-1.

    Science.gov (United States)

    Drmota Prebil, Sara; Slapšak, Urška; Pavšič, Miha; Ilc, Gregor; Puž, Vid; de Almeida Ribeiro, Euripedes; Anrather, Dorothea; Hartl, Markus; Backman, Lars; Plavec, Janez; Lenarčič, Brigita; Djinović-Carugo, Kristina

    2016-01-01

    The activity of several cytosolic proteins critically depends on the concentration of calcium ions. One important intracellular calcium-sensing protein is α-actinin-1, the major actin crosslinking protein in focal adhesions and stress fibers. The actin crosslinking activity of α-actinin-1 has been proposed to be negatively regulated by calcium, but the underlying molecular mechanisms are poorly understood. To address this, we determined the first high-resolution NMR structure of its functional calmodulin-like domain (CaMD) in calcium-bound and calcium-free form. These structures reveal that in the absence of calcium, CaMD displays a conformationally flexible ensemble that undergoes a structural change upon calcium binding, leading to limited rotation of the N- and C-terminal lobes around the connecting linker and consequent stabilization of the calcium-loaded structure. Mutagenesis experiments, coupled with mass-spectrometry and isothermal calorimetry data designed to validate the calcium binding stoichiometry and binding site, showed that human non-muscle α-actinin-1 binds a single calcium ion within the N-terminal lobe. Finally, based on our structural data and analogy with other α-actinins, we provide a structural model of regulation of the actin crosslinking activity of α-actinin-1 where calcium induced structural stabilisation causes fastening of the juxtaposed actin binding domain, leading to impaired capacity to crosslink actin. PMID:27272015

  16. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated.

    Science.gov (United States)

    Sainte Beuve, C; Allen, P D; Dambrin, G; Rannou, F; Marty, I; Trouvé, P; Bors, V; Pavie, A; Gandgjbakch, I; Charlemagne, D

    1997-04-01

    Abnormal intracellular calcium handling in cardiomyopathic human hearts has been associated with an impaired function of the sarcoplasmic reticulum, but previous reports on the gene expression of the ryanodine receptors (Ry2) are contradictory. We measured the mRNA levels, the protein levels and the number of high affinity [3H]ryanodine binding sites in the left ventricle of non-failing (n = 9) and failing human hearts [idiopathic dilated (IDCM n = 16), ischemic (ICM n = 7) or mixed (MCM n = 8) cardiomyopathies]. Ry2 mRNA levels were significantly reduced in IDCM (-30%) and unchanged in MCM and ICM and Ry2 protein levels were similar. In contrast, we observed a two-fold increase in the number of high affinity Ry2 (B(max) = 0.43 +/- 0.11 v 0.22 +/- 0.13 pmol/mg protein, respectively; P<0.01) and an unchanged K(d). Furthermore, levels of myosin heavy chain mRNA and protein per g of tissue were similar in failing and non-failing hearts, suggesting that the observed differences in Ry2 are not caused by the increase in fibrosis in failing heart. Therefore, the dissociation between the two-fold increase in the number of high affinity ryanodine receptors observed in all failing hearts and the slightly decreased mRNA level or unchanged protein level suggests that the ryanodine binding properties are affected in failing myocardium and that such modifications rather than a change in gene expression alter the channel activity and could contribute to abnormalities in intracellular Ca2+ handling. PMID:9160875

  17. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    connect ion conformationally rearranged, thus passing the signal through the chain of intermediaries. The most important function of calcium is its participation in many cell signaling pathways. Channels, pumps, gene expression, synthesis of alkaloids, protective molecules, NO etc. respond to changes in [Ca2+]cyt, while transductors are represented by a number of proteins. The universality of calcium is evident in the study in connection with other signaling systems, such as NO, which is involved in the immune response and is able to control the feedback activity of protein activators channels, producing nitric oxide. Simulation of calcium responses can determine the impact of key level and their regulation, and also depends on the type of stimulus and the effector protein that specifically causes certain changes. Using spatiotemporal modeling, scientists showed that the key components for the formation of Ca2+ bursts are the internal and external surfaces of the nucleus membrane. The research was aimed at understanding of the mechanisms of influence of Ca2+-binding components on Ca2+ oscillations. The simulation suggests the existence of a calcium depot EPR with conjugated lumen of the nucleus which releases its contents to nucleoplasm. With these assumptions, the mathematical model was created and confirmed experimentally. It describes the oscillation of nuclear calcium in root hairs of Medicago truncatula at symbiotic relationship of plants and fungi (rhizobia. Calcium oscillations are present in symbiotic relationships of the cortical layer of plant root cells. Before penetration of bacteria into the cells, slow oscillations of Ca2+ are observed, but with their penetration into the cells the oscillation frequency increases. These processes take place by changing buffer characteristics of the cytoplasm caused by signals from microbes, such as Nod-factor available after penetration of bacteria through the cell wall. Thus, the basic known molecular mechanisms for

  18. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load

    Czech Academy of Sciences Publication Activity Database

    Milerová, Marie; Drahota, Zdeněk; Chytilová, Anna; Tauchmannová, Kateřina; Houštěk, Josef; Ošťádal, Bohuslav

    2016-01-01

    Roč. 412, 1-2 (2016), s. 147-154. ISSN 0300-8177 R&D Projects: GA ČR(CZ) GB14-36804G; GA MZd(CZ) NT14050; GA ČR(CZ) GA13-10267S; GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : heart * mitochondrial permeability transition pore * sex difference * calcium-induced swelling Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.393, year: 2014

  19. Calcium pyrophosphate arthritis

    Science.gov (United States)

    Calcium pyrophosphate dihydrate deposition disease; CPPD disease; Acute CPPD arthritis; Pseudogout ... Calcium pyrophosphate arthritis is caused by the collection of salt called calcium pyrophosphate dihydrate (CPPD). The buildup ...

  20. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  1. Photo-stimulated luminescence of calcium co-doped BaFBr : Eu2+ x-ray storage phosphors

    International Nuclear Information System (INIS)

    The influence of calcium co-doping on the optical properties of the x-ray storage phosphor BaFBr : Eu2+ is determined by photo-stimulated luminescence techniques. It is found that the incorporation of calcium into the lattice results in a broadening of the photo-stimulation peak due to a calcium induced FA(Br-, Ca2+)-centre with stimulation maxima at 540 and 680 nm. The optical cross-sections for the photo-stimulated process are determined by utilizing stimulation light with linearly increasing intensity. Furthermore, it is shown that the sensitivity for x-rays, i.e. the number of storage centres formed during x-ray exposure, increases up to a doping level of 1 mol% while it drops rapidly at higher calcium concentrations

  2. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation.

    Science.gov (United States)

    Zündorf, Gregor; Reiser, Georg

    2011-12-01

    Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration. PMID:21988180

  3. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer.

    Science.gov (United States)

    Li, Wei-Ming; Chiang, Chih-Sheng; Huang, Wei-Chen; Su, Chia-Wei; Chiang, Min-Yu; Chen, Jian-Yi; Chen, San-Yuan

    2015-12-28

    We developed a surfactant-free method utilizing amifostine to stably link a targeting ligand (Herceptin) to amphiphilic gelatin (AG)-iron oxide@calcium phosphate (CaP) nanoparticles with hydrophobic curcumin (CUR) and hydrophilic doxorubicin (DOX) encapsulated in the AG core and CaP shell (AGIO@CaP-CD), respectively. This multi-functional nanoparticle system has a pH-sensitive CaP shell and degradable amphiphilic gelatin (AG) core, which enables controllable sequential release of the two drugs. The dual-targeting system of AGIO@CaP-CD (HER-AGIO@CaP-CD) with a bioligand and magnetic targeting resulted in significantly elevated cellular uptake in HER2-overexpressing SKBr3 cells and more efficacious therapy than delivery of targeting ligand alone due to the synergistic cell multi-drug resistance/apoptosis-inducing effect of the CUR and DOX combination. This nanoparticle combined with Herceptin and iron oxide nanoparticles not only provided a dual-targeting functionality, but also encapsulated CUR and DOX as a dual-drug delivery system for the combination therapy. This study further demonstrated that the therapeutic efficacy of this dual-targeting co-delivery system can be improved by modifying the application duration of magnetic targeting, which makes this combination therapy system a powerful new tool for in vitro/in vivo cancer therapy, especially for HER2-positive cancers. PMID:26478017

  4. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel;

    2011-01-01

    current, and NO release that were blocked by apamin and TRAM-34 or charybdotoxin. These findings suggest that opening of SK(Ca) and IK(Ca) channels leads to endothelium-dependent relaxation that is mediated mainly by NO in large mesenteric arteries and by EDHF-type relaxation in small mesenteric arteries......This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium......-derived hyperpolarizing factor (EDHF)-type relaxation in large and small rat mesenteric arteries. Segments of rat superior and small mesenteric arteries were mounted in myographs for functional studies. NO was recorded using NO microsensors. SK(Ca) and IK(Ca) channel currents and mRNA expression were investigated in...

  5. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  6. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  7. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  8. Caffeine-induced myocardial injury in calcium-free perfused rat hearts.

    OpenAIRE

    Vander Heide, R. S.; Ganote, C. E.

    1985-01-01

    Hearts depleted of extracellular calcium become susceptible to injury caused by repletion of extracellular calcium (calcium paradox). It has been suggested that calcium-free perfusion causes weakening of intercalated disks and that the physical stress of contracture may cause sarcolemmal membrane rupture and creatine kinase (CK) release. To further investigate this hypothesis, the effects of caffeine on contracture, cellular morphology, and CK release were studied in control and calcium-free ...

  9. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B;

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  10. Stochastic models of intracellular calcium signals

    International Nuclear Information System (INIS)

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed

  11. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  12. Calcium pump kinetics determined in single erythrocyte ghosts by microphotolysis and confocal imaging.

    OpenAIRE

    Kubitscheck, U; Pratsch, L; Passow, H; Peters, R.

    1995-01-01

    The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluore...

  13. Association of Calcium-Sensing Receptor (CASR rs 1801725 with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Fateme Rostami

    2012-07-01

    Full Text Available Background: Calcium induces apoptosis in intestinal epithelial cells and subsequently prevents colorectal cancer through ion calcium receptor. Calcium-sensing receptor mutation reduces the expression of this receptor, and subsequently in reduces calcium transportation. Many studies have shown that Calcium-sensing receptor gene polymorphism may increase the risk of colorectal cancer. The purpose of this study is to assess the prevalence of calcium-sensing receptor polymorphisms (rs 1801725 in Iran society and to examine the role of this polymorphism in the increased risk of colorectal cancer (CRC.Materials and Methods: The research was a case-control study. 105 patients with colorectal cancer and 105 controls were randomly studied using polymerase chain reaction and restriction fragment length polymorphism. χ2 test and software 16- SPSS were used for statistical analysis.Results: In patient samples, the frequency of the genotypes TT, GT, GG in gene CASR rs 1801725 was respectively 64.8, 32.4, and 2.9 and the frequency of this polymorphism in control samples was respectively 51.2, 45.7, and 2.9. Frequency of allele G in patient samples was 0/48 and frequency of allele T was 0.25. In addition, Frequency of allele G in control samples was 0.74 and Frequency of allele T was calculated 0.19.Conclusion: The results show that calcium-sensing receptor variant (1801725 rs is not associated with increased risk of colorectal cancer.

  14. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  15. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    OpenAIRE

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-sh...

  16. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    OpenAIRE

    Haiyan eLi; Foss, Sarah M.; Yuriy eDobryy; C. Kevin ePark; Samuel Andrew Hires; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-...

  17. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    GuillermoSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  18. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  19. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  20. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  1. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  2. Calcium in diet

    Science.gov (United States)

    Diet - calcium ... Calcium is one of the most important minerals for the human body. It helps form and maintain healthy teeth and bones. A proper level of calcium in the body over a lifetime can help ...

  3. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  4. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    于建; 夏延致

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during ...

  5. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C;

    2000-01-01

    . After the fast intercellular calcium waves were blocked, we observed slower calcium waves that were dependent on gap junctional communication and influx of extracellular calcium. These results show that human osteoblastic cells can propagate calcium signals from cell to cell by two markedly different...... cells: autocrine activation of P2 (purinergic) receptors leading to release of intracellular calcium stores, and gap junction-mediated communication resulting in influx of extracellular calcium. In the current work we asked whether human osteoblastic cells (HOB) were capable of mechanically induced...... intercellular calcium signaling, and if so, by which mechanisms. Upon mechanical stimulation, human osteoblasts propagated fast intercellular calcium waves, which required activation of P2 receptors and release of intracellular calcium stores but did not require calcium influx or gap junctional communication...

  6. Sodium induces simultaneous changes in cytosolic calcium and pH in salt-tolerant quince protoplasts.

    Science.gov (United States)

    D'Onofrio, Cladio; Lindberg, Sylvia

    2009-11-01

    Previous experiments with salt-resistant quince BA29 (Cydonia oblonga cv. Mill.) have shown that this cultivar takes up sodium transiently into the cytosol of shoot protoplasts only in the absence of calcium chloride, or at or =100mM to single protoplasts from in vitro-cultivated quince in the presence of 1.0mM calcium induced instant changes in the cytosolic concentrations of calcium and protons. These changes were investigated by use of tetra [acetoxymethyl] esters of the fluorescent stilbene chromophores Fura 2 and bis-carboxyethyl-carboxyfluorescein (BCECF), respectively. The cytosolic Ca(2+) dynamics in the protoplasts were dependent on the concentration of NaCl added. The changes in calcium differed in amplitude and final concentration and were correlated in time mainly with changes in pH. Addition of 100-400mM NaCl to the protoplasts caused an oscillating increase in the cytosolic level of calcium, and then a decrease. Addition of mannitol, of equiosmolar concentration to NaCl, did not increase the cytosolic calcium concentration. Moreover, there was no increase in cytosolic calcium when NaCl was added in the presence of calcium binding ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetra acetic acid (EGTA), or lantan or verapamil, two inhibitors of plasma membrane calcium channels. Therefore, we conclude that, in salt-resistant quince, sodium induces an influx of calcium into the cytosol by plasma membrane calcium channels, and a simultaneous increase in cytosolic pH. Because these changes were obtained in the presence of 1mM calcium in the medium, they were not due to sodium uptake into the cytosol. PMID:19556023

  7. Regulation of gamma T-cell antigen receptor expression by intracellular calcium in acute lymphoblastic leukemia cell line DND41.

    Science.gov (United States)

    Peralta-Zaragoza, O; Martínez-Valdez, H; Madrid-Marina, V

    1996-01-01

    The calcium ionophore, ionomycin, promotes an increase of intracellular calcium and regulates mRNA expression of gamma/delta-TcR gene in human T lymphocytes. The mechanism of this regulation is not yet clear. Thus, the regulation by intracellular calcium requires elucidation. We studied the gamma-TcR gene expression in acute lymphoblastic leukemia cell line DND41 (CD4- CD8-) by Northern blot and flow cytometric analysis. The mRNA levels of gamma-TcR increased by ionomycin, anti-CD3, and with TPA. TPA had an antagonistic effect to both ionomycin and anti-CD3. Also, TPA inhibits the increased intracellular calcium promoted by ionomycin but not the increase promoted by anti-CD3 and ionomycin. Our results suggest that intracellular calcium induces mRNA and protein expression of gamma-TcR chain. This effect is antagonized by protein kinase C-activation. Thus, we conclude that the target cells of the differential regulation on gamma-TcR mRNA expression by intracellular calcium modulators are the CD4- CD8- cells, and this is due to cytosolic calcium mobilization. PMID:8854386

  8. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    Science.gov (United States)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  9. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  10. Amylase release from rat parotid glands. II

    International Nuclear Information System (INIS)

    The kinetics of 45Ca2+ uptake, efflux, and calcium potentiation of amylase release by slices of rat parotid glands were examined. Pretreatment of the tissue with 11.25 mM 45Ca2+ medium increased the total tissue 45calcium content. Lanthanum (1 mM) decreased tissue uptake, blocked the slow components of exchange and appeared to inhibit transcellular calcium movement. Neither dibutyryl cyclic AMP nor caffeine caused consistently significant effects on 45Ca2+ kinetics, or total 45calcium content. Carbamylcholine increased the initial rate of 45Ca2+ uptake, but had no effect on total uptake. Elevation of the extracellular Ca2+ concentration of 11.25 mM during stimulation of amylase release resulted in an initial decrease in the rate of amylase release followed by a potentiation of release which developed slowly, requiring 40-50 min to reach the maximal response. The inability to detect release-related changes in either calcium influx or mobilization, and the lengthy times and high Ca2+ concentrations required to achieve calcium potentiation suggests that calcium does not couple amylase release. (Auth.)

  11. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, T M; Belhage, B;

    2001-01-01

    in cytosolic calcium concentration. The results of this investigation demonstrate that pharmacologically distinct types of voltage dependent calcium channels are differentially localized in cell bodies, neurites and nerve terminals of mouse cortical neurons but that the Q-type calcium channel appears......The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...

  12. Importance of Calcium

    OpenAIRE

    TANDOĞAN, Berivan; ULUSU, N. Nuray

    2005-01-01

    Calcium is the most abundant mineral in the body. Calcium regulates many cellular processes and has important structural roles in living organisms. Skeletal muscle structure and function, polymerisation of fibrin and the conduction of impulses in the nervous system are regulated by calcium. Calcium is an important intracellular messenger in protozoa, plants, and animals. Calcium-transporting systems which are located in the plasma membrane and in the organelles, regulate the ionic concentrati...

  13. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Nilsson, Holger; Matchkov, Vladimir V; Freiberg, Jacob; Holstein-Rathlou, N.-H.

    2007-01-01

    waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium...

  14. Slow-release fertilizer

    Science.gov (United States)

    Ming, Douglas W.; Golden, D. C.

    1992-10-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  15. Calcium entry into guinea-pig jejunum cells after calcium stores depletion.

    Science.gov (United States)

    Pacaud, P; Bolton, T B

    1991-01-01

    1) Membrane currents were recorded under voltage-clamp from cells using patch-clamp pipettes. Cells were dialysed with potassium-free caesium solution to block any Ca-activated K-current. The pipette solution contained Indo-1 and the ratio of the emissions from this dye at 480 and 405 nm was used to estimate the free calcium concentration in the cell. 2) Carbachol applied to the cell evoked at -50 mV an initial increase in the intracellular calcium concentration (Cai) followed by a smaller sustained rise (plateau); the changes in inward cationic current (ICarb) closely followed changes in Cai. Calcium entry blockers did not affect these responses. 3) The initial peak in Cai produced by carbachol was due to calcium store release: it was present in calcium-free solution, and unchanged at +50 mV, but it was abolished by prior application of caffeine (10 mM) to the cell or by inclusion of heparin (which blocks D-myoinositol 1,4,5-trisphosphate receptors) in the pipette. 4) The sustained rise (plateau) in Cai produced by carbachol was due to the entry of calcium into the cell down its electrochemical gradient as it was affected by changing the cell membrane potential or the calcium concentration in the bathing solution. As the sustained rise in Cai produced by caffeine had similar properties it was suggested that depletion of calcium stores can evoke an increased calcium entry into the cell through some pathway. PMID:1665265

  16. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-01-27

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function. PMID:26814587

  17. Discrete stochastic modeling of calcium channel dynamics

    CERN Document Server

    Baer, M E; Levine, H; Tsimring, L S; Baer, Markus; Falcke, Martin; Levine, Herbert; Tsimring, Lev S.

    1999-01-01

    We propose a simple discrete stochastic model for calcium dynamics in living cells. Specifically, the calcium concentration distribution is assumed to give rise to a set of probabilities for the opening/closing of channels which release calcium thereby changing those probabilities. We study this model in one dimension, analytically in the mean-field limit of large number of channels per site N, and numerically for small N. As the number of channels per site is increased, the transition from a non-propagating region of activity to a propagating one changes in nature from one described by directed percolation to that of deterministic depinning in a spatially discrete system. Also, for a small number of channels a propagating calcium wave can leave behind a novel fluctuation-driven state, in a parameter range where the limiting deterministic model exhibits only single pulse propagation.

  18. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    OpenAIRE

    Nielsen, Ole H.; Bouchelouche, Pierre N.; Dag Berild

    1992-01-01

    Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l) was as potent as the calcium ionophore A23187 (10 μmol/l) for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the de...

  19. Calcium in diet

    Science.gov (United States)

    ... best source. Milk and dairy products such as yogurt, cheeses, and buttermilk contain a form of calcium ... the amount of calcium in a dairy product. Yogurt, most cheeses, and buttermilk are excellent sources of ...

  20. Fenoprofen calcium overdose

    Science.gov (United States)

    Fenoprofen calcium is a type of medicine called a nonsteroidal anti-inflammatory drug. It is a prescription pain medicine used to relieve symptoms of arthritis . Fenoprofen calcium overdose occurs when someone takes more than the ...

  1. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  2. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  3. Liberação de benzoato de cálcio de filmes de alginato de sódio reticulados com íons cálcio Release of calcium benzoate from films of sodium alginate crosslinked with calcium ions

    Directory of Open Access Journals (Sweden)

    Franciele R. B. Turbiani

    2011-01-01

    Full Text Available Biofilmes confeccionados à base de alginato de sódio foram reticulados com íons Ca++ provenientes de duas fontes, cloreto e benzoato de cálcio, e continham glicerol como plastificante. Inicialmente, devido ao alto poder gelificante do Ca++, um filme de baixo grau de reticulação foi confeccionado por casting (1º estágio. Esse filme sofreu uma reticulação complementar por imersão em uma solução contendo de 3 a 7% de CaCl2.2H2O, além de glicerol (2º estágio. A liberação de benzoato de cálcio foi avaliada em diferentes concentrações de agente ativo no filme e dois níveis de reticulação do alginato. O mecanismo envolvido no processo de difusão foi investigado usando o modelo da Lei de Potência. Os resultados indicaram que a difusão de benzoato de cálcio em filmes de alginato apresenta características de comportamentos Fickiano e não-Fickiano. Os coeficientes de difusão efetivos obtidos usando a solução em série derivada da 2ª Lei de Fick são próximos aos valores obtidos pela solução em tempos curtos, com valores de difusividade efetiva do benzoato variando de 3 a 5.10-7 cm²/s. Os valores de difusividade diminuíram com o aumento da intensidade de reticulação e aumentaram com a concentração de benzoato no filme.Alginate-based biofilms were reticulated with Ca++ supplied by two sources, calcium chloride and benzoate, and using glycerol as plasticizer. The strong gelling power of the Ca++ ions hindered smooth casting procedures, so that films with low degree of reticulation were initially manufactured (1st stage. These films were further crosslinked with an excess of Ca++ by immersion in a solution of 3 to 7% of CaCl2.2H2O (2nd stage. The release of sorbate was evaluated considering different active agent concentrations in the film and two levels of alginate crosslinking. The mechanism involved in the diffusional process was investigated using the Power Law Model. The results indicated that potassium sorbate

  4. Calcium responses to thyrotropin-releasing hormone and angiotensin II. The role of plasma membrane integrity and efect of G11-alpha protein overexpression on homologous and heterologous desensitization

    Czech Academy of Sciences Publication Activity Database

    Novotný, Jiří; Ostašov, Pavel; Krůšek, Jan; Durchánková, Dana; Svoboda, Petr

    Praha : The Czech Neuroscience Society, 2007. s. 87-87. [Conference of the Czech Neuroscience Society /6./. 19.11.2007-20.11.2007, Praha] R&D Projects: GA AV ČR(CZ) IAA500110606; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : spo2 * calcium response * cholesterol depletion * desensitization Subject RIV: CE - Biochemistry

  5. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Directory of Open Access Journals (Sweden)

    Zhi Pan

    2014-02-01

    Full Text Available Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  6. Calcium and magnesium disorders.

    Science.gov (United States)

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  7. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  8. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  9. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer

    Science.gov (United States)

    Bikle, Daniel D.; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  10. Calcium-Mediated Abiotic Stress Signaling in Roots.

    Science.gov (United States)

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  11. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R;

    1997-01-01

    stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied...... connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U...... receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P2U purinergic receptors, but not gap junctional communication. ROS/P2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction-independent, ATP...

  12. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    OpenAIRE

    Zhi Pan; Andrew Avila; Lauren Gollahon

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and...

  13. Evaluation of a new calcium containing cardioplegic solution in the isolated rabbit heart in comparison to a calcium-free, low sodium solution.

    Science.gov (United States)

    Mori, F; Suzuki, K; Noda, H; Kato, T; Tsuboi, H; Miyamoto, M; Esato, K; Imamura, A; Kawahara, S; Uchiyama, J

    1991-03-01

    Isolated perfused rabbit hearts were studied to compare the effects of 3 hour ischemic arrest following either calcium-free or calcium-containing cardioplegia, on the recovery of isovolumic function of the left ventricle, coronary flow, release of creatine phosphokinase and myocardial water content. The hearts perfused with the calcium-containing solution (Ca 0.5 mmol/L) showed better recovery of the developed pressure in the left ventricle, and its first derivative and compliance. Coronary flow at a constant perfusion pressure was better restored during reperfusion in the hearts with calcium-containing solution. The release of less CPK and a lower water content were also observed in the hearts reperfused with calcium-containing solution. We concluded that calcium-containing cardioplegic solution with a high concentration of magnesium (10 mmol/L) was superior to calcium-free solution for myocardial protection. PMID:2051666

  14. Discussion on the mechanism of the calcium absorption in the human body

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present article discusses a new mechanism of calcium absorption in the human body. The mechanism is revealed as follows. First, after food is digested in the stomach, calcium ions (Ca2+) are released. The small intestine secretes amino acid or short peptide chain with small molecniar weight automatically, which are called chelating agent; when the calcium ions from the stomach get to the small intestine, the reaction of the chelating agent with the calcium ions occurs, producing the neutral amino acid calcium chelate. Then, this kind of calcium chelate with small molecular weight is absorbed as a whole into the tissues of the small intestine. After being absorbed, in the cell the calcium chelate can break down its chelating bond automatically and decompose into the amino acid and calcium ion again. Finally, the calcium ion goes into blood through portal vein and is transferred to the organs and also deposits on the bone. The reason for the body's calcium insufficiency, which has no linear relation with the calcium intake amount, is the lack of the amino acid secreted by the small intestine. The main barrier that influences the calcium absorption is anion pollution. The calcium absorptivity of the body has nothing to do with the solubility of the calcium source out of the body.A new kind of calcium supplement agent--glycine calcium chelate--is synthesized, whose molecular weight is 206.06(containing a molecular water). If the glycine calcium chelate is used to make calcium supplement agent, about 20 mg calcium element (converted from the glycine calcium chelate,the same below, no longer indicated) per day for one person,50 mg at most, is enough to maintain the positive balance of calcium metabolism.``

  15. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  16. Modeling Calcium Wave Based on Anomalous Subdiffusion of Calcium Sparks in Cardiac Myocytes

    Science.gov (United States)

    Chen, Xi; Kang, Jianhong; Fu, Ceji; Tan, Wenchang

    2013-01-01

    sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated. PMID:23483894

  17. EXERCISE ENHANCING CALCIUM ABSORPTION MECHANISM

    OpenAIRE

    Muliani

    2013-01-01

    Calcium has important role in many biological processes therefore calcium homeostasis should be maintained. Imbalance in calcium homeostasis would affects the bone metabolism, neuromuscular function, blood coagulation, cell proliferation and signal transduction. Homeostasis of calcium is maintained by three major organs: gastrointestinal tract, bone and kidney. Intestinal calcium absorption is the sole mechanism to supply calcium to the body. Calcium absorption controlled by calcitropic hormo...

  18. P2X4-receptor mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation

    OpenAIRE

    Trang, Tuan; Beggs, Simon; Wan, Xiang; Salter, Michael W

    2009-01-01

    Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity following injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after nerve injury. However, there is a critical gap in understanding how activation of microglial P2X4Rs leads to the release of BDNF. Her...

  19. In vitro macrophage cytotoxicity of five calcium silicates.

    OpenAIRE

    Skaug, V; Davies, R.; Gylseth, B

    1984-01-01

    Five calcium silicate minerals (two naturally occurring and three synthetic compounds) with defined morphology and chemical composition were compared for their cytotoxic and lysosomal enzyme releasing effects on unstimulated mouse peritoneal macrophages in vitro. One synthetic material, a fibrous tobermorite, was cytotoxic towards the cells, and two naturally occurring wollastonites induced selective release of beta-glucuronidase from the cells.

  20. Dengue and Calcium

    OpenAIRE

    Shivanthan, Mitrakrishnan C; Rajapakse, Senaka

    2014-01-01

    Dengue is potentially fatal unless managed appropriately. No specific treatment is available and the mainstay of treatment is fluid management with careful monitoring, organ support, and correction of metabolic derangement. Evidence with regards to the role of calcium homeostasis in dengue is limited. Low blood calcium levels have been demonstrated in dengue infection and hypocalcemia maybe more pronounced in more severe forms. The cause of hypocalcemia is likely to be multifactorial. Calcium...

  1. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  2. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  3. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    Science.gov (United States)

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released. PMID:22065946

  4. Glial calcium signaling in physiology and pathophysioilogy

    Institute of Scientific and Technical Information of China (English)

    Alexei VERKHRASKY

    2006-01-01

    Neuronal-glial circuits underlie integrative processes in the nervous system.Function of glial syncytium is,to a very large extent,regulated by the intracellular calcium signaling system.Glial calcium signals are triggered by activation of multiple receptors,expressed in glial membrane,which regulate both Ca2+ entry and Ca2+ release from the endoplasmic reticulum.The endoplasmic reticulum also endows glial cells with intracellular excitable media,which is able to produce and maintain long-ranging signaling in a form of propagating Ca2+ waves.In pathological conditions,calcium signals regulate glial response to injury,which might have both protective and detrimental effects on the nervous tissue.

  5. Expression of the calcium receptor CaR in the parathyroid of secondary hyperparathyroidism patients

    Institute of Scientific and Technical Information of China (English)

    王宁宁; 王笑云; 彭韬; 吴宏飞; 胡建明; 赵卫红; 俞香宝

    2004-01-01

    @@ The effects of calcium on parathyroid hormone (PTH) has further discovered in recent years. It has been known that calcium ion concentration in the extracellular fluid is a major determinant of PTH secretion. The relationship between serum intact PTH (iPTH) and calcium ion levels is described by a sigmoidal curve. The calcium concentration that produces half-maximal change in PTH release (the midpoint between maximal and minimal change in PTH release) represents the sensitivity of parathyroid cells to serum calcium. In secondary hyperparathyroidism (SHPT) patients, higher calcium concentrations are needed to suppress PTH secretion, as demonstrated by the PTH-calcium sigmoidal curve. The loss of physiological control over the secretory function and growth of parathyroid tissue in hyperparathyroid disease is still incompletely understood.

  6. The mechanism of hetero-synaptic interaction based on spatiotemporal intracellular calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Daiki Futagi

    2014-03-01

    Full Text Available In recent physiological experiments focusing on synaptic plasticity, it is shown that synaptic modifications induced at one synapse are accompanied by hetero-synaptic changes at neighbor sites (Bi, 2002. These evidences imply that the hetero-synaptic interaction plays an important role in reconfiguration of synaptic connections to form and maintain functional neural circuits (Takahashi et al., 2012. Although the mechanism of the interaction is still unclear, some physiological studies suggest that the hetero-synaptic interaction could be caused by propagation of intracellular calcium signals (Nishiyama et al., 2000. Concretely, a spike-triggered calcium increase initiates calcium ion propagation along a dendrite through activation of molecular processes at neighboring sites. Here we hypothesized that the mechanism of the hetero-synaptic interaction was based on the intracellular calcium signaling, which is regulated by interactions between NMDA receptors (NMDARs, voltage-dependent calcium channels (VDCCs and Ryanodine receptors (RyRs on endoplasmic reticulum (ER. To assess realizability of the hypothesized interaction mechanism, we simulated intracellular calcium dynamics at a cellular level, using the computational model that integrated the model of intracellular calcium dynamics (Keizer and Levine, 1996 and the multi-compartment neuron model (Poirazi et al., 2003. Using the proposed computational model, we induced calcium influxes at a local site in postsynaptic dendrite by controlling the spike timings of pre- and postsynaptic neurons. As a result, synchronized calcium influxes through NMDARs and VDCCs caused calcium release from ER. According to the phase plane analysis, RyR-mediated calcium release occurred when the calcium concentration in cytoplasm sufficiently increased under the condition of a high calcium concentration in ER. An NMDAR-mediated calcium influx was slow and persistent, consequently responsible for maintaining a high

  7. Markov chain models of coupled calcium channels: Kronecker representations and iterative solution methods

    International Nuclear Information System (INIS)

    Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of stochastic calcium excitability (i.e., calcium puffs and sparks). Calcium release site models are stochastic automata networks that involve many functional transitions, that is, the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. We present a Kronecker-structured representation for calcium release site models and perform benchmark stationary distribution calculations using both exact and approximate iterative numerical solution techniques that leverage this structure. When it is possible to obtain an exact solution, response measures such as the number of channels in a particular state converge more quickly using the iterative numerical methods than occupation measures calculated via Monte Carlo simulation. In particular, multi-level methods provide excellent convergence with modest additional memory requirements for the Kronecker representation of calcium release site models. When an exact solution is not feasible, iterative approximate methods based on the power method may be used, with performance similar to Monte Carlo estimates. This suggests approximate methods with multi-level iterative engines as a promising avenue of future research for large-scale calcium release site models

  8. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  9. Serum Calcium Level in Hypertension

    OpenAIRE

    Hazari, Mohammed Abdul Hannan; Arifuddin, Mehnaaz Sameera; Muzzakar, Syed; Reddy, Vontela Devender

    2012-01-01

    Background: The alterations in extracellular calcium level may influence intracellular calcium level and possibly play a role in the pathogenesis of essential hypertension. Aim: The purpose was to find out the association between serum calcium levels and hypertension; and to compare the serum calcium levels between normotensive controls, hypertensive subjects on calcium channel blockers, and hypertensive subjects on antihypertensive medication other than calcium channel blockers. Materials an...

  10. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  11. Dissolution kinetics of calcium phosphate coatings.

    Science.gov (United States)

    Burke, E M; Lucas, L C

    1998-01-01

    Plasma spray and high velocity oxy-fuel (HVOF) techniques produce coatings with varying composition and amounts of amorphous and crystalline phases. For coatings containing greater amorphous phases, a higher release of calcium ions is evident when samples are placed in Hank's calcium-free balanced salt solutions. Calcium is released from the amorphous phases in the coating, a conclusion that is supported by x-ray powder diffraction (XRD) results. Ion beam sputtering and RF magnetron sputtering under lower energy conditions produce amorphous coatings that will dissolve in a very short time period. When heat treated, crystalline phases are produced in the coatings. Heat-treated coatings are significantly more stable than the amorphous coatings. The dissolution rates of both amorphous and crystalline coatings produced by RF magnetron sputtering have been measured under constant solution conditions at pH 6.50. No reprecipitation is possible under these conditions. The amorphous coating dissolved at a significantly higher rate than the heat-treated coating. Reprecipitation of calcium phosphate onto amorphous coatings is possible in a physiological pH solution. Under these conditions, the dissolution rate of the amorphous coating is four times slower than at the pH 6.50 conditions. PMID:10196809

  12. Comparison of growth-induced resorption and denervation-induced resorption on the release of [3H]tetracycline, 45calcium, and [3H]collagen from whole bones of growing rats

    International Nuclear Information System (INIS)

    The major effect of immobilization during growth is a smaller bone mass induced by either an increased bone resorption or a decreased bone formation. Using a method of analyzing radioisotopic loss of [3H]tetracycline and [3H]collagen from bone prelabeled in vivo, we compared the amount of bone resorption due to immobilization with bone resorption induced by growth. One hind limb was denervated in growing male rats, 6 weeks of age, that had been chronically prelabeled with [3H]tetracycline, 45calcium, and [3H]proline. The total radioactivity of the whole femur and tibia/fibula from the denervated limb was compared with that from bones of the control limb at 0, 1, 2, 4, and 8 weeks after denervation. The effect of growth on bone formation was measured by net increases in bone length, volume, and mass of matrix and mineral. Experimental bones had a significantly smaller volume and mass. Bone resorption was much greater during growth modeling than during denervation. The additional bone resorption induced by denervation was a small fraction (one-fourth) of the resorption induced by growth. Denervation during growth resulted in less bone being formed due to a smaller gain in matrix and mineral mass as a result of a reduction in bone formation

  13. Pharmacology of Acetylcholine-Mediated Cell Signaling in the Lateral Line Organ Following Efferent Stimulation

    OpenAIRE

    Dawkins, Rosie; Keller, Sarah L.; Sewell, William F.

    2004-01-01

    Cholinergic efferent fibers modify hair cell responses to mechanical stimulation. It is hypothesized that calcium entering the hair cell through a nicotinic receptor activates a small-conductance (SK), calcium-activated potassium channel to hyperpolarize the hair cell. The calcium signal may be amplified by calcium-induced calcium release from the synaptic cisternae. Pharmacological tests of these ideas in the intact cochlea have been technically difficult because of the complex and fragile s...

  14. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation

    OpenAIRE

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C.; Espinoza, Italo; Casas-Alarcón, M. Mercedes; Carrasco, M. Angélica; Hidalgo, Cecilia

    2011-01-01

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB r...

  15. Voltage-Gated Calcium Channels in Nociception

    Science.gov (United States)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  16. Biochemical analysis of the interaction of calcium with toposome: a major protein component of the sea urchin egg and embryo.

    Science.gov (United States)

    Hayley, Michael; Sun, Ming; Merschrod, Erika F; Davis, Philip J; Robinson, John J

    2008-04-01

    We have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure. The calcium-induced, secondary, and tertiary structural changes had no effect on the chymotryptic cleavage pattern. However, the digestion pattern of toposome bound to phosphatidyl serine liposomes did vary as a function of calcium concentration. We also investigated the interaction of this protein with various metal ions. Calcium, Mg(2+), Ba(2+), Cd(2+), Mn(2+), and Fe(3+) all bound to toposome. In addition, Cd(2+) and Mn(2+) displaced Ca(2+), prebound to toposome, while Mg(2+), Ba(2+), and Fe(3+) had no effect. Collectively, these results further enhance our understanding of the role of Ca(2+) in modulating the biological activity of toposome. PMID:17786928

  17. Calcium Sensing Receptor Promotes Cardiac Fibroblast Proliferation and Extracellular Matrix Secretion

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    2014-02-01

    Full Text Available Aims: Calcium-sensing receptor (CaR acts as a G protein coupled receptor that mediates the increase of the intracellular Ca2+ concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO. Methods and Results: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca2+]i. Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9. Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. Conclusions: Our results are the first report that CaR plays an important role in Ca2+ signaling involved in cardiac fibrosis through the phospholipase C- inositol 3

  18. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  19. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  20. A review paper on biomimetic calcium phosphate coatings

    OpenAIRE

    Lin, X.; De Groot,, P.A.J.; Wang, D.; Hu, Q; Wismeijer, D.; Liu, Y

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation ...

  1. FORMULATION AND EVALUATION OF SOLID DISPERSION OF ATORVASTATIN CALCIUM

    OpenAIRE

    Monika Sharma; Rajeev Garg; G D Gupta

    2013-01-01

    The present study was designed to improve the solubility and hence enhance the dissolution of hydrophobic drug Atorvastatin calcium (ATC) in order to increase its bioavailability. Solid dispersion of atorvastatin calcium using carrier PEG 4000 was formulated in different ratios by conventional fusion and microwave induced fusion method. In particular, the Microwave technology has been considered in order to prepare an enhanced release dosage form for poorly water soluble drug ATC. Their physi...

  2. Mechanical characterization of calcium pectinate hydrogel for controlled drug delivery

    OpenAIRE

    Chung Jin Thau; Zhibing Zhang

    2003-01-01

    Calcium pectinate beads, a paniculate hydrogel system, is an attractive drug carrier for oral delivery. In this study, a poorly water-soluble model drug indomethacin was incorporated into calcium pectinate beads made of different pectin concentrations, which were produced by an extrusion method. The effect of pectin concentration on bead size, circularity, swelling behavior, and mechanical properties, as well as in vitro drug release profile was investigated. The mechanical properties of calc...

  3. Amorphous calcium phosphate composites with improved mechanical properties

    OpenAIRE

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2006-01-01

    Hybridized zirconium amorphous calcium phosphate (ACP)-filled methacrylate composites make good calcium and phosphate releasing materials for anti-demineralizing/remineralizing applications with low mechanical demands. The objective of this study was to assess the effect of the particle size of the filler on the mechanical properties of these composites. Photo-curable resins were formulated from ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacry...

  4. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  5. In vivo calcium imaging of evoked calcium waves in the embryonic cortex

    Directory of Open Access Journals (Sweden)

    Mikhail eYuryev

    2016-01-01

    Full Text Available The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.

  6. Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils

    OpenAIRE

    1984-01-01

    The intracellularly trapped fluorescent calcium indicator, quin 2, was used not only to monitor changes in cytosolic-free calcium, [Ca2+]i, but also to assess the role of [Ca2+]i in neutrophil function. To increase cytosolic calcium buffering, human neutrophils were loaded with various quin 2 concentrations, and [Ca2+]i transients, granule content release as well as superoxide [O2-] production were measured in response to the chemotactic peptide formyl-methionyl-leucyl- phenylalanine (fMLP) a...

  7. Calcium wave of Brain Astrocytes

    Science.gov (United States)

    Cornell Bell, A. H.

    1997-03-01

    Time lapse confocal scanning laser microscopy was used to study hippocampal astrocyte cultures loaded with a calcium indicator, Fluo3-AM (4 uM). kThe neurotransmitter kainate (100uM) overwhelms the Na+-buffering capacity of astrocytes within 100 sec resulting in reversal of the Na+/Ca2+ exchanger. This results in a subcellular site where Ca2+ entering the cytoplasm contributes to a long-distance Ca2+ wave which travels at 20 um/sec without decrement. Image analysis has shown calcium waves not only at a high Kainate dose, but also at a low Kainate dose, e.g. 10uM. These are, however, shortlived and burried in an extremely noisy background and only detectable by analyzing the calcium waves images for spatio-temporal coherence. As the kainate dose increases, more large scale coherent structures with visible geometric features (spiral waves and target waves) can be observed. Multiple spiral waves are produced when the Kainate dose increases to 100 uM. These waves travel at a constant velocity across entire microscope fields for long time periods (>30 mins). Na+ channels have no effect on the Kainate wave. Voltage-gated Ca2+ channels are not involved and Ca2+ enters through reversal of the exchanger. Ca2+ release from stores does not contribute to the kainate wave. Removal of Na+ or Ca2+ from outside and the specific Na+/Ca2+ exchange inhibitor benzamil (10 uM) inhibit the kainate wave. A functional antibody to alpha6-Integrin which is localized to membrane regions between cells inhibits the spread of the kainate wave in a dose and time-dependent manner. Fluorescence Recovery after Photobleach (FRAP) techniques indicate that gap junctions remain open between cells. This would imply that Ca2+ or IP3 need not pass through the gap junction, but reversal of the exchanger would propel the Ca2+ wave at the cell surface.

  8. Role of intracellular calcium in contraction of internal anal sphincter

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION Internal anal sphincter (IAS) is a continuation of the smooth circular muscle layer thickened at the rectum, innervated by vegetative nerve. IAS is a special smooth muscle, which is different from colonic smooth muscle in physiology and pharmaology[1]. It was found that contraction of gastric smooth muscle depends on the influx of extracellular calcium and release of intracellular calcium[2]. In present study, we observed and compared the effects of extra- and intracellular calcium on the contraction of IAS and colonic smooth muscle.

  9. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer

    Directory of Open Access Journals (Sweden)

    Milton Carlos KUGA

    2014-06-01

    Full Text Available Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective: The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF or containing 5% (MTAF5 or 10% (MTAF10 calcium hydroxide (CH, in weight, in comparison with AH Plus sealer. Material and Methods: The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10 in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%. Results: In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions: The addition of 5% CH to the MTA Fillapex (in weight is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

  10. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer

    OpenAIRE

    KUGA, Milton Carlos; DUARTE Marco Antonio Hungaro; SANT'ANNA-JÚNIOR, Arnaldo; KEINE, Kátia Cristina; FARIA, Gisele; Andrea Abi Rached DANTAS; GUIOTTI, Flávia Angélica

    2014-01-01

    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective: The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. Material and Methods: The...

  11. Neuronal calcium sparks and intracellular calcium “noise”

    OpenAIRE

    Melamed-Book, Naomi; Kachalsky, Sylvia G.; Kaiserman, Igor; Rahamimoff, Rami

    1999-01-01

    Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration—or calcium sparks—were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular...

  12. 实电解质钙可诱发人肥大细胞组胺和类胰蛋白酶分泌%CALCIUM IONOPHORE INDUCED HISTAMINE AND TRYPTASE RELEASE FROM HUMAN MAST CELLS

    Institute of Scientific and Technical Information of China (English)

    何韶衡; 何永松; 谢华

    2005-01-01

    目的: 利用人大肠组织的肥大细胞和肥大细胞激活的体外研究系统,评价实电解质钙(calcium ionophore A23187, CI)诱导肥大细胞释放类胰蛋白酶和组胺的能力和机制.方法: 经酶悬浮的人大肠肥大细胞与CI共同培养后收集上清液,并用酶联免疫吸附试验(ELISA)的方法检测类胰蛋白酶分泌量,用以玻璃纤维为基础的荧光比色法检测组胺释放量.结果: 经过15 min的培养,CI可引起浓度相关性的组胺和类胰蛋白酶释放.其中组胺的最大分泌量比基础分泌量超出了5.3倍以上,而类胰蛋白酶的最大分泌量则比基础分泌量超出了2.8倍以上.CI在浓度高于1.0 μmol/L时引起的组胺释放量明显多于类胰蛋白酶释放量.时间关系曲线显示,CI的作用从加样后10 s开始,6 min后达高峰并至少持续15 min.百日咳毒素和代谢抑制剂均能抑制CI引起的组胺和类胰蛋白酶释放.结论: 人大肠肥大细胞在受到CI刺激时具有释放类胰蛋白酶和组胺的能力,这个过程与肥大细胞膜G蛋白偶联受体的激活有关,并消耗能量.

  13. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... calcium binds silicon primarily as calcium silicates and less as potassium calcium silicates....

  14. Synaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23

    DEFF Research Database (Denmark)

    Weber, Jens P; Toft-Bertelsen, Trine L; Mohrmann, Ralf;

    2014-01-01

    Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive......-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein...

  15. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  16. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  17. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    Science.gov (United States)

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  18. Thermal Aggregation of Calcium-Fortified Skim Milk Enhances Probiotic Protection during Convective Droplet Drying.

    Science.gov (United States)

    Wang, Juan; Huang, Song; Fu, Nan; Jeantet, Romain; Chen, Xiao Dong

    2016-08-01

    Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment. PMID:27420726

  19. Diethylstilbestrol alters the morphology and calcium levels of growth cones of PC12 cells in vitro.

    Science.gov (United States)

    Janevski, J; Choh, V; Stopper, H; Schiffmann, D; De Boni, U

    1993-01-01

    Diethylstilbestrol (DES) is a synthetic estrogen with carcinogenic properties. DES is known to alter cytoskeletal components, including the organization of actin stress fibres in C6 rat glioma cells. In a test of the hypothesis that DES disrupts actin filaments of growth cones in neuron-like cells, DES-induced changes in filopodial lengths were quantified in rat pheochromocytoma (PC12) cells in vitro. DES significantly altered growth cone morphology, with collapse of growth cone filopodia and neurite retraction invariably occurring at a concentration of 10 microM. At 5 microM DES, transient reductions in total filopodial lengths occurred. At DES concentrations of 0.1 nM and 1 nM, reductions in total filopodial lengths occurred in a fraction of growth cones. Evidence exists which shows that growth cone activity and morphology are intimately linked to levels of intracellular, free calcium and that DES increases such levels. Measurements of free intracellular calcium levels by fluorescence microscopy, at times concurrent with the DES-induced reduction in total filopodial lengths, showed that calcium levels were indeed significantly increased by 10 microM DES. Labelling of filamentous actin (f-actin) with FITC-phalloidin showed that the f-actin distribution in growth cones exposed to DES could not be differentiated from the distribution found in spontaneously retracting growth cones. Together with evidence which showed that growth cone motility was not affected, the results are taken to indicate that DES, rather than acting directly on the cytoskeleton, exerts its effects indirectly, by a calcium-induced destabilization of actin filaments in the growth cone. PMID:8164893

  20. Phosphorylation of erythrocyte membrane liberates calcium

    International Nuclear Information System (INIS)

    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca2+ electrode and 45Ca. This effect could not be observed in the presence of p- chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP2). These results support the proposal that an inositol shuttle, PI ↔ PIP ↔ PIP2, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released

  1. Examination of an aloe vera galacturonate polysaccharide capable of in situ gelation for the controlled release of protein therapeutics

    Science.gov (United States)

    McConaughy, Shawn David

    fluorescence emission of the probe molecule 1,8-anilino-1-naphthalene sulphonic acid (1,8-ANS) as a function of polymer concentration. Correlations are drawn between viscosity experiments and measurement of zeta potential. Increased degrees of intermolecular interactions are responsible for a shift of Ce to lower polymer concentrations with increasing ionic strength. Additionally, dynamic rheology data are presented highlighting the ability of AvP to form gels at low polymer and calcium ion concentrations, exemplifying the technological potential of this polysaccharide for in-situ drug delivery. In the second section, properties of Aloe vera galacturonate hydrogels formed via Ca2+ crosslinking have been studied in regard to key parameters influencing gel formation including molecular weight, ionic strength and molar ratio of Ca2+ to COO- functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) studies have been conducted on hydrogels formed at specified Ca2+ concentrations in the presence and absence of Na+ and K+ ions, in order to assess the feasibility of in situ gelation for controlled delivery of therapeutics. Aqueous Ca2+ concentrations similar to those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca2+ to COO- functionality, networks may be tailored to provide elastic modulus (G') values between 20 and 20,000 Pa. The Aloe vera polysaccharide exhibits time dependent phase separation in the presence of monovalent electrolytes. Thus the relative rates of calcium induced gelation and phase separation become major considerations when designing a system for in situ delivery applications where both monovalent (Na+, K+) and divalent (Ca2+) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly different morphologies are present in gels formed in the presence and absence 0.15 M NaCl. Curve fitting of theoretical models to

  2. Depolarization-induced contractile activity of smooth muscle in calcium-free solution.

    Science.gov (United States)

    Mangel, A W; Nelson, D O; Rabovsky, J L; Prosser, C L; Connor, J A

    1982-01-01

    In calcium-free solution, strips of cat intestinal muscle developed slow, rhythmic electrical potential changes that triggered contractions. Some strips failed to develop spontaneous electrical activity in calcium-free solution but responded with contractions to depolarization by direct electrical stimulation or by treatment with barium chloride, potassium chloride, or acetylcholine. Similar results were obtained with segments of cat stomach, colon, esophagus, bladder, uterus, and vena cava, as well as with rabbit vena cava. In calcium-free saline, rat small intestinal muscle showed fast electrical activity with accompanying development of a tetanuslike contraction. After 60 min in calcium-free solution, cat small intestinal muscle retained 17.7% of its original concentration of calcium. It is concluded that in some smooth muscles, depolarization-triggered release of intracellular calcium does not require an associated influx of calcium. PMID:7058877

  3. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Directory of Open Access Journals (Sweden)

    Ole H. Nielsen

    1992-01-01

    Full Text Available Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l was as potent as the calcium ionophore A23187 (10 μmol/l for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the decreases in radioactivity by 15.4% and 30.5%, respectively. The mechanism responsible for the release of arachidonate from cellular membranes is closely coupled to cellular calcium metabolism, and melittin was found to promote calcium entry through receptor gated calcium channels, probably due to an activation of phospholipase A2. Furthermore, a down-regulation of leukotriene B4 receptors was seen. The maximal number of binding sites per cell was reduced from a median of 1520 to 950 with melittin (1 μmol/l. The study has revealed some factors important for the inflammatory mechanisms mediated by melittin.

  4. Stimulatory effects of neuronally released norepinephrine on renin release in vitro

    International Nuclear Information System (INIS)

    Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10-6 M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renal denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd2+, Co2+, and Mn2+ blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in 3H efflux from the slices preloaded with [3H]-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of β-adrenoceptors

  5. Stimulatory effects of neuronally released norepinephrine on renin release in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yasuo; Kawazoe, Shinka; Ichihara, Toshio; Shinyama, Hiroshi; Kageyama, Masaaki; Morimoto, Shiro (Osaka Univ. of Pharmaceutical Sciences (Japan))

    1988-10-01

    Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10{sup {minus}6} M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renal denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd{sup 2+}, Co{sup 2+}, and Mn{sup 2+} blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in {sup 3}H efflux from the slices preloaded with ({sup 3}H)-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of {beta}-adrenoceptors.

  6. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  7. CALCIUM SOAP LUBRICANTS

    OpenAIRE

    Alaz, Izer; Tugce, Nefise; Devrim, Balköse

    2014-01-01

    The article studies the properties of calcium stearate (CaSt2) and lubricants produced on its basis. These lubricants were prepared using sodium stearate and calcium chloride by subsidence from aqueous solutions. The CaSt2 and the light fraction of crude oil were mixed together to obtain lubricating substances. The article shows that CaSt2 had the melting temperature of 142.8 C that is higher than the melting temperature of crude oil (128 C). The compositions of obtained lubricants were stu...

  8. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  9. Slow-Release Fertilizers For Plants

    Science.gov (United States)

    Ming, Douglas W.; Golden, D. C.

    1995-01-01

    Synthetic mineral provides growing plants with nutrients, including micronutrients. Dissolves slowly in moist soil or in hydroponic solution, releasing constituents. Mineral synthetic apatite into which nutrients calcium, phosphorous, iron, manganese, copper, zinc, molybdenum, chlorine, boron, and sulfur incorporated in form of various salts. Each pellet has homogeneous inorganic composition. Composition readily adjusted to meet precise needs of plant.

  10. Effects of ATP on calcium binding to synaptic plasma membrane

    International Nuclear Information System (INIS)

    The release of labeled norepinephrine from preloaded synaptosomes requires the presence of potassium and calcium. ATP-dependent binding of calcium to synaptic plasma membranes (SPM) may provide a means of maintaining the cation in a readily available pool for the triggering of transmitter release. A high Ca-binding capacity was demonstrated in SPM. The Km for calcium is 5.5 X 10(-5) M. The dependence of the system on the gamma phosphate of ATP was demonstrated by an increase in Ca-binding with increasing ATP concentration and by competitive inhibition of binding by ADP and AMP. Magnesium is also required for ATP-dependent Ca-binding. The optimum pH for the Ca binding was 7.0. Pretreatment of SPM with phospholipase A2 lowered the binding capacity. Sulfhydryl groups are also critical for ATP-dependent Ca binding to occur. A model for ATP-dependent Ca-binding was proposed

  11. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  12. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  13. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  14. A Novel Synthesis Method of Porous Calcium Silicate Hydrate Based on the Calcium Oxide/Polyethylene Glycol Composites

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2013-01-01

    Full Text Available This paper proposed a novel method to prepare porous calcium silicate hydrate (CSH based on the calcium oxide/polyethylene glycol (CaO/PEG2000 composites as the calcium materials. The porosity formation mechanism was revealed via X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, Brunauer-Emmett-Teller (BET, and Fourier transformed infrared spectroscopy (FT-IR. The reactivity of silica materials (SiO2 enhanced by increasing pH value. Ca2+ could not sustain release from CaO/PEG2000 and reacted with caused by silica to form CSH until the hydrothermal temperature reached to 170°C, avoiding the hardly dissolved intermediates formation efficiently. The as-prepared CSH, due to the large specific surface areas, exhibited excellent release capability of Ca2+ and OH−. This porous CSH has potential application in reducing the negative environmental effects of continual natural phosphate resource depletion.

  15. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  16. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  17. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and...... renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis....

  18. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  19. Effect of high calcium concentration influents on enhanced biological phosphorus removal process

    International Nuclear Information System (INIS)

    In this work, the effect of calcium concentration in wastewater on the polyphosphate accumulating organisms (PAO) is investigated as well as its influence in PAO metabolism, specifically in the YPO4 (ratio between phosphorus release and acetic acid uptake). For this study a sequencing batch reactor (SBR) anaerobic-aerobic was used, in which the PAO enriched biomass was exposed to different calcium concentrations in the influent wastewater. The results indicate that until a given calcium level in the influent wastewater (35 mg Ca/l) the metabolism is not affect, but higher calcium concentrations lead to significant YPO4 decline. (Author) 18 refs.

  20. Multiscale Modeling of Calcium Cycling in Cardiac Ventricular Myocyte: Macroscopic Consequences of Microscopic Dyadic Function

    OpenAIRE

    Gaur, Namit; Rudy, Yoram

    2011-01-01

    In cardiac ventricular myocytes, calcium (Ca) release occurs at distinct structures (dyads) along t-tubules, where L-type Ca channels (LCCs) appose sarcoplasmic reticulum (SR) Ca release channels (RyR2s). We developed a model of the cardiac ventricular myocyte that simulates local stochastic Ca release processes. At the local Ca release level, the model reproduces Ca spark properties. At the whole-cell level, the model reproduces the action potential, Ca currents, and Ca transients. Changes i...

  1. Visualization of Golgia apparatus as an intracellular calcium store by laser scanning confocal microscope

    Institute of Scientific and Technical Information of China (English)

    CUIJIE; YANLI; 等

    1995-01-01

    Using laser scanning confocal microscopy,we have found that the in cells loaded with fluo-3/AM,highest intracellular Ca2+ in the perinuclear region is associated with the Golgi apparatus.The spatiotemporal subcellular distribution of Ca2+ in living human fibroblasts exposing to calcium-free medium in response to agonists has been investigated.PDGF,which releases Ca2+ from intracellular stores by inositol(1,4,5)-trisphosphate pathway ,produced a biphasic transient rise in intracellular calcium.The initial rise was resulted from a direct release of calcium from the golgi apparatus.Calcium could be also released from and reaccumulated into the Golgi apparatus by the stimulation of thapsigargin,an inhibitor of the Ca2+ transport ATPase of intracellular calcium store,Permeablizing the plasma membrane by 10μM digitonin resulted in the calcium release from the Golgi apparatus and depletion of the internal calcium store.These results suggest that the Golgi apparatus plays a role in Ca2+ regulation in signal transduction.

  2. Renin release

    DEFF Research Database (Denmark)

    Schweda, Frank; Friis, Ulla; Wagner, Charlotte;

    2007-01-01

    The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located...

  3. Fruit Calcium: Transport and Physiology

    Science.gov (United States)

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  4. Fruit Calcium: Transport and Physiology.

    Science.gov (United States)

    Hocking, Bradleigh; Tyerman, Stephen D; Burton, Rachel A; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  5. Structural phase transitions and adduct release in calcium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Paolone, A.; Palumbo, O.; Rispoli, P.; Miriametro, A.; Cantelli, R.; Luedtke, A.; Rönnebro, E.; Chandra, D.

    2011-09-01

    Ca(BH4)2 compounds were investigated above room temperature by anelastic spectroscopy (AS) and concomitant measurements of thermogravimetry and mass spectrometry (TGA/MS). Both AS and TGA/MS indicate that even after a thermal treatment at 125 °C for 20 h, a non-negligible residual of THF adduct is still present in the sample, which can be removed on a subsequent thermal treatment at temperatures lower than 250 °C. Above 250 °C dehydrogenation takes place. Moreover, AS sensitively detects the occurrence of the α → α’ structural phase transition around 180 °C, and the α’ → β transformation, which is completed around 330 °C. Finally, we also show that both transitions are irreversible and are not accompanied by a latent heat.

  6. Calcium and calcitonin responses to calcium infusion in type I diabetes mellitus.

    OpenAIRE

    Amado, J. A.; C. Gomez; Obaya, S.; Otero, M; Gonzalez-Macias, J

    1987-01-01

    We studied calcium and calcium and calcitonin responses to intravenous calcium infusion (3 mg of elemental calcium/kg of body weight in 10 minutes) in 21 type I diabetic males and 17 age-matched normal males. Baseline total calcium, parathyroid hormone and calcitonin levels were normal in the diabetic group, but ionized calcium was lowered. Cortical bone status and osteocalcin levels were normal, suggesting a normal osteoblastic function. Total calcium and ionized calcium responses to calcium...

  7. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  8. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    Science.gov (United States)

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms. PMID:27537486

  9. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  10. Inhibition of basophil histamine release by gangliosides. Further studies on the significance of cell membrane sialic acid in the histamine release process

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Thastrup, Ole;

    1987-01-01

    Histamine release from human basophils was inhibited by preincubation of the cells with a glucolipid mixture containing sialic acid-containing gangliosides. This was true for histamine release induced by anti-IgE, Concanavalin A and the calcium ionophore A23187, whereas the release induced by S...

  11. Histamine release from cord blood basophils

    DEFF Research Database (Denmark)

    Nielsen, Bent Windelborg; Damsgaard, Tine Engberg; Herlin, Troels;

    1990-01-01

    The histamine release (HR) after challenge with anti-IgE, concanavalin A, N-formyl-met-leu-phe and the calcium ionophore A23187 from 97 cord blood samples was determined by a microfiber-based assay. Maximum HR with anti-IgE showed great inter-individual variation (median: 20.5; range: 1-104 ng...... stimulated by the calcium ionophore A 23187 was found to be highly dependent on the storage time of the EDTA-anticoagulated blood samples, which should be carefully controlled....

  12. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  13. Mechanical characterization of calcium pectinate hydrogel for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Chung Jin Thau

    2003-01-01

    Full Text Available Calcium pectinate beads, a paniculate hydrogel system, is an attractive drug carrier for oral delivery. In this study, a poorly water-soluble model drug indomethacin was incorporated into calcium pectinate beads made of different pectin concentrations, which were produced by an extrusion method. The effect of pectin concentration on bead size, circularity, swelling behavior, and mechanical properties, as well as in vitro drug release profile was investigated. The mechanical properties of calcium pectinate beads were determined by a micromanipulation technique. The drug release profile was measured using a standard British Pharmacopoeia method. It was found that the beads made of higher pectin concentration in general had a less permeable matrix structure and greater mechanical rigidity, although they swelled more after hydration. However, such an effect was not significant when the pectin concentration was increased to above 8%. Micromanipulation measurements showed that there was significant relaxation of the force being imposed on single hydrated beads when they were held, but this phenomenon did not occur on dry beads, which means that the force relaxation was dominated by liquid loss from the beads. The rate of the force relaxation was determined, and has been related to the release rate of the model drug entrapped in the calcium pectinate beads.

  14. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    International Nuclear Information System (INIS)

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: ► BSA-doped calcium carbonate microspheres with porous structure were prepared. ► Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. ► The release of encapsulated camptothecin is pH dependent ► In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  15. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    Science.gov (United States)

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%. PMID:26415430

  16. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Science.gov (United States)

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  17. Calcium and ER stress mediate hepatic apoptosis after burn injury

    Science.gov (United States)

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  18. Lipid body accumulation alters calcium signaling dynamics in immune cells

    Science.gov (United States)

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  19. Effect of ouabain, digoxin and digitoxigenin on potassium uptake and histamine release from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Knudsen, T; Ferjan, I; Johansen, Torben

    Rat peritoneal mast cells were used to study the effects of digitalis glycosides on potassium uptake and histamine release induced by compound 48/80, substance P and egg-albumin (immunological release). In the absence of calcium all glycosides inhibited potassium uptake. Ouabain and digoxin...... enhanced the histamine release while digitoxigenin either had no effect or was slightly inhibitory. In the presence of calcium, the glycosides only affected potassium uptake and histamine release slightly. In the presence of lithium or lanthanum the enhancement of the histamine release was counteracted....... Hydrophilic digitalis glycosides seem to enhance histamine release secondary to an increase in intracellular sodium. Lipophilic glycosides have no effect on the release....

  20. Calcium transport across the membrane of Paramecium caudatum (protozoa)

    International Nuclear Information System (INIS)

    Calcium transport across the membrane of Paramecium caudatum was studied by measuring calcium uptake and release by means of flow-through-technique, which was developed especially for this purpose. The method allows continuous flow of the cells suspension with radioactive and inactive solution, respectively, combined with simultaneous electrical stimulation of the cells by means of extracellular electrodes. The results obtained were compared to and interpreted according to behavioral patterns of Paramecium, which were registered by the time exposure dark-field macrophotographic technique under the same experimental conditions. (orig.)

  1. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  2. Reverse calcium affinity purification of Fab with calcium derivatized hydroxyapatite

    OpenAIRE

    Gagnon, Pete; Cheung, Chia-wei; Yazaki, Paul J.

    2009-01-01

    This study introduces the application of calcium-derivatized hydroxyapatite for purification of Fab. Fab binds to native hydroxyapatite but fails to bind to the calcium derivatized form. IgG, Fc, and most other protein contaminants bind to the calcium form. This supports Fab purification by a simple flow-through method that achieves greater than 95% purity from papain digests and mammalian cell culture supernatants. Alternatively, Fab can be concentrated on native hydroxyapatite then eluted s...

  3. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  4. Cellular calcium mobilization

    International Nuclear Information System (INIS)

    In vascular and other smooth muscles, occurrence of intracellular Ca stores which can be mobilized to support contraction may be a general phenomenon. The Ca stores are characterized by the requirement for release by high concentrations of agonists acting on plasma membrane receptors, by the failure of the released Ca2+ to recycle to the store, by the occurrence of rapid refilling of the store from the extracellular space, and by disappearance of the store when the plasma membrane is made leaky by saponin. In contrast to agonist-released Ca stores, those released by caffeine to support contraction in Ca2+-free solutions are more slowly lost and refilled, are not always emptied when the agonist-related store is emptied, and do not disappear after saponin treatment. Stores released by agonists have been suggested to be in the endoplasmic reticulum near the plasma membrane or at the inner aspect of the plasma membrane related to high affinity, pH-dependent Ca-binding sites. Caffeine-released stores are assumed to be in endoplasmic reticulum. Continued exposure of some tissues to Ca2+-free solutions unmasks what is considered to be a recycling Ca store releasable by agonists. Release of Ca2+ and its reaccumulation in this store appear to be slower than at the nonrecycling store. The contractions which persist for many hours in Ca2+-free solution are inhibited temporarily by Ca2+ restoration. Existence of a recycling store of releasable Ca2+ requires occurrence of mechanisms to abolish Ca2+ extrusion or leak-out of the cell and to ensure recycling to the same store

  5. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    International Nuclear Information System (INIS)

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle

  6. Investigating calcium polyphosphate addition to a conventional calcium phosphate cement for bone-interfacing applications

    Science.gov (United States)

    Krausher, Jennifer Lynn

    Calcium phosphate cements (CPCs) are of great interest in bone regeneration applications because of their biocompatibility and osteoconductivity, and as delivery vehicles for therapeutics; however, delivery applications have been limited by adverse interactions between therapeutics and the cement setting reaction. Amorphous calcium polyphosphate (CPP) yields a biodegradable material with a demonstrated drug delivery capacity following appropriate processing. The incorporation of drug-loaded CPP into a CPC is under consideration as a method of minimizing adverse interactions and extending drug release. This thesis represents the first investigation into the effects of CPP addition on the properties, setting and antibiotic release profile of a conventional apatitic calcium phosphate cement. As-made, gelled and vancomycin-loaded CPP particulate were added to the powder component of a conventional dicalcium phosphate/tetracalcium phosphate CPC. The setting behaviour, set properties and microstructure of the resulting CPP-CPCs were evaluated with setting time testing (Gilmore needle method), pH testing, mechanical testing, SEM imaging, XRD and FTIR analysis. In vitro degradation and elution behaviour were evaluated by monitoring calcium release (atomic absorbance spectroscopy), mechanical strength and vancomycin release (UV-visual spectrophotometry). CPP addition was found to increase the setting time, reduce the mechanical strength and inhibit the conversion of the CPC starting powders to the set apatitic phase. The most likely mechanism for the observed effect of CPP addition was the adsorption of polyphosphate chains on the particle surfaces, which would inhibit the dissolution of the starting powders and the conversion of apatite precursor phases to apatite, leading to reduced mechanical properties. The detrimental effects of CPP were reduced by limiting the CPP fraction to less than a few weight per cent and increasing the size of the CPP particulate. CPP

  7. Functional separation of deep cytoplasmic calcium from subplasmalemmal space calcium in cultured human uterine smooth muscle cells.

    Science.gov (United States)

    Young, Roger C; Zhang, PeiSheng

    2004-07-01

    For smooth muscle, two important functions of free intracellular calcium (Ca(2+)(i)) are modulation of plasma membrane excitability properties and modulation of the contractile apparatus. As proposed by van Breemen, Ca(2+)(i) can be divided into the subplasmalemmal space (Ca(2+)(sps)) and the deep cytosol (Ca(2+)(d)) by the superficial calcium buffer barrier. Using these distinctions, Ca(2+)(sps) activates the large conductance calcium-activated potassium channel (BK), and Ca(2+)(d) binds calcium-dependent fluorescent probes in the cytoplasm. We present here combined fluorescence-patch clamp experiments designed to simultaneously assess Ca(2+)(d) and Ca(2+)(sps) in cultured human uterine smooth muscle cells. Open probabilities (P(o)) of the BK channel were measured using the cell-attached patch clamp technique. P(o) was used to approximate changes of [Ca(2+)(sps)]. Relative concentrations of Ca(2+)(d) were approximated by observing fluorescence of Calcium green-1 (F). Under control conditions, we found similar time courses for rises of P(o) and F following 10nM oxytocin (OT) addition. In parallel experiments, but with lanthanum (La(3+)) added to the bath to block transmembrane calcium flux, P(o) was only slightly affected, but F increases were delayed and blunted. These data paradoxically indicate that following OT stimulation, the primary source of calcium for Ca(2+)(sps) is internal stores, and calcium entry from the extracellular space is required to raise Ca(2+)(d). When cells were exposed to cyclopiazonic acid (CPA) to release SR calcium stores, P(o) increased slowly, then persisted at large values. The persistence of P(o) rises suggests that removal of calcium from the subplasmalemmal space is primarily via reuptake into the SR. In the presence of La(3+), OT-induced rises of F were slightly prolonged, suggesting that transmembrane calcium flux contributes to decreasing Ca(2+)(d), but is not the primary mechanism. In summary, these data demonstrate that Ca(2

  8. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    Science.gov (United States)

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-01

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. PMID:27516284

  9. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    OpenAIRE

    Qiu, S M; Wen, G.; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline...

  10. Adsorption of Potassium and Calcium Ions by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    LIHONG-YAN; JIGUO-LIANG

    1992-01-01

    Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.

  11. Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil Column Method

    OpenAIRE

    Sulakhudin; Abdul Syukur; Dja’far Shiddieq; Triwibowo Yuwono

    2010-01-01

    Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil ColumnMethod (Sulakhudin, A Syukur, D Shiddieq and T Yuwono): In coastal sandy soil, mainly nitrogen losses due toleaching resulted to low fertilizer efficiency. Slow-release N fertilizers are proposed to minimize these losses, andhumic-calcium coated urea has been examined. A soil column method was used to compare the effects of coated ureawith humic-calcium on transformation and leaching los...

  12. Mefloquine-Induced Disruption of Calcium Homeostasis in Mammalian Cells Is Similar to That Induced by Ionomycin▿

    OpenAIRE

    Caridha, D.; Yourick, D.; Cabezas, M.; De Wolf, L.; Hudson, T. H.; Dow, G. S.

    2007-01-01

    In previous studies, we have shown that mefloquine disrupts calcium homeostasis in neurons by depletion of endoplasmic reticulum (ER) stores, followed by an influx of external calcium across the plasma membrane. In this study, we explore two hypotheses concerning the mechanism(s) of action of mefloquine. First, we investigated the possibility that mefloquine activates non-N-methyl-d-aspartic acid receptors and the inositol phosphate 3 (IP3) signaling cascade leading to ER calcium release. Sec...

  13. Methane release

    International Nuclear Information System (INIS)

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  14. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  15. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Moilanen, A.; Norby, P.; Papadakis, K.; Posselt, D.; Sørensen, L. H.

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...

  16. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  17. Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells.

    Science.gov (United States)

    García, Antonio G; Padín, Fernando; Fernández-Morales, José C; Maroto, Marcos; García-Sancho, Javier

    2012-01-01

    The concept of stimulus-secretion coupling was born from experiments performed in chromaffin cells 50 years ago. Stimulation of these cells with acetylcholine enhances calcium (Ca(2+)) entry and this generates a transient elevation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers the exocytotic release of catecholamines. The control of the [Ca(2+)](c) signal is complex and depends on various classes of plasmalemmal calcium channels, cytosolic calcium buffers, the uptake and release of Ca(2+) from cytoplasmic organelles, such as the endoplasmic reticulum, mitochondria, chromaffin vesicles and the nucleus, and Ca(2+) extrusion mechanisms, such as the plasma membrane Ca(2+)-stimulated ATPase, and the Na(+)/Ca(2+) exchanger. Computation of the rates of Ca(2+) fluxes between the different cell compartments support the proposal that the chromaffin cell has developed functional calcium tetrads formed by calcium channels, cytosolic calcium buffers, the endoplasmic reticulum, and mitochondria nearby the exocytotic plasmalemmal sites. These tetrads shape the Ca(2+) transients occurring during cell activation to regulate early and late steps of exocytosis, and the ensuing endocytotic responses. The different patterns of catecholamine secretion in response to stress may thus depend on such local [Ca(2+)](c) transients occurring at different cell compartments, and generated by redistribution and release of Ca(2+) by cytoplasmic organelles. In this manner, the calcium tetrads serve to couple the variable energy demands due to exo-endocytotic activities with energy production and protein synthesis. PMID:22209033

  18. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  19. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  20. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  1. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  2. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  3. Effects of rifampin-chitosan-calcium alginate sustained release microspheres in spinal tuberculosis models in rabbits%利福平-壳聚糖-海藻酸钙缓释微球在兔脊柱结核模型中的作用

    Institute of Scientific and Technical Information of China (English)

    尚博; 方继锋; 侯耀鹏; 李庆富; 王先泉

    2015-01-01

    目的 观察利福平-壳聚糖(CS)-海藻酸钙(CA)纳米缓释微球在体内外释药效果及对兔脊柱结核模型的治疗作用.方法 合成利福平-CS-CA纳米缓释微球,对该微球进行形态学观察和测定其分布.取新西兰大白兔60只,随机分为A、B、C3组,通过兔腰椎椎体钻孔植入结核标准菌株H37Rv,建立兔脊柱结核模型.A组为对照组,不予用药.B组每只兔灌喂利福平每天12 mg/kg;C组每只兔灌喂利福平12 mg/(kg·d),于第十腰椎旁给予缓释利福平微球(含利福平75 mg/kg),观察3组兔模型在体内的释药性质及抗结核的作用效果.结果 (1)利福平缓释微球表面光滑,球体均匀度好,无粘连现象.(2)利福平微球的载药量为(34.58±1.47)%,包封率为(56.23±1.55)%.(3)A组兔模型腰5、6椎体均有明显破坏,椎间隙变窄,1只出现明显后凸畸形.5只兔腰大肌肿胀,腰大肌内可见低密度暗区.B组兔模型中6只兔腰5椎体和腰6椎体有较明显破坏,2只兔腰大肌肿胀.C组中7只兔腰6椎体上部有轻度骨质破坏,腰5、6椎间隙无明显改变,另3只兔观察至术后12周仍无明显影像学改变.(4)体内实验结果显示,将利福平微球按含利福平75 mg/kg的剂量植入C组兔模型椎旁后,椎旁肌和椎体内利福平浓度可维持在结核菌最低抑菌浓度(MCI)以上,持续到术后49 d.结论 通过椎体钻孔植入结核菌的方法可以建立兔脊柱结核模型,利福平-CS-CA纳米缓释微球的控释化疗可增加椎旁局部药物浓度,有效抑制结核杆菌生长.%Objective To investigate the drug release effect of rifampin (RFP)-chitosan (CS)-calcium alginate (CA) sustained release microspheres (Ms) in vivo and in vitro in the treatment of spinal tuberculosis model in rabbits.Methods RFP-CS-CA nano microspheres were synthesized,and their morphology was observer,and distribution was determined.Sixty New Zealand rabbits were randomly divided into three groups.the rabbit lumbar

  4. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  5. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  6. Influence of nimodipine, verapamil and lanthanum on histamine release from human basophils

    DEFF Research Database (Denmark)

    Jensen, C B; Thastrup, Ole; Norn, S; Skov, P S

    1987-01-01

    Our previous studies suggest that the membrane content of sialic acid influences histamine release from human basophils by interfering with the transmembraneous calcium fluxes preceding histamine release. In this study we investigated a possible interaction between membrane sialic acid and the...... calcium channels, using the calcium antagonists nimodipine, verapamil and lanthanum. Anti-IgE-induced histamine release was inhibited by verapamil, nimodipine and lanthanum. When cells were pretreated with sialidase in order to remove sialic acid from the cell membrane, the inhibitory action of nimodipine...... was abolished, whereas the inhibition by verapamil or lanthanum was unaffected. This difference may be explained by the different mode of action of the calcium channel antagonists, and the results suggest an association between membrane sialic acid and the calcium channel....

  7. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  8. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  9. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa). Ouabain reversed JnetCa to an absorptive flux. Amiloride reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  10. An Improved Calcium Flame Test.

    Science.gov (United States)

    Pearson, Robert S.

    1985-01-01

    Indicates that the true red color of calcium can be obtained (using the procedure described by Sorm and Logowski) if the calcium ion solution is mixed with an equal volume of saturated ammonium bromide solution. Suggestions for flame tests of other elements are also noted. (JN)

  11. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  12. A novel hydrolytic product from flesh of Mactra veneriformis and its bioactivities in calcium supplement

    Science.gov (United States)

    Wang, Lingchong; Chen, Shiyong; Liu, Rui; Wu, Hao

    2012-09-01

    To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  13. A Novel Hydrolytic Product from Flesh of Mactra veneriformis and Its Bioactivities in Calcium Supplement

    Institute of Scientific and Technical Information of China (English)

    WANG Lingchong; CHEN Shiyong; LIU Rui; WU Hao

    2012-01-01

    To prepare calcium-binding peptides,the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis.By comparing the capability of combining calcium of the hydrolyzates,pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases.The pepsin hydrolyzate(PHM)was divided into three fractions according to the molecule weight of its composition,which ranged from 0.5 to 15 kDa.The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium.The peptides existing in the PHM-3fraction consisted of higher contents of Glu,Ala and Leu,and could produce one type of calcium-peptide complex by powerfully chelating calcium ions.PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests.Additionally,symptoms caused by low calcium bioavailability in ovariectomized rats,such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  14. Role of Calcium Signaling in B Cell Activation and Biology.

    Science.gov (United States)

    Baba, Yoshihiro; Kurosaki, Tomohiro

    2016-01-01

    Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases. PMID:26369772

  15. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    Energy Technology Data Exchange (ETDEWEB)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We show here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.

  16. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

  17. Identification of calmodulin released by osmotic shock of maize roots

    International Nuclear Information System (INIS)

    Exogenously applied calcium at low concentrations (10 mM and less) stimulates, while higher concentrations (greater than 20 mM) inhibit maize root growth. The phenothiazine calmodulin inhibitors chlorpromazine and trifluoperzine inhibit maize root growth and are reversible by calcium. The loss of acid-inducible growth after osmotic shock indicates that at least part of the complex associated the acid-induced growth is released. Since calmodulin (CaM) is a small protein (mol wt about 17 kD) found to play a pivotal role in Ca+2 regulated mechanisms, the material released from maize roots by osmotic shock was examined for the presence of CaM

  18. Intramuscular calcium movements: Experiments from the Soviet Biosatellite Biocosmos

    Science.gov (United States)

    Goblet, C.; Holy, X.; Mounier, Y.

    Experiments have been performed in skeletal muscle fibres from the lateral head of gastrocnemius muscle of female rats. Changes in intramuscular calcium movements due to microgravity conditions have been tested by tension measurements in chemically skinned muscle fibres. Our results show that microgravity induces i) a decrease in maximal muscle strength developped by contractile proteins ii) a decrease of intensity and rate of both Ca release and Ca uptake by the sarcoplasmic reticulum.

  19. Calcium-sensing receptor activation depresses synaptic transmission

    OpenAIRE

    Phillips, Cecilia G.; Harnett, Mark T.; Chen, Wenyan; Smith, Stephen M.

    2008-01-01

    At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca]o) and thus may impair neurotransmission. Increases in [Ca]o activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits non-selective cation channels (NSCC) at the maj...

  20. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    International Nuclear Information System (INIS)

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction

  1. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  2. Multiple characterization study on porosity and pore structure of calcium phosphate cements

    OpenAIRE

    Pastorino Carraz, David; Canal Barnils, Cristina; Ginebra Molins, Maria Pau

    2015-01-01

    Characterization of the intricate pore structure of calcium phosphate cements is a key step to successfully link the structural properties of these synthetic bone grafts with their most relevant properties, such as in vitro or in vivo behaviour, drug loading and release properties, or degradation over time. This is a challenging task due to the wide range of pore sizes in calcium phosphate cements, compared to most other ceramic biomaterials. This work provides a critical assessment of three ...

  3. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  4. Evaluation of Gum of Moringa oleifera as a Binder and Release Retardant in Tablet Formulation

    OpenAIRE

    Panda, D. S.; Choudhury, N. S. K.; Yedukondalu, M.; S. Si; Gupta, R.

    2008-01-01

    The present study was undertaken to find out the potential of gum from Moringa oleifera to act as a binder and release retardant in tablet formulations. The effect of calcium sulphate dihydrate (water insoluble) and lactose (water soluble) diluent on the release of propranolol hydrochloride was studied. The DSC thermograms of drug, gum and mixture of gum/drug indicated no chemical interaction. Tablets (F1, F2, F3, and F4) were prepared containing calcium sulphate dihydrate as diluent, propran...

  5. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    Science.gov (United States)

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  6. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    Science.gov (United States)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  7. Antibodies against the calcium-binding protein

    International Nuclear Information System (INIS)

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca2+ within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind 45Ca2+ and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein

  8. Induction of tryptase and histmine release from human colon mast cells by IgE dependent or independent mechanisms

    Institute of Scientific and Technical Information of China (English)

    Shao-Heng He; Hua Xie; Yong-Song He

    2004-01-01

    AIM: To investigate the tryptase and histamine release ability of human colon mast cells upon IgE dependent or independent activation and the potential mechanisms.METHODS: Enzymatically dispersed cells from human colons were challenged with anti-IgE or calcium ionophore A23187, and the cell supernatants after challenge were collected. Both concentration dependent and time course studies with anti-IgE or calcium ionophore A23187 were performed. Tryptase release was determined with a sandwich ELISA procedure and histamine release was measured usina a glass fibre-based fluorometric assay.RESULTS: Both anti-IgE and calcium ionophore were able to induce dose dependent release of histamine from colon mast cells with up to approximately 60% and 25% net histamine release being achieved with 1 μg/mL calcium ionophore and 10 μg/mL anti-IgE, respectively. Dose dependent release of tryptase was also observed with up to approximately 19 ng/mL and 21 ng/mL release of tryptase being achieved with 10 μg/mL anti-IgE and 1 μg/mL calcium ionophore, respectively. Time course study revealed that both tryptase and histamine release from colon mast cells stimulated by anti-IgE initiated within 10 sec and reached their maximum release at 6 min following challenge. Pretreatment of cells with metabolic inhibitors abolished the actions of anti-IgE as well as calcium ionophore. Tryptase and histamine release, particularly that induced by calcium ionophore was inhibited by pretreatment of cells with pertussis toxin.CONCLUSION: Both anti-IgE and calcium ionophore are able to induce significant release of tryptase and histamine from colon mast cells, indicating that this cell type is likely to contribute to the pathogenesis of colitis and other mast cell associated intestinal diseases.

  9. Role of connectivity and fluctuations in the nucleation of calcium waves in cardiac cells

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Alvarez-Lacalle, Enric; Shiferaw, Yohannes

    2015-11-01

    Spontaneous calcium release (SCR) occurs when ion channel fluctuations lead to the nucleation of calcium waves in cardiac cells. This phenomenon is important since it has been implicated as a cause of various cardiac arrhythmias. However, to date, it is not understood what determines the timing and location of spontaneous calcium waves within cells. Here, we analyze a simplified model of SCR in which calcium release is modeled as a stochastic processes on a two-dimensional network of randomly distributed sites. Using this model we identify the essential parameters describing the system and compute the phase diagram. In particular, we identify a critical line which separates pinned and propagating fronts, and show that above this line wave nucleation is governed by fluctuations and the spatial connectivity of calcium release units. Using a mean-field analysis we show that the sites of wave nucleation are predicted by localized eigenvectors of a matrix representing the network connectivity of release sites. This result provides insight on the interplay between connectivity and fluctuations in the genesis of SCR in cardiac myocytes.

  10. Skeletal muscle sarcolemma in malignant hyperthermia: evidence for a defect in calcium regulation.

    Science.gov (United States)

    Mickelson, J R; Ross, J A; Hyslop, R J; Gallant, E M; Louis, C F

    1987-03-12

    Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may

  11. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  12. Inhibitory effect of the CA2+ antagonist nifedipine on histamine release from rat peritoneal mast cells.

    Directory of Open Access Journals (Sweden)

    Tanizaki,Yoshiro

    1983-06-01

    Full Text Available 45Ca uptake and histamine release was examined in mast cells from rats sensitized with ovalbumin and Bordetella Bertussis as an adjuvant. The uptake of 45Ca by the mast cells was significantly increased by stimulation with ovalbumin as was the release of histamine from the mast cells. Nifedipine, a calcium antagonist, inhibited the increase in both 45Ca uptake and histamine release stimulated by ovalbumin, though the effect on 45Ca uptake was stronger than that on histamine release.

  13. Inhibitory effect of the CA2+ antagonist nifedipine on histamine release from rat peritoneal mast cells.

    OpenAIRE

    Tanizaki,Yoshiro; Komagoe,Haruki; Sudo,Michiyasu; Ohtani,Jun; Kimura,Ikuro; Akagi,Katsumi; Townley, Robert G.

    1983-01-01

    45Ca uptake and histamine release was examined in mast cells from rats sensitized with ovalbumin and Bordetella Bertussis as an adjuvant. The uptake of 45Ca by the mast cells was significantly increased by stimulation with ovalbumin as was the release of histamine from the mast cells. Nifedipine, a calcium antagonist, inhibited the increase in both 45Ca uptake and histamine release stimulated by ovalbumin, though the effect on 45Ca uptake was stronger than that on histamine release.

  14. A minimalist model of calcium-voltage coupling in GnRH cells

    International Nuclear Information System (INIS)

    We present a minimalist model to describe the interplay between burst firing and calcium dynamics in Gonadotropin-releasing hormone (GnRH) cells. This model attempts to give a qualitative representation of Duan's model [3], and it comprises two FithzHugh-Nagumo (FHN) coupled systems describing the dynamics of the membrane potential and calcium concentration in the GnRH cells. Within the framework of our minimalist model, we find that the calcium subsystem drives burst firing by making the voltage subsystem to undergo a Hopf bifurcation. Specifically, fast relaxation oscillations occur in a specific region of the c-z plane (c being the calcium concentration, and z a calcium-dependent gating variable). Slow calcium oscillations, instead, are carried by the voltage subsystem by successive shifts of the calcium steady state, and have the net effect of an external perturbation. The full comprehension of the phase-plane of the voltage subsystem and the 3-dimensional phase-space of the calcium subsystem ultimately allows us to study the behaviours of the entire model under the change of certain parameters. Those special parameters do not necessarily follow realistic assumptions, but merely intend to mimic some pharmacological tests which have been performed experimentally and also simulated by Duan's model under the corresponding physiological considerations.

  15. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu

    2005-01-01

    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  16. Endolymphatic calcium supply for fish otolith growth takes place via the proximal portion of the otocyst.

    Science.gov (United States)

    Ibsch, M; Anken, R; Beier, M; Rahmann, H

    2004-09-01

    The presence of calcium within the utricle of larval cichlid fish Oreochromis mossambicus was analysed by means of energy-filtering transmission electron microscopy. Electron-spectroscopic imaging and electron energy loss spectra revealed discrete calcium precipitations that were more numerous in the proximal endolymph than in the distal endolymph, clearly indicating a decreasing proximo-distal gradient. This decreasing proximo-distal gradient was also present within the proximal endolymph between the sensory epithelium and the otolith. Further calcium particles covered the peripheral proteinaceous layer of the otolith. They were especially pronounced at the proximal surface of the otolith indicating that otolithic calcium incorporation takes place here. Other calcium precipitates accumulated at the macular junctions clearly supporting an earlier assumption according to which the endolymph is supplied with calcium via a paracellular pathway. The present results clearly show that the apical region of the macular epithelium is involved in the release of calcium and that the calcium supply of the otoliths takes place via the proximal endolymph. PMID:15300493

  17. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy.

    Science.gov (United States)

    Chandra, Subhash

    2005-09-01

    Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol

  18. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten;

    2014-01-01

    homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m......Ab. This antibody was characterized by binding to CL-LK at hypo- and physiological calcium concentrations and dissociated from CK-LK at hyperphysiological concentrations of calcium. We purified CL-LK from plasma to a purity of 41% and a yield of 38%, resulting in a purification factor of more than 88......,000 in a single step. To evaluate the efficiency of this new purification scheme, we purified CL-LK using the same calcium-sensitive mAb in combination with acidic elution buffer and by using calcium-dependent anti-CL-K1 mAbs in combination with EDTA elution buffer. We found that calcium...

  19. Dihydropyridines as inhibitors of capacitative calcium entry in leukemic HL-60 cells

    Science.gov (United States)

    Harper, Jacquie L.; Camerini-Otero, Carol S.; Li, An-Hu; Kim, Soon-Ai; Jacobson, Kenneth A.; Daly, John W.

    2016-01-01

    A series of 1,4-dihydropyridines (DHPs) were investigated as inhibitors of capacitative calcium influx through store-operated calcium (SOC) channels. Such channels activate after ATP-elicited release of inositol trisphosphate (IP3)-sensitive calcium stores in leukemia HL-60 cells. The most potent DHPs were those containing a 4-phenyl group with an electron-withdrawing substituent, such as m- or p-nitro- or m-trifluoromethyl (IC50 values: 3–6 μM). Benzyl esters, corresponding to the usual ethyl/methyl esters of the DHPs developed as L-type calcium channel blockers, retained potency at SOC channels, as did N-substituted DHPs. N-Methylation reduced by orders of magnitude the potency at L-type channels resulting in DHPs nearly equipotent at SOC and L-type channels. DHPs with N-ethyl, N-allyl, and N-propargyl groups also had similar potencies at SOC and L-type channels. Replacement of the usual 6-methyl group of DHPs with larger groups, such as cyclobutyl or phenyl, eliminated activity at the SOC channels; such DHPs instead elicited formation of inositol phosphates and release of IP3-sensitive calcium stores. Other DHPs also caused a release of calcium stores, but usually at significantly higher concentrations than those required for the inhibition of capacitative calcium influx. Certain DHPs appeared to cause an incomplete blockade of SOC channel-dependent elevations of calcium, suggesting the presence of more than one class of such channels in HL-60 cells. N-Methylnitrendipine (IC50 2.6 μM, MRS 1844) and N-propargylnifrendipine (IC50 1.7 μM, MRS 1845) represent possible lead compounds for the development of selective SOC channel inhibitors. PMID:12527326

  20. [Roles of intracellular calcium and monomeric G-proteins in regulating exocytosis of human neutrophils].

    Science.gov (United States)

    Zhu, Ying; Wang, Jun-Han; Wu, Jian-Min; Xu, Tao; Zhang, Chun-Guang

    2003-12-25

    Neutrophils play a major role in host defense against microbial infection. There are some clues indicate that neutrophils may also play a role in the pathophysiology of the airway obstruction in chronic asthma. We studied the roles of intracellular calcium and GTP gamma S in the regulation of neutrophils exocytosis using pipette perfusion and membrane capacitance measurement technique in whole cell patch clamp configuration. The results showed that the membrane capacitance increase induced by calcium revealed a biphasic process. The first phase occurred when the calcium level was between 0.2-14 micromol/L with a plateau amplitude of 1.23 pF and a calcium EC50 of 1.1 micromol/L. This phase might correspond to the release of the tertiary granules. The second phase occurred when the calcium concentration was between 20-70 micromol/L with a plateau increment of 6.36 pF, the calcium EC50 being about 33 micromol/L. This phase might represent the release of the primary and secondary granules. Intracellular calcium also simultaneously increased the exocytotic rate and the eventual extent in neutrophils. On the other hand, GTP gamma S can increase the exocytotic rate in a dose-dependent manner but had no effect on the eventual extent of membrane capacitance increment (>6 pF) if the cell was stimulated for a long period (>20 min). GTP gamma S (ranging from 20 to 100 micromol/L) induced the neutrophils to release all four types of the granules at very low intracellular calcium level. PMID:14695488

  1. Arg-Phe-amide-related peptides influence gonadotropin-releasing hormone neurons

    Institute of Scientific and Technical Information of China (English)

    Haluk Kelestimur; Emine Kacar; Aysegul Uzun; Mete Ozcan; Selim Kutlu

    2013-01-01

    The hypothalamic Arg-Phe-amide-related peptides, gonadotropin-inhibitory hormone and orthologous mammalian peptides of Arg-Phe-amide, may be important regulators of the hypothalamus-pituitary-gonadal reproductive axis. These peptides may modulate the effects of kisspeptins because they are presently recognized as the most potent activators of the hypothalamus-pituitary-gonadal axis. However, their effects on gonadotropin-releasing hormone neurons have not been investigated. In the current study, the GT1–7 cell line-expressing gonadotropin-releasing hormone was used as a model to explore the effects of Arg-Phe- amide-related peptides on kisspeptin activation. Intracellular calcium concentration was quantified using the calcium-sensitive dye, fura-2 acetoxymethyl ester. Gonadotropin-releasing hormone released into the medium was detected via enzyme-linked immunosorbent assay. Results showed that 100 nmol/L kisspeptin-10 significantly increased gonadotropin-releasing hormone levels (at 120 minutes of exposure) and intracellular calcium concentrations. Co-treatment of kisspeptin with 1 μmol/L gonadotropin-inhibitory hormone or 1 μmol/L Arg-Phe-amide-related peptide-1 significantly attenuated levels of kisspeptin-induced gonadotropin-releasing hormone but did not affect kisspeptin-induced elevations of intracellular calcium concentration. Overall, the results suggest that gonadotropin-inhibitory hormone and Arg-Phe-amide-related peptide-1 may have inhibitory effects on kisspeptin-activated gonadotropin-releasing hormone neurons independent of the calcium signaling pathway.

  2. FORMULATION AND EVALUATION OF SOLID DISPERSION OF ATORVASTATIN CALCIUM

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    2013-08-01

    Full Text Available The present study was designed to improve the solubility and hence enhance the dissolution of hydrophobic drug Atorvastatin calcium (ATC in order to increase its bioavailability. Solid dispersion of atorvastatin calcium using carrier PEG 4000 was formulated in different ratios by conventional fusion and microwave induced fusion method. In particular, the Microwave technology has been considered in order to prepare an enhanced release dosage form for poorly water soluble drug ATC. Their physicochemical characteristics and dissolution properties were compared to the corresponding dispersions and pure drug. Three different formulations were prepared using Conventional fusion method and Microwave induced fusion method in different ratios i.e., 1:1, 1:2, 1:3 and 1:1, 1:2, 1:3 respectively, were further characterized by FTIR, DSC and SEM analysis. The results of FTIR revealed that no chemical interaction between the drug and the polymer exist. DSC studies showed that the drug was in amorphous state completely entrapped by the polymer. SEM studies showed the surface morphology of the solid dispersion. All the formulations showed a marked increase in drug release with the increase in the concentration of PEG 4000 when tested for their in vitro studies. Formulation T5 showed the best release with a cumulative release of 86.15 % in 30 minutes, when compared to the pure drug and marketed formulation. The microwave assisted method was found to be better than conventional fusion method for preparation of solid dispersion.

  3. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    International Nuclear Information System (INIS)

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca2+]i) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca2+]i overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca2+]i overload can be prevented by lithium treatment. [Ca2+]i and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P 2+]i (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P 2+]i response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P 2+]i. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca2+]i increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca2+]i overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca2+-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to

  4. Effect of Preharvest Calcium Treatments on Sweet Cherry Fruit Quality

    OpenAIRE

    Deniz EROGUL

    2014-01-01

    In this study, the effects of different foliar calcium compounds on fruit cracking and quality of sweet cherry variety ‘0900 Ziraat’ were investigated. Calcium caseinate, calcium chloride, calcium hydroxide and calcium nitrate were used as foliar sprays. Calcium applications reduced the cracking index 38% to 66% compared to cherries that did not receive foliar treatment. The most efficient applications for decreasing cracking were calcium hydroxide and calcium chloride. Calcium chloride and c...

  5. Effects of gastrin on calcium homeostasis in chickens

    International Nuclear Information System (INIS)

    As in the rat, gastrin and an extract of the acid-producing part of the stomach (proventriculus) were found to lower the blood Ca2+ concentration in the chicken. Furthermore, gastrin enhanced the uptake of 45Ca into the femur. It has been suggested previously that gastrin causes hypocalcemia in the rat by releasing gastrocalcin, a hypothetical hormone thought to reside in the acid-producing part of the stomach. The results of the present study in the chicken are in agreement with this concept. Not only exogenous, but also endogenous gastrin lowered blood calcium levels. Thus, the serum gastrin concentration was increased in response to ranitidine-evoked blockade of the gastric acid output; the rise in gastrin was associated with a transient drop in blood calcium. Also, food intake produced a rise in the serum gastrin concentration and a transient drop in blood calcium. However, injection of ranitidine or food intake in proventriclectomized (acid-producing part of the stomach extirpated) chickens failed to lower blood calcium, supporting the view that the gastrin-evoked hypocalcemia depends upon an agent in the gastric (proventriculus) mucosa. The authors suggest that endogenous and exogenous gastrin evoke hypocalcemia in the chicken by the same mechanism as that which has been postulated in the rat, i.e. by mobilization of the candidate hormone gastrocalcin from endocrine cells in the acid-producing gastric mucosa

  6. Buffer regulation of calcium puff sequences

    International Nuclear Information System (INIS)

    Puffs are localized Ca2+ signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2+ from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2+ provides a mechanism that enriches the spatio–temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2+ signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2+ channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2+ buffer can increase the average number of channels that participate of a puff. (paper)

  7. News/Press Releases

    Data.gov (United States)

    Office of Personnel Management — A press release, news release, media release, press statement is written communication directed at members of the news media for the purpose of announcing programs...

  8. Aging and calcium as an environmental factor.

    Science.gov (United States)

    Fujita, T

    1985-12-01

    Calcium deficiency is a constant menace to land-abiding animals, including mammals. Humans enjoying exceptional longevity on earth are especially susceptible to calcium deficiency in old age. Low calcium and vitamin D intake, short solar exposure, decreased intestinal absorption, and falling renal function with insufficient 1,25(OH)2 vitamin D biosynthesis all contribute to calcium deficiency, secondary hyperparathyroidism, bone loss and possibly calcium shift from the bone to soft tissue, and from the extracellular to the intracellular compartment, blunting the sharp concentration gap between these compartments. The consequences of calcium deficiency might thus include not only osteoporosis, but also arteriosclerosis and hypertension due to the increase of calcium in the vascular wall, amyotrophic lateral sclerosis and senile dementia due to calcium deposition in the central nervous system, and a decrease in cellular function, because of blunting of the difference in extracellular-intracellular calcium, leading to diabetes mellitus, immune deficiency and others (Fig. 6). PMID:2943880

  9. Transport of Calcium Ions into Mitochondria.

    Science.gov (United States)

    Xu, Zhaolong; Zhang, Dayong; He, Xiaolan; Huang, Yihong; Shao, Hongbo

    2016-06-01

    To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria. PMID:27252588

  10. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  11. Isomorfic Substitutions of Calcium by Strontium in Calcium Hydroxyapatite

    International Nuclear Information System (INIS)

    By means of homogeneous precipitation it has been possible to synthesize crystalline solid solutions of calcium strontium hydroxyapatite from aqueous solutions. The lattice constants for the solid solutions were measured in the range Ca9Sr(PO4)6(OH)2 - CaSr9(PO4)6(OH)2. The investigations show that the discrimination of strontium against calcium is considerably smaller than reported elsewhere (1). Strontium is preferentially built into the c-axis direction of the apatite lattice

  12. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    OpenAIRE

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intes...

  13. Differential regulation of calcium signalling pathways by components of Piper methysticum (‘Awa)

    Science.gov (United States)

    Shimoda, L.M.N; Showman, A.; Baker, J.D.; Lange, I.; Koomoa, D.L.; Stokes, A.J.; Borris, R.P.; Turner, H.

    2015-01-01

    Kava is a soporific, anxiolytic and relaxant in widespread ritual and recreational use throughout the Pacific. Traditional uses of kava by indigenous Pacific Island peoples reflect a complex pharmacopeia, centered on GABA-ergic effects of the well-characterized kavalactones. However, peripheral effects of kava suggest active components other than the CNS-targeted kavalactones. We have previously shown that immunocytes exhibit calcium mobilization in response to traditionally-prepared kava extracts, and that the kavalactones do not induce these calcium responses. Here, we characterize the complex calcium-mobilizing activity of traditionally-prepared and partially HPLC-purified kava extracts, noting induction of both calcium entry and store release pathways. Kava components activate intracellular store depletion of thapsigargin-sensitive and –insensitive stores that are coupled to the calcium release activated (CRAC) current, and cause calcium entry through non-store-operated pathways. Together with the pepper-like potency reported by kava users, these studies lead us to hypothesize that kava extracts contain one or more ligands for the transient receptor potential (TRP) family of ion channels. Indeed, TRP-like conductances are observed in kava-treated cells under patch clamp. Thus TRP-mediated cellular effects may be responsible for some of the reported pharmacology of kava. PMID:25640812

  14. Visualizing Presynaptic Calcium Dynamics and Vesicle Fusion with a Single Genetically Encoded Reporter at Individual Synapses.

    Science.gov (United States)

    Jackson, Rachel E; Burrone, Juan

    2016-01-01

    Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs) that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses. PMID:27507942

  15. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23.

    Directory of Open Access Journals (Sweden)

    Jens P Weber

    Full Text Available Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs. Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7 mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative syt∶SNARE combinations driving release with different kinetics and fidelity.

  16. Calcium phosphate in catheter encrustation.

    Science.gov (United States)

    Cox, A J; Harries, J E; Hukins, D W; Kennedy, A P; Sutton, T M

    1987-02-01

    Encrusted catheters from nine female patients were the source of samples of deposits which were examined by X-ray diffraction, atomic absorption spectroscopy, infra-red spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. In eight samples the only crystalline phase which could be clearly distinguished by X-ray diffraction was ammonium magnesium orthophosphate hexahydrate, NH4MgPO4 X 6H2O, which occurs naturally as the mineral struvite. However, atomic absorption spectroscopy revealed an appreciable concentration of calcium in all samples. Calcium phosphates have previously been detected in catheter deposits. Infra-red and EXAFS spectra were consistent with the calcium phosphate being present as a poorly crystalline hydroxyapatite. Thus the deposits appear to consist of a mixture of crystalline struvite and a form of hydroxyapatite which is not fully crystalline. PMID:3030487

  17. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  18. A Quantitative Model of Purinergic Junctional Transmission of Calcium Waves in Astrocyte Networks

    OpenAIRE

    Bennett, M. R.; Farnell, L; Gibson, W G

    2005-01-01

    A principal means of transmitting intracellular calcium (Ca2+) waves at junctions between astrocytes involves the release of the chemical transmitter adenosine triphosphate (ATP). A model of this process is presented in which activation of purinergic P2Y receptors by ATP triggers the release of ATP, in an autocrine manner, as well as concomitantly increasing intracellular Ca2+. The dependence of the temporal characteristics of the Ca2+ wave are shown to critically depend on the dissociation c...

  19. Irreversible effects of calcium ions on the plasma membrane calcium pump.

    Science.gov (United States)

    Ward, D G; Walton, T J; Cavieres, J D

    1993-12-01

    The calcium pump of human red cells can be irreversibly activated by preincubation of the membranes in the presence of calcium ions, with a pattern reminiscent of that produced by controlled trypsin attack. With 1 mM Ca2+, the activity of the basal enzyme increases three to fourfold over 30 to 60 min, to levels about half those obtained in the presence of calmodulin. On the whole, the effect occurs slowly, with a very low Ca2+ affinity at 37 degrees C and is unaffected by serine-protease inhibitors. The activation caused by 1 mM Ca2+ is little affected by leupeptin (a thiol-protease inhibitor) and that obtained at 10 microM Ca2+ is not inhibited. Preincubations at 0 degrees C also lead to activation, to a level up to half that seen at 37 degrees C, and the effect is not affected by leupeptin or antipain. No activation is observed by preincubating soluble purified Ca,Mg-ATPase in Ca(2+)-containing solutions at 37 degrees C. Instead, calcium ions protect the detergent-solubilized enzyme from thermal inactivation, the effect being half-maximal between 10 and 20 microM Ca2+. We conclude that the activation of the membrane-bound Ca,Mg-ATPase by Ca2+ should result from an irreversible conformational change in the enzyme and not from attack by a membrane-bound protease, and that this change presumably arises from the release of inhibitory particles existing in the original membrane preparations. PMID:8114081

  20. Tumoral calcium pyrophosphate deposition disease

    International Nuclear Information System (INIS)

    A report of two patients in which a soft tissue mass, initially regarded as a malignant tumor, was shown to be the result of calcium pyrophosphate deposition disease. The first case, a woman aged 71 years, presented with a mass involving the right fifth finger. In the second case, also a women aged 71 years, the lesion involved the tissues adjacent to the right hip. Each lesion consisted of a mass of highly cellular tissue containing deposits of calcium pyrophosphate dihydrate crystals. The clinical, radiological, and pathological features of the two cases are compared with those of seven similar cases reported in the literature. (orig.)

  1. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, J., E-mail: hujin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ding, Z.K.; Wang, C. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  2. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Bjerrum, Poul J; Jessen, Torben E;

    2011-01-01

    BACKGROUND The vitamin D receptor (VDR) is expressed in human spermatozoa, and VDR-knockout mice and vitamin D (VD) deficiency in rodents results in impaired fertility, low sperm counts and a low number of motile spermatozoa. We investigated the role of activated VD (1,25(OH)(2)D(3)) in human......M). 1,25(OH)(2)D(3) increased intracellular calcium concentration in human spermatozoa through VDR-mediated calcium release from an intracellular calcium storage, increased sperm motility and induced the acrosome reaction in vitro. CONCLUSIONS 1,25(OH)(2)D(3) increased intracellular calcium...... concentration, sperm motility and induced the acrosome reaction in mature spermatozoa, and VD serum levels were positively associated with sperm motility, suggesting a role for VD in human sperm function....

  3. Ca2+ signals induced from calcium stores in pancreatic islet β cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In single rat pancreatic β cells,using fura-2 microfluorometry to measure [Ca2+]i response upon different stimuli,the ways of calcium regulation have been studied.When the extracellular calcium concentration was 2.5 mmol/L,either 60 mmol/L KCl,20 mmol/L D-glucose or 0.1 mmol/L tolbutamide induced increase in [Ca2+]i.Such increase in [Ca2+]i was absent when the same stimuli were applied under zero extracellular calcium.These results indicate that the increase of [Ca2+]i is induced by the activation of voltage-dependent calcium channels in β cells.The manifold forms of [Ca2+]i change induced by glucose imply that the effects of glucose are complex.5 mmol/L caffeine or 5 mmol/L MCh increase the [Ca2+]i ,which is independent of the external calcium,suggesting that [Ca2+]i can be regulated by Ca2+ release from not only the IP3-sensitive but also the ryanodine sensitive calcium stores in β cells.The latency of Ca responses for IP3 pathway (5 s) is faster than that for ryanodine pathway (30 s).It is concluded that there are multiple calcium stores in rat pancreatic β cells.

  4. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats

    Science.gov (United States)

    Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D. A.; Hatton, D.

    1997-01-01

    Spontaneously hypertensive rats (SHR) are known to be blood pressure sensitive to dietary calcium. The effects of dietary calcium on platelet aggregation and intracellular Ca2+ mobilization were assessed by turbidimetric methods and fura-2 methods, respectively, in washed platelets of SHR. Ca2+ ATPase activity was examined in aortic membrane fractions. Six weeks of dietary calcium supplementation attenuated the increase of systolic blood pressure (SBP 199 +/- 16 v 170 +/- 9 mm Hg, P ionomycin-induced intracellular calcium ([Ca2+]i) peak in the absence of external Ca2+, which reflects [Ca2+]i storage size, and thrombin-evoked [Ca2+]i release from [Ca2+]i storage were decreased by 2.0% Ca diet (472 +/- 55 v 370 +/- 23 nmol/L, P ionomycin-induced [Ca2+]i (r = 0.591, P = .0415), respectively. However, there was no significant effect of dietary calcium on Ca2+-ATPase activity in aortic membranes. These results suggest that dietary calcium supplementation had a beneficial effect on platelets of SHR by attenuating [Ca2+]i mobilization from [Ca2+]i storage. The hypotensive effect of dietary calcium might be associated with attenuated [Ca2+]i mobilization in SHR.

  5. Physiological responses of osteoblasts to cyclic stretching and the change of intracellular calcium concentration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The development of bone tissues is regulated by mechanical stimulation. Cyclic stretching was applied to the osteoblasts that were delivered from rat calvarie. The results showed that stretching at 500 με increased the cell proliferation while loading at 1000 με and 1500 με inhabited cell growth. Loading alsoincreased the adhesive force between cells and substrate as well as spreading areas of osteobalsts. Furthermore, the fluorescence probe Fluo-3/AM was used to investigate the effect of stretching stimulation on the intracellular calcium concentration of osteoblasts. The intracellular calcium concentration of osteoblasts that were stretched at 500 με for 5 min was 92.9% higher than the control. After being treated with the panax ontoginseng saponins, the stretched osteoblasts still expressed 28.6% higher intracellular calcium concentration than that of the control, which proved that both the influx of extracellular calcium and the release of intracellular calcium store were involved in the increase of intracellular calcium concentration when osteoblasts responded to the cyclic stretching. And the influx of extracellular calcium through transmembrance channel played a main role.

  6. Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers

    OpenAIRE

    Baylor, Stephen M.; Hollingworth, Stephen

    2012-01-01

    In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller.

  7. Substance P release from rat hypothalamus and spinal cord

    International Nuclear Information System (INIS)

    A specific and sensitive radioimmunoassay for substance P has been developed to study the release of immunoreactive substance P from incubated rat hypothalamus and rat spinal cord in vitro. Release was significantly increased in the presence of two depolarizing stimuli (56 mM KCl and 75 μM veratrine) and was calcium-dependent. The released immunoreactive material diluted in parallel with synthetic substance P and showed close identity on Sephadex chromatography. A neuromodulator role for the peptide in the central nervous system is suggested

  8. Phorbol ester stimulates calcium sequestration in saponized human platelets

    International Nuclear Information System (INIS)

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent 45Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated 45Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate

  9. Phorbol ester stimulates calcium sequestration in saponized human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  10. Characterization of calcium alginate beads of 5-fluorouracil for colon delivery

    Directory of Open Access Journals (Sweden)

    Patel Hetal

    2008-01-01

    Full Text Available A multiparticulate system combining pH-sensitive property and specific biodegradability for colon targeted delivery of 5-fluorouracil (5-FU was examined. The purpose of this study was to prepare and evaluate the colon-specific alginate beads of 5-FU for the treatment of colon cancer. Calcium alginate beads were prepared by extruding 5-FU loaded alginate solution to calcium chloride solution, and gelled spheres were formed instantaneously by ionotropic gelation reaction using different ratios of FU and alginate, alginate and calcium chloride, stirring speeds (500-1500 rpm, and reaction time. The core beads were coated with Eudragit S-100 to prevent drug release in the stomach and provide controlled dissolution of enteric coat in the small intestine and maximum drug release in the colon. Morphology and surface characteristics of the formulation were determined by scanning electron microscopy. In vitro drug release studies were performed in conditions simulating stomach to colon transit. No significant release was observed at acidic pH, however, when it reached the pH where Eudragit S-100 starts to dissolve, drug release was observed. Also, release of drug was found to be higher in presence of rat caecal content.

  11. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers.

    Science.gov (United States)

    Chen, Feng; Zhu, Ying-Jie; Zhang, Kui-Hua; Wu, Jin; Wang, Ke-Wei; Tang, Qi-Li; Mo, Xiu-Mei

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  12. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  13. Complex formation ions calcium with macromolecules pectin

    International Nuclear Information System (INIS)

    In clause the mechanism of sorption of ions of calcium by macromolecules of pectin is opened. Is shown, that the linkage of ions of calcium descends on acid bunches of pectin, and process carries cooperative character

  14. Dairy Dilemma: Are You Getting Enough Calcium?

    Science.gov (United States)

    ... Dairy Dilemma Dairy Dilemma Are You Getting Enough Calcium? You may be avoiding dairy products because of ... But dairy products are a major source of calcium, vitamin D and other nutrients that are important ...

  15. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... can break easily, even without an obvious injury. Vitamin D helps your body absorb calcium. Eat foods that provide the right amounts of calcium, vitamin D, and protein. This kind of diet will give ...

  16. Augmentation of cholinergic-mediated amylase release by forskolin in mouse parotid gland

    International Nuclear Information System (INIS)

    Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated 45Ca2+ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10-8M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 x 10-7 M) or hydroxylamine (50 μM) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism. 21 references, 1 figure, 3 tables

  17. Calcium and vitamin D requirements for optimal bone mass during adolescence

    Science.gov (United States)

    There remains very strong interest in the calcium and vitamin D requirements of adolescents related to bone health. The Institute of Medicine (IOM) released new dietary guidelines in late 2010 for these nutrients. These guidelines were primarily based on literature published in 2009 and earlier and ...

  18. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers

    OpenAIRE

    Vergara, Julio; Caputo, Carlo

    1983-01-01

    Intramembrane charge movements in skeletal muscle fibers contain a tetracaine-sensitive component that can be isolated by the use of this drug. The time course and voltage dependence of this component, studied in relation to antipyrylazo III absorbance signals, suggest its direct involvement in the calcium release process in muscle.

  19. Effect of coffee extracts on intracellular calcium level in levels in glial cells

    OpenAIRE

    Akın, Demet; Görmüş, Uzay; Yapışlar, Hande; Farah, Adriana

    2012-01-01

    Widely used antidepressant drugs such as fluoxetine exert additional blocking effects on voltage gated Ca⁺² channels. Differences in intracellular calcium levels may be involved in the release of monoamines, which play important role in the pathogenesis of depression.

  20. Examination of an aloe vera galacturonate polysaccharide capable of in situ gelation for the controlled release of protein therapeutics

    Science.gov (United States)

    McConaughy, Shawn David

    fluorescence emission of the probe molecule 1,8-anilino-1-naphthalene sulphonic acid (1,8-ANS) as a function of polymer concentration. Correlations are drawn between viscosity experiments and measurement of zeta potential. Increased degrees of intermolecular interactions are responsible for a shift of Ce to lower polymer concentrations with increasing ionic strength. Additionally, dynamic rheology data are presented highlighting the ability of AvP to form gels at low polymer and calcium ion concentrations, exemplifying the technological potential of this polysaccharide for in-situ drug delivery. In the second section, properties of Aloe vera galacturonate hydrogels formed via Ca2+ crosslinking have been studied in regard to key parameters influencing gel formation including molecular weight, ionic strength and molar ratio of Ca2+ to COO- functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) studies have been conducted on hydrogels formed at specified Ca2+ concentrations in the presence and absence of Na+ and K+ ions, in order to assess the feasibility of in situ gelation for controlled delivery of therapeutics. Aqueous Ca2+ concentrations similar to those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca2+ to COO- functionality, networks may be tailored to provide elastic modulus (G') values between 20 and 20,000 Pa. The Aloe vera polysaccharide exhibits time dependent phase separation in the presence of monovalent electrolytes. Thus the relative rates of calcium induced gelation and phase separation become major considerations when designing a system for in situ delivery applications where both monovalent (Na+, K+) and divalent (Ca2+) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly different morphologies are present in gels formed in the presence and absence 0.15 M NaCl. Curve fitting of theoretical models to

  1. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  2. Calcium channel blockers and Alzheimer's disease★

    OpenAIRE

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in...

  3. Chemical release module facility

    Science.gov (United States)

    Reasoner, D. L.

    1980-01-01

    The chemical release module provides the capability to conduct: (1) thermite based metal vapor releases; (2) pressurized gas releases; (3) dispersed liquid releases; (4) shaped charge releases from ejected submodules; and (5) diagnostic measurements with pi supplied instruments. It also provides a basic R-F and electrical system for: (1) receiving and executing commands; (2) telemetering housekeeping data; (3) tracking; (4) monitoring housekeeping and control units; and (5) ultrasafe disarming and control monitoring.

  4. Evaluation of gum of Moringa oleifera as a binder and release retardant in tablet formulation

    OpenAIRE

    Panda D; Choudhury N.S.K; Yedukondalu M; Si S; Gupta R

    2008-01-01

    The present study was undertaken to find out the potential of gum from Moringa oleifera to act as a binder and release retardant in tablet formulations. The effect of calcium sulphate dihydrate (water insoluble) and lactose (water soluble) diluent on the release of propranolol hydrochloride was studied. The DSC thermograms of drug, gum and mixture of gum/drug indicated no chemical interaction. Tablets (F1, F2, F3, and F4) were prepared containing calcium sulphate dihydrate as diluent, propr...

  5. Electrophysical properties of calcium orthovanadate

    International Nuclear Information System (INIS)

    The electron conductivity, dielectric permeability and magnetic susceptibility of calcium orthovanadate are studied. It is shown that structural transformations bring about changes in the nature of electrophysical properties of Ca3(VO4)2 and cause the charge redistribution in VO43- anion groups

  6. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  9. 21 CFR 582.1191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  10. 21 CFR 582.5191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  11. 21 CFR 73.1070 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine,...

  12. 21 CFR 582.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use....

  13. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate....

  14. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  15. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  16. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  17. Fast Drug Release Using Rotational Motion of Magnetic Gel Beads

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Takimoto

    2008-03-01

    Full Text Available Accelerated drug release has been achieved by means of the fast rotation of magnetic gel beads. The magnetic gel bead consists of sodium alginate crosslinked by calcium chlorides, which contains barium ferrite of ferrimagnetic particles, and ketoprofen as a drug. The bead underwent rotational motion in response to rotational magnetic fields. In the case of bead without rotation, the amount of drug release into a phosphate buffer solution obeyed non-Fickian diffusion. The spontaneous drug release reached a saturation value of 0.90 mg at 25 minutes, which corresponds to 92% of the perfect release. The drug release was accelerated with increasing the rotation speed. The shortest time achieving the perfect release was approximately 3 minutes, which corresponds to 1/8 of the case without rotation. Simultaneous with the fast release, the bead collapsed probably due to the strong water flow surrounding the bead. The beads with high elasticity were hard to collapse and the fast release was not observed. Hence, the fast release of ketoprofen is triggered by the collapse of beads. Photographs of the collapse of beads, time profiles of the drug release, and a pulsatile release modulated by magnetic fields were presented.

  18. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille;

    2013-01-01

    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation...... offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...... electroporation and electrochemotherapy. METHODS: The effects of calcium electroporation and bleomycin electroporation (alone or in combination) were compared in three different cell lines (DC-3F, transformed Chinese hamster lung fibroblast; K-562, human leukemia; and murine Lewis Lung Carcinoma). Furthermore...

  19. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    OpenAIRE

    Zenei Taira, Zenei

    2013-01-01

    Yukari Ueda, Zenei TairaFaculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, JapanAbstract: We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 ...

  20. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    Science.gov (United States)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.