Sample records for calcium-dependent protein kinase

  1. Enhanced expression of a calcium-dependent protein kinase from ...

    Indian Academy of Sciences (India)

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  2. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways


    Wuwu Xu; Wenchao Huang


    Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner i...

  3. Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. (United States)

    Huang, Quan-Sheng; Wang, Hai-Yun; Gao, Peng; Wang, Guo-Ying; Xia, Gui-Xian


    The gene GhCPK1 encoding a calcium dependent protein kinase was identified from cotton. Transcripts of GhCPK1 accumulated primarily in the elongating fiber, and Arabidopsis plants transformed with GhCPK1 promoter-GUS construct exhibited GUS activity mainly in the developing trichomes, roots, young leaves and sepals. In the bombarded onion epidermal cells, GhCPK1-GFP fusion proteins showed a subcellular distribution in the plasma membrane. In vitro assays indicated that GhCPK1 was a functional calcium-dependent kinase able to undergo autophosphorylation and phosphorylation of the known substrate histone III-S. Together, these results suggest that GhCPK1 may play a role in the calcium signaling events associated with fiber elongation.

  4. Plasmodium berghei Calcium Dependent Protein Kinase 1 Is Not Required for Host Cell Invasion


    Sylvia Jebiwott; Kavitha Govindaswamy; Amos Mbugua; Purnima Bhanot


    Plasmodium Calcium Dependent Protein Kinase (CDPK1) is required for the development of sexual stages in the mosquito. In addition, it is proposed to play an essential role in the parasite's invasive stages possibly through the regulation of the actinomyosin motor and micronemal secretion. We demonstrate that Plasmodium berghei CDPK1 is dispensable in the parasite's erythrocytic and pre-erythrocytic stages. We successfully disrupted P. berghei CDPK1 (PbCDPK1) by homologous recombination. The r...

  5. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)


    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  6. Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy. (United States)

    Ojo, Kayode K; Reid, Molly C; Kallur Siddaramaiah, Latha; Müller, Joachim; Winzer, Pablo; Zhang, Zhongsheng; Keyloun, Katelyn R; Vidadala, Rama Subba Rao; Merritt, Ethan A; Hol, Wim G J; Maly, Dustin J; Fan, Erkang; Van Voorhis, Wesley C; Hemphill, Andrew


    Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine

  7. Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy.

    Directory of Open Access Journals (Sweden)

    Kayode K Ojo

    Full Text Available Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1 is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for

  8. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma.

    Directory of Open Access Journals (Sweden)

    Erin Garrison

    Full Text Available Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle.

  9. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G


    Abhisheka Bansal; Ojo, Kayode K.; Jianbing Mu; Maly, Dustin J.; Van Voorhis,Wesley C.; Miller, Louis H.


    ABSTRACT We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium?falciparum calcium-dependent protein kinase 1 (PfCDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosph...

  10. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis (United States)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)


    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  11. Substituted imidazopyridazines are potent and selective inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1)


    Chapman, Timothy M.; Osborne, Simon A.; Bouloc, Nathalie; Large, Jonathan M.; Wallace, Claire; Birchall, Kristian; Ansell, Keith H.; Jones, Hayley M.; Taylor, Debra; Clough, Barbara; Green, Judith L.; Holder, Anthony A.


    A series of imidazopyridazines which are potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was identified from a high-throughput screen against the isolated enzyme. Subsequent exploration of the SAR and optimisation has yielded leading members which show promising in vitro anti-parasite activity along with good in vitro ADME and selectivity against human kinases. Initial in vivo testing has revealed good oral bioavailability in a mouse PK study and modest...

  12. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1 (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María


    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  13. The calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design. (United States)

    Cardew, Emily M; Verlinde, Christophe L M J; Pohl, Ehmke


    The apicomplexan protozoan parasites include the causative agents of animal and human diseases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics. In this review, we will summarize structure-based strategies, recent successes and future directions in the pursuit of specific and selective inhibitors of T. gondii CDPK1.

  14. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.)


    Li, Aili; Wang, Xiang; Leseberg, Charles H; Jia, Jizeng; Mao, Long


    Calcium-dependent protein kinases (CDPKs) sense the calcium concentration changes in plant cells and play important roles in signaling pathways for disease resistance and various stress responses as indicated by emerging evidences. Among the 20 wheat CDPK genes studied, 10 were found to respond to drought, salinity and ABA treatments. Consistent with previous observations, one CDPK gene was shown to respond to multiple abiotic stresses in wheat suggesting that CDPKs could be converging points...

  15. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1. (United States)

    Child, Matthew A; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A; Boothroyd, John C; Reese, Michael L; Bogyo, Matthew


    Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson's disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii IMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these

  16. Optimization of an Imidazopyridazine Series of Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 (PfCDPK1)


    Chapman, Timothy M.; Osborne, Simon A.; Wallace, Claire; Birchall, Kristian; Bouloc, Nathalie; Jones, Hayley M.; Ansell, Keith H.; Taylor, Debra L.; Clough, Barbara; Green, Judith L.; Holder, Anthony A.


    A structure-guided design approach using a homology model of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was used to improve the potency of a series of imidazopyridazine inhibitors as potential antimalarial agents. This resulted in high affinity compounds with PfCDPK1 enzyme IC50 values less than 10 nM and in vitro P. falciparum antiparasite EC50 values down to 12 nM, although these compounds did not have suitable ADME properties to show in vivo efficacy in a mouse mode...

  17. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). (United States)

    Zhang, Hanfeng; Liu, Wu-Zhen; Zhang, Yupeng; Deng, Min; Niu, Fangfang; Yang, Bo; Wang, Xiaoling; Wang, Boya; Liang, Wanwan; Deyholos, Michael K; Jiang, Yuan-Qing


    Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of signal transduction in plants.

  18. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. (United States)

    Ludwig, Andrea A; Saitoh, Hiromasa; Felix, Georg; Freymark, Gerald; Miersch, Otto; Wasternack, Claus; Boller, Thomas; Jones, Jonathan D G; Romeis, Tina


    Plants are constantly exposed to environmental changes and need to integrate multiple external stress cues. Calcium-dependent protein kinases (CDPKs) are implicated as major primary Ca2+ sensors in plants. CDPK activation, like activation of mitogen-activated protein kinases (MAPKs), is triggered by biotic and abiotic stresses, although distinct stimulus-specific stress responses are induced. To investigate whether CDPKs are part of an underlying mechanism to guarantee response specificity, we identified CDPK-controlled signaling pathways. A truncated form of Nicotiana tabacum CDPK2 lacking its regulatory autoinhibitor and calcium-binding domains was ectopically expressed in Nicotiana benthamiana. Infiltrated leaves responded to an abiotic stress stimulus with the activation of biotic stress reactions. These responses included synthesis of reactive oxygen species, defense gene induction, and SGT1-dependent cell death. Furthermore, N-terminal CDPK2 signaling triggered enhanced levels of the phytohormones jasmonic acid, 12-oxo-phytodienoic acid, and ethylene but not salicylic acid. These responses, commonly only observed after challenge with a strong biotic stimulus, were prevented when the CDPK's intrinsic autoinhibitory peptide was coexpressed. Remarkably, elevated CDPK signaling compromised stress-induced MAPK activation, and this inhibition required ethylene synthesis and perception. These data indicate that CDPK and MAPK pathways do not function independently and that a concerted activation of both pathways controls response specificity to biotic and abiotic stress.

  19. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal


    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  20. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. (United States)

    Bundó, Mireia; Coca, María


    Plant growth and productivity is negatively affected by different stresses. Most stresses trigger calcium signals that initiate acclimation responses in plants. The multigene family of plant calcium-dependent protein kinases (CPKs) functions in multiple stress responses by transducing calcium signals into phosphorylation events. This work reports that the OsCPK10 isoform positively mediates tolerance to different stresses in rice plants by enhancing their antioxidant capacity and protecting them from reactive oxygen species (ROS) damage, with the uncontrolled generation of ROS being a common feature of these stresses. Here, we show that the constitutive accumulation of an HA-tagged OsCPK10 full-length protein enhances the hydrogen peroxide detoxifying capacity of rice plants during desiccation. This is achived by modulating the accumulation of catalase proteins, which reduces the extent of lipid peroxidation and protects the integrity of cell membranes, resulting in drought tolerance. OsCPK10HA accumulation also confers blast disease resistance by interfering with fungal necrotrophic growth via a reduction in the accumulation of hydrogen peroxide. Furthermore, we show by bimolecular complementation assays that OsCPK10 is a plasma membrane protein that physically interacts in vivo with catalase A. OsCPK10 therefore appears to be a good molecular target to improve tolerance to abiotic stresses as well as to blast disease, which limit rice crop productivity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Genome-wide identification, characterisation and expression profiles of calcium-dependent protein kinase genes in barley (Hordeum vulgare L.). (United States)

    Fedorowicz-Strońska, Olga; Koczyk, Grzegorz; Kaczmarek, Małgorzata; Krajewski, Paweł; Sadowski, Jan


    In plant cells, calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ flux resulting from various environmental stresses like cold, drought or salt stress. Previous genome sequence analysis and comparative studies in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.) defined a multi-gene family of CDPKs. Here, we identified and characterised the CDPK gene complement of the model plant, barley (Hordeum vulgare L.). Comparative analysis encompassed phylogeny reconstruction based on newly available barley genome sequence, as well as established model genomes (e.g. O. sativa, A. thaliana, Brachypodium distachyon). Functional gene copies possessed characteristic CDPK domain architecture, including a serine/threonine kinase domain and four regulatory EF-hand motifs. In silico verification was followed by measurements of transcript abundance via real-time polymerase chain reaction (PCR). The relative expression of CDPK genes was determined in the vegetative growth stage under intensifying drought stress conditions. The majority of barley CDPK genes showed distinct changes in patterns of expression during exposure to stress. Our study constitutes evidence for involvement of the barley CDPK gene complement in signal transduction pathways relating to adaptation to drought. Our bioinformatics and transcriptomic analyses will provide an important foundation for further functional dissection of the barley CDPK gene family.

  2. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. (United States)

    Chen, Jinhuan; Xue, Bin; Xia, Xinli; Yin, Weilun


    Populus species are the most important timber trees over the Northern hemisphere. Most of them are cold- and drought-sensitive except the Populus euphratica Oliv. Here, a calcium-dependent protein kinase (CDPK) gene cloned from P. euphratica, designated as PeCPK10, was rapidly induced by salt, cold, and drought stresses. The protein encoded by PeCPK10 was localized within the nucleus and cytosol, which may be important for its specific regulation in cellular functions. To elucidate the physiological functions of PeCPK10, we generated transgenic Arabidopsis plants overexpressing PeCPK10. The results showed that PeCPK10-transgenic lines experienced better growth than vector control plants when treated with drought. Stronger abscisic acid-induced promotion of stomatal closing has been showed in transgenic lines. Particularly, overexpression of PeCPK10 showed enhanced freezing tolerance. Constitutive expression of PeCPK10 enhanced the expression of several abscisic acid-responsive genes and multiple abiotic stress-responsive genes such as RD29B and COR15A. Accordingly, a positive regulator responsive to cold and drought stresses in P. euphratica is proposed. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  3. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). (United States)

    Li, Aili; Wang, Xiang; Leseberg, Charles H; Jia, Jizeng; Mao, Long


    Calcium-dependent protein kinases (CDPKs) sense the calcium concentration changes in plant cells and play important roles in signaling pathways for disease resistance and various stress responses as indicated by emerging evidences. Among the 20 wheat CDPK genes studied, 10 were found to respond to drought, salinity and ABA treatments. Consistent with previous observations, one CDPK gene was shown to respond to multiple abiotic stresses in wheat suggesting that CDPKs could be converging points for multiple signaling pathways. Among the 12 wheat CDPK genes that were responsive to Blumeria graminis tritici (Bgt) infection or the treatment of hydrogen peroxide (H(2)O(2)), eight also responded to abiotic stresses, suggesting a cross-talk between biotic and abiotic stress signaling pathways. Phylogenetic analysis indicated that some of these genes were closely related to CDPKs from other species, whose functions have been partially studied, suggesting similar functions wheat CDPK genes. Combining the up-to-date knowledge of CDPK functions and our observations, a model was developed to project the possible roles of wheat CDPK genes in the signaling of biotic and abiotic stress responses.

  4. Genome-wide survey indicates diverse physiological roles of the barley (Hordeum vulgare L.) calcium-dependent protein kinase genes. (United States)

    Yang, Yunqiang; Wang, Qiuli; Chen, Qian; Yin, Xin; Qian, Min; Sun, Xudong; Yang, Yongping


    Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors that play important roles in the regulation of plant growth and developmental processes, as well as protective responses to environmental stress. Here, we identified 28 CDPK genes from barley and cloned 5 new, full-length CDPK genes, MLOC_58648a, MLOC_19618a, MLOC_71733a, AK249361a and MLOC_4965a, using their expressed sequence tags. Phylogenetic and gene structural analyses revealed that the CDPK could be divided into four subgroups. Significant site-specific altered constraints and a high evolutionary rate may have contributed to the functional divergences among CDPK gene subfamilies. Expression profiles of different tissues and developmental stages suggested that several CDPK genes are involved in the functional development of plants. Different expression levels under a variety of abiotic stresses also indicated that the CDPK family underwent functional divergence during long-term evolution. Furthermore, several CDPK genes responded to single treatments and individual CDPK genes responded to multiple treatments, suggesting that barley CDPKs may be involved in mediating cross-talk among different signalling pathways. Our data provide an important foundation for the functional and evolutionary analyses of this important gene family in barley.

  5. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility (United States)


    Background In plants, calcium-dependent protein kinases (CDPKs) are involved in tolerance to abiotic stresses and in plant seed development. However, the functions of only a few rice CDPKs have been clarified. At present, it is unclear whether CDPKs also play a role in regulating spikelet fertility. Results We cloned and characterized the rice CDPK gene, OsCPK9. OsCPK9 transcription was induced by abscisic acid (ABA), PEG6000, and NaCl treatments. The results of OsCPK9 overexpression (OsCPK9-OX) and OsCPK9 RNA interference (OsCPK9-RNAi) analyses revealed that OsCPK9 plays a positive role in drought stress tolerance and spikelet fertility. Physiological analyses revealed that OsCPK9 improves drought stress tolerance by enhancing stomatal closure and by improving the osmotic adjustment ability of the plant. It also improves pollen viability, thereby increasing spikelet fertility. In OsCPK9-OX plants, shoot and root elongation showed enhanced sensitivity to ABA, compared with that of wild-type. Overexpression and RNA interference of OsCPK9 affected the transcript levels of ABA- and stress-responsive genes. Conclusions Our results demonstrated that OsCPK9 is a positive regulator of abiotic stress tolerance, spikelet fertility, and ABA sensitivity. PMID:24884869

  6. Molecular Characterization and Functional Analysis of a Novel Calcium-Dependent Protein Kinase 4 from Eimeria tenella.

    Directory of Open Access Journals (Sweden)

    Ziwen Wang

    Full Text Available Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. The basis of cell invasion is not completely understood, but some key molecules of host cell invasion have been discovered. This paper investigated the characteristics of calcium-dependent protein kinase 4 (EtCDPK4, a critical molecule in E. tenella invasion of host cells. A full-length EtCDPK4 cDNA was identified from E. tenella using rapid amplification of cDNA ends. EtCDPK4 had an open reading frame of 1803 bp encoding a protein of 600 amino acids. Quantitative real-time PCR and western blotting were used to explore differences in EtCDPK4 transcription and translation in four developmental stages of E. tenella. EtCDPK4 was expressed at higher levels in sporozoites, but translation was higher in second-generation merozoites. In vitro invasion inhibition assays explored whether EtCDPK4 was involved in invasion of DF-1 cells by E. tenella sporozoites. Polyclonal antibodies against recombinant EtCDPK4 (rEtCDPK4 inhibited parasite invasion, decreasing it by approximately 52%. Indirect immunofluorescence assays explored EtCDPK4 distribution during parasite development after E. tenella sporozoite invasion of DF-1 cells in vitro. The results showed that EtCDPK4 might be important in sporozoite invasion and development. To analyze EtCDPK4 functional domains according to the structural characteristics of EtCDPK4 and study the kinase activity of rEtCDPK4, an in vitro phosphorylation system was established. We verified that rEtCDPK4 was a protein kinase that was completely dependent on Ca2+ for enzyme activity. Specific inhibitors of rEtCDPK4 activity were screened by kinase activity in vitro. Some specific inhibitors were applied to assays of DF-1 cell invasion by E. tenella sporozoites to confirm that the inhibitors functioned in vitro. W-7, H-7, H-89, and myristoylated peptide inhibited DF-1 invasion by E. tenella sporozoites. The

  7. Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation. (United States)

    Zhao, Y; Pokutta, S; Maurer, P; Lindt, M; Franklin, R M; Kappes, B


    Calcium-dependent protein kinase from Plasmodium falciparum (PfCPK) is a multidomain protein composed of an N-terminal kinase domain connected via a linker region to a C-terminal CaM-like calcium-binding domain. The kinase can be activated by Ca2+ alone and associates with 45Ca2+. Here we describe the calcium-binding properties of the kinase and the significance of the individual calcium-binding sites with respect to enzymatic activation, as well as the Ca(2+)-induced conformational change as detected by circular dichroism. As predicted from the cDNA sequence, the kinase has four EF-hand calcium-binding sites in the C-terminal domain. To understand the roles of the individual calcium-binding sites, two series of mutations were generated at the individual EF-hand motifs. The highly conserved glutamic acid residue at position 12 in each calcium-binding loop was mutated to either lysine or glutamine, and therefore a total of eight mutants were generated. Either of these mutations (to lysine or glutamine) is sufficient to eliminate calcium binding at the mutated site. Sites I and II appear to be crucial for both Ca(2+)-induced conformational change and enzymatic activation. Whereas mutations at site II almost completely abolish kinase activity, mutations at site I are also deleterious and dramatically reduce the sensitivity of the Ca(2+)-induced conformational change and the Ca(2+)-dependent activation. Mutations at sites III and IV have minor effects.

  8. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. (United States)

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi


    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.

  9. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília


    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  10. Imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 also target cGMP-dependent protein kinase and heat shock protein 90 to kill the parasite at different stages of intracellular development.


    Green, JL; Moon, RW; Whalley, D; Bowyer, PW; Wallace, C.; Rochani, A; Nageshan, RK; Howell, SA; Grainger, M.; Jones, HM; Ansell, KH; Chapman, TM; Taylor, DL; Osborne, SA; Baker, DA


    : Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in...

  11. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai


    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  12. Imidazopyridazines as potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1): Preparation and evaluation of pyrazole linked analogues


    Large, Jonathan M.; Osborne, Simon A.; Smiljanic-Hurley, Ela; Ansell, Keith H.; Jones, Hayley M.; Taylor, Debra L.; Clough, Barbara; Green, Judith L.; Holder, Anthony A.


    The structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further improve key ADME parameters by means of lowering log?D was identified, and this was achieved by replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered key examples with useful in vitro activity and ADME profiles, good selectivity against a hum...

  13. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian


    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. (United States)

    Patharkar, O R; Cushman, J C


    McCDPK1 is a salinity- and drought-induced calcium-dependent protein kinase (CDPK) isolated from the common ice plant, Mesembryanthemum crystallinum. A yeast two-hybrid experiment was performed, using full-length McCDPK1 and truncated forms of McCDPK1 as baits, to identify interacting proteins. A catalytically impaired bait isolated a cDNA clone encoding a novel protein, CDPK substrate protein 1 (CSP1). CSP1 interacted with McCDPK1 in a substrate-like fashion in both yeast two-hybrid assays and wheat germ interaction assays. Furthermore, McCDPK1 was capable of phosphorylating CSP1 in vitro in a calcium-dependent manner. Our results demonstrate that the use of catalytically impaired and unregulated CDPKs with the yeast two-hybrid system can accelerate the discovery of CDPK substrates. The deduced CSP1 amino acid sequence indicated that it is a novel member of a class of pseudo-response regulator-like proteins that have a highly conserved helix-loop-helix DNA binding domain and a C-terminal activation domain. McCDPK1 and CSP1 co-localized to nuclei of NaCl-stressed ice plants. Csp1 transcript accumulation was not regulated by NaCl or dehydration stress. Our results strongly suggest that McCDPK1 may regulate the function of CSP1 by reversible phosphorylation.

  15. Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum. (United States)

    Chehab, E Wassim; Patharkar, O Rahul; Cushman, John C


    McCPK1 (Mesembryanthemum crystallinum calcium-dependent protein kinase 1) mRNA expression is transiently salinity- and dehydrationstress responsive. The enzyme also undergoes dynamic subcellular localization changes in response to these same stresses. Using the yeast-two hybrid system, we have isolated and characterized a M. crystallinum CPK1 Adaptor Protein 2 (McCAP2). We show that McCPK1 interacts with the C-terminal, coiled-coil containing region of McCAP2 in the yeast two-hybrid system. This interaction was confirmed in vitro between the purified recombinant forms of each of the proteins and in vivo by coimmunoprecipitation experiments from plant extracts. McCAP2, however, was not a substrate for McCPK1. Computational threading analysis suggested that McCAP2 is a member of a novel family of proteins with unknown function also found in rice and Arabidopsis. These proteins contain coiled-coil spectrin repeat domains present in the syntaxin super-family that participate in vesicular and protein trafficking. Consistent with the interaction data, subcellular localization and fractionation studies showed that McCAP2 colocalizes with McCPK1 to vesicular structures located on the actin cytoskeleton and within the endoplasmic reticulum in cells subjected to low humidity stress. McCAP2 also colocalizes with AtVTIl1a, an Arabidopsis v-SNARE [vesicle-soluble N-ethyl maleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] present in the trans-Golgi network (TGN) and prevacuolar compartments (PVCs). Both interaction and subcellular localization studies suggest that McCAP2 may possibly serve as an adaptor protein responsible for vesicle-mediated trafficking of McCPK1 to or from the plasma membrane along actin microfilaments of the cytoskeleton.

  16. Multiple short windows of calcium-dependent protein kinase 4 activity coordinate distinct cell cycle events during Plasmodium gametogenesis (United States)

    Fang, Hanwei; Klages, Natacha; Baechler, Bastien; Hillner, Evelyn; Yu, Lu; Pardo, Mercedes; Choudhary, Jyoti; Brochet, Mathieu


    Malaria transmission relies on the production of gametes following ingestion by a mosquito. Here, we show that Ca2+-dependent protein kinase 4 controls three processes essential to progress from a single haploid microgametocyte to the release of eight flagellated microgametes in Plasmodium berghei. A myristoylated isoform is activated by Ca2+ to initiate a first genome replication within twenty seconds of activation. This role is mediated by a protein of the SAPS-domain family involved in S-phase entry. At the same time, CDPK4 is required for the assembly of the subsequent mitotic spindle and to phosphorylate a microtubule-associated protein important for mitotic spindle formation. Finally, a non-myristoylated isoform is essential to complete cytokinesis by activating motility of the male flagellum. This role has been linked to phosphorylation of an uncharacterised flagellar protein. Altogether, this study reveals how a kinase integrates and transduces multiple signals to control key cell-cycle transitions during Plasmodium gametogenesis. DOI: PMID:28481199

  17. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. (United States)

    Cecília Almadanim, M; Gonçalves, Nuno M; Rosa, Margarida T G; Alexandre, Bruno M; Cordeiro, André M; Rodrigues, Mafalda; Saibo, Nelson J M; Soares, Cláudio M; Romão, Célia V; Margarida Oliveira, M; Abreu, Isabel A


    Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family. Copyright © 2017. Published by Elsevier B.V.

  18. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  19. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis

    Directory of Open Access Journals (Sweden)

    San Segundo Blanca


    Full Text Available Abstract Background The arbuscular mycorrhizal (AM symbiosis consists of a mutualistic relationship between soil fungi and roots of most plant species. This association provides the arbuscular mycorrhizal fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Then, the establishment of the arbuscular mycorrhizal (AM symbiosis requires the fine tuning of host gene expression for recognition and accommodation of the fungal symbiont. In plants, calcium plays a key role as second messenger during developmental processes and responses to environmental stimuli. Even though calcium transients are known to occur in host cells during the AM symbiosis, the decoding of the calcium signal and the molecular events downstream are only poorly understood. Results The expression of seventeen Calcium-dependent Protein Kinase (CPK genes representative of the four distinct phylogenetic groups of rice CPKs was monitored during the presymbiotic phase of the AM symbiosis. Among them, OsCPK18 and OsCPK4, were found to be transcriptionally activated in response to inoculation with the AM fungus Glomus intraradices. OsCPK18 and OsCPK4 gene expression was also up-regulated by fungal-produced diffusible molecules. Laser microdissection revealed expression of OsCPK18 in cortical cells, and not in epidermal cells of G. intraradices-inoculated rice roots, suggesting a preferential role of this gene in the root cortex. Moreover, a plasma membrane localization of OsCPK18 was observed by transient expression assays of green fluorescent protein-tagged OsCPK18 in onion epidermal cells. We also show that the myristoylation site of the OsCPK18 N-terminus is required for plasma membrane targeting. Conclusion The rapid activation of OsCPK18 expression in response to AM inoculation, its expression being also induced by fungal-secreted signals, together with the observed plasma membrane localization of OsCPK18, points to a role for Os

  20. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. (United States)

    Campos-Soriano, Lidia; Gómez-Ariza, Jorge; Bonfante, Paola; San Segundo, Blanca


    The arbuscular mycorrhizal (AM) symbiosis consists of a mutualistic relationship between soil fungi and roots of most plant species. This association provides the arbuscular mycorrhizal fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Then, the establishment of the arbuscular mycorrhizal (AM) symbiosis requires the fine tuning of host gene expression for recognition and accommodation of the fungal symbiont. In plants, calcium plays a key role as second messenger during developmental processes and responses to environmental stimuli. Even though calcium transients are known to occur in host cells during the AM symbiosis, the decoding of the calcium signal and the molecular events downstream are only poorly understood. The expression of seventeen Calcium-dependent Protein Kinase (CPK) genes representative of the four distinct phylogenetic groups of rice CPKs was monitored during the presymbiotic phase of the AM symbiosis. Among them, OsCPK18 and OsCPK4, were found to be transcriptionally activated in response to inoculation with the AM fungus Glomus intraradices. OsCPK18 and OsCPK4 gene expression was also up-regulated by fungal-produced diffusible molecules. Laser microdissection revealed expression of OsCPK18 in cortical cells, and not in epidermal cells of G. intraradices-inoculated rice roots, suggesting a preferential role of this gene in the root cortex. Moreover, a plasma membrane localization of OsCPK18 was observed by transient expression assays of green fluorescent protein-tagged OsCPK18 in onion epidermal cells. We also show that the myristoylation site of the OsCPK18 N-terminus is required for plasma membrane targeting. The rapid activation of OsCPK18 expression in response to AM inoculation, its expression being also induced by fungal-secreted signals, together with the observed plasma membrane localization of OsCPK18, points to a role for OsCPK18 in perception of the AM fungus. The OsCPK18 gene

  1. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. (United States)

    Almadanim, M Cecília; Alexandre, Bruno M; Rosa, Margarida T G; Sapeta, Helena; Leitão, António E; Ramalho, José C; Lam, TuKiet T; Negrão, Sónia; Abreu, Isabel A; Oliveira, M Margarida


    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism. © 2017 John Wiley & Sons Ltd.

  2. Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies. (United States)

    Aher, R B; Roy, K


    Current research on antimalarial protein kinases has provided an opportunity to design kinase-based antimalarial drugs. We have developed a common feature-based pharmacophore model from a set of multiple chemical scaffolds including derivatives of 3,6-imidazopyridazines, pyrazolo[2,3-d]pyrimidines and imidazo[1,5-a]pyrazines, in order to incorporate the maximum structural diversity information in the model for the Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) target. The best pharmacophore model (Hypo-1) with the essential features of two hydrogen bond donors (HBD), one hydrophobic aromatic (HYAr) and one ring aromatic (RA) showed the classification accuracies of 86.27%, 78.43% and 100.00% in labelling the training and test set (test set-1 and test set-2) compounds into more active and less active classes. In order to identify the crucial interaction between multiple scaffold ligands and the target protein, we first developed the homology model using a template structure of P. bergheii (PbCDPK1; PDB ID: 3Q5I), and thereafter performed the docking studies. The residues such as Lys85, Phe147, Tyr148, Leu198, Val211, and Asp212 were found to be the most important interacting residues for possessing PfCDPK-1 inhibitory activity.

  3. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. (United States)

    Dubrovina, Alexandra S; Kiselev, Konstantin V; Khristenko, Valeriya S; Aleynova, Olga A


    Abiotic stresses, such as drought, salinity, cold and heat, are major environmental factors that limit crop productivity. Vitis amurensis Rupr. is a wild grapevine species displaying a high level of abiotic and biotic stress resistance. Protein kinases, including Ca(2+)-dependent protein kinases (CDPKs), are known to mediate plant acclimation to various environmental changes. However, the functions of most grape CDPKs have not been clarified. A recent CDPK gene expression analysis revealed that 10 CDPK genes of V. amurensis were up-regulated under different abiotic stress treatments. The expression of the VaCPK20 gene was significantly up-regulated under low and high temperature stress in V. amurensis. In the current study, the effects of overexpressing the VaCPK20 gene in callus cell lines of V. amurensis and transgenic plants of A. thaliana on their responses to abiotic stresses were investigated. Transgenic Arabidopsis overexpressing the VaCPK20 gene showed higher tolerance to freezing and drought stresses, and transgenic grape cell cultures overexpressing the VaCPK20 gene showed higher resistance to cold stress in comparison with the controls transformed by the "empty" vector. Heat and salt stress resistance of the transgenic V. amurensis calli and A. thaliana was comparable to that of the wild type and vector controls. Overexpression of the VaCPK20 gene increased the expression of stress-responsive genes, such as COR47, NHX1, KIN1, or ABF3, in the transgenic Arabidopsis plants under non-stress conditions, after freezing, and under drought stress. The results imply that VaCPK20 may act as a regulatory factor involved in cold and drought stress response pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.


    We have previously demonstrated that the PCB mixture, Aroclor 1254 (A1254), increases the phosphorylated form of CREB (pCREB), the cAMP-responsive element binding protein. This transcription factor is important in nervous system development and plasticity. Phosphorylationof C...

  5. Enhanced expression of a calcium-dependent protein kinase from ...

    Indian Academy of Sciences (India)


    low calcium medium; LNM, low nitrate medium; LPM, low phosphate medium; LSM, low sulphate medium; MMG, minimal medium with glucose; NR, nitrate ... processes like pollen tube growth (Picton and Steer 1983) and cytokinin induced bud ... melanogaster and Saccharomyces cerevisiae. The CDPK genes are highly ...

  6. Calcium-dependant binding proteins associated with human placental syncytiotrophoblast microvillous cytoskeleton. (United States)

    Webb, P D; Mahadevan, L C


    Isolated human placental syncytiotrophoblast microvillous plasma membrane vesicles were extracted with Triton X-100 to yield a detergent-insoluble residue. The residue contained approx. 50% of the total membrane protein and was qualitatively different from untreated trophoblast on SDS-polyacrylamide gel electrophoresis, Western blots and dot-immunobinding assay. Three major proteins, with molecular weights of 68, 36 and 34 kDa, dissociated from this non-ionic detergent-insoluble submembranous cytoskeletal fraction in the presence of calcium chelators. They were immunologically related to human lymphocyte cytoskeletal calcium-binding proteins, and the 36 kDa component reacted with antisera to the phospholipase A2 inhibitor, lipocortin II. Anti-lipocortin I sera did not recognise the 34 kDa protein, but did react with a series of trophoblast cytoskeletal proteins in the 34-37 kDa region. Incubation of epidermal growth factor with isolated trophoblast membrane vesicles stimulated the phosphorylation of a 36 kDa protein on tyrosine residues. Immunoprecipitation studies further showed there was no phosphorylation of the 34 kDa protein, but the 68 kDa protein was a major phosphorylated component of isolated syncytiotrophoblast membranes. p68 was principally phosphorylated on serine with slight tyrosine phosphorylation which showed an apparent increase after epidermal growth factor treatment. These results indicate a family of calcium-dependant binding proteins, some of which are phosphorylated, associated with the submembranous cytoskeleton of syncytiotrophoblast microvilli.

  7. The calcium-dependent protease of Loxosceles gaucho venom acts preferentially upon red cell band 3 transmembrane protein

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.


    Full Text Available Eighty micrograms red blood cell (RBC ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.

  8. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover

    DEFF Research Database (Denmark)

    Monaghan, Jacqueline; Matschi, Susanne; Shorinola, Oluwaseyi


    Plant perception of pathogen-associated molecular patterns (PAMPs) triggers a phosphorylation relay leading to PAMP-triggered immunity (PTI). Despite increasing knowledge of PTI signaling, how immune homeostasis is maintained remains largely unknown. Here we describe a forward-genetic screen...

  9. Molecular Modelling of Calcium Dependent Protein Kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L


    Full Text Available Malaria continues to be one of the most serious global health challenges. The increasing incidence of drug resistant Plasmodium strains has emphasised the need for urgent action in the development of new therapeutic strategies against this disease...

  10. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal


    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  11. Molecular modelling of calcium dependent protein kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L


    Full Text Available Malaria continues to be one of the most serious global health challenges. The increasing incidence of drug resistant Plasmodium strains has emphasised the need for urgent action in the development of new therapeutic strategies against this disease...

  12. Computational comparison of a calcium-dependent jellyfish protein (apoaequorin) and calmodulin-cholesterol in short-term memory maintenance. (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K


    Memory reconsolidation and maintenance depend on calcium channels and on calcium/calmodulin-dependent kinases regulating protein turnover in the hippocampus. Ingestion of a jellyfish protein, apoaequorin, reportedly protects and/or improves verbal learning in adults and is currently widely advertised for use by the elderly. Apoaequorin is a member of the EF-hand calcium binding family of proteins that includes calmodulin. Calmodulin-1 (148 residues) differs from Apoaequorin (195 residues) in that it contains four rather than three Ca 2+ -binding sites and three rather than four cholesterol-binding (CRAC, CARC) domains. All three cholesterol-binding CARC domains in calmodulin have a high interaction affinity for cholesterol compared to only two high affinity CARC domains in apoaequorin. Both calmodulin and apoaequorin can form dimers with a potential of eight bound Ca 2+ ions and six high affinity-bound cholesterol molecules in calmodulin with six bound Ca 2+ ions and a mixed population of eight cholesterols bound to both CARC and CRAC domains in apoaqueorin. MEMSAT-SVM analysis indicates that both calmodulin and apoaqueorin have a pore-lining region. The Peptide-Cutter algorithm predicts that calmodulin-1 contains 11 trypsin-specific cleavage sites (compared to 21 in apoaqueorin), four of which are potentially blocked by cholesterol and three are within the Ca-binding domains and/or the pore-lining region. Three are clustered between the third and fourth Ca 2+ -binding sites. Only calmodulin pore-lining regions contain Ca 2+ binding sites and as dimers may insert into the plasma membrane of neural cells and act as Ca 2+ channels. In a dietary supplement, bound cholesterol may protect both apoaequorin and calmodulin from proteolysis in the gut as well as facilitate uptake across the blood-brain barrier. Our results suggest that a physiological calmodulin-cholesterol complex, not cholesterol-free jellyfish protein, may better serve as a dietary supplement to

  13. JAK protein kinase inhibitors. (United States)

    Thompson, James E


    In humans, the Janus protein tyrosine kinase family (JAKs) contains four members: JAK1, JAK2, JAK3 and TYK2. JAKs phosphorylate signal transducers and activators of transcription (STATs) simultaneously with other phosphorylations required for activation, and there are several cellular mechanisms in place to inhibit JAK/STAT signaling. That one might be able to modulate selected JAK/STAT-mediated cellular signals by inhibiting JAK kinase activity to effect a positive therapeutic outcome is a tantalizing prospect, as yet incompletely realized. While current data suggest no therapeutic use for JAK1 and TYK2 inhibition, JAK2 inhibition seems a promising but not definitively tested mechanism for treatment of leukemia. More promising, however, are data indicating a possible therapeutic use of JAK3 inhibition. The restriction of the JAK3-deficient phenotype to the hematopoietic system and the resulting profound immune suppression suggest that JAK3 could be a target for immunosuppressive therapies used to prevent organ transplant rejection.

  14. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten


    enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  15. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa

    Directory of Open Access Journals (Sweden)

    Talevich Eric


    Full Text Available Abstract Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK, calcium-dependent protein kinase (CDPK and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and

  16. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension

    NARCIS (Netherlands)

    Jarajapu, YPR; Knot, H.J.


    Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be

  17. Partial purification and characterization of a Ca(2+)-dependent protein kinase from the green alga, Dunaliella salina (United States)

    Roux, S. J.


    A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10(-7) molar. and half-maximal activation was at about 3 x 10(-7) molar. The optimum pH for its Ca(2+)-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separated from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.

  18. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer


    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  19. Protein Kinase A Modulation by Dietary Phytochemicals


    Fagervoll, Anne Marthe


    Abstract Evidence from epidemiologic studies has shown that diets rich in fruit and vegetables are associated with reduced risk of chronic and degenerative diseases. Plants contain phytochemicals, which are believed to account for some of the positive effects through interactions with protein kinases. The present work is a screening of dietary phytochemicals for their ability to modulate the activity of the intracellular protein kinase A (PKA) using a novel PKA-sensitive luciferase. Som...

  20. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Yuan, Xian-rui; Li, Hao-yu; Zhao, Zi-jin; Liao, Yi-wei; Wang, Xiang-yu; Su, Jun; Sang, Shu-shan; Liu, Qing, E-mail:


    Highlights: •Downregulation of Drp-1 attenuates glutamate-induced excitotoxicity. •Downregulation of Drp-1 inhibits glutamate-induced apoptosis. •Downregulation of Drp-1 reduces glutamate-induced mitochondrial dysfunction. •Downregulation of Drp-1 preserves intracellular calcium homeostasis. -- Abstract: Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca{sup 2+}, and preserved the mitochondrial Ca{sup 2+} buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.

  1. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano


    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  2. Oncoprotein protein kinase antibody kit (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA


    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. (United States)

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan


    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  4. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball


    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  5. Protein Kinases in Shaping Plant Architecture. (United States)

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao


    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at

  6. The alpha-kinase family: an exceptional branch on the protein kinase tree.

    NARCIS (Netherlands)

    Middelbeek, J.A.J.; Clark, K.; Venselaar, H.; Huynen, M.A.; Leeuwen, F.N. van


    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in

  7. Production of Protein Kinases in E. coli. (United States)

    Dodson, Charlotte A


    Recombinant protein expression is widely used to generate milligram quantities of protein kinases for crystallographic, enzymatic, or other biophysical assays in vitro. Expression in E. coli is fast, cheap, and reliable. Here I present a detailed protocol for the production of human Aurora-A kinase. I begin with transformation of a suitable plasmid into an expression strain of E. coli, followed by growth and harvesting of bacterial cell cultures. Finally, I describe the purification of Aurora-A to homogeneity using immobilized metal affinity and size exclusion chromatographies.

  8. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.


    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  9. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex (United States)

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.


    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  10. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells. (United States)

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E


    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  11. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific ...

  12. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  13. Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies. (United States)

    Hannun, Y A; Loomis, C R; Bell, R M


    The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS

  14. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg


    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...... the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP...

  15. A Framework for Classification of Prokaryotic Protein Kinases


    Nidhi Tyagi; Krishanpal Anamika; Narayanaswamy Srinivasan


    BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of pro...

  16. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas


    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  17. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1

    NARCIS (Netherlands)

    Shah, K.; Russinova, E.; Gadella, T.W.J.; Willemse, J.; Vries, de S.C.


    The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does

  18. CK2: a protein kinase in need of control

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Sarno, S


    Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the regula...... response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential....

  19. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. (United States)

    Nakagami, Hirofumi; Soukupová, Hanka; Schikora, Adam; Zárský, Viktor; Hirt, Heribert


    Mitogen-activated protein kinase kinase kinases (MAPKKKs) play key roles in intra- and extracellular signaling in eukaryotes. Here we report that the MAPKKK MEKK1 regulates redox homeostasis in Arabidopsis. We show that MEKK1-deficient plants are misregulated in the expression of a number of genes involved in cellular redox control and accumulate reactive oxygen species (ROS). Most strikingly, homozygous mekk1 mutant plants exhibit a lethal phenotype when developing true leaves. MEKK1 kinase activity and protein stability was regulated by H(2)O(2) in a proteasome-dependent manner and mekk1 plants were compromised in ROS-induced MAPK MPK4 activation. Whereas mpk3 and mpk6 knock out plants showed no defects in development or changes in redox control genes, mpk4 null mutant shared several phenotypic and transcript profile features with mekk1 plants. In agreement with the concept that ROS negatively regulates auxin responses in plants, mekk1 and mpk4 mutants show reduced expression of several auxin-inducible marker genes. Overall, our data defines MPK4 as downstream target of MEKK1 and show that MEKK1 functions in integrating ROS homeostasis with plant development and hormone signaling.

  20. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders.

  1. Photoinduced structural changes to protein kinase A (United States)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo


    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  2. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process

    DEFF Research Database (Denmark)

    Coomber, S J; Bartels, E M; Elliott, G F


    in the gap filaments between the A- and I-band ends; further stretching abolishes the dependence. These experiments strongly suggest that calcium dependence is controlled initially by the titin component, and that this control is lost when titin filaments break. We suppose that that effect is mediated...... by the titin kinase in the M-line region and may involve the extensible PEVK region of titin. There is great interest in the electric charge on proteins in muscle within the structural system. We suggest how changes in these charges may control the calcium activation process. We also suggest some simple...

  3. Pollen Tube Growth Regulation by Free Anions Depends on the Interaction between the Anion Channel SLAH3 and Calcium-Dependent Protein Kinases CPK2 and CPK20.

    NARCIS (Netherlands)

    Gutermuth, T.; Lassig, R.; Portes, M.T.; Maierhofer, T.; Romeis, T.; Borst, J.W.; Hedrich, R.; Feijó, J.A.; Konrad, K.R.


    Apical growth in pollen tubes (PTs) is associated with the presence of tip-focused ion gradients and fluxes, implying polar localization or regulation of the underlying transporters. The molecular identity and regulation of anion transporters in PTs is unknown. Here we report a negative gradient of

  4. The ABC of protein kinase conformations. (United States)

    Möbitz, Henrik


    Due to their involvement in human diseases, protein kinases are an important therapeutic target class. Conformation is a key concept for understanding how functional activity, inhibition and sequence are linked. We assemble and annotate the mammalian structural kinome from the Protein Data Bank on the basis of a universal residue nomenclature. We identify a torsion angle around the Gly of the DFG-motif whose sharp distribution profile corresponds to three eclipsed conformations. This allows the definition a small set of clusters whose distribution shows a bias for the active conformation. A common rationale links the active and inactive state: stabilization of the active conformation, as well as inactivation by displacement of helix-αC or the DFG-motif is governed by the interaction between helix-αC and the DFG motif. In particular, the conformation of the DFG-motif is tightly correlated with the propensity of helix-αC displacement. Our analysis reveals detailed mechanisms for the displacement of helix-αC and the DFG and improves our understanding of the role of individual residues. By pooling conformations from the whole structural kinome, the energetic contributions of sequence and extrinsic factors can be estimated in free energy analyses. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)


    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  6. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin


    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  7. Protein Kinases as Drug Development Targets for Heart Disease Therapy

    Directory of Open Access Journals (Sweden)

    Alison L. Müller


    Full Text Available Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA, Ca2+-calmodulin-dependent protein kinase (CaMK, protein kinase C (PKC, phosphoinositide 3-kinase (PI3K and mitogen-activated protein kinase (MAPK are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.

  8. A framework for classification of prokaryotic protein kinases. (United States)

    Tyagi, Nidhi; Anamika, Krishanpal; Srinivasan, Narayanaswamy


    Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the

  9. A framework for classification of prokaryotic protein kinases.

    Directory of Open Access Journals (Sweden)

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  10. The Roles of Protein Kinases in Learning and Memory (United States)

    Giese, Karl Peter; Mizuno, Keiko


    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  11. Mitogen-activated protein kinase cascades in Vitis vinifera. (United States)

    Çakır, Birsen; Kılıçkaya, Ozan


    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera.

  12. Mitogen-activated protein kinase cascades in Vitis vinifera (United States)

    Çakır, Birsen; Kılıçkaya, Ozan


    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  13. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.


    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  14. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina


    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  15. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha


    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  16. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl


    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  17. dependent/calmodulin- stimulated protein kinase from moss ...

    Indian Academy of Sciences (India)


    lin-dependent protein kinase homolog; Planta 203 S91–. S97. Lu Y-T, Hidaka H and Feldman L J 1996 Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism; Planta. 199 18–24. Mitra D and Johri M M 2000 Enhanced expression of a cal-.

  18. Oral protein kinase c β inhibition using ruboxistaurin

    DEFF Research Database (Denmark)

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J


    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2 ruboxi...

  19. Inhibitors caveolin-1 and protein kinase G show differential ...

    African Journals Online (AJOL)

    protein interactions with caveolin-1 before extracellular activating signals release it for nitric oxide (NO) production. Smooth muscle protein kinase G (PKG) is a down-stream effector of NO signaling for relaxation of vascular smooth muscle cells ...

  20. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  1. Effective identification of negative regulation patterns of protein kinases. (United States)

    Chen, Qingfeng; Hu, Xiaoyan; Chen, Baoshan


    Recent studies point to the fact that protein kinases play an important role in the regulation of cellular pathways and show great potential in disease treatment. Thus, it is critical to discover characterized regulatory patterns of protein kinases in signaling pathway. There have been considerable efforts to explore the activities of protein kinases. However, the study of negative regulation patterns has been largely overlooked and undeveloped. This paper aims to identify inhibitory regulatory correlations of protein kinase according to negative association rule mining. Especially, mutual information is applied to sort out the items with strong dependency and the minimum support threshold is computed by support constraints to control rule generation. The obtained rules not only reveal the relationships between subunits of protein kinases and between subunits and stimuli, but also provide novel pharmacological insight into drug design for diseases.

  2. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity (United States)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  3. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)


    Jun 19, 2012 ... Key words: Limb ischemic preconditioning, ischemia–reperfusion injury, phosphatidylinositol 3-kinase (PI3k), protein kinase (p-Akt), signal ... signaling pathways and certain cytokines (tumor necrosis factor-alpha, erythropoietin ... involved in the protecting cardiac muscle via the. ADP/PI3k/Akt signaling ...

  4. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  5. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. (United States)

    Dalton, George D; Dewey, William L


    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  6. Resolution of thylakoid polyphenol oxidase and a protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Race, H.L.; Davenport, J.W.; Hind, G.


    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  7. Auto-phosphorylation Represses Protein Kinase R Activity. (United States)

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J


    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  8. Rationally designed peptide regulators of protein kinase C


    Churchill, Eric N.; Qvit, Nir; Mochly-Rosen, Daria


    Protein-protein interactions sequester enzymes close to their substrates. Protein kinase C (PKC) is one example of a ubiquitous signaling molecule with effects that are dependent upon localization. Short peptides derived from interaction sites between each PKC isozyme and its receptor for activated C kinase act as highly specific inhibitors and have become available as selective drugs in basic research and animal models of human diseases, such as myocardial infarction and hyperglycemia. Where...

  9. A new regulatory switch in a JAK protein kinase. (United States)

    Tsui, Vickie; Gibbons, Paul; Ultsch, Mark; Mortara, Kyle; Chang, Christine; Blair, Wade; Pulk, Rebecca; Stanley, Mark; Starovasnik, Melissa; Williams, David; Lamers, Maria; Leonard, Phillip; Magnuson, Steven; Liang, Jun; Eigenbrot, Charles


    Members of the JAK family of protein kinases mediate signal transduction from cytokine receptors to transcription factor activation. Over-stimulation of these pathways is causative in immune disorders like rheumatoid arthritis, psoriasis, lupus, and Crohn's disease. A search for selective inhibitors of a JAK kinase has led to our characterization of a previously unknown kinase conformation arising from presentation of Tyr962 of TYK2 to an inhibitory small molecule via an H-bonding interaction. A small minority of protein kinase domains has a Tyrosine residue in this position within the αC-β4 loop, and it is the only amino acid commonly seen here with H-bonding potential. These discoveries will aid design of inhibitors that discriminate among the JAK family and more widely among protein kinases. © 2010 Wiley-Liss, Inc.

  10. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I


    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region....... These results suggest that the compartmentalization of PKC isoforms in neurons may contribute to their function, with the location of PKMzeta prominent in areas notable for long-term synaptic plasticity....

  11. An active form of calcium and calmodulin dependant protein kinase ...

    African Journals Online (AJOL)

    The DMI3 gene of the model legume Medicago truncatula encodes a calcium and calmodulin dependent protein kinase (CCaMK) involved in the signalling pathways leading to the establishment of both mycorrhizal and rhizobial root symbiosis. The removal of the auto-inhibitory domain that negatively regulates the kinase ...

  12. RAF protein-serine/threonine kinases: Structure and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Roskoski, Robert, E-mail: [Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742 (United States)


    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  13. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  14. Recent Developments of Protein Kinase Inhibitors as Potential AD Therapeutics

    Directory of Open Access Journals (Sweden)

    Andreas eHilgeroth


    Full Text Available Present AD therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase (ACE inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3 β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specifity tyrosine phosphorylation regulated kinase 1A (DYRK1A. Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit.

  15. Emerging roles of protein kinases in microglia-mediated neuroinflammation. (United States)

    Lee, Sun-Hwa; Suk, Kyoungho


    Neuroinflammation is mediated by resident central nervous system glia, neurons, peripherally derived immune cells, blood-brain barrier, and inflammatory mediators secreted from these cells. Neuroinflammation has been implicated in stroke and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Protein kinases have been one of the most exploited therapeutic targets in the current pharmacological research, especially in studies on cancer and inflammation. To date, 32 small-molecule protein kinase inhibitors have been approved by the United States Food and Drug Administration for the treatment of cancer and inflammation. However, there is no drug effectively targeting neuroinflammation and/or neurodegenerative diseases. Recent studies have advanced several protein kinases as important drug targets in neuroinflammation and/or neurodegenerative diseases. Here, we review emerging protein kinases potentially involved in neuroinflammation and subsequent neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock


    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  17. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID (United States)

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês CR; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus


    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the—in many cells—asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. DOI: PMID:24948515

  18. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight


    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  19. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D


    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  20. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs (United States)

    Gurevich, Eugenia V.; Tesmer, John J. G.; Mushegian, Arcady; Gurevich, Vsevolod V.


    G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson’s disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson’s disease. PMID:21903131

  1. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW


    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  2. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S


    in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears......Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....

  3. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study

    National Research Council Canada - National Science Library

    Luo, Keqin; Long, Huibao; Xu, Bincan; Luo, Yanling


    This study aims to investigate whether apelin would regulate inflammatory response and promote survival in an experimental burn sepsis model through a phosphatidylinositol 3-kinase/protein kinase B dependent pathway...

  4. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    (ALDH1) and Raf kinase inhibitor protein (RKIP) as cervical cancer stem cell markers. Methods: To evaluate the cancer ... ALDH1, a protein that positively regulates stem cells shows mild expression in low grade cervical tumour, but positive signals are ... cancer cells or cancer stem cells that still remain after treatment gets.

  5. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)


    Debasis Chattopadhyay, NIPGR, New Delhi. Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and intrinsic signals elicit changes in cellular calcium ion. (Ca2+) in plants and animals. Ca2+ sensor proteins transmit signals in Ca2+-dependent manner. In addition to several such Ca2+ sensors, ...

  6. Heart 6-phosphofructo-2-kinase activation by insulin requires PKB (protein kinase B), but not SGK3 (serum- and glucocorticoid-induced protein kinase 3).


    Mouton, Veronique; Toussaint, Louise; Vertommen, Didier; Gueuning, Marie-Agnes; Maisin, Liliane; Havaux, Xavier; Sanchez-Canedo, Cossette; Bertrand, Luc; Dequiedt, Franck; Hemmings, Brian A; Hue, Louis; Rider, Mark H


    On the basis of transfection experiments using a dominant-negative approach, our previous studies suggested that PKB (protein kinase B) was not involved in heart PFK-2 (6-phosphofructo2-kinase) activation by insulin. Therefore we first tested whether SGK3 (serum- and glucocorticoid-induced protein kinase 3) might be involved in this effect. Treatment of recombinant heart PFK-2 with [gamma-32P]ATP and SGK3 in vitro led to PFK-2 activation and phosphorylation at Ser466 and Ser483. However, in H...

  7. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. (United States)

    Li, S; Kim, M; Hu, Y L; Jalali, S; Schlaepfer, D D; Hunter, T; Chien, S; Shyy, J Y


    Shear stress, the tangential component of hemodynamic forces, activates the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) signal transduction pathways in cultured vascular endothelial cells to induce the transcriptional activation of many immediate early genes. It appears that integrins, protein-tyrosine kinases, and the structural integrity of actin are important factors involved in these shear stress-induced responses. The underlying molecular events were investigated by the application of a shear stress of 12 dyn/cm2 on bovine aortic endothelial cells (BAEC). We found that such a shear stress increased the tyrosine phosphorylation and the kinase activity of focal adhesion kinase (FAK) and its association with growth factor receptor binding protein 2 (Grb2) in a rapid and transient manner, suggesting that FAK may be linked to these mitogen-activated protein kinase signaling pathways through a Grb2. Son of sevenless (Sos) complex. FAK(F397Y), which encodes a dominant negative mutant of FAK, attenuated the shear stress-induced kinase activity of Myc epitope-tagged ERK2 and hemagglutinin epitope-tagged JNK1. DeltamSos1, encoding a dominant negative mutant of Sos in which the guanine nucleotide exchange domain has been deleted, also attenuated shear stress activation of Myc-ERK2 and hemagglutinin-JNK1. Pretreating the confluent BAEC monolayers with a blocking type anti-vitronectin receptor monoclonal antibody had similar inhibitory effects in these shear stress-activated ERKs and JNKs. Confocal microscopic observation further demonstrated that FAK tended to cluster with vitronectin receptor near the abluminal side of the sheared BAEC. These results demonstrate that FAK signaling is critical in the shear stress-induced dual activation of ERK and JNK.

  8. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞ (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang


    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  9. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jung-Chi Liao


    Full Text Available Tau tubulin kinase 2 (TTBK2 is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1 kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.

  10. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G


    The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... of T antigen by the associated kinase is reduced whereas a p34cdc2-kinase-specific peptide has no influence. In addition, the T-antigen-associated protein kinase can use GTP and ATP as phosphate donors. These properties together with the observation that immunopurified T antigen can be phosphorylated...

  11. Unveiling Protein Kinase A Targets in Cryptococcus neoformans Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. Andrew Alspaugh


    Full Text Available The protein kinase A (PKA signal transduction pathway has been associated with pathogenesis in many fungal species. Geddes and colleagues [mBio 7(1:e01862-15, 2016, doi:10.1128/mBio.01862-15] used quantitative proteomics approaches to define proteins with altered abundance during protein kinase A (PKA activation and repression in the opportunistic human fungal pathogen Cryptococcus neoformans. They observed an association between microbial PKA signaling and ubiquitin-proteasome regulation of protein homeostasis. Additionally, they correlated these processes with expression of polysaccharide capsule on the fungal cell surface, the main virulence-associated phenotype in this organism. Not only are their findings important for microbial pathogenesis, but they also support similar associations between human PKA signaling and ubiquitinated protein accumulation in neurodegenerative diseases.

  12. Marine sponge polyketide inhibitors of protein tyrosine kinase. (United States)

    Lee, R H; Slate, D L; Moretti, R; Alvi, K A; Crews, P


    The marine polyketide natural product, halenaquinone, was shown to be an irreversible inhibitor of pp60v-src, the oncogenic protein tyrosine kinase encoded by the Rous sarcoma virus. This compound had an IC50 of approximately 1.5 microM against pp60v-src and also inhibited the ligand-stimulated kinase activity of the human epidermal growth factor receptor with an IC50 of approximately 19 microM. Halenaquinone blocked the proliferation of a number of cultured cell lines, including several transformed by oncogenic protein tyrosine kinases. Halenaquinol, xestoquinone, halenaquinol sulfate, and several simple synthetic quinone analogs were also shown to inhibit pp60v-src.

  13. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry. (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V


    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  14. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Zhongtao Zhao

    Full Text Available Tyrosine kinases (TKs specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.

  15. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability. (United States)

    Wilkes, Edmund H; Casado, Pedro; Rajeeve, Vinothini; Cutillas, Pedro R


    Cell survival is regulated by a signaling network driven by the activity of protein kinases; however, determining the contribution that each kinase in the network makes to such regulation remains challenging. Here, we report a computational approach that uses mass spectrometry-based phosphoproteomics data to rank protein kinases based on their contribution to cell regulation. We found that the scores returned by this algorithm, which we have termed kinase activity ranking using phosphoproteomics data (KARP), were a quantitative measure of the contribution that individual kinases make to the signaling output. Application of KARP to the analysis of eight hematological cell lines revealed that cyclin-dependent kinase (CDK) 1/2, casein kinase (CK) 2, extracellular signal-related kinase (ERK), and p21-activated kinase (PAK) were the most frequently highly ranked kinases in these cell models. The patterns of kinase activation were cell-line specific yet showed a significant association with cell viability as a function of kinase inhibitor treatment. Thus, our study exemplifies KARP as an untargeted approach to empirically and systematically identify regulatory kinases within signaling networks. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Protein kinase CK2 structure-function relationship

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A


    Protein kinase CK2 subunits alpha and beta were expressed either separately or together in a bacterial expression system (pT7-7/BL21(DE3)) and purified to homogeneity. After mixing the subunits, a CK2 holoenzyme (alpha 2 beta 2) was spontaneously reconstituted, which displays identical features a...

  17. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy (United States)

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.


    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  18. VHH Activators and Inhibitors for Protein Kinase C Epsilon

    NARCIS (Netherlands)

    Summanen, M.M.I.


    Protein kinase C epsilon (PKCε), which is one of the novel PKC isozymes, is widely expressed throughout the body and has important roles in the function of the nervous, cardiovascular and immune systems. In order to better understand PKCε regulated pathways, isozyme specific activity modulators are

  19. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity (United States)

    Sossin, Wayne S.


    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  20. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms. (United States)

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru


    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  1. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3beta phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mykola Maydan


    Full Text Available Integrin-linked kinase (ILK is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain.Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3 peptide and the 20-kDa regulatory light chains of myosin (LC(20. Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2 causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the K(m for MnATP is approximately 150-fold less than that for MgATP.Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases.

  2. Protein Kinase C δ: a Gatekeeper of Immune Homeostasis. (United States)

    Salzer, Elisabeth; Santos-Valente, Elisangela; Keller, Bärbel; Warnatz, Klaus; Boztug, Kaan


    Human autoimmune disorders present in various forms and are associated with a life-long burden of high morbidity and mortality. Many different circumstances lead to the loss of immune tolerance and often the origin is suspected to be multifactorial. Recently, patients with autosomal recessive mutations in PRKCD encoding protein kinase c delta (PKCδ) have been identified, representing a monogenic prototype for one of the most prominent forms of humoral systemic autoimmune diseases, systemic lupus erythematosus (SLE). PKCδ is a signaling kinase with multiple downstream target proteins and with functions in various signaling pathways. Interestingly, mouse models have indicated a special role of the ubiquitously expressed protein in the control of B-cell tolerance revealed by the severe autoimmunity in Prkcd (-/-) knockout mice as the major phenotype. As such, the study of PKCδ deficiency in humans has tremendous potential in enhancing our knowledge on the mechanisms of B-cell tolerance.

  3. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity (United States)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel


    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.

  4. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. (United States)

    Gavi, Shai; Shumay, Elena; Wang, Hsien-yu; Malbon, Craig C


    G-protein-coupled receptors and protein tyrosine kinases represent two prominent pathways for cellular signaling. As our knowledge of cell signaling pathways mediated by the superfamily of G-protein-coupled receptors and the smaller family of receptor tyrosine kinases expands, so does our appreciation of how these two major signaling platforms share information and modulate each other, otherwise termed "cross-talk". Cross-talk between G-protein-coupled receptors and tyrosine kinases can occur at several levels, including the receptor-to-receptor level, and at crucial downstream points (e.g. phosphatidylinositol-3-kinase, Akt/protein kinase B and the mitogen-activated protein kinase cascade). Regulation of G-protein-coupled receptors by non-receptor tyrosine kinases, such as Src family members, also operates in signaling. A broader understanding of how G-protein-coupled receptors and tyrosine kinases cross-talk reveals new insights into signaling modalities in both health and disease.

  5. Septin-associated protein kinases in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jeremy THORNER


    Full Text Available Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.

  6. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases.


    Zhongtao Zhao; Qiaojun Jin; Jin-Rong Xu; Huiquan Liu


    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematical...

  7. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. (United States)

    Hoda, Nasimul; Naz, Huma; Jameel, Ehtesham; Shandilya, Ashutosh; Dey, Sharmistha; Hassan, Md Imtaiyaz; Ahmad, Faizan; Jayaram, B


    Calcium-calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein-ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrophobic and hydrogen-bonded interactions. Additionally, MD simulations studies contributed in understanding the stability of protein-ligand complex system in aqueous solution and conformational changes in the CAMK4 upon binding of curcumin. A significant increase in the fluorescence intensity at 495 nm was observed (λexc = 425 nm), suggesting a strong interaction of curcumin to the CAMK4. A high binding affinity (KD = 3.7 × 10(-8) ± .03 M) of curcumin for the CAMK4 was measured by SPR further indicating curcumin as a potential ligand for the CAMK4. This study will provide insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases.

  8. Protein Tyrosine Kinase Signaling During Oocyte Maturation and Fertilization (United States)

    McGinnis, Lynda K.; Carroll, David J.; Kinsey, William H.


    The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans. PMID:21681843

  9. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee


    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  10. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk.

    Directory of Open Access Journals (Sweden)

    Lei eShi


    Full Text Available Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.

  11. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker


    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  12. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty


    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  13. Expression of Raf Kinase Inhibitor Protein (RKIP) is a predictor of uveal melanoma metastasis. (United States)

    Caltabiano, Rosario; Puzzo, Lidia; Barresi, Valeria; Cardile, Venera; Loreto, Carla; Ragusa, Marco; Russo, Andrea; Reibaldi, Michele; Longo, Antonio


    Melanoma arising from melanocytes within the choroid is the most frequent primary intraocular neoplasm in adults. It is biologically distinct from cutaneous melanoma by a very strong propensity to metastasize the liver. Raf kinase inhibitor protein is a member of an evolutionarily conserved group of proteins called phosphatidylethanolamine-binding proteins. It is an interacting partner of Raf-1 and a negative regulator of the mitogen-activated protein kinase cascade initiated by Raf-1. Raf kinase inhibitor protein expression is low in many human cancers and represents an indicator of poor prognosis and/or induction of metastasis. In the present study, we examined the immunohistochemical expression levels of Raf kinase inhibitor protein and phosphorylated Raf kinase inhibitor protein in primary uveal melanoma with and without metastasis, and evaluated their association with other high risk characteristics for metastasis in order to assess whether Raf kinase inhibitor protein and phosphorylated Raf kinase inhibitor protein can be used to predict metastasis. A significant low expression of Raf kinase inhibitor protein was seen in patients with metastasis but not in patients without metastasis. The latter more frequently had a high expression of Raf kinase inhibitor protein. No significant difference was seen in phosphorylated Raf kinase inhibitor protein expression between patients with and without metastasis. Raf kinase inhibitor protein expression is a suitable and easily determinable marker in the primary tumour that could predict the risk of uveal melanoma to metastasize, and hence guide strategies for monitoring and therapy.

  14. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks. (United States)

    Sossin, Wayne S; Abrams, Thomas W


    The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals. Copyright 2009 S. Karger AG, Basel.

  15. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). (United States)

    Wang, Gang; Lovato, Arianna; Polverari, Annalisa; Wang, Min; Liang, Ying-Hai; Ma, Yuan-Chun; Cheng, Zong-Ming


    Mitogen-activated protein kinase kinase kinases (MAPKKKs; MAP3Ks) are important components of MAPK cascades, which are highly conserved signal transduction pathways in animals, yeast and plants, play important roles in plant growth and development. MAPKKKs have been investigated on their evolution and expression patterns in limited plants including Arabidopsis, rice and maize. In this study, we performed a genome-wide survey and identified 45 MAPKKK genes in the grapevine genome. Chromosome location, phylogeny, gene structure and conserved protein motifs of MAPKKK family in grapevine have been analyzed to support the prediction of these genes. In the phylogenetic analysis, MAPKKK genes of grapevine have been classified into three subgroups as described for Arabidopsis, named MEKK, ZIK and RAF, also confirmed in grapevine by the analysis of conserved motifs and exon-intron organizations. By analyzing expression profiles of MAPKKK genes in grapevine microarray databases, we highlighted the modulation of different MAPKKKs in different organs and distinct developmental stages. Furthermore, we experimentally investigated the expression profiles of 45 grape MAPKKK genes in response to biotic (powdery mildew) and abiotic stress (drought), as well as to hormone (salicylic acid, ethylene) and hydrogen peroxide treatments, and identified several candidate MAPKKK genes that might play an important role in biotic and abiotic responses in grapevine, for further functional characterization. This is the first comprehensive experimental survey of the grapevine MAPKKK gene family, which provides insights into their potential roles in regulating responses to biotic and abiotic stresses, and the evolutionary expansion of MAPKKKs is associated with the diverse requirement in transducing external and internal signals into intracellular actions in MAPK cascade in grapevine.

  16. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Knaap, E. van der; Sauter, M.; Kende, H. (Michigan State Univ., East Lansing, MI (United States). DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. (Univ. of California, Davis, CA (United States). Dept. of Plant Pathology)


    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  17. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo


    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  18. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase. (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R


    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  19. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis (United States)

    Jette, Nicholas; Lees-Miller, Susan P.


    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  20. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Directory of Open Access Journals (Sweden)

    Xiangpei Kong

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  1. Serous Retinopathy Associated with Mitogen-Activated Protein Kinase Kinase Inhibition (Binimetinib) for Metastatic Cutaneous and Uveal Melanoma

    NARCIS (Netherlands)

    Dijk, E.H. van; Herpen, C.M.L. van; Marinkovic, M.; Haanen, J.B.; Amundson, D.; Luyten, G.P.M.; Jager, M.J. de; Kapiteijn, E.H.; Keunen, J.E.E.; Adamus, G.; Boon, C.J.F.


    PURPOSE: To analyze the clinical characteristics of a serous retinopathy associated with mitogen-activated protein kinase kinase (MEK) inhibition with binimetinib treatment for metastatic cutaneous melanoma (CM) and uveal melanoma (UM), and to determine possible pathogenetic mechanisms that may lead

  2. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches.

    Directory of Open Access Journals (Sweden)

    Dhammaprakash Pandhari Wankhede

    Full Text Available Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour intensive techniques. Here, we employed computational docking using ZDOCK and RDOCK programmes to identify interaction network between members of Oryza sativa mitogen activated protein kinase kinase (MAPKK and mitogen activated protein kinase (MAPK. The 3-dimentional (3-D structures of five MAPKKs and eleven MAPKs were determined by homology modelling and were further used as input for docking studies. With the help of the results obtained from ZDOCK and RDOCK programmes, top six possible interacting MAPK proteins were predicted for each MAPKK. In order to assess the reliability of the computational prediction, yeast two-hybrid (Y2H analyses were performed using rice MAPKKs and MAPKs. A direct comparison of Y2H assay and computational prediction of protein interaction was made. With the exception of one, all the other MAPKK-MAPK pairs identified by Y2H screens were among the top predictions by computational dockings. Although, not all the predicted interacting partners could show interaction in Y2H, yet, the harmony between the two approaches suggests that the computational predictions in the present work are reliable. Moreover, the present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.

  3. Benzoselendiazole-based responsive long-lifetime photoluminiscent probes for protein kinases

    DEFF Research Database (Denmark)

    Ekambaram, R; Enkvist, E; Manoharan, GB


    Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 th...

  4. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R


    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  5. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata


    In yeast, Saccharomyces cerevisiae, the Snf1 protein kinase is primarily known as a key component of the glucose repression regulatory cascade. The Snf1 kinase is highly conserved among eukaryotes and its mammalian homolog AMPK is responsible for energy homeostasis in cells, organs and whole bodies...... catabolism was SNF1 or SNF4 gene deletion specific. In comparison to the reference strain, growth delay on galactose was found to last 2.4 times (7 hours) longer for the Δsnf4, 3.1 times (10.5 hours) longer for the Δsnf1, and 9.6 times (43 hours) longer for the Δsnf1Δsnf4 strains. The maximum specific growth...

  6. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  7. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.


    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation,

  8. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. (United States)

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K


    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  9. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24). (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F


    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  10. Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases


    Boudreault, Francis; Tschumperlin, Daniel J.


    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cγ1 (PLCγ1) and activation of the small G-protein Ras. Human lung fibroblast...

  11. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome

    Directory of Open Access Journals (Sweden)

    Anamika Krishanpal


    Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

  12. Mitogen-activated protein kinase kinase 4 (MAP2K4 promotes human prostate cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Janet M Pavese

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer death in the US. Death from PCa primarily results from metastasis. Mitogen-activated protein kinase kinase 4 (MAP2K4 is overexpressed in invasive PCa lesions in humans, and can be inhibited by small molecule therapeutics that demonstrate favorable activity in phase II studies. However, MAP2K4's role in regulating metastatic behavior is controversial and unknown. To investigate, we engineered human PCa cell lines which overexpress either wild type or constitutive active MAP2K4. Orthotopic implantation into mice demonstrated MAP2K4 increases formation of distant metastasis. Constitutive active MAP2K4, though not wild type, increases tumor size and circulating tumor cells in the blood and bone marrow. Complementary in vitro studies establish stable MAP2K4 overexpression promotes cell invasion, but does not affect cell growth or migration. MAP2K4 overexpression increases the expression of heat shock protein 27 (HSP27 protein and protease production, with the largest effect upon matrix metalloproteinase 2 (MMP-2, both in vitro and in mouse tumor samples. Further, MAP2K4-mediated increases in cell invasion are dependent upon heat shock protein 27 (HSP27 and MMP-2, but not upon MAP2K4's immediate downstream targets, p38 MAPK or JNK. We demonstrate that MAP2K4 increases human PCa metastasis, and prolonged over expression induces long term changes in cell signaling pathways leading to independence from p38 MAPK and JNK. These findings provide a mechanistic explanation for human studies linking increases in HSP27 and MMP-2 to progression to metastatic disease. MAP2K4 is validated as an important therapeutic target for inhibiting human PCa metastasis.

  13. Protein Kinase C-Regulated Aβ Production and Clearance

    Directory of Open Access Journals (Sweden)

    Taehyun Kim


    Full Text Available Alzheimer’s disease (AD is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ in the brain. A growing body of recent studies suggests that protein kinase C (PKC promotes the production of the secretory form of amyloid precursor protein (sAPPα via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1, which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.

  14. Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition (United States)

    Lupardus, Patrick J.; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R.; Eigenbrot, Charles


    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase–kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and “exon 12” JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state. PMID:24843152

  15. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. (United States)

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles


    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  16. 5'-AMP-Activated Protein Kinase Signaling in Caenorhabditis elegans. (United States)

    Ahmadi, Moloud; Roy, Richard

    AMP-activated protein kinase (AMPK) is one of the central regulators of cellular and organismal metabolism in eukaryotes. Once activated by decreased energy levels, it induces ATP production by promoting catabolic pathways while conserving ATP by inhibiting anabolic pathways. AMPK plays a crucial role in various aspects of cellular function such as regulating growth, reprogramming metabolism, autophagy, and cell polarity. In this chapter, we focus on how recent breakthroughs made using the model organism Caenorhabditis elegans have contributed to our understanding of AMPK function and how it can be utilized in the future to elucidate hitherto unknown aspects of AMPK signaling.

  17. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis. (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce


    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O


    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation...

  19. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin


    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  20. Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world

    Directory of Open Access Journals (Sweden)

    Yasunori Sugiyama


    Full Text Available Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies.

  1. A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae. (United States)

    Crowley, J H; Tove, S; Parks, L W


    ERG24 is the structural gene for the C14-sterol reductase in yeast. A lack of activity in that enzyme, mediated either by the morpholine fungicides or the insertional inactivation of ERG24, causes the accumulation of the aberrant sterol ignosterol. Cells producing this sterol are unable to grow aerobically in the routine laboratory medium, YPD. However, growth does occur on a synthetic defined medium. A novel calcium-dependent phenotype associated with alterations in the ergosterol biosynthetic pathway in yeast is described. In addition, reduction of yeast growth with an azole inhibitor of the C-14 sterol de-methylase was also modulated by an excess of calcium ions in the culture medium. These results define a new effect of ergosterol deficiency and provide important practical implications for utilizing morpholine and azole sterol biosynthetic-inhibiting fungicides.

  2. Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated. (United States)

    Xiao, Z; Zhang, Z; Ranjan, V; Diamond, S L


    Arterial levels of shear stress (25 dynes/cm2) can elevate constitutive endothelial nitric oxide synthase (eNOS) gene expression in cultured endothelial cells (Ranjan et al., 1995). By PhosphorImaging of Northern blots, we report that the eNOS/glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger RNA (mRNA) ratio in bovine aortic endothelial cells (BAEC) increased by 4.8- and 7.95-fold after 6-hr shear stress exposure of 4 and 25 dynes/cm2, respectively. Incubation of BAEC with dexamethasone (1 microM) had no effect on shear stress induction of eNOS mRNA. Buffering of intracellular calcium in BAEC with bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester (BAPTA/AM) reduced shear stress induction of eNOS mRNA by 70%. Yet, stimulation of BAEC with ionomycin (0.1-1.0 microM) for 6-24 hr to elevate intracellular calcium had no effect on eNOS mRNA. These studies indicated that the shear stress induction of eNOS mRNA was a calcium-dependent, but not calcium-activated, process. Shear stress was a very potent and rapid inducer of the eNOS mRNA, which could not be mimicked with phorbol myristrate acetate or endotoxin. Inhibition of tyrosine kinases with genistein (10 microM) or tyrphostin B46 (10 microM) or inhibition of G-protein signaling with guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) (600 microM, 6-hr preincubation) did not block the shear stress elevation of eNOS mRNA.

  3. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail:


    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  4. Dynamic changes in neurexins' alternative splicing: role of Rho-associated protein kinases and relevance to memory formation.

    Directory of Open Access Journals (Sweden)

    Gabriela Rozic

    Full Text Available The three neurexins genes (NRXN1/2/3 encode polymorphic synaptic membrane proteins that are involved in cognitive functioning. Neurexins' selectivity of function is presumably conferred through differential use of 2 promoters and 5 alternative splicing sites (SS#1/2/3/4/5. In day-old rat brain neurons grown in culture, activation (depolarization induces reversible, calcium dependent, repression of NRXN2α SS#3 insert. The effects of depolarization on NRXN1/2/3α splicing and biochemical pathways mediating them were further studied in these neurons. NRXN1/2/3α splicing in the course of memory formation in vivo was also explored, using fear conditioning paradigm in rats in which the animals were trained to associate an aversive stimulus (electrical shock with a neutral context (a tone, resulting in the expression of fear responses to the neutral context.In the cultured neurons depolarization induced, beside NRXN2α SS#3, repression of SS#3 and SS#4 exons in NRXN3α but not NRXN1α. The repressions were mediated by the calcium/protein kinase C/Rho-associated protein kinase (ROCK pathway. Fear conditioning induced significant and transient repressions of the NRXN1/2/3α SS#4 exons in the rat hippocampus. ROCK inhibition prior to training attenuated the behavioral fear response, the NRXN1/2/3α splicing repressions and subsequent recovery and the levels of excitatory (PSD95 and inhibitory (gephyrin synaptic proteins in the hippocampus. No such effects were observed in the prefrontal cortex. Significant correlations existed between the fear response and hippocampal NRXN3α and NRXN2α SS#4 inserts as well as PSD95 protein levels. Hippocampal NRXN1α SS#4 insert and gephyrin levels did not correlate with the behavioral response but were negatively correlated with each other.These results show for the first time dynamic, experience related changes in NRXN1/2/3α alternative splicing in the rat brain and a role for ROCK in them. Specific neurexins

  5. Specificity of ATP-dependent and GTP-dependent protein kinases with respect to ribosomal proteins of Escherichia coli

    DEFF Research Database (Denmark)

    Issinger, O G; Kiefer, M C; Traut, R R


    of the small ribosomal subunit, and to a lesser extent proteins L7 and L12 or the large subunit. Evidence is presented showing different phosphorylation patterns when either whole subunits or the extracted proteins were used as substrate for the protein kinase. Kinetic studies showed proteins S1 and S4......Two protein kinases differing in substrate specificity were used to phosphorylate the 30-S and the 50-S ribosomal subunits of Escherichia coli. The catalytic subunit from the rabbit skeletal muscle protein kinase phosphorylates proteins S1, S4, S9, S13 and S18 of the 30-S subunit and proteins L2, L......4, L5, L16, L18 and L23 of the 50-S subunit with (gamma-32P)ATP as phosphoryl donor. A second protein kinase isolated from rabbit reticulocytes, formerly shown to phosphorylate preferentially acidic proteins and to use GTP as well as ATP, strongly phosphorylated protein S6, an acidic protein...

  6. Emerging Roles of AMP-Activated Protein Kinase

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel

    or has focused on specific physiological situations and tissues. The present PhD thesis has addressed the role of AMPK in regulation of: 1) substrate utilisation during and in recovery from exercise, 2) adipose tissue metabolism during weight loss, and 3) autophagy in skeletal muscle during exercise......The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems...... be of importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...

  7. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola


    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...... and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout......). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms....

  8. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). (United States)

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing


    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.

  9. Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain.


    Lohmann, S M; Walter, U; Miller, P E; Greengard, P; De Camilli, P


    The distribution of cyclic GMP-dependent protein kinase in rat brain has been studied by an immunological approach involving radioimmunoassay and fluorescence immunohistochemistry. Data obtained by radioimmunoassay indicate that cyclic GMP-dependent protein kinase is 20- to 40-fold more concentrated in cerebellum than in other brain regions. Immunohistochemical experiments demonstrate that the high concentration of immunoreactivity of the protein kinase in cerebellum is attributable to Purkin...

  10. p21WAF1/CIP1 interacts with protein kinase CK2

    DEFF Research Database (Denmark)

    Götz, C; Wagner, P; Issinger, O G


    p21WAF1/CIP1 which belongs to a class of regulatory proteins that interact with cyclin dependent kinases is a potent inhibitor of these kinases. The inhibition of the cyclin dependent kinases induces an arrest of cells in the G phase of the cell cycle. In addition p21WAF1/CIP1 associates with PCN...

  11. Overexpression of Populus trichocarpa Mitogen-Activated Protein Kinase Kinase4 Enhances Salt Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Chengjun Yang


    Full Text Available Mitogen-activated protein kinase (MAPK is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain insights into regulatory function of MAPK kinase (MAPKK in Populus trichocarpa under salt stress, we obtained full-length cDNA of PtMAPKK4 and analyzed different expression levels of PtMAPKK4 gene in leaves, stems, and root organs. The relationship between PtMAPKK4 and salt stress was studied by detecting expression characteristics of mRNA under 150 mM NaCl stress using real-time quantitative polymerase chain reaction. The results showed that expression of PtMAPKK4 increased under salt (NaCl stress in leaves but initially reduced and then increased in roots. Thus, salt stress failed to induce PtMAPKK4 expression in stems. PtMAPKK4 possibly participates in regulation of plant growth and metabolism, thereby improving its salt tolerance. We used Saccharomyces cerevisiae strain INVScI to verify subcellular localization of PtMAPKK4 kinase. The yeast strains containing pYES2-PtMAPKK4-GFP plasmid expressed GFP fusion proteins under the induction of d-galactose, and the products were located in nucleus. These results were consistent with network prediction and confirmed location of PtMAPKK4 enzyme in the nucleus. We tested NaCl tolerance in transgenic tobacco lines overexpressing PtMAPKK4 under the control of 35S promoter at germination stage to detect salt tolerance function of PtMAPKK4. Compared withK326 (a wild-type tobacco, lines overexpressing PtMAPKK4 showed a certain degree of improvement in tolerance, germination, and growth. NaCl inhibited growth of overexpressed line and K326 at the seedling stage. However, statistical analysis showed longer root length, higher fresh weight, and lower MDA content in transgenic lines in

  12. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)


    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  13. Coiled-coil interactions modulate multimerization, mitochondrial binding and kinase activity of myotonic dystrophy protein kinase splice isoforms.

    NARCIS (Netherlands)

    Herpen, R.E.M.A. van; Tjeertes, J.V.; Mulders, S.A.M.; Oude Ophuis, R.J.A.; Wieringa, B.; Wansink, D.G.


    The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein

  14. Protein kinase D regulates cell death pathways in experimental pancreatitis

    Directory of Open Access Journals (Sweden)

    Jingzhen eYuan


    Full Text Available Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-kappaB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK in pancreatic acinar cells. Conversely, upregulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins (IAPs, caspases, receptor-interacting protein kinase 1 (RIP1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis.

  15. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    We tested the hypothesis that Rho-kinase inhibits the large-conductance, calcium and voltage dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery. The selective BKCa ...

  16. The MAP kinase cascade that includes MAPKKK-related protein kinase NPK1 controls a mitotic proces in plant cells. (United States)

    Nishihama, R; Machida, Y


    The tobacco NPK1 cDNA was the first-isolated plant cDNA for a homolog of mitogen-activated protein kinase kinase kinases (MAPKKKs). The kinase domain of the NPK1 protein can replace the functions of MAPKKKs in yeasts, while the amino acid sequence of the kinase-unrelated region does not have any homology to those of MAPKKKs from other organisms. Transcription of the NPK1 gene takes place in meristematic tissues or immature organs in a tobacco plant. During a tobacco cell cycle, transcriptional and translational products of NPK1 are present from S to M phase and decrease after the M phase. Expression of the NACK1 gene, which is predicted to encode a novel kinesin-like microtubule-based motor protein capable of activating NPK1, is specific to M phase, suggesting that activation of NPK1 occurs in M phase. Characterization of cDNAs for a MAPKK and a MAPK which can act downstream of NPK1 makes a proposition that the MAP kinase pathway involving NPK1 regulates a mitotic process associated with microtubules.

  17. Protein kinase and phosphatase activities of thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Michel, H.; Shaw, E.K.; Bennett, J.


    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  18. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi


    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  19. Inhibition of calcium/calmodulin-dependent protein kinase kinase β and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. (United States)

    McCullough, Louise D; Tarabishy, Sami; Liu, Lin; Benashski, Sharon; Xu, Yan; Ribar, Thomas; Means, Anthony; Li, Jun


    Elevation of intracellular calcium was traditionally thought to be detrimental in stroke pathology. However, clinical trials testing treatments that block calcium signaling have failed to improve outcomes in ischemic stroke. Emerging data suggest that calcium may also trigger endogenous protective pathways after stroke. Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is a major kinase activated by rising intracellular calcium. Compelling evidence has suggested that CaMKK and its downstream kinase CaMK IV are critical in neuronal survival when cells are under ischemic stress. We examined the functional role of CaMKK/CaMK IV signaling in stroke. We used a middle cerebral artery occlusion model in mice. Our data demonstrated that pharmacological and genetic inhibition of CaMKK aggravated stroke injury. Additionally, deletion of CaMKK β, one of the 2 CaMKK isoforms, reduced CaMK IV activation, and CaMK IV deletion in mice worsened stroke outcome. Finally, CaMKK β or CaMK IV knockout mice had exacerbated blood-brain barrier disruption evidenced by increased hemorrhagic transformation and activation of matrix metalloproteinase. We observed transcriptional inactivation including reduced levels of histone deacetylase 4 phosphorylation in mice with CaMKK β or CaMK IV deletion after stroke. Our data have established that the CaMKK/CaMK IV pathway is a key endogenous protective mechanism in ischemia. Our results suggest that this pathway serves as an important regulator of blood-brain barrier integrity and transcriptional activation of neuroprotective molecules in stroke.

  20. How Do Protein Kinases Take a Selfie (Autophosphorylate)? (United States)

    Beenstock, Jonah; Mooshayef, Navit; Engelberg, David


    Eukaryotic protein kinases (EPKs) control most biological processes and play central roles in many human diseases. To become catalytically active, EPKs undergo conversion from an inactive to an active conformation, an event that depends upon phosphorylation of their activation loop. Intriguingly, EPKs can use their own catalytic activity to achieve this critical phosphorylation. In other words, paradoxically, EPKs catalyze autophosphorylation when supposedly in their inactive state. This indicates the existence of another important conformation that specifically permits autophosphorylation at the activation loop, which in turn imposes adoption of the active conformation. This can be considered a prone-to-autophosphorylate conformation. Recent findings suggest that in prone-to-autophosphorylate conformations catalytic motifs are aligned allosterically, by dimerization or by regulators, and support autophosphorylation in cis or trans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tensins: Bridging AMP-Activated Protein Kinase with Integrin Activation. (United States)

    Georgiadou, Maria; Ivaska, Johanna


    Integrin activation is essential for cell adhesion and for connecting the extracellular matrix to the actin cytoskeleton. Thus, inappropriate integrin activation has been linked to several diseases, including cancer. Recent insights demonstrate that the main fibrillar adhesion component tensin maintains β1-integrin active in these mature adhesions. Depletion or silencing of AMP-activated protein kinase (AMPK), the energy sensor involved in maintaining the energy balance of the cell, enhances integrin activity by increasing the expression of tensin and thereby promoting cell adhesion, matrix formation, and mechanotransduction. Here, we discuss the role of tensin and AMPK in the regulation of integrin activity and integrin-dependent processes and their implication in diseases such as cancer and tissue fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N


    The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma......), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently...... propose a model of NCAM signaling involving two pathways: NCAM-Ras-MAP kinase and NCAM-FGF receptor-PLCgamma-PKC, and we propose that PKC serves as the link between the two pathways activating Raf and thereby creating the sustained activity of the MAP kinases necessary for neuronal differentiation....

  3. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert


    and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...... in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...

  4. Protein kinase C signaling and cell cycle regulation (United States)

    Black, Adrian R.; Black, Jennifer D.


    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells. PMID

  5. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)


    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  6. Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. (United States)

    Chaplin, Rebecca; Thach, Lyna; Hollenberg, Morley D; Cao, Yingnan; Little, Peter J; Kamato, Danielle


    G protein coupled receptor (GPCR) signalling is mediated by transactivation independent and transactivation dependent pathways. GPCRs transactivate protein tyrosine kinase receptors (PTKRs) and protein serine/threonine kinase receptors (PS/TKR). Since the initial observations of transactivation dependent signalling, there has been an effort to understand the mechanisms behind this phenomena. GPCR signalling has evolved to include biased signalling. Biased signalling, whereby selected ligands can activate the same GPCR that can generate multiple signals, but drive only a unique response. To date, there has been no focus on the ability of biased agonists to activate the PTKR and PS/TKR transactivation pathways differentially. As such, this represents a novel direction for future research. This review will discuss the main mechanisms of GPCR mediated receptor transactivation and the pathways involved in intracellular responses.

  7. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.


    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the

  8. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)


    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  9. The role of the Drosophila LAMMER protein kinase DOA in somatic ...

    Indian Academy of Sciences (India)

    DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa ...

  10. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study. (United States)

    Luo, Keqin; Long, Huibao; Xu, Bincan; Luo, Yanling


    This study aims to investigate whether apelin would regulate inflammatory response and promote survival in an experimental burn sepsis model through a phosphatidylinositol 3-kinase/protein kinase B dependent pathway. Male BALB/c mice were divided into the following groups: sham, burn, burn sepsis, burn sepsis treated with apelin, burn sepsis treated with apelin plus LY294002, and burn sepsis treated with LY294002 alone. Apelin level and inflammatory cytokines in serum were detected by enzyme-linked immuno sorbent assay. Apelin/APJ (apelin receptor, gene symbol APLNR) mRNA expression in spleen and adhesion molecules levels in lung was detected by real-time polymerase chain reaction. Neutrophil infiltration in lung was determined by myeloperoxidase assay. Phosphorylation of protein kinase B in lung was determined by western blot. Mortality rate was monitored. Burn sepsis induced decreased apelin/APJ mRNA expression in spleen and reduced apelin level in plasma, which were both restored by exogenous apelin treatment. Burn sepsis treated with apelin resulted in decreased interleukin-6, tumor-necrosis factor-alpha, interleukin -1β and monocyte chemotactic protein-1 levels in plasma. Mice with apelin treatment also showed decreased neutrophil infiltration and adhesion molecules expression, accompanied by a remarkable increased protein kinase B phosphorylation in lung tissue. The mortality rate in apelin treated animals was also significantly reduced. Importantly, the above effects of apelin were abolished by LY294002 treatment. Apelin regulates inflammatory response, diminishes inflammatory remote organ damage and improves survival in an experimental model of burn sepsis, which is at least partly mediated by a phosphatidylinositol 3-kinase/protein kinase B dependent pathway. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  11. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia


    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...... from basal but not from electrically stimulated muscle. In conclusion, in muscle, PKC can stimulate HSL through ERK. Contractions and adrenaline enhance muscle HSL activity by different signalling mechanisms. The effect of contractions is mediated by PKC, at least partly via the ERK pathway....

  12. Transcriptional regulation by protein kinase A in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Guanggan Hu


    Full Text Available A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP-dependent protein kinase A (PKA is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential

  13. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions (United States)

    Hergovich, Alexander


    The Hippo signal transduction cascade controls cell growth, proliferation, and death, all of which are frequently deregulated in tumour cells. Since initial studies in Drosophila melanogaster were instrumental in defining Hippo signalling, the machinery was named after the central Ste20-like kinase Hippo. Moreover, given that loss of Hippo signalling components Hippo, Warts, and Mats resulted in uncontrolled tissue overgrowth, Hippo signalling was defined as a tumour suppressor cascade. Significantly, all core factors of Hippo signalling have mammalian orthologues that functionally compensate for loss of their counterparts in flies. Furthermore, studies in flies and mammalian cell systems showed that Hippo signalling represents a kinase cascade that is tightly regulated by protein-protein interactions (PPIs). Several Hippo signalling molecules contain SARAH domains that mediate specific PPIs, thereby influencing the activities of MST1/2 kinases, the human Hippo orthologues. Moreover, WW domains are present in several Hippo factors, and these domains also serve as interaction surfaces for regulatory PPIs in Hippo signalling. Finally, the kinase activities of LATS1/2, the human counterparts of Warts, are controlled by binding to hMOB1, the human Mats. Therefore, Hippo signalling is regulated by PPIs on several levels. Here we review our current understanding of how these regulatory PPIs are regulated and contribute to the functionality of Hippo signalling. PMID:22260677

  14. Stromal serine protein kinase activity in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.


    At least twelve /sup 32/P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with /sup 32/Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with (gamma-/sup 32/P)ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma.

  15. ATM kinase: Much more than a DNA damage responsive protein. (United States)

    Guleria, Ayushi; Chandna, Sudhir


    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Overcoming Resistance to Inhibitors of the AKT Protein Kinase by Modulation of the Pim Kinase Pathway (United States)


    receptor tyrosine kinase in invasion and metastasis. J Cell Physiol. 2007;213:316-25. 2. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting...eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res. 2013;73:4898-908. 9. van Gorp

  17. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.


    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  18. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5. (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon


    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31 (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie


    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  20. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M


    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  1. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling

    Directory of Open Access Journals (Sweden)

    Stains Joseph P


    Full Text Available Abstract Background We have recently demonstrated that modulation of the gap junction protein, connexin43, can affect the response of osteoblasts to fibroblast growth factor 2 in a protein kinase C-delta-dependent manner. Others have shown that the C-terminal tail of connexin43 serves as a docking platform for signaling complexes. It is unknown whether protein kinase C-delta can physically interact with connexin43. Results In the present study, we investigate by immunofluorescent co-detection and biochemical examination the interaction between Cx43 and protein kinase C-delta. We establish that protein kinase C-delta physically interacts with connexin43 during fibroblast growth factor 2 signaling, and that protein kinase C delta preferentially co-precipitates phosphorylated connexin43. Further, we show by pull down assay that protein kinase C-delta associates with the C-terminal tail of connexin43. Conclusions Connexin43 can serve as a direct docking platform for the recruitment of protein kinase C-delta in order to affect fibroblast growth factor 2 signaling in osteoblasts. These data expand the list of signal molecules that assemble on the connexin43 C-terminal tail and provide a critical context to understand how gap junctions modify signal transduction cascades in order to impact cell function.

  2. Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts. (United States)

    Takano, Makoto; Koyama, Yuhei; Ito, Hiromi; Hoshino, Satomi; Onogi, Hiroshi; Hagiwara, Masatoshi; Furukawa, Kazuhiro; Horigome, Tsuneyoshi


    Participation of multiple kinases in regulation of the binding of lamin B receptor (LBR) to chromatin was suggested previously (Takano, M., Takeuchi, M., Ito, H., Furukawa, K., Sugimoto, K., Omata, S., and Horigome, T. (2002) Eur. J. Biochem. 269, 943-953). To identify these kinases, regulation of the binding of the nucleoplasmic region (NK, amino acid residues 1-211) of LBR to sperm chromatin was studied using a cell cycle-dependent Xenopus egg extract in vitro. The binding was stimulated on specific phosphorylation of the NK fragment by an S-phase egg extract. Protein depletion with beads bearing SF2/ASF, which binds SR protein kinases, abolished this stimulation, suggesting that an SR protein kinase(s) is responsible for the activation of LBR. This was confirmed by direct phosphorylation and activation with recombinant SR protein-specific kinase 1. The binding of the NK fragment to chromatin pretreated with an S-phase extract was suppressed by incubation with an M-phase extract. Enzyme inhibitor experiments revealed that multiple kinases participate in the suppression. One of these kinases was shown to be cdc2 kinase using a specific inhibitor, roscovitine, and protein depletion with beads bearing p13, which specifically binds cdc2 kinase. Experiments involving a mutant NK fragment showed that the phosphorylation of serine 71 by cdc2 kinase is responsible for the suppression.

  3. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Directory of Open Access Journals (Sweden)

    Catríona M. Dowling


    Full Text Available The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  4. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Catríona M., E-mail:; Kiely, Patrick A., E-mail: [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)


    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  5. Insight in taste alterations during treatment with protein kinase inhibitors. (United States)

    van der Werf, A; Rovithi, M; Langius, J A E; de van der Schueren, M A E; Verheul, H M W


    The role of Protein Kinase Inhibitors (PKI) in the treatment of various types of cancer is increasingly prominent. Their clinical application is accompanied by the development of side effects, among which patient-reported taste alterations. These alterations are missed frequently, but impair nutritional intake, are associated with weight loss and often result in significant morbidity, especially in the context of chronic administration. Accurate reporting of taste alterations is hampered by lack of modules for symptom objectification and inadequate understanding on the underlying mechanisms. In this review we initially describe the physiology of taste and smell and the mechanism of action of PKIs. We proceed to summarize taste related side effects as reported in major clinical trials and describe possible causal factors. Lastly, an in-depth analysis is given on potential molecular pathways responsible for the PKI-induced taste alterations. Objectification of patient-reported symptoms and universal reporting, along with a better understanding of the underlying mechanisms, will lead to early recognition and optimized treatment, ultimately improving patient adherence and quality of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton


    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  7. Perivascular fat, AMP-activated protein kinase and vascular diseases. (United States)

    Almabrouk, T A M; Ewart, M A; Salt, I P; Kennedy, S


    Perivascular adipose tissue (PVAT) is an active endocrine and paracrine organ that modulates vascular function, with implications for the pathophysiology of cardiovascular disease (CVD). Adipocytes and stromal cells contained within PVAT produce mediators (adipokines, cytokines, reactive oxygen species and gaseous compounds) with a range of paracrine effects modulating vascular smooth muscle cell contraction, proliferation and migration. However, the modulatory effect of PVAT on the vascular system in diseases, such as obesity, hypertension and atherosclerosis, remains poorly characterized. AMP-activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology and vascular function, and hence may be a potential therapeutic target for metabolic disorders such as type 2 diabetes mellitus (T2DM) and the vascular complications associated with obesity and T2DM. The role of AMPK in PVAT or the actions of PVAT have yet to be established, however. Activation of AMPK by pharmacological agents, such as metformin and thiazolidinediones, may modulate the activity of PVAT surrounding blood vessels and thereby contribute to their beneficial effect in cardiometabolic diseases. This review will provide a current perspective on how PVAT may influence vascular function via AMPK. We will also attempt to demonstrate how modulating AMPK activity using pharmacological agents could be exploited therapeutically to treat cardiometabolic diseases. © 2013 The British Pharmacological Society.

  8. Adenosine monophosphate–activated protein kinase in diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yaeni Kim


    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 5′ adenosine monophosphate–activated protein kinase (AMPK, an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.

  9. Identification and characterization of Nek6 protein kinase, a potential human homolog of NIMA histone H3 kinase. (United States)

    Hashimoto, Yoshihiro; Akita, Hidetoshi; Hibino, Mitsunobu; Kohri, Kenjiro; Nakanishi, Makoto


    In Aspergillus nidulans, the kinase activity of NIMA (never in mitosis, gene A) is critical for the initiation of mitosis. NIMA regulates mitotic chromatin condensation through phosphorylation of histone H3 at serine 10. In the present study, we identified human Nek6 (hNek6), a member of the mammalian NIMA-related kinases. The predicted hNek6 protein is comprised of 338 amino acids. Northern blot analysis revealed that hNek6 transcripts are ubiquitously expressed with the highest expression found in the heart and skeletal muscle. Lower cell cycle-dependent expression of hNek6 transcripts was observed in the early G1 phase. GFP-fused hNek6 protein showed both nuclear and cytoplasmic localizations in HeLa cells. Fluorescence in situ hybridization using full-length hNek6 cDNA as a probe showed that the hNek6 gene is localized to human chromosome 9q33-34, a region at which the loss of heterozygosity is associated with transitional cell carcinomas. Importantly, recombinant hNek6 protein produced in insect cells effectively phosphorylated histones H1 and H3, but not casein. Thus, these results suggest that, unlike other mammalian NIMA-related kinases, Nek6 is a mitotic histone kinase which regulates chromatin condensation in mammalian cells. Copyright 2002 Elsevier Science (USA).

  10. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. (United States)

    Martin, David M A; Miranda-Saavedra, Diego; Barton, Geoffrey J


    The regulation of protein function through reversible phosphorylation by protein kinases and phosphatases is a general mechanism controlling virtually every cellular activity. Eukaryotic protein kinases can be classified into distinct, well-characterized groups based on amino acid sequence similarity and function. We recently reported a highly sensitive and accurate hidden Markov model-based method for the automatic detection and classification of protein kinases into these specific groups. The Kinomer v. 1.0 database presented here contains annotated classifications for the protein kinase complements of 43 eukaryotic genomes. These span the taxonomic range and include fungi (16 species), plants (6), diatoms (1), amoebas (2), protists (1) and animals (17). The kinomes are stored in a relational database and are accessible through a web interface on the basis of species, kinase group or a combination of both. In addition, the Kinomer v. 1.0 HMM library is made available for users to perform classification on arbitrary sequences. The Kinomer v. 1.0 database is a continually updated resource where direct comparison of kinase sequences across kinase groups and across species can give insights into kinase function and evolution. Kinomer v. 1.0 is available at

  11. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer


    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...... of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes....

  12. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-m...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...sorders. PubmedID 14643884 Title Protein kinase C epsilon: a new target to control inflammation

  13. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway (United States)


    kills PSa cells. Cells were treated with the indicated doses of compounds for 48h and an MTS assay was done in triplicate. Dual treatment with...a Novartis compound BKM120, a broadly active PI -3Kinase inhibitor and AZD1208, a Pan-Pim kinase inhibitor (Fig. 18). Thus, this first...resolve them During this project period the PI moved from the Medical University of South Carolina to the University of Arizona Health Sciences

  14. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin


    Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date,...

  15. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)


    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  16. AMP-activated protein kinase inhibits TREK channels. (United States)

    Kréneisz, Orsolya; Benoit, Justin P; Bayliss, Douglas A; Mulkey, Daniel K


    AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by conditions that increase the AMP : ATP ratio. In carotid body glomus cells, AMPK is thought to link changes in arterial O(2) with activation of glomus cells by inhibition of unidentified background K(+) channels. Modulation by AMPK of individual background K(+) channels has not been described. Here, we characterize effects of activated AMPK on recombinant TASK-1, TASK-3, TREK-1 and TREK-2 background K(+) channels expressed in HEK293 cells. We found that TREK-1 and TREK-2 channels but not TASK-1 or TASK-3 channels are inhibited by AMPK. AMPK-mediated inhibition of TREK involves key serine residues in the C-terminus that are also known to be important for PKA and PKC channel modulation; inhibition of TREK-1 requires Ser-300 and Ser-333 and inhibition of TREK-2 requires Ser-326 and Ser-359. Metabolic inhibition by sodium azide can also inhibit both TREK and TASK channels. The effects of azide on TREK occlude subsequent channel inhibition by AMPK and are attenuated by expression of a dominant negative catalytic subunit of AMPK (dnAMPK), suggesting that metabolic stress modulates TREK channels by an AMPK mechanism. By contrast, inhibition of TASK channels by azide was unaffected by expression of dnAMPK, suggesting an AMPK-independent mechanism. In addition, prolonged exposure (6-7 min) to hypoxia ( = 11 +/- 1 mmHg) inhibits TREK channels and this response was blocked by expression of dnAMPK. Our results identify a novel modulation of TREK channels by AMPK and indicate that select residues in the C-terminus of TREK are points of convergence for multiple signalling cascades including AMPK, PKA and PKC. To the extent that carotid body O(2) sensitivity is dependent on AMPK, our finding that TREK-1 and TREK-2 channels are inhibited by AMPK suggests that TREK channels may represent the AMPK-inhibited background K(+) channels that mediate activation of glomus cells by hypoxia.

  17. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil


    Zhang, Hanming; Wang, Xuejun


    The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprot...

  18. New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors. (United States)

    Lamba, Vandana; Ghosh, Indraneel


    Over the past decade, therapeutics that target subsets of the 518 human protein kinases have played a vital role in the fight against cancer. Protein kinases are typically targeted at the adenosine triphosphate (ATP) binding cleft by type I and II inhibitors, however, the high sequence and structural homology shared by protein kinases, especially at the ATP binding site, inherently leads to polypharmacology. In order to discover or design truly selective protein kinase inhibitors as both pharmacological reagents and safer therapeutic leads, new efforts are needed to target kinases outside the ATP cleft. Recent advances include the serendipitous discovery of type III inhibitors that bind a site proximal to the ATP pocket as well as the truly allosteric type IV inhibitors that target protein kinases distal to the substrate binding pocket. These new classes of inhibitors are often selective but usually display moderate affinities. In this review we will discuss the different classes of inhibitors with an emphasis on bisubstrate and bivalent inhibitors (type V) that combine different inhibitor classes. These inhibitors have the potential to couple the high affinity and potency of traditional active site targeted small molecule inhibitors with the selectivity of inhibitors that target the protein kinase surface outside ATP cleft.

  19. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics

    Directory of Open Access Journals (Sweden)

    Anthony John Walker


    Full Text Available Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavour, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behaviour, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.

  20. Identification of casein kinase 1, casein kinase 2, and cAMP-dependent protein kinase-like activities in Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    José Manuel Galán-Caridad


    Full Text Available Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA for casein kinase (CK1 and P2 (RRRADDSDDDDD for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22, a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II

  1. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara


    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...

  2. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G


    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits. Us...

  3. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. (United States)

    Wang, X M; Zhai, Y; Ferrell, J E


    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.

  4. Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Directory of Open Access Journals (Sweden)

    Sternberg Paul W


    Full Text Available Abstract Background Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs and atypical protein kinases (aPKs; RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results A full-length cDNA (Tv-rio-1 encoding a RIO1 protein kinase (Tv-RIO1 was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida. The uninterrupted open reading frame (ORF of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3, and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1. Conclusion This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  5. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Shuilin eHe


    Full Text Available The tripartite mitogen-activated protein kinase (MAPK signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK were performed in pepper. A total of 19 pepper MAPK (CaMAPKs genes and five MAPKK (CaMAPKKs genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

  6. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete


    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation....... Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA...

  7. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome.

    NARCIS (Netherlands)

    Mayr, J.A.; Haack, T.B.; Graf, E.; Zimmermann, F.A.; Wieland, T.; Haberberger, B.; Superti-Furga, A.; Kirschner, J.; Steinmann, B.; Baumgartner, M.R.; Moroni, I.; Lamantea, E.; Zeviani, M.; Rodenburg, R.J.T.; Smeitink, J.; Strom, T.M.; Meitinger, T.; Sperl, W.; Prokisch, H.


    Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in

  8. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan


    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  9. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer. (United States)

    Guo, Chengcheng; Hao, Chuncheng; Shao, RuPing; Fang, Bingliang; Correa, Arlene M; Hofstetter, Wayne L; Roth, Jack A; Behrens, Carmen; Kalhor, Neda; Wistuba, Ignacio I; Swisher, Stephen G; Pataer, Apar


    We have demonstrated that RNA-dependent protein kinase (PKR) and its downstream protein p-eIF2α are independent prognostic markers for overall survival in lung cancer. In the current study, we further investigate the interaction between PKR and AMPK in lung tumor tissue and cancer cell lines. We examined PKR protein expression in 55 frozen primary lung tumor tissues by Western blotting and analyzed the association between PKR expression and expression of 139 proteins on tissue samples examined previously by Reverse Phase Protein Array (RPPA) from the same 55 patients. We observed that biomarkers were either positively (phosphorylated AMP-activated kinase(T172) [p-AMPK]) or negatively (insulin receptor substrate 1, meiotic recombination 11, ATR interacting protein, telomerase, checkpoint kinase 1, and cyclin E1) correlated with PKR. We further confirmed that induction of PKR with expression vectors in lung cancer cells causes activation of the AMPK protein independent of the LKB1, TAK1, and CaMKKβ pathway. We found that PKR causes nutrient depletion, which increases AMP levels and decreases ATP levels, causing AMPK phosphorylation. We further demonstrated that inhibiting AMPK expression with compound C or siRNA enhanced PKR-mediated cell death. We next explored the combination of PKR and p-AMPK expression in NSCLC patients and observed that expression of p-AMPK predicted a poor outcome for adenocarcinoma patients with high PKR expression and a better prognosis for those with low PKR expression. These findings were consistent with our in vitro results. AMPK might rescue cells facing metabolic stresses, such as ATP depletion caused by PKR. Our data indicate that PKR causes nutrient depletion, which induces the phosphorylation of AMPK. AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation.

  10. Glc7/Protein Phosphatase 1 Regulatory Subunits Can Oppose the Ipl1/Aurora Protein Kinase by Redistributing Glc7


    Pinsky, Benjamin A.; Kotwaliwale, Chitra V.; Tatsutani, Sean Y.; Breed, Christopher A.; Biggins, Sue


    Faithful chromosome segregation depends on the opposing activities of the budding yeast Glc7/PP1 protein phosphatase and Ipl1/Aurora protein kinase. We explored the relationship between Glc7 and Ipl1 and found that the phosphorylation of the Ipl1 substrate, Dam1, was altered by decreased Glc7 activity, whereas Ipl1 levels, localization, and kinase activity were not. These data strongly suggest that Glc7 ensures accurate chromosome segregation by dephosphorylating Ipl1 targets rather than regu...

  11. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A


    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast......, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases....

  12. Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking (United States)

    Karpiak, Joel; Doak, Allison; Sali, Andrej; Shoichet, Brian K.; Wells, James A.


    Finding small molecules that target allosteric sites remains a grand challenge for ligand discovery. In the protein kinase field, only a handful of highly selective allosteric modulators have been found. Thus, more general methods are needed to discover allosteric modulators for additional kinases. Here, we use virtual screening against an ensemble of both crystal structures and comparative models to identify ligands for an allosteric peptide-binding site on the protein kinase PDK1 (the PIF pocket). We optimized these ligands through an analog-by-catalog search that yielded compound 4, which binds to PDK1 with 8 μM affinity. We confirmed the docking poses by determining a crystal structure of PDK1 in complex with 4. Because the PIF pocket appears to be a recurring structural feature of the kinase fold, known generally as the helix αC patch, this approach may enable the discovery of allosteric modulators for other kinases. PMID:26443011

  13. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig


    the extracellular signal-regulated kinase (ERK) cascade to regulate GRK2 cellular levels. ERK activation by receptor stimulation elevated endogenous GRK2 while antagonist treatment decreased cellular GRK2. Activating ERK by overexpressing constitutive active MEK-1 or Ras elevated GRK2 protein levels while blocking...... ERK using PD98059 or dominant negative Ras abolished this effect. These data suggest ERK is a critical regulator of GRK2 levels....

  14. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G


    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... the view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  15. Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Ábel Perjés

    Full Text Available BACKGROUND: Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC, extracellular signal-regulated kinase 1/2 (ERK1/2 and myosin light chain kinase (MLCK to the positive inotropic effect of apelin. METHODS AND RESULTS: In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. CONCLUSIONS: Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.

  16. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. (United States)

    Yamazaki, Tomokazu; Kawamura, Yukio; Minami, Anzu; Uemura, Matsuo


    Plant freezing tolerance involves the prevention of lethal freeze-induced damage to the plasma membrane. We hypothesized that plant freezing tolerance involves membrane resealing, which, in animal cells, is accomplished by calcium-dependent exocytosis following mechanical disruption of the plasma membrane. In Arabidopsis thaliana protoplasts, extracellular calcium enhanced not only freezing tolerance but also tolerance to electroporation, which typically punctures the plasma membrane. However, calcium did not enhance survival when protoplasts were exposed to osmotic stress that mimicked freeze-induced dehydration. Calcium-dependent freezing tolerance was also detected with leaf sections in which ice crystals intruded into tissues. Interestingly, calcium-dependent freezing tolerance was inhibited by extracellular addition of an antibody against the cytosolic region of SYT1, a homolog of synaptotagmin known to be a calcium sensor that initiates exocytosis. This inhibition indicates that the puncture allowing the antibody to flow into the cytoplasm occurs during freeze/thawing. Thus, we propose that calcium-dependent freezing tolerance results from resealing of the punctured site. Protoplasts or leaf sections isolated from Arabidopsis SYT1-RNA interference (RNAi) plants lost calcium-dependent freezing tolerance, and intact SYT1-RNAi plants had lower freezing tolerance than control plants. Taken together, these findings suggest that calcium-dependent freezing tolerance results from membrane resealing and that this mechanism involves SYT1 function.

  17. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein.

    Directory of Open Access Journals (Sweden)

    Cason R King


    Full Text Available The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP. E1A interacts with and relocalizes protein kinase A (PKA to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.

  18. Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae. (United States)

    Galello, F; Moreno, S; Rossi, S


    cAMP-dependent protein kinase mediates many extracellular signals in eukaryotes. The compartmentalization of PKA is an important level of control of the specificity of signal transduction mediated by cAMP. Unlike mammalian PKA for which proof insights in the mechanism that controls its localization through anchoring proteins (AKAPs) has been obtained, in the case of Saccharomyces cerevisiae PKA there was little information available. In this work, we present results that demonstrate the isolation and identification of yeast PKA regulatory subunit (Bcy1) associated proteins using a MS-based proteomic analysis and a bioinformatic approach. The verification of some of these interactions was assessed by immunoprecipitation, pull down and co-localization by subcellular fractionation. The key role of positively charged residues present in the interaction domain of the identified proteins was demonstrated. The defined interaction domain has therefore different molecular characteristics than conventional AKAP domains. Finally we assess initial experiments to visualize the physiological relevance of the interaction of both Ira2 and Hsp60 with Bcy1. Bcy1 interacts with Ira2 tethering PKA to the Ras complex and Hsp60 chaperone localizes PKA to mitochondria and has a role in the kinase stability. Our work has an important impact in the field of signal transduction especially of protein kinase A. Components of the cAMP signaling cascade are localized in the cell via scaffold proteins named AKAPs that contribute to the high level specific regulation of the cAMP-PKA-signaling pathway. In the unicellular eukaryote Saccharomyces cerevisiae PKA has a pleiotropic role in the cell and the compartmentalization therefore is key to achieve the specificity in the response. At present all AKAPs have been described in mammals and it is unknown whether functional homologs of mammalian AKAPs exist in yeast. Therefore, it is unknown which molecular features of the mammalian anchoring proteins

  19. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland


    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  20. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G


    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl...

  1. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing. (United States)

    Kumar, Priyadarsini; Walsh, Donal A


    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  2. AMP-activated Protein Kinase Phosphorylates Cardiac Troponin I at Ser-150 to Increase Myofilament Calcium Sensitivity and Blunt PKA-dependent Function* (United States)

    Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.


    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448

  3. AMP-activated protein kinase phosphorylates cardiac troponin I at Ser-150 to increase myofilament calcium sensitivity and blunt PKA-dependent function. (United States)

    Nixon, Benjamin R; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A; Little, Sean C; Davis, Jonathan P; Solaro, R John; Biesiadecki, Brandon J


    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism.

  4. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    Directory of Open Access Journals (Sweden)

    Pierre eCrozet


    Full Text Available The SNF1-related protein kinases 1 (SnRK1s are the plant orthologs of the budding yeast SNF1 (Sucrose Non-Fermenting 1 and mammalian AMPK (AMP-activated protein kinase. These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprogramming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, posttranslational modifications, various metabolites, hormones and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.

  5. Muscarinic stimulation of calcium/calmodulin-dependent protein kinase II in isolated rat pancreatic acini. (United States)

    Cui, Z J


    To study whether M3 receptor occupation would lead to activation of calcium/calmodulin-dependent protein kinase II (CaM kinase II). In this study, we isolated rat pancreatic acini by collagenase digestion; measured the Ca2+/calmodulin-independent activity of autophosphorylated form of the CaM kinase II both before and after stimulation of the acini with muscarinic secretagogue bethanechol (Bet). Bet stimulated the activation of, or generation of Ca(2+)-independent activity of, this kinase, in a concentration (0.0001-1 mmol.L-1) and time (5-300 s)-dependent manner; with Bet of 100 mumol.L-1, Ca(2+)-independent activity increased from an unstimulated level of 4.5 +/- 0.3 (n = 4) to 8.9 +/- 1.3 (n = 4, P Ca2+ mobilizing secretagogue cholecystokinin (CCK) also activated the kinase; at 1 mumol.L-1, CCK increased Ca(2+)-independent kinase activity to 12.9 +/- 0.5 (n = 6, P -independent kinase activity (from control 3.90 +/- 0.28 to 4.53 +/- 0.47, n = 6, P > 0.05). Atropine completely blocked Bet activation of the kinase. CaM kinase II plays a pivotal role in digestive enzyme secretion, especially during the initial phase of amylase secretion.

  6. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

    Czech Academy of Sciences Publication Activity Database

    Petrvalská, Olivia; Košek, Dalibor; Kukačka, Zdeněk; Tošner, Z.; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš


    Roč. 291, č. 39 (2016), s. 20753-20765 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 ; RVO:61388971 Keywords : 14-3-3 protein * apoptosis signal-regulating kinase 1 (ASK1) * fluorescence * nuclear magnetic resonance (NMR) * protein cross-linking * small-angle x-ray scattering (SAXS) Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  7. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau


    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activ...

  8. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert


    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  9. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi


    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  10. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj


    -substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms...

  11. The protein kinase IKKepsilon regulates energy balance in obese mice

    NARCIS (Netherlands)

    Chiang, Shian-Huey; Bazuine, Merlijn; Lumeng, Carey N.; Geletka, Lynn M.; Mowers, Jonathan; White, Nicole M.; Ma, Jing-Tyan; Zhou, Jie; Qi, Nathan; Westcott, Dan; Delproposto, Jennifer B.; Blackwell, Timothy S.; Yull, Fiona E.; Saltiel, Alan R.


    Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose

  12. Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation (United States)

    Yeung, Kam C.; Rose, David W.; Dhillon, Amardeep S.; Yaros, Diane; Gustafsson, Marcus; Chatterjee, Devasis; McFerran, Brian; Wyche, James; Kolch, Walter; Sedivy, John M.


    The Raf kinase inhibitor protein (RKIP) acts as a negative regulator of the mitogen-activated protein (MAP) kinase (MAPK) cascade initiated by Raf-1. RKIP inhibits the phosphorylation of MAP/extracellular signal-regulated kinase 1 (MEK1) by Raf-1 by disrupting the interaction between these two kinases. We show here that RKIP also antagonizes the signal transduction pathways that mediate the activation of the transcription factor nuclear factor kappa B (NF-κB) in response to stimulation with tumor necrosis factor alpha (TNF-α) or interleukin 1 beta. Modulation of RKIP expression levels affected NF-κB signaling independent of the MAPK pathway. Genetic epistasis analysis involving the ectopic expression of kinases acting in the NF-κB pathway indicated that RKIP acts upstream of the kinase complex that mediates the phosphorylation and inactivation of the inhibitor of NF-κB (IκB). In vitro kinase assays showed that RKIP antagonizes the activation of the IκB kinase (IKK) activity elicited by TNF-α. RKIP physically interacted with four kinases of the NF-κB activation pathway, NF-κB-inducing kinase, transforming growth factor beta-activated kinase 1, IKKα, and IKKβ. This mode of action bears striking similarities to the interactions of RKIP with Raf-1 and MEK1 in the MAPK pathway. Emerging data from diverse organisms suggest that RKIP and RKIP-related proteins represent a new and evolutionarily highly conserved family of protein kinase regulators. Since the MAPK and NF-κB pathways have physiologically distinct roles, the function of RKIP may be, in part, to coordinate the regulation of these pathways. PMID:11585904

  13. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  14. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases (United States)

    Boo, Yong Chool; Jo, Hanjoong


    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  15. Exploring some of the physico-chemical properties of the LAMMER protein kinase DOA of Drosophila. (United States)

    Farkas, Robert; Kováciková, Michaela; Liszeková, Denisa; Beno, Milan; Danis, Peter; Rabinow, Leonard; Chase, Bruce A; Raska, Ivan


    Members of the highly conserved LAMMER family of protein kinases have been described in all eukaryotes. LAMMER kinases possess markedly similar peptide motifs in their kinase catalytic subdomains that are responsible for phosphotransfer and substrate interaction, suggesting that family members serve similar functions in widely diverged species. This hypothesis is supported by their phosphorylation of SR and SR-related proteins in diverged species. Here we describe a 3-dimensional homology model of the catalytic domain of DOA, a representative LAMMER kinase, encoded by the Drosophila locus Darkener of apricot (Doa). Homology modeling of DOA based on a Sky1p template revealed a highly conserved structural framework within conserved core regions. These adopt typical kinase folding like that of other protein kinases. However, in contrast to Sky1p, some structural features, such as those in helix alphaC suggest that the DOA kinase is not a constitutively active enzyme but requires activation. This may occur by phosphorylation within an activation loop that forms a broad turn and in which interactions between the side chains occur across the loop. The fold of the activation loop is stabilized through interactions with residues in the C-terminal tail, which is not part of the conserved kinase core and is variable among protein kinases. Immediately following the activation loop in the segment between the beta9 sheet and helix alphaF is a P + 1 loop. The electrostatic surface potential of the DOA substrate-binding groove is largely negative, as it is in other known SR protein kinases, suggesting that DOA substrates must be basic. All differences between D. melanogaster and other Drosophila species are single amino acid changes situated in regions outside of any alpha-helices or beta-sheets, and after modeling these had absolutely no visible effect on protein structure. The absence of evolved amino acid changes among 12 Drosophila species that would cause at least

  16. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog. (United States)

    Kato, Kentaro; Sugi, Tatsuki; Takemae, Hitoshi; Takano, Ryo; Gong, Haiyan; Ishiwa, Akiko; Horimoto, Taisuke; Akashi, Hiroomi


    Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and a major pathogen of animals and immunocompromised humans, in whom it causes encephalitis. Understanding the mechanism of tachyzoite invasion is important for the discovery of new drug targets and may serve as a model for the study of other apicomplexan parasites. We previously showed that Plasmodium falciparum expresses a homolog of human calcium calmodulin-dependent protein kinase (CaMK) that is important for host cell invasion. In this study, to identify novel targets for the treatment of Toxoplasma gondii infection (another apicomplexan parasite), we sought to identify a CaMK-like protein in the T. gondii genome and to characterize its role in the life-cycle of this parasite. An in vitro kinase assay was performed to assess the phosphorylation activities of a novel CaMK-like protein in T. gondii by using purified proteins with various concentrations of calcium, calmodulin antagonists, or T. gondii glideosome proteins. Indirect immunofluorescence microscopy was performed to detect the localization of this protein kinase by using the antibodies against this protein and organellar maker proteins of T. gondii. We identified a novel CaMK homolog in T. gondii, T. gondii CaMK-related kinase (TgCaMKrk), which exhibits calmodulin-independent autophosphorylation and substrate phosphorylation activity. However, calmodulin antagonists had no effect on its kinase activity. In T. gondii-infected cells, TgCaMKrk localized to the apical ends of extracellular and intracellular tachyzoites. TgCaMKrk phosphorylated TgGAP45 for phosphorylation in vitro. Our data improve our understanding of T. gondii motility and infection, the interaction between parasite protein kinases and glideosomes, and drug targets for protozoan diseases.

  17. Molecular basis for activation of G protein-coupled receptor kinases

    Energy Technology Data Exchange (ETDEWEB)

    Boguth, Cassandra A.; Singh, Puja; Huang, Chih-chin; Tesmer, John J.G. (Michigan)


    G protein-coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N-terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N-terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.

  18. Structural Basis for Noncanonical Substrate Recognition of Cofilin/ADF Proteins by LIM Kinases. (United States)

    Hamill, Stephanie; Lou, Hua Jane; Turk, Benjamin E; Boggon, Titus J


    Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high-fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and postphosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Structural basis for non-canonical substrate recognition of cofilin/ADF proteins by LIM kinases (United States)

    Hamill, Stephanie; Lou, Hua Jane; Turk, Benjamin E.; Boggon, Titus J.


    SUMMARY Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and post-phosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics. PMID:27153537

  20. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. (United States)

    Gallo, Eduardo F; Iadecola, Costantino


    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  1. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. (United States)

    Hegedus, Dwayne D; Gerbrandt, Kelsey; Coutu, Cathy


    Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  2. Role of AMP-activated protein kinase for regulating post-exercise insulin sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Wojtaszewski, Jørgen; Treebak, Jonas Thue


    to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely...... known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important...

  3. Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity in the somatic cells of the seminiferous tubules. II. Effect of retinol. (United States)

    Galdieri, M; Pezzotti, R; Nisticò, L


    The effect of retinol on cyclic AMP dependent protein kinase activity of Sertoli cells and peritubular cells isolated from prepubertal rats has been investigated. Treatments longer than six hours induced a significant inhibition of type I protein kinase activity of Sertoli cells without appreciable variation of type II protein kinase. Short time treatments with the vitamin did not affect the Sertoli cell protein kinase activity. The vitamin A addition did not induce any appreciable variation of peritubular cell protein kinase activity.

  4. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus. (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred


    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  5. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan


    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...... conditions. Furthermore a marked improvement in the correlation was found by using kinase constructs containing the catalytic domain in presence of additional domains or subunits....

  6. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren


    forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...... is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...

  7. Expression patterns of protein kinase D 3 during mouse development

    Directory of Open Access Journals (Sweden)

    Lutz Sylke


    Full Text Available Abstract Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD, two isoforms in C. elegans (DKF-1 and 2 and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues.

  8. Identification and phylogeny of a protein kinase gene of white spot syndrome virus

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Vlak, J.M.


    White spot syndrome virus (WSSV) is a virus infecting shrimp and other crustaceans, which is unclassified taxonomically. A 2193 bp long open reading frame, encoding a putative protein kinase (PK), was found on a 8.4 kb EcoRI fragment of WSSV proximal to the gene for the major envelope protein

  9. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A


    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameter...

  10. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  11. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    Cachero, T.G., Morielli, A.D., Peralta, E.G., 1998. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell. 93, 1077-1085. Callera, G.E., Yogi, A., Tostes, R.C., Rossoni, L.V.,. Bendhack, L.M., 2004. Ca2+- Activated K+. Channels Underlying the Impaired Acetylcholine-. Induced Vasodilation ...

  12. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    Energy Technology Data Exchange (ETDEWEB)

    Craven, P.A.; DeRubertis, F.R.


    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded.

  13. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis. (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P


    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  14. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar


    proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS......-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also...

  15. Thrombin-mediated Proteoglycan Synthesis Utilizes Both Protein-tyrosine Kinase and Serine/Threonine Kinase Receptor Transactivation in Vascular Smooth Muscle Cells* (United States)

    Burch, Micah L.; Getachew, Robel; Osman, Narin; Febbraio, Mark A.; Little, Peter J.


    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis. PMID:23335513

  16. Phosphorylation in vitro of eukaryotic initiation factors IF-E2 and IF-E3 by protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Benne, R; Hershey, J W


    Purified protein synthesis initiation factors IF-E2 and IF-E3 from rabbit reticulocytes were phosphorylated in vitro with protein kinases isolated from the same source. The highest levels of phosphorylation resulted from incubation of the factors with a cyclic nucleotide-independent protein kinase...

  17. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. (United States)

    Wei, Ping; Wong, Wilson W; Park, Jason S; Corcoran, Ethan E; Peisajovich, Sergio G; Onuffer, James J; Weiss, Arthur; Lim, Wendell A


    Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.

  18. Partial purification of a spinach thylakoid protein kinase that can phosphorylate light-harvesting chlorophyll a/b proteins

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.D.; Hind, G.; Bennett, J.


    Protein phosphorylation in plant tissues is particularly marked in chloroplasts, protein kinase activity being associated with the outer envelope, the soluble stromal fraction, and the thylakoid membrane. Furthermore, thylakoid-bound activity probably includes several distinct kinases, as suggested by studies of divalent cation specificity and thermal lability carried out with intact thylakoids and by subfractionation of solubilized membranes. Illumination of thylakoids, particularly with red light, promotes the rapid and extensive phosphorylation of the light-harvesting chlorophyll a/b complex (LHCII) on a threonine residue near the amino terminus of the protein. This phosphorylation is thought to be involved in regulating the distribution of absorbed quanta between photosystems II and I and is modulated by the redox state of the thylakoid plastoquinone pool. Neither of the thylakoid kinases reported to date was capable of phosphorylating purified LHCII in vitro or of incorporating phosphate into threonyl residues of exogenous substrates, that some LHCII phosphorylation was catalyzed by a preliminary fraction led workers to suggest that at least one other kinase remained to be isolated. Here, the authors report the solubilization and partial purification of a protein kinase from spinach thylakoids that is capable of phosphorylating LHCII in vitro, and they show that the specific site of phosphorylation is very nearly the same as, if not identical with, the site phosphorylated in organello.

  19. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity. (United States)

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil


    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.

  20. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases (United States)

    González-Vera, Juan A.; Morris, May C.


    Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes. PMID:28248276

  1. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera


    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  2. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity. (United States)

    Borodinova, A A; Zuzina, A B; Balaban, P M


    Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

  3. Oxidative Stress-Associated Protein Tyrosine Kinases and Phosphatases in Fanconi Anemia (United States)

    Pang, Qishen


    Abstract Significance: Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. Recent Advances: A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. Critical Issues: In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. Future Directions: Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting. Antioxid. Redox Signal. 20, 2290–2301. PMID:24206276

  4. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases. (United States)

    Boudreault, Francis; Tschumperlin, Daniel J


    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.

  5. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life.

    Directory of Open Access Journals (Sweden)

    Małgorzata Dudkiewicz

    Full Text Available Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised.Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the "classic" catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed.The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast, and ydiU (bacteria. Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles. It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins.The new

  6. TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. (United States)

    Roelants, Françoise M; Leskoske, Kristin L; Pedersen, Ross T A; Muir, Alexander; Liu, Jeffrey M-H; Finnigan, Gregory C; Thorner, Jeremy


    Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis. Copyright © 2017 Roelants et al.

  7. Mechanism of nuclear calcium signaling by inositol 1,4,5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase. (United States)

    Klein, Christian; Malviya, Anant N


    Nuclear phospholipase C-gamma 1 can be phosphorylated by nuclear membrane located epidermal growth factor receptor sequel to epidermal growth factor-mediated signaling to the nucleus. The function of mouse liver phospholipase C-gamma 1 is attributed to a 120 kDa protein fragment which has been found to be a proteolytic product of the 150 kDa native nuclear enzyme. The tyrosine-phosphorylated 120 kDa protein band interacts with activated EGFR, binds phosphatidyl-3-OH kinase enhancer, and activates nuclear phosphatidylinositol-3-OH-kinase, and is capable of generating diacylglycerol in response to the epidermal growth factor signal to the nucleus in vivo. Thus a mechanism for nuclear production of inositol-1,4,5-trisphophate is unraveled. Nuclear generated inositol-1,4,5-trisphophate interacts with the inner membrane located inositol-1,4,5-trisphophate receptor and sequesters calcium into the nucleoplasm. Nuclear inositol-1,4,5-trisphophate receptor is phosphorylated by native nuclear protein kinase C which enhances the receptor-ligand interaction. Nuclear calcium-ATPase and inositol-1,3,4,5-tetrakisphophate receptor are located on the outer nuclear membrane, thus facilitating calcium transport into the nuclear envelope lumen either by ATP or inositol-1,3,4,5-tetrakisphophate depending upon the external free calcium concentrations. Nuclear calcium ATPase is phosphorylated by cyclic AMP-dependent protein kinase with enhanced calcium pumping activity. A holistic picture emerges here where tyrosine phosphorylation compliments serine phosphorylation of key moieties regulating nuclear calcium signaling. Evidence are forwarded in favor of proteolysis having a profound implications in nuclear calcium homeostasis in particular and signal transduction in general.

  8. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia


    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  9. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying


    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  10. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256. (United States)

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak


    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  11. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies

    DEFF Research Database (Denmark)

    Enkvist, Erki; Viht, Kaido; Bischoff, Nils


    assay that used thin layer chromatography for the measurement of the rate of phosphorylation of fluorescently labelled peptide 5-TAMRA-RADDSDDDDD. The most potent inhibitor, ARC-1502 (K(i) = 0.5 nM), revealed high selectivity for CK2α in a panel of 140 protein kinases. Labelling of ARC-1502 with Promo......Up-regulation of an acidophilic protein kinase, CK2, has been established in several types of cancer. This cognition has made CK2 an important target for drug development for cancer chemotherapy. The characterization of potential drug candidates, determination of the structure and clarification...

  12. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells. (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M


    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  13. Autophosphorylation and Cross-Phosphorylation of Protein Kinases from the Crenarchaeon Sulfolobus islandicus

    Directory of Open Access Journals (Sweden)

    Qihong Huang


    Full Text Available Protein phosphorylation, one of the most important post-translational modifications, regulates almost every cellular process. Although signal transduction by protein phosphorylation is extensively studied in Eukaryotes and Bacteria, the knowledge of this process in archaea is greatly lagging behind, especially for Ser/Thr/Tyr phosphorylation by eukaryotic-like protein kinases (ePKs. So far, only a few studies on archaeal ePKs have been reported, most of which focused on the phosphorylation activities in vitro, but their physiological functions and interacting network are still largely unknown. In this study, we systematically investigated the autophosphorylation and cross-phosphorylation activities of ePKs from Sulfolobus islandicus REY15A using proteins expressed in Escherichia coli or S. islandicus. In vitro kinase assay showed that 7 out of the 11 putative ePKs have autophosphorylation activity. A protein Ser/Thr phosphatase, SiRe_1009, was able to dephosphorylate various autophosphorylated ePKs, confirming that these proteins are Ser/Thr kinases. Two ePKs, SiRe_2030 and SiRe_2056, homologs of typical eukaryotic PKs involved in peptide synthesis in response to various cellular stresses, exhibit highly efficient phosphorylation activities on both themselves and other ePKs. Overexpression of the protein kinases in vivo revealed that elevated level of either SiRe_1531 or SiRe_2056 inhibited the cell growth of S. islandicus cells. Finally, a phosphorylation network of the protein kinases was proposed and their putative physiological roles were discussed.

  14. Identification of sites phosphorylated by the vaccinia virus B1R kinase in viral protein H5R

    Directory of Open Access Journals (Sweden)

    Hardie Grahame


    Full Text Available Abstract Background Vaccinia virus gene B1R encodes a serine/threonine protein kinase. In vitro this protein kinase phosphorylates ribosomal proteins Sa and S2 and vaccinia virus protein H5R, proteins that become phosphorylated during infection. Nothing is known about the sites phosphorylated on these proteins or the general substrate specificity of the kinase. The work described is the first to address these questions. Results Vaccinia virus protein H5R was phosphorylated by the B1R protein kinase in vitro, digested with V8 protease, and phosphopeptides separated by HPLC. The N-terminal sequence of one radioactively labelled phosphopeptide was determined and found to correspond to residues 81-87 of the protein, with Thr-84 and Thr-85 being phosphorylated. A synthetic peptide based on this region of the protein was shown to be a substrate for the B1R protein kinase, and the extent of phosphorylation was substantially decreased if either Thr residue was replaced by an Ala. Conclusions We have identified the first phosphorylation site for the vaccinia virus B1R protein kinase. This gives important information about the substrate-specificity of the enzyme, which differs from that of other known protein kinases. It remains to be seen whether the same site is phosphorylated in vivo.

  15. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy


    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  16. Fluorescent photoaffinity probes for mitotic protein kinase Aurora A. (United States)

    Lavogina, Darja; Kisand, Katariina; Raidaru, Gerda; Uri, Asko


    We combined the advantages of the selective inhibitor VX689, the bisubstrate-analogue conjugate approach, and photoreactive amino acids to develop 8 photoaffinity probes for Aurora A. The most efficient compounds possessed one-digit nanomolar KD values in the equilibrium binding assay, inhibited Aurora A at elevated concentrations of ATP in the phosphorylation assay in the presence of TPX2, and formed covalent complexes with the recombinant kinase or Aurora A in HeLa cells upon UV-irradiation. The recognition of the correct target by the probes during formation of the covalent complex in the biochemical assay and in situ was demonstrated by competition experiments using the non-labelled inhibitors VX689 and MLN8237. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon


    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  18. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale


    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  19. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: Computational analysis (United States)

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.


    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and activation, we investigated the ways in which the dynamics of molecular positive-feedback loops may contribute to the time window for memory stabilization and memory maintenance. In the models, training triggered a transition in the amount of kinase between two stable states, which represented consolidation. Simulating protein synthesis inhibition (PSI) from before to 40 min after training blocked or delayed consolidation. Beyond 40 min, substantial (>95%) PSI had little effect despite the fact that the elevated amount of kinase was maintained by increased protein synthesis. However, PSI made established memories labile to perturbations. Simulations of kinase inhibition produced similar results. In addition, similar properties were found in several other models that also included positive-feedback loops. Even though our models are based on simplifications of the actual mechanisms of molecular consolidation, they illustrate the practical difficulty of empirically measuring “time windows” for consolidation. This is particularly true when consolidation and reconsolidation of memory depends, in part, on the dynamics of molecular positive-feedback loops. PMID:20736337

  20. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    Energy Technology Data Exchange (ETDEWEB)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.


    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and)2numberSPO4/mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the TUPO4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro.

  1. Response Gene to Complement 32 Protein Promotes Macrophage Phagocytosis via Activation of Protein Kinase C Pathway* (United States)

    Tang, Rui; Zhang, Gui; Chen, Shi-You


    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis. PMID:24973210

  2. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway. (United States)

    Tang, Rui; Zhang, Gui; Chen, Shi-You


    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.


    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  4. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose. (United States)

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland


    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target.

  5. Serotonin stimulates protein tyrosyl phosphorylation and vascular contraction via tyrosine kinase. (United States)

    Watts, S W; Yeum, C H; Campbell, G; Webb, R C


    Serotonin (5-HT, 5-hydroxytryptamine) is a mitogen in vascular smooth muscle and vascular reactivity to 5-HT is significantly enhanced in hypertension and atherosclerosis. We have tested the hypothesis that tyrosine kinases, enzymes important for mitogenesis, may play a role in 5-HT-induced vascular smooth muscle contractility. Helical strips of rat carotid artery and aorta denuded of endothelium were mounted in tissue baths for measurement of contractile force. The tyrosine kinase inhibitor genistein (5 x 10(-6) M) decreased the potency of 5-HT approximately 4-fold and reduced maximal contraction to 5-HT in carotid arterial strips denuded of endothelium (58% control). Genistein's inactive congener daidzein (5 x 10(-6) M) did not reduce maximal contraction to 5-HT in carotid arteries but did shift the 5-HT concentration response curve 3-fold to the right. Tyrphostin 23 (5 x 10(-5) M), another tyrosine kinase inhibitor, decreased the potency of 5-HT 4-fold and reduced the maximal contraction to 5-HT in the carotid artery (10% control). Contractions induced by phorbol-12,13-dibutyrate (10(-9) to 10(-5) M) were not reduced or shifted by either tyrosine kinase inhibitor, indicating that phorbolester-sensitive protein kinase C isoforms were not affected. KCl-induced contraction was shifted 2-fold and the maximum significantly inhibited by tyrphostin 23 (38.6% control) but not genistein or daidzein, indicating that tyrphostin 23 but not genistein may inhibit voltage-gated calcium channels to reduce contractility. Western blot analysis using antiphosphotyrosine antibody confirmed that 5-HT produced a time- and concentration-dependent increase in the phosphotyrosine immunoreactivity of a 42-kD protein in cultured aortic smooth muscle cells. Lysate immunoprecipitation with an antimitogen-activated-protein (MAP)-kinase antibody indicated that the 42-kD protein was most likely a MAP kinase. 5-HT (10(-5) M) stimulated contraction and increased antiphosphotyrosine

  6. Investigation of the Flexibility of Protein Kinases Implicated in the Pathology of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Michael P. Mazanetz


    Full Text Available The pathological characteristics of Alzheimer’s Disease (AD have been linked to the activity of three particular kinases—Glycogen Synthase Kinase 3β (GSK3β, Cyclin-Dependent Kinase 5 (CDK5 and Extracellular-signal Regulated Kinase 2 (ERK2. As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD and the new Active Site Pressurisation (ASP methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  7. RO0504985 is an inhibitor of CMGC kinase proteins and has anti-human cytomegalovirus activity. (United States)

    Strang, Blair L


    Public-private partnerships allow many previously unavailable compounds to be screened for antiviral activity. Here a screening method was used to identify an oxindole compound, RO0504985, from a Roche kinase inhibitor library that inhibited human cytomegalovirus (HCMV) protein production. RO0504985 was previously described as an inhibitor of cyclin-dependent kinase 2 (CDK2). However, using kinase selectivity assays it was found that RO0504985 was an inhibitor of several CMGC group kinase proteins, including CDK2. Using virus yield reduction assays it was observed that RO0504985 inhibited replication of different HCMV strains at low micromolar concentrations. Western blotting was used to investigate how RO0504985 inhibited HCMV replication. Treatment of HCMV infected cells with RO0504985 inhibited production of the immediate early viral IE2 proteins and the late viral protein pp28. Thus, RO0504985 inhibited HCMV replication by preventing production of specific HCMV proteins necessary for virus replication. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.


    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  9. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  10. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette


    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  11. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)


    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  12. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. (United States)

    Greer, Paul L; Greenberg, Michael E


    One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.

  13. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa. (United States)

    Liu, Guosheng; Chen, Mingliang; Yu, Chen; Wang, Wei; Yang, Lirong; Li, Zengpeng; Wang, Weiyi; Chen, Jianming


    The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza


    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Involvement of the mitogen-activated protein kinase kinase 2 in the induction of cell dissociation in pancreatic cancer. (United States)

    Tan, Xiaodong; Egami, Hiroshi; Kamohara, Hidenobu; Ishikawa, Shinji; Kurizaki, Takashi; Yoshida, Naoya; Tamori, Yasuhiko; Takai, Eiji; Hirota, Masahiko; Ogawa, Michio


    In our previous investigation, mitogen-activated protein kinase kinase 2 (MEK2) was detected as a factor which was correlated to the potential of invasion-metastasis. In this study, the immunocytochemical, immunohistochemical and mRNA expressions of MEK2 were examined in pancreatic cancer cell lines and tissue samples, respectively. Constitutive expressions of MEK2 and phosphorylated MEK (p-MEK) were observed in PC-1.0 and ASPC-1 cells, which exhibited a growth pattern of single cells, whereas the relevant expressions were quite faint in PC-1 cells and CAPAN-2 cells, which exhibited a growth pattern of island-like clonies. Simultaneous inductions of MEK2 expressions and cell dissociation were observed after the treatment with a conditioned medium (CM) of PC-1.0 cells. The expression of MEK2 and p-MEK were reduced and the cell aggregation was found in PC-1.0 and ASPC-1 cells after U0126 (a MEK inhibitor) treatment. In vivo, both the MEK2 and p-MEK overexpressed in human pancreatic cancer tissues and p-MEK was found to be more strongly expressed in the invasive front than that in the center of tumor (Pcell dissociation. MEK2 activation is probably involved in the first step of the cascade in the invasion-metastasis of pancreatic cancer.

  16. Listeriolysin O activates mitogen-activated protein kinase in eucaryotic cells. (United States)

    Tang, P; Rosenshine, I; Cossart, P; Finlay, B B


    Infection with Listeria monocytogenes induces the activation of mitogen-activated protein (MAP) kinase in several tissue culture cell lines (P.Tang, I. Rosenshine, and B. B. Finlay, Mol. Biol. Cell 5:455-464, 1994). After various mutants were examined, the bacterial factor responsible for MAP kinase activation was identified as listeriolysin O (LLO). Growth supernatant containing LLO or purified LLO alone can induce MAP kinase tyrosine phosphorylation in HeLa cells. Single-amino-acid mutations in LLO that do not affect its membrane binding capacity but reduce its cytolytic activity also reduced its ability to induce MAP kinase activity in HeLa cells. Streptolysin O, another sulfhydryl-activated hemolysin, and the detergent saponin are also able to activate MAP kinase in target cells. Thus, the increased MAP kinase activity observed in L. monocytogenes-infected cells is most likely a result of the permeabilization of the host cell membrane by LLO and may not be linked with invasion.

  17. A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. (United States)

    Kung, Alvin; Schimpl, Marianne; Ekanayake, Arunika; Chen, Ying-Chu; Overman, Ross; Zhang, Chao


    Although a previously developed bump-hole approach has proven powerful in generating specific inhibitors for mapping functions of protein kinases, its application is limited by the intolerance of the large-to-small mutation by certain kinases and the inability to control two kinases separately in the same cells. Herein, we describe the development of an alternative chemical-genetic approach to overcome these limitations. Our approach features the use of an engineered cysteine residue at a particular position as a reactive feature to sensitize a kinase of interest to selective covalent blockade by electrophilic inhibitors and is thus termed the Ele-Cys approach. We successfully applied the Ele-Cys approach to identify selective covalent inhibitors of a receptor tyrosine kinase EphB1 and solved cocrystal structures to determine the mode of covalent binding. Importantly, the Ele-Cys and bump-hole approaches afforded orthogonal inhibition of two distinct kinases in the cell, opening the door to their combined use in the study of multikinase signaling pathways.

  18. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Ostroveanu, Anghelus; Scheper, Wouter A.; Penke, Botond; Luiten, Paul G. M.; Van der Zee, Eddy A.; Eisel, Ulrich L. M.

    Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial

  19. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald


    The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion.......The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion....

  20. A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory

    NARCIS (Netherlands)

    Ostroveanu, Anghelus; Van der Zee, Eddy A.; Dolga, Amalia M.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Nijholt, Ingrid M.


    A-kinase anchoring proteins (AKAPs) form large macromolecular signaling complexes that specifically target cAMP-dependent protein kinase (PKA) to unique subcellular compartments and thus, provide high specificity to PKA signaling. For example, the AKAP79/150 family tethers PKA, PKC and PP2B to

  1. IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes. (United States)

    Tiwari, Rajiv Lochan; Singh, Vishal; Singh, Ankita; Barthwal, Manoj Kumar


    The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.

  2. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.


    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  3. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  4. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen


    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically...

  5. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia

    NARCIS (Netherlands)

    Chopra, Ravi; Wasserman, Aaron H; Pulst, Stefan M; De Zeeuw, Chris I; Shakkottai, Vikram G


    Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause

  6. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases

    NARCIS (Netherlands)

    Fleichman, Marina; Schneider, Tim; Fetscher, Charlotte; Michel, Martin C.


    We have investigated the role of several protein kinases in carbachol-stimulated, M-3 muscarinic receptor-mediated contraction of rat urinary bladder. Concentration-response curves for the muscarinic receptor agonist carbachol were generated in the presence of multiple concentrations of inhibitors

  7. Nociceptive-induced Myocardial Remote Conditioning Is Mediated By Neuronal Gamma Protein Kinase C


    Gross, Eric R.; Hsu, Anna K.; Urban, Travis J.; Mochly-Rosen, Daria; Gross, Garrett J.


    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning.

  8. Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes

    NARCIS (Netherlands)

    Beuers, U.; Probst, I.; Soroka, C.; Boyer, J. L.; Kullak-Ublick, G. A.; Paumgartner, G.


    The protein kinase C (PKC) family of isoenzymes plays a key role in the regulation of hepatocellular secretion. The hydrophobic and cholestatic bile acid, taurolithocholic acid (TLCA), acts as a potent Ca++ agonist in isolated hepatocytes. However, its effect on PKC isoforms has not been elucidated.


    NARCIS (Netherlands)


    The present investigation analyzes the cellular distribution of muscarinic acetylcholine receptors (mAChRs) and the gamma isoform of protein kinase C (PKC) in the rat parietal cortex employing the monoclonal antibodies M35 and 36G9, respectively. Muscarinic cholinoceptive neurons were most present

  10. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein

    NARCIS (Netherlands)

    Shah, K.; Gadella, T.W.J.; Erp, van H.; Hecht, V.; Vries, de S.C.


    The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed

  11. Subcellular localization and oligomerization of the Aradopsis thaliana somatic embryogenesis receptor kinase 1 protein

    NARCIS (Netherlands)

    Shah, K.; Gadella, Th.W.J.; van Erp, H.; Hecht, V.; de Vries, S.C.


    The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed

  12. Pim serine/threonine kinases regulate the stability of Socs-1 protein

    NARCIS (Netherlands)

    Chen, XP; Losman, JA; Cowan, S; Donahue, E; Fay, S; Vuong, BQ; Nawijn, MC; Capece, D; Cohan, VL; Rothman, P


    Studies of SOCS-1-deficient mice have implicated Socs-1 in the suppression of JAK-STAT (Janus tyrosine kinase-signal transducers and activators of transcription) signaling and T cell development. It has been suggested that the levels of Socs-1 protein may be regulated through the proteasome pathway.

  13. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases. (United States)

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M


    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  14. Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Guerra, Barbara; Jacobsen, Jack Hummeland


    Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is ...

  15. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases

    Directory of Open Access Journals (Sweden)

    Peineau Stéphane


    Full Text Available Abstract Background The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA receptor-dependent long-term depression (LTD in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons. Results Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen synthase kinase 3 (GSK-3. Conclusion The present study is the first to investigate the role of 58 ser/thr protein kinases in LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement of only one, GSK-3, in LTD.

  16. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases. (United States)

    Weidtkamp-Peters, Stefanie; Stahl, Yvonne


    The investigation of protein interactions in living plant tissue has become of increasing importance in recent years. A high spatial and temporal resolution for the observation of in vivo protein interaction is needed, e.g., in order to follow changes of plant receptor kinase interactions and complex formation over time. In vivo fluorescence or Förster resonance energy transfer (FRET) measurements allow for detailed analyses of interacting proteins in their natural environment at a subcellular level. Especially FRET-FLIM (fluorescence lifetime imaging microscopy) measurements provide an extremely powerful and reliable tool meeting the demands for investigating in vivo protein interaction quantitatively and with high precision. Here, we will describe in detail how to practically perform in vivo FRET measurements of receptor kinases in plants and discuss potential pitfalls and points of consideration.

  17. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H. [de Duve Institute, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium); Horman, Sandrine, E-mail: [Institute of Experimental and Clinical Research - Pole of Cardiovascular Research, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium)


    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca{sup 2+}-dependent AMPK activation via calmodulin-dependent protein kinase kinase-{beta}(CaMKK{beta}), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKK{beta} inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  18. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.


    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  19. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole.


    Stack, J H; Herman, P. K.; Schu, P V; Emr, S D


    The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) are required for the sorting of soluble hydrolases to the yeast vacuole. Over-production of Vps34p suppresses the growth and vacuolar protein sorting defects associated with vps15 kinase domain mutants, suggesting that Vps15p and Vps34p functionally interact. Subcellular fractionation and sucrose density gradients indicate that Vps15p is responsible for the association of Vps34p with an intracellular membrane f...

  20. Pharmacological Analyses of Protein Kinases Regulating Egg Maturation in Marine Nemertean Worms: A Review and Comparison with Mammalian Eggs

    Directory of Open Access Journals (Sweden)

    Alicia Marquardt


    Full Text Available For development to proceed normally, animal eggs must undergo a maturation process that ultimately depends on phosphorylations of key regulatory proteins. To analyze the kinases that mediate these phosphorylations, eggs of marine nemertean worms have been treated with pharmacological modulators of intracellular signaling pathways and subsequently probed with immunoblots employing phospho-specific antibodies. This article both reviews such analyses and compares them with those conducted on mammals, while focusing on how egg maturation in nemerteans is affected by signaling pathways involving cAMP, mitogen-activated protein kinases, Src-family kinases, protein kinase C isotypes, AMP-activated kinase, and the Cdc2 kinase of maturation-promoting factor.

  1. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. (United States)

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Wu, Wei-Chi; Hsu, Jason; Weng, Shih-Ting; Lin, Tsai-Leng; Liu, Chun-Yi; Hseu, Ruey-Shyang; Huang, Ching-Tsan


    Ganoderma lucidum, a medicinal fungus is thought to possess and enhance a variety of human immune functions. An immuno-modulatory protein, Ling Zhi-8 (LZ-8) isolated from G. lucidum exhibited potent mitogenic effects upon human peripheral blood lymphocytes (PBL). However, LZ-8-mediated signal transduction in the regulation of interleukin-2 (IL-2) gene expression within human T cells is largely unknown. Here we cloned the LZ-8 gene of G. lucidum, and expressed the recombinant LZ-8 protein (rLZ-8) by means of a yeast Pichia pastoris protein expression system. We found that rLZ-8 induces IL-2 gene expression via the Src-family protein tyrosine kinase (PTK), via reactive oxygen species (ROS), and differential protein kinase-dependent pathways within human primary T cells and cultured Jurkat T cells. In essence, we have established the nature of the rLZ-8-mediated signal-transduction pathways, such as PTK/protein kinase C (PKC)/ROS, PTK/PLC/PKCalpha/ERK1/2, and PTK/PLC/PKCalpha/p38 pathways in the regulation of IL-2 gene expression within human T cells. Our current results of analyzing rLZ-8-mediated signal transduction in T cells might provide a potential application for rLZ-8 as a pharmacological immune-modulating agent. (c) 2008 Wiley-Liss, Inc.

  2. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis (United States)

    Krishnan, Yamini; Li, Yan; Zheng, Renjian; Kanda, Vikram; McDonald, Thomas V.


    The HERG (human ether-a-go-go related gene) potassium channel aids in repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cAMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo. PMID:22613764

  3. Mitogen-activated protein kinase-regulated AZI1 – an attractive candidate for genetic engineering (United States)

    Pitzschke, Andrea; Datta, Sneha; Persak, Helene


    Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed. PMID:24518841

  4. Mitogen-activated protein kinase-regulated AZI1 - an attractive candidate for genetic engineering. (United States)

    Pitzschke, Andrea; Datta, Sneha; Persak, Helene


    Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed.

  5. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    The results from immunohistochemistry show increased pattern of Sox2 expression as tumour progresses. Similarly, ALDH1, a protein that positively regulates stem cells shows mild expression in low grade cervical tumour, but positive signals are more amplified in an aggressive stage of tumour condition when compared ...

  6. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)


    Nov 6, 2013 ... translocation of PKC to membrane vesicles and prevents its protein phosphorylation activity (Wolf and ..... rottlerin was reversed by both the depletion of extracellular. Ca2+ using the calcium chelator EGTA ... extracellular site in a PKA-independent manner (Choi et al. 2001). In rabbit coronary arterial SMCs, ...

  7. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana. (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi


    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4IKD). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation. (United States)

    Penela, P


    G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Interaction between Yeast Cdc6 Protein and B-Type Cyclin/Cdc28 Kinases


    Elsasser, S; Lou, F; Wang, B.; Campbell, J L; de Jong, A.


    During purification of recombinant Cdc6 expressed in yeast, we found that Cdc6 interacts with the critical cell cycle, cyclin-dependent protein kinase Cdc28. Cdc6 and Cdc28 can be coimmunoprecipitated from extracts, Cdc6 is retained on the Cdc28-binding matrix p13-agarose, and Cdc28 is retained on an affinity column charged with bacterially produced Cdc6. Cdc6, which is a phosphoprotein in vivo, contains five Cdc28 consensus sites and is a substrate of the Cdc28 kinase in vitro. Cdc6 also inh...

  10. Prioritization of charge over geometry in transition state analogues of a dual specificity protein kinase. (United States)

    Xiaoxia, Liu; Marston, James P; Baxter, Nicola J; Hounslow, Andrea M; Yufen, Zhao; Blackburn, G Michael; Cliff, Matthew J; Waltho, Jonathan P


    The direct observation of a transition state analogue (TSA) complex for tyrosine phosphorylation by a signaling kinase has been achieved using (19)F NMR analysis of MEK6 in complex with tetrafluoroaluminate (AlF(4)(-)), ADP, and p38α MAP kinase (acceptor residue: Tyr182). Solvent-induced isotope shifts and chemical shifts for the AlF(4)(-) moiety indicate that two fluorine atoms are coordinated by the two catalytic magnesium ions of the kinase active site, while the two remaining fluorides are liganded by protein residues only. An equivalent, yet distinct, AlF(4)(-) complex involving the alternative acceptor residue in p38α (Thr180) is only observed when the Tyr182 is mutated to phenylalanine. The formation of octahedral AlF(4)(-) species for both acceptor residues, rather than the trigonal bipyramidal AlF(3)(0) previously identified in the only other metal fluoride complex with a protein kinase, shows the requirement of MEK6 for a TSA that is isoelectronic with the migrating phosphoryl group. This requirement has hitherto only been demonstrated for proteins having a single catalytic magnesium ion.

  11. The role of stress-activated protein kinase signaling in renal pathophysiology

    Directory of Open Access Journals (Sweden)

    F.Y. Ma


    Full Text Available Two major stress-activated protein kinases are the p38 mitogen-activated protein kinase (MAPK and the c-Jun amino terminal kinase (JNK. p38 and JNK are widely expressed in different cell types in various tissues and can be activated by a diverse range of stimuli. Signaling through p38 and JNK is critical for embryonic development. In adult kidney, p38 and JNK signaling is evident in a restricted pattern suggesting a normal physiological role. Marked activation of both p38 and JNK pathways occurs in human renal disease, including glomerulonephritis, diabetic nephropathy and acute renal failure. Administration of small molecule inhibitors of p38 and JNK has been shown to provide protection from renal injury in different types of experimental kidney disease through inhibition of renal inflammation, fibrosis, and apoptosis. In particular, a role for JNK signaling has been identified in macrophage activation resulting in up-regulation of pro-inflammatory mediators and the induction of renal injury. The ability to provide renal protection by blocking either p38 or JNK indicates a lack of redundancy for these two signaling pathways despite their activation by common stimuli. Therefore, the stress-activated protein kinases, p38 and JNK, are promising candidates for therapeutic intervention in human renal diseases.

  12. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay


    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  13. Structure-function study of deinococcal serine/threonine protein kinase implicates its kinase activity and DNA repair protein phosphorylation roles in radioresistance of Deinococcus radiodurans. (United States)

    Rajpurohit, Yogendra S; Misra, Hari S


    The DR2518 (RqkA) a eukaryotic type serine/threonine protein kinase in Deinococcus radiodurans was characterized for its role in bacterial response to oxidative stress and DNA damage. The K42A, S162A, T169A and S171A mutation in RqkA differentially affected its kinase activity and functional complementation for γ radiation resistance in Δdr2518 mutant. For example, K42A mutant was completely inactive and showed no complementation while S171A, T169A and T169A/S171A mutants were less active and complemented proportionally to different levels as compared to wild type. Amongst, different DNA binding proteins that purified RqkA could phosphorylate, PprA a DNA repair protein, phosphorylation had improved its affinity to DNA by 4 fold and could enhance its supportive role in intermolecular ligation by T4 DNA ligase. RqkA phosphorylates PprA at threonine 72 (T72), serine 112 (S112) and threonine 144 (T144) in vitro with the majority of it goes to T72 site. Unlike wild type PprA and single mutants of T72, S112 and T144 residues, the T72AS112A double and T72AS112AT144A triple mutant derivatives of PprA did not phosphorylate in vivo and also failed to complement PprA loss in D. radiodurans. Deletion of rqkA in pprA::cat background enhanced radiosensitivity of pprA mutant, which became nearly similar to ΔrqkA resistance to γ radiation. These results suggested that K42 of RqkA is essential for catalytic functions and the kinase activity of RqkA as well as phosphorylation of PprA have roles in γ radiation resistance of D. radiodurans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Metformin action in human hepatocytes: coactivation of atypical protein kinase C alters 5'-AMP-activated protein kinase effects on lipogenic and gluconeogenic enzyme expression. (United States)

    Sajan, Mini P; Ivey, Robert A; Farese, Robert V


    Atypical protein kinase C (aPKC) levels and activity are elevated in hepatocytes of individuals with type 2 diabetes and cause excessive increases in the levels of lipogenic and gluconeogenic enzymes; aPKC inhibitors largely correct these aberrations. Metformin improves hepatic gluconeogenesis by activating 5'-AMP-activated protein kinase (AMPK). However, metformin also activates aPKC in certain tissues; in the liver, this activation could amplify diabetic aberrations and offset the positive effects of AMPK. In this study, we examined whether metformin activates aPKC in human hepatocytes and the metabolic consequences of any such activation. We compared protein kinase activities and alterations in lipogenic and gluconeogenic enzyme levels during activity of the AMPK activators metformin and AICAR, relative to those of an aPKC-ι inhibitor, in hepatocytes from non-diabetic and type 2 diabetic human organ donors. Metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) activated aPKC at concentrations comparable with those required for AMPK activation. Moreover, both agents increased lipogenic enzyme levels by an aPKC-dependent mechanism. Thus, whereas insulin- and diabetes-dependent increases in lipogenic enzyme levels were reversed by aPKC inhibition, such levels were increased in hepatocytes from non-diabetic donors and remained elevated in hepatocytes from diabetic donors following metformin and AICAR treatment. In addition, whereas aPKC inhibition diminished gluconeogenic enzyme levels in the absence and presence of insulin in hepatocytes from both non-diabetic and diabetic donors, metformin and AICAR increased gluconeogenic enzyme levels in hepatocytes from non-diabetic individuals, but nevertheless diminished gluconeogenic enzyme levels in insulin-treated hepatocytes from diabetic donors. Metformin and AICAR activate aPKC together with AMPK in human hepatocytes. Activation of aPKC increases lipogenic enzyme levels and alters gluconeogenic

  15. Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. (United States)

    Simon, B J; Klein, M G; Schneider, M F


    The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of

  16. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C. (United States)

    Hofmann, Matthias; Zaper, Julijana; Bernd, August; Bereiter-Hahn, Jürgen; Kaufmann, Roland; Kippenberger, Stefan


    Mechanical stimulation is known to modulate cell physiology in a variety of different tissues. Particularly, epithelial cells are permanently exposed to mechanical stimulation generated by externally applied forces. The present in vitro study demonstrated mechanical pressure as a trigger-factor of the p38 mitogen-activated protein kinase (MAPK) pathway in epithelial cells. Mechanical pressure applied by teflon weights (1.02g/cm(2)) led to a rapid phosphorylation of p38 peaking between 5 and 10min. Furthermore, phosphorylation of the small heat shock protein 27 (HSP27) was shown in response to mechanical pressure. Suppression of p38 function by using specific inhibitors blocked the pressure-mediated phosphorylation of HSP27. In order to identify upstream regulators of p38, a contribution of Src and protein kinase C (PKC) in pressure-signaling was investigated. We could demonstrate that inhibition of Src or PKC suppressed the pressure-induced phosphorylation of p38. These findings suggest mechanical pressure as a new type of effector stimulus for the p38 pathway with implications to (patho-) physiological conditions.

  17. A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. (United States)

    Burgers, Pepijn P; Ma, Yuliang; Margarucci, Luigi; Mackey, Mason; van der Heyden, Marcel A G; Ellisman, Mark; Scholten, Arjen; Taylor, Susan S; Heck, Albert J R


    Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/β in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.

  18. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca(2+)/calmodulin (CaM) dependence of Ca(2+)/CaM-dependent protein kinase kinase β. (United States)

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Bin Shari, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi


    The Ca(2+)/calmodulin-dependent protein kinase kinase β(CaMKKβ)/5'AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca(2+)-dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca(2+) concentrations. Moreover, the Ca(2+)/CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro, leading to reduced autonomous, but not Ca(2+)/CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr144 phosphorylation by activated AMPK converts CaMKKβ into a Ca(2+)/CaM-dependent enzyme, as shown by completely Ca(2+)/CaM-dependent CaMKK activity of a phosphomimetic Thr144Glu CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587) including the autoinhibitory region plays an important role in stabilizing an inactive conformation in a Thr144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with antiphospho-Thr144 antibody revealed phosphorylation of Thr144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca(2+)-dependent AMPK activation by CaMKKβ. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  19. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L


    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  20. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand


    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  1. First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten


    The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2beta, noncatalytic subunit of CK2). CK2alpha belongs to the superfamily of eukaryotic protein kinases...... and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2alpha/CK2beta interaction region and binding of a CK2beta dimer. The latter stabilizes...... of catalytic key elements. For CK2alpha, however, no strict physiological control of activity is known. Accordingly, CK2alpha was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N...

  2. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X


    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically......, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate...

  3. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. (United States)

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu


    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates.

  4. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)


    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  5. Protein phosphorylation associated with epipodophyllotoxin-induced apoptosis of lymphoid cells: role of a serine/threonine protein kinase. (United States)

    Ye, X; Mody, N S; Hingley, S T; Coffman, F D; Cohen, S; Fresa, K L


    We have previously shown that apoptosis induced in thymocytes by dexamethasone or teniposide (VM-26) could be inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and sangivamycin, both relatively specific inhibitors for protein kinase C, but not by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a more specific inhibitor for cAMP-dependent protein kinases. Apoptosis in this model system was not blocked by EGTA and no increase in cytosolic Ca2+ was observed during apoptosis induced by either dexamethasone or VM-26, suggesting that this kinase was Ca2+-independent. In the present study, we demonstrate that addition of 10 microM sangivamycin to thymocyte cultures up to 2 h after addition of either inducer resulted in virtually complete inhibition of apoptosis. Addition of 10 microM sangivamycin at 3 or 4 h after addition of inducer resulted in partial inhibition of apoptosis. Computerized image analysis of two-dimensional PAGE analyses of whole-cell lysates demonstrated that treatment of mouse thymocytes with VM-26 resulted in a limited number of de novo phosphorylation events within 1 h of treatment. The most prominent phosphorylation events associated with VM-26-induced apoptosis were that two intracellular protein species (Protein 1: m.w. = 22.9 kDa, pI, 5.11; and Protein 2: m.w. = 22.9 kDa, pI, 4.98). Similar phosphorylation events were seen in cells treated with dexamethasone. Finally, Western blot analysis suggests that de novo protein phosphorylation induced by VM-26 is on serine/threonine residues. These results provide further evidence that the mechanism of VM-26-induced apoptosis of murine thymocytes involves the action of one or more serine/threonine kinases. Copyright 1998 Academic Press.

  6. Cell-free expression of protein kinase a for rapid activity assays. (United States)

    Leippe, Donna M; Zhao, Kate Qin; Hsiao, Kevin; Slater, Michael R


    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag((R)) fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  7. Cell-Free Expression of Protein Kinase a for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe


    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag ® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  8. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe


    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  9. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ


    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein k...

  10. Protein kinase inhibitors CK59 and CID755673 alter primary human NK cell effector functions

    Directory of Open Access Journals (Sweden)

    Maxi eScheiter


    Full Text Available Natural killer (NK cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory theraphies. In this study, we have tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against CaMKII (CK59 and PKD family kinases (CID755673 that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Dose dependent treatment with CK59 and CID755673 indeed results in a significant reduction of NK cell degranulation markers and cytokine release in freshly isolated PBMC populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest PKD2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.

  11. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)


    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  12. MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Tse Jane KS


    Full Text Available Abstract Background Methylthioadenosine, the main by-product of spermidine synthesis, is degraded in Bacillus subtilis as adenine and methylthioribose. The latter is an excellent sulfur source and the precursor of quorum-sensing signalling molecules. Nothing was known about methylthioribose recycling in this organism. Results Using trifluoromethylthioribose as a toxic analog to select for resistant mutants, we demonstrate that methylthioribose is first phosphorylated by MtnK, methylthioribose kinase, the product of gene mtnK (formerly ykrT, expressed as an operon with mtnS (formerly ykrS in an abundant transcript with a S-box leader sequence. Although participating in methylthioribose recycling, the function of mtnS remained elusive. We also show that MtnK synthesis is boosted under starvation condition, in the following decreasing order: carbon-, sulfur- and nitrogen-starvation. We finally show that this enzyme is part of the family Pfam 01633 (choline kinases which belongs to a large cluster of orthologs comprizing antibiotic aminoglycoside kinases and protein serine/threonine kinases. Conclusions The first step of methylthioribose recycling is phosphoryltaion by MTR kinase, coded by the mtnK (formerly ykrT gene. Analysis of the neighbourhood of mtnK demonstrates that genes located in its immediate vicinity (now named mtnUVWXYZ, formerly ykrUVWXYZ are also required for methylthioribose recycling.

  13. A Single Protein Kinase A or Calmodulin Kinase II Site Does Not Control the Cardiac Pacemaker Ca2+ Clock (United States)

    Wu, Yuejin; Valdivia, Héctor H.; Wehrens, Xander H.T.; Anderson, Mark E.


    Background Fight or flight heart rate (HR) increases depend on protein kinase A (PKA) and calmodulin kinase II (CaMKII) mediated enhancement of Ca2+ uptake and release from sarcoplasmic reticulum (SR) in sinoatrial nodal cells (SANC). However, the impact of specific PKA and CaMKII phosphorylation sites on HR is unknown. Methods and Results We systematically evaluated validated PKA and CaMKII target sites on phospholamban (PLN) and the ryanodine receptor (RyR2) using genetically modified mice. We found that knockin alanine replacement of RyR2 PKA (S2808) or CaMKII (S2814) target sites failed to affect HR responses to isoproterenol or spontaneous activity in vivo or in SANC. Similarly, selective mutation of PLN amino acids critical for enhancing SR Ca2+ uptake by PKA (S16) or CaMKII (T17) to alanines did not affect HR in vivo or in SANC. In contrast, CaMKII inhibition by expression of AC3-I has been shown to slow SANC rate responses to isoproterenol and decrease SR Ca2+ content. PLN deficiency rescued SR Ca2+ content and SANC rate responses to isoproterenol in mice with AC3-I expression, suggesting CaMKII affects HR by modulation of SR Ca2+ content. Consistent with this, mice expressing a superinhibitory PLN mutant had low SR Ca2+ content and slow HR in vivo and in SANC. Conclusions SR Ca2+ depletion reduces HR and SR Ca2+ repletion restores physiological SANC rate responses despite CaMKII inhibition. PKA and CaMKII do not affect HR by a unique target site governing SR Ca2+ uptake or release. HR acceleration may require an SR Ca2+ content threshold. PMID:26857906

  14. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice. (United States)

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan


    To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be a potential therapeutic strategy for this disease.

  15. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Directory of Open Access Journals (Sweden)

    Gu Jenny


    Full Text Available Abstract Background The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2, a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. Results TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2. The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. Conclusion The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function.

  16. [Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida]. (United States)

    Zhao, Rui; Ji, Jian-Guo; Tong, Yuan-Peng; Chen, Qian; Pu, Hai; Ru, Bing-Gen


    Proteins from Eisenia foetida possess many biological activities. A group of proteins precipitated by ethanol were isolated and purified by Sephadex G-75 and HiPrep 16/60 DEAE columns, then identified by one- or two- dimensional electrophoresis and mass spectrometry. 2D gel experiments displayed that the pI of proteins from Eisenia foetida were mainly from 3.0 to 4.0. Anti-tumor and kinase activities were determined by in vitro experiments. The enthanol fraction D2(8) showed both of the activities. These ethanol-precipitated proteins were identified further by native polyacrylamide electrophoresis, the protein spots were cut off from gels and digested by trypsin, the peptide mass fingerprints (PMFs) were determined by mass spectrometry. PMF, molecular weight, amino acid composition and N-terminus of 6 proteins were characterized, and band 9 was identified as D2(8). The results suggested that there exist proteins in Eisenia foetida possessed both anti-tumor and fibrinolysogen kinase activities. These methods can be used for identification of the natural bioactive proteins.

  17. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways. (United States)

    Luo, Zhirong; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; Qu, Tiejun; He, Wen-xi


    Biodentine (Septodont, Saint-Maur-des-Fossès, France), a new tricalcium silicate cement formulation, has been introduced as a bioactive dentine substitute to be used in direct contact with pulp tissue. The aim of this study was to investigate the response of human dental pulp stem cells (hDPSCs) to the material and whether mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and calcium-/calmodulin-dependent protein kinase II (CaMKII) signal pathways played a regulatory role in Biodentine-induced odontoblast differentiation. hDPCs obtained from impacted third molars were incubated with Biodentine. Odontoblastic differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time reverse-transcriptase polymerase chain reaction for the analysis of messenger RNA expression of the following differentiation gene markers: osteocalcin (OCN), dentin sialophosprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). Cell cultures in the presence of Biodentine were exposed to specific inhibitors of MAPK (U0126, SB203580, and SP600125), NF-κB (pyrrolidine dithiocarbamate), and CaMKII (KN-93) pathways to evaluate the regulatory effect on the expression of these markers and mineralization assay. Biodentine significantly increased alkaline phosphatase activity and mineralized nodule formation and the expression of OCN, DSPP, DMP1, and BSP. The MAPK inhibitor for extracellular signal-regulated kinase 1/2 (U0126) and Jun N-terminal kinase (SP600125) significantly decreased the Biodentine-induced mineralized differentiation of hDPSCs and OCN, DSPP, DMP1, and BSP messenger RNA expression, whereas p38 MAPK inhibitors (SB203580) had no effect. The CaMKII inhibitor KN-93 significantly attenuated and the NF-κB inhibitor pyrrolidine dithiocarbamate further enhanced the up-regulation of Biodentine-induced gene expression and mineralization. Biodentine is a bioactive and biocompatible material capable

  18. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Directory of Open Access Journals (Sweden)

    Macdonald Timothy L


    Full Text Available Abstract Background Dietary isothiocyanates (ITCs are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Results ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. Conclusion These results

  19. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias


    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm


    -activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary...... for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein...

  1. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang


    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  2. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. (United States)

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Lin, Chun-Cheng; Lin, Chun-Hung; Hsu, Jason; Wong, Chi-Huey


    We have demonstrated that an extract of Ganoderma lucidum (Reishi or Ling-Zhi) polysaccharides (EORP) exerts immunomodulating activities by stimulating the expression of inflammatory cytokines from mouse spleen cells. Interestingly, via responding to LPS in genetic variation of murine macrophage HeNC2 and GG2EE cell lines, and using TLR4 Ab blockage in human blood-derived monocytic macrophages, we have found that the TLR4, but not complement receptor type 3, is a putative receptor of EORP, mediating the consequent immunomodulating events associated with IL-1 gene expression. Based on our studies of reactive oxygen species production, polymyxin B inhibition, and protein tyrosine kinase (PTK) activity, we ruled out the possibility of LPS contamination in EORP. We have found that EORP differentially modulates the protein kinase (PK)-mediated signal transduction pathways associated with inflammatory cytokine IL-1. In human macrophages and murine macrophage J774A.1 cells, EORP was found to up-regulate IL-1 secretion and pro-IL-1 (precursor of IL-1) as well as IL-1-converting enzyme expression. Specifically, EORP rapidly stimulates PTK-mediated phosphorylation, followed by induction of PKs and activation of MAPKs: ERK, JNK, and p38. Using PK inhibitors in the kinase activity assays, Western blot analyses and IL-1 ELISA, we have extensively examined and dissected the role of individual PK in the regulation of pro-IL-1/IL-1. Our findings establish that EORP-mediated signaling pathways are involved in the pro-IL-1/IL-1 regulation: PTK/protein kinase C/MEK1/ERK and PTK/Rac1/p21-activated kinase/p38.

  3. Protein-tyrosine kinase activity profiling in knock down zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Simone Lemeer

    Full Text Available BACKGROUND: Protein-tyrosine kinases (PTKs regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile

  4. Sensory Protein Kinase Signaling in Schistosoma mansoni Cercariae: Host Location and Invasion. (United States)

    Ressurreição, Margarida; Kirk, Ruth S; Rollinson, David; Emery, Aidan M; Page, Nigel M; Walker, Anthony J


    Schistosoma mansoni cercariae display specific behavioral responses to abiotic/biotic stimuli enabling them to locate and infect the definitive human host. Here we report the effect of such stimulants on signaling pathways of cercariae in relation to host finding and invasion. Cercariae exposed to various light/temperature regimens displayed modulated protein kinase C (PKC), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) activities, with distinct responses at 37 °C and intense light/dark, when compared to 24 °C under normal light. Kinase activities were localized to regions including the oral sensory papillae, acetabular ducts, tegument, acetabular glands, and nervous system. Furthermore, linoleic acid modulated PKC and ERK activities concurrent with the temporal release of acetabular gland components. Attenuation of PKC, ERK, and p38 MAPK activities significantly reduced gland component release, particularly in response to linoleic acid, demonstrating the importance of these signaling pathways to host penetration mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  5. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF). (United States)

    Dutra, Patricia M L; Vieira, Danielle P; Meyer-Fernandes, Jose R; Silva-Neto, Mario A C; Lopes, Angela H


    Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.

  6. Activity of mitogen-activated protein kinases in the esophageal epithelium of patients with Barrett's esophagus. (United States)

    Chwiesko, A; Baniukiewicz, A; Semeniuk, J; Kaczmarski, M; Wasielica-Berger, J; Milewski, R; Dabrowski, A


    Barrett's esophagus (BE), a complication of gastroesophageal reflux disease, is associated with an increased risk of esophageal cancer. Mitogen-activated protein kinases may play an important role in the pathogenesis of this process. We aimed to evaluate mitogen-activated protein kinases activity in esophageal mucosa of patients with BE and find possible relationship between reflux type and BE. Twenty-four patients (mean age: 59 years) with gastroesophageal reflux disease symptoms and endoscopically suspected esophageal metaplasia (ESEM) were prospectively enrolled for testing by a multichannel intraluminal impedance monitoring along with a Bilitec 2000. Endoscopic biopsies were taken from methylene blue-positive pit patterns (sites suggesting specialized intestinal metaplasia [SIM]), from 2 cm above the Z-line and from cardial parts of the stomach. The biopsies were analyzed for extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 activity by Western blot. Seventeen ESEMs had histologically proven metaplasia: eight patients had SIM and nine had gastric-type epithelia (GE). Biliary reflux was more evident in SIM (P = 0.019) but not in GE (P = 0.019); non-biliary reflux was typical for GE (P = 0.005) but not for SIM (P = 0.04). Strong activations of ERK and p38 were found predominantly in SIM, but not in normal esophageal mucosa (NE) (P = 0.01 and P Diseases of the Esophagus.

  7. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier


    Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in m...

  8. Genomewide RNAi screen identifies protein kinase Cb and new members of mitogen-activated protein kinase pathway as regulators of melanoma cell growth and metastasis. (United States)

    Schönherr, Madeleine; Bhattacharya, Animesh; Kottek, Tina; Szymczak, Silke; Köberle, Margarethe; Wickenhauser, Claudia; Siebolts, Udo; Saalbach, Anja; Koczan, Dirk; Magin, Thomas M; Simon, Jan C; Kunz, Manfred


    A large-scale RNAi screen was performed for eight different melanoma cell lines using a pooled whole-genome lentiviral shRNA library. shRNAs affecting proliferation of transduced melanoma cells were negatively selected during 10 days of culture. Overall, 617 shRNAs were identified by microarray hybridization. Pathway analyses identified mitogen-activated protein kinase (MAPK) pathway members such as ERK1/2, JNK1/2 and MAP3K7 and protein kinase C β (PKCβ) as candidate genes. Knockdown of PKCβ most consistently reduced cellular proliferation, colony formation and migratory capacity of melanoma cells and was selected for further validation. PKCβ showed enhanced expression in human primary melanomas and distant metastases as compared with benign melanocytic nevi. Moreover, treatment of melanoma cells with PKCβ-specific inhibitor enzastaurin reduced melanoma cell growth but had only small effects on benign fibroblasts. Finally, PKCβ-shRNA significantly reduced lung colonization capacity of stably transduced melanoma cells in mice. Taken together, this study identified new candidate genes for melanoma cell growth and proliferation. PKCβ seems to play an important role in these processes and might serve as a new target for the treatment of metastatic melanoma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Alterations in brain Protein Kinase A activity and reversal of morphine tolerance by two fragments of native Protein Kinase A inhibitor peptide (PKI). (United States)

    Dalton, George D; Smith, Forrest L; Smith, Paul A; Dewey, William L


    Two peptide fragments of native Protein Kinase A inhibitor (PKI), PKI-(6-22)-amide and PKI-(Myr-14-22)-amide, significantly reversed low-level morphine antinociceptive tolerance in mice. The inhibition of Protein Kinase A (PKA) activity by both peptide fragments was then measured in specific brain regions (thalamus, periaqueductal gray (PAG), and medulla) and in lumbar spinal cord (LSC), which in previous studies have been shown to play a role in morphine-induced analgesia. In drug naive animals, cytosolic PKA activity was greater than particulate PKA activity in each region, while cytosolic and particulate PKA activities were greater in thalamus and PAG compared to medulla and LSC. The addition of both peptides to homogenates from each region completely abolished cytosolic and particulate PKA activities in vitro. Following injection into the lateral ventricle of the brain of drug naive mice and morphine-tolerant mice, both peptides inhibited PKA activity in the cytosolic, but not the particulate fraction of LSC. In addition, cytosolic and particulate PKA activities were inhibited by both peptides in thalamus. These results demonstrate that the inhibition of PKA reverses morphine tolerance. Moreover, the inhibition of PKA activity in specific brain regions and LSC from morphine-tolerant mice by PKI analogs administered i.c.v. is evidence that PKA plays a role in morphine tolerance.

  10. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A. (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S


    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  11. Neuronal phosphorylated RNA-dependent protein kinase in Creutzfeldt-Jakob disease.

    LENUS (Irish Health Repository)

    Paquet, Claire


    The mechanisms of neuronal apoptosis in Creutzfeldt-Jakob disease (CJD) and their relationship to accumulated prion protein (PrP) are unclear. A recent cell culture study showed that intracytoplasmic PrP may induce phosphorylated RNA-dependent protein kinase (PKR(p))-mediated cell stress. The double-stranded RNA protein kinase PKR is a proapoptotic and stress kinase that accumulates in degenerating neurons in Alzheimer disease. To determine whether neuronal apoptosis in human CJD is associated with activation of the PKR(p) signaling pathway, we assessed in situ end labeling and immunocytochemistry for PrP, glial fibrillary acidic protein, CD68, activated caspase 3, and phosphorylated PKR (Thr451) in samples of frontal, occipital, and temporal cortex, striatum, and cerebellum from 6 patients with sporadic CJD and 5 controls. Neuronal immunostaining for activated PKR was found in all CJD cases. The most staining was in nuclei and, in contrast to findings in Alzheimer disease, cytoplasmic labeling was not detected. Both the number and distribution of PKR(p)-positive neurons correlated closely with the extent of neuronal apoptosis, spongiosis, astrocytosis, and microglial activation and with the phenotype and disease severity. There was no correlation with the type, topography, or amount of extracellular PrP deposits. These findings suggest that neuronal apoptosis in human CJD may result from PKR(p)-mediated cell stress and are consistent with recent studies supporting a pathogenic role for intracellular or transmembrane PrP.

  12. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. (United States)

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael


    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  13. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S


    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  14. Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Eduardo Alves Gamosa de Oliveira

    Full Text Available In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana. Several structural features (i.e. catalytic site, DFG motif and threonine triad are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125 we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes.

  15. Isolation and characterization of a Paramecium cDNA clone encoding a putative serine/threonine protein kinase. (United States)

    Wada, Satoru; Watanabe, Tsuyoshi


    Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan--Paramecium caudatum--using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.

  16. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation. (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S


    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  17. Systematic screening of protein modifications in four kinases using affinity enrichment and mass spectrometry analysis with unrestrictive sequence alignment. (United States)

    Zhang, Kai; Zhu, Yixin; He, Xiwen; Zhang, Yukui


    Protein kinases transfer phosphate groups from ATP to substrate proteins, they are known to be involved in diverse cellular processes. They are also important therapeutic targets in pharmaceutical design. Previous studies indicated that multiple post-translational modifications (PTMs) exist in kinases in addition to phosphorylation, and these PTMs play an important role in regulating kinases activities. Nevertheless, a comprehensive analysis for PTMs of kinases is insufficient due to technical limitations, which prevent us from better understanding their functional regulation. Here, we have developed a novel strategy that combines glutathione S-transferase tag affinity enrichment with nano-liquid chromatography coupled with tandem mass spectrometry analysis and non-restrictive protein sequence alignment for identification of diverse PTMs in four yeast kinases. The method allows us to enrich and analyze the entire protein isomers and to minimize the loss of all isomers of protein sample during protein purification. In our study, nineteen phosphorylation sites and several other types of PTMs sites were localized in 4 protein kinases. In addition, we found that some interesting mass shifts can not match those of the known PTMs. It suggested the existence of some undescribed PTMs in the proteins. Accordingly, this study showed that the novel strategy holds a great potential for identification of full-spectrum PTMs in proteins. Our data serves as a stepping stone for future functional studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Phosphorylation of yeast phosphatidylserine synthase in vivo and in vitro by cyclic AMP-dependent protein kinase.


    Kinney, A J; Carman, G M


    Evidence is presented that demonstrates that phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC from Saccharomyces cerevisiae is phosphorylated in vivo and in vitro by cAMP-dependent protein kinase. Phosphatidylserine synthase activity in cell extracts was reduced in the bcy1 mutant (which has high cAMP-dependent protein kinase activity) and elevated in the cyr1 mutant (which has low cAMP-dependent protein kinase activity) when compared with wild-ty...

  19. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann


    by phosphorylation of JNK and H2AX). In the case of resorufin no interference with the stress-signaling pathway is observed, supporting the notion that TBB and DMAT interfere with upstream molecules involved in genotoxic stress signaling. We have also tested the protein kinase CK2 inhibitors with respect to cell......Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibitors...

  20. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition. (United States)

    Ogi, Hiroo; Goto, Greicy H; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori


    Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins. © 2015 Ogi, Goto, Ghosh, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  1. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation. (United States)

    Dooley, Kevin; Bulutoglu, Beyza; Banta, Scott


    We have rationally engineered a stimulus-responsive cross-linking domain based on a repeats-in-toxin (RTX) peptide to enable calcium-dependent formation of supramolecular hydrogel networks. The peptide isolated from the RTX domain is intrinsically disordered in the absence of calcium. In calcium rich environments, the peptide binds Ca(2+) ions and folds into a beta roll (β-roll) secondary structure composed to two parallel β-sheet faces. Previously, we mutated one of the faces to contain solvent exposed leucine side chains which are localized only in the calcium-bound β-roll conformation. We demonstrated the ability of this mutant peptide to self-assemble into hydrogels in the presence of calcium with the aid of additional peptide-based cross-linking moieties. Here, we have expanded this approach by engineering both β-roll faces to contain leucine residues, thereby doubling the cross-linking interface for each monomeric building block. These leucine rich surfaces impart a hydrophobic driving force for self-assembly. Extensive characterization was performed on this double-faced mutant to ensure the retention of calcium affinity and subsequent structural rearrangement similar to that of the wild type domain. We genetically fused an α-helical leucine zipper capable of forming tetrameric coiled-coil bundles to the peptide and the resulting chimeric protein self-assembles into a hydrogel only in calcium rich environments. Since this new mutant peptide enables cross-linking on both surfaces simultaneously, a higher oligomerization state was achieved. To further investigate the cross-linking capability, we constructed concatemers of the β-roll with maltose binding protein (MBP), a monomeric globular protein, without the leucine zipper domains. These concatemers show a similar sol-gel transition in response to calcium. Several biophysical techniques were used to probe the structural and mechanical properties of the mutant β-roll domain and the resulting

  2. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang


    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  3. Mitogen-activated protein kinase cascades in signaling plant growth and development. (United States)

    Xu, Juan; Zhang, Shuqun


    Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

    Directory of Open Access Journals (Sweden)

    Takashi W. Ijiri


    Full Text Available In sexual reproduction, two gamete cells (i.e., egg and sperm fuse (fertilization to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization.

  5. Protein kinase M ζ and the maintenance of long-term memory. (United States)

    Zhang, Yang; Zong, Wei; Zhang, Lei; Ma, Yuanye; Wang, Jianhong


    Although various molecules have been found to mediate the processes of memory acquisition and consolidation, the molecular mechanism to maintain memory still remains elusive. In recent years, a molecular pathway focusing on protein kinase Mζ (PKMζ) has become of interest to researchers because of its potential role in long-term memory maintenance. PKMζ is an isoform of protein kinase C (PKC) and has a related structure that influences its function in maintaining memory. Considerable evidence has been gathered on PKMζ activity, including loss of function studies using PKMζ inhibitors, such as PKMζ inhibitory peptide (ZIP), suggesting PKMζ plays an important role in long-term memory maintenance. This review provides an overview of the role of PKMζ in long-term memory and outlines the molecular structure of PKMζ, the molecular mechanism of PKMζ in long-term memory maintenance and future directions of PKMζ research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. (United States)

    Nomura, Wataru; Inoue, Yoshiharu


    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Alterations in lens protein tyrosine phosphorylation and phosphatidylinositol 3-kinase signaling during selenite cataract formation. (United States)

    Chandrasekher, Gudiseva; Sailaja, Dasetty


    Protein tyrosine phosphorylation is an important event in the cell signal transduction process. Phosphatidylinositol-3 kinase (PI-3K) is an intracellular signal mediator and plays a key role in many cellular functions. In this study we have examined the changes in lens protein tyrosine phosphorylation and its impact on phosphatidylinositol 3-kinase (PI-3K) signaling during selenite cataract development. Cataract was induced in 10 days old rat pups by a single sub-cutaneous injection of sodium selenite (30 microM/Kg body weight) and lenses were collected at different stages of cataract development. Immunoprecipitation and Western immunoblotting were employed to determine protein tyrosine phosphorylation, PI-3K activity and protein in lens cell extracts. Tyrosine kinase activity in lens membrane preparations was assayed in the presence of a synthetic substrate peptide and [32P]ATP. Protein tyrosine phosphorylation in the lens was disrupted before the onset of cataract. A decrease in tyrosine phosphorylation of lens proteins was observed within 2-3 days of selenite injection (pre-cataract stage). The effect was much more prominent with the progression of cataract. The decrease in protein tyrosine phosphorylation correlated with the decrease in tyrosine kinase activity associated with the lens membrane fraction. Stimulation of normal rat lenses in organ culture with insulin and IGF-1 caused an increase in the phosphorylation of proteins, whose tyrosine phosphorylation status appeared to be diminished during cataract development. Insulin and IGF-1 also stimulated rat lens PI-3K activity. While there was no change in total PI-3K activity during the onset of cataract, the activity of PI-3K associated with tyrosine phosphorylated proteins decreased markedly in pre-cataract lenses. Further, the ability of IGF-1 to stimulate PI-3K activity was significantly reduced in lens epithelial cells treated with selenium. These studies show that signaling events involving the protein

  8. Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases.

    Directory of Open Access Journals (Sweden)

    Chad V Kuny


    Full Text Available The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5, is a kinase that phosphorylates the cellular retinoblastoma (Rb tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks. A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs and disruption of cytoplasmic or nuclear aggresomes showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs

  9. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells* (United States)

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren


    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  10. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. (United States)

    Chacko, Anu; Staines, Donald R; Johnston, Samantha C; Marshall-Gradisnik, Sonya M


    The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

  11. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feifei; Jiang, Yinan [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China); Zheng, Qiping [Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612 (United States); Yang, Xiaoming [Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850 (China); Wang, Siying, E-mail: [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China)


    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  12. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. (United States)

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A


    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  13. Resveratrol reduces prostaglandin E1-stimulated osteoprotegerin synthesis in osteoblasts: suppression of stress-activated protein kinase/c-Jun N-terminal kinase. (United States)

    Yamamoto, Naohiro; Otsuka, Takanobu; Kuroyanagi, Gen; Kondo, Akira; Kainuma, Shingo; Nakakami, Akira; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko


    Resveratrol, a natural polyphenol mainly existing in red grapes and berries, possesses beneficial effects on human being. We have previously reported that prostaglandin E1 (PGE1) stimulates vascular endothelial growth factor synthesis via activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) but not p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the PGE1-effect on osteoprotegerin (OPG) synthesis and the effect of resveratrol on the synthesis in MC3T3-E1 cells. PGE1 induced the expression levels of OPG mRNA and stimulated the OPG release. Resveratrol significantly reduced the PGE1-induced OPG release and the mRNA expression. SRT1720, an activator of SIRT1, suppressed the release of OPG. The protein levels of SIRT1 were not up-regulated by resveratrol with or without PGE1. Both SB203580 and SP600125, a specific p38 MAP kinase inhibitor and a specific SAPK/JNK inhibitor, respectively, but not PD98059, a specific MEK inhibitor, reduced the PGE1-stimulated OPG release. Resveratrol or SRT1720 failed to affect the phosphorylation of p38 MAP kinase. On the contrary, PGE1-induced phosphorylation of SAPK/JNK was significantly attenuated by both resveratrol and SRT1720. Our results strongly suggest that resveratrol inhibits PGE1-stimulated OPG synthesis via suppressing SAPK/JNK but not p38 MAP kinase in osteoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I


    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...

  15. Protein kinase Cδ expression in breast cancer as measured by real-time PCR, western blotting and ELISA

    NARCIS (Netherlands)

    E. McKiernan; K. O'Brien; N. Grebenchtchikov (Nicolai); A. Geurts-Moespot (Anneke); A.M. Sieuwerts (Anieta); J.W.M. Martens (John); V. Magdolen; D. Evoy; E. McDermott; J. Crown; F.C. Sweep (Fred); M.J. Duffy (Michael)


    textabstractThe protein kinase C (PKC) family of genes encode serine/threonine kinases that regulate proliferation, apoptosis, cell survival and migration. Multiple isoforms of PKC have been described, one of which is PKCδ. Currently, it is unclear whether PKCδ is involved in promoting or inhibiting

  16. Protein kinase Cdelta expression in breast cancer as measured by real-time PCR, western blotting and ELISA.

    NARCIS (Netherlands)

    McKiernan, E.; O'Brien, K.; Grebenchtchikov, N.; Geurts-Moespot, A.; Sieuwerts, A.M.; Martens, J.W.; Magdolen, V.; Evoy, D.; McDermott, E.; Crown, J.; Sweep, F.C.; Duffy, M.J.


    The protein kinase C (PKC) family of genes encode serine/threonine kinases that regulate proliferation, apoptosis, cell survival and migration. Multiple isoforms of PKC have been described, one of which is PKCdelta. Currently, it is unclear whether PKCdelta is involved in promoting or inhibiting

  17. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis

    NARCIS (Netherlands)

    Anthony, R.G.; Henriques, R.; Helfer, A.; Mészáros, T.; Rios, G.; Testerink, C.; Munnik, T.; Deák, M.; Koncz, C.; Bögre, L.


    Here we report on a lipid-signalling pathway in plants that is downstream of phosphatidic acid and involves the Arabidopsis protein kinase, AGC2-1, regulated by the 3'-phosphoinositide-dependent kinase-1 (AtPDK1). AGC2-1 specifically interacts with AtPDK1 through a conserved C-terminal hydrophobic

  18. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands

    DEFF Research Database (Denmark)

    Klopffleisch, Karsten; Niefind, Karsten; Issinger, Olaf-Georg


    A low-resolution structure of the catalytic subunit CK2α of human protein kinase CK2 (formerly known as casein kinase 2) in complex with the ATP-competitive inhibitor resorufin is presented. The structure supplements previous human CK2α structures in which the interdomain hinge/helix αD region...

  19. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Pinna, L A


    CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an ...

  20. Diverse Cytopathologies in Mitochondrial Disease Are Caused by AMP-activated Protein Kinase Signaling


    Paul B. Bokko; Francione, Lisa; Bandala-Sanchez, Esther; Ahmed, Afsar U.; Sarah J. Annesley; Huang, Xiuli; Khurana, Taruna; Kimmel, Alan R.; Fisher, Paul R.


    The complex cytopathology of mitochondrial diseases is usually attributed to insufficient ATP. AMP-activated protein kinase (AMPK) is a highly sensitive cellular energy sensor that is stimulated by ATP-depleting stresses. By antisense-inhibiting chaperonin 60 expression, we produced mitochondrially diseased strains with gene dose-dependent defects in phototaxis, growth, and multicellular morphogenesis. Mitochondrial disease was phenocopied in a gene dose-dependent manner by overexpressing a c...

  1. Ca2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. (United States)

    Saddouk, F Z; Ginnan, R; Singer, H A


    Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies. © 2017 Elsevier Inc. All rights reserved.

  2. Biochemical and Cellular Specificity of Peptide Inhibitors of G Protein-Coupled Receptor Kinases


    Baameur, Faiza; Hammitt, Richard A.; Friedman, Jacqueline; McMurray, John S.; Clark, Richard B


    Identifying novel allosteric inhibitors of G protein-coupled receptor kinases (GRKs) would be of considerable use in limiting both the extent of desensitization of GPCRs as well as downstream positive regulation through GRKs. Several peptides have previously been identified as inhibitors of specific GRKs, but to date there have been few comparisons of the selectivities of these materials on the seven GRKs, modifications to allow cell penetration, or off-target activities. The goal of this stu...

  3. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study. (United States)

    Panigrahi, Sunil K


    Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.

  4. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly


    Buvelot, Stéphanie; Tatsutani, Sean Y.; Vermaak, Danielle; Biggins, Sue


    Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1–GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone ...

  5. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Klopffleisch, Karsten; Issinger, Olaf-Georg


    The Ser/Thr kinase CK2 (former name: casein kinase 2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha) attached to a dimer of noncatalytic subunits. Together with the cyclin-dependent kinases and the mitogen-activated protein kinases, CK2alpha belongs to the CMGC family of...

  6. Physcomitrella patens has kinase-LRR R gene homologs and interacting proteins.

    Directory of Open Access Journals (Sweden)

    Yusuke Tanigaki

    Full Text Available Plant disease resistance gene (R gene-like sequences were screened from the Physcomitrella patens genome. We found 603 kinase-like, 475 Nucleotide Binding Site (NBS-like and 8594 Leucine Rich Repeat (LRR-like sequences by homology searching using the respective domains of PpC24 (Accession No. BAD38895, which is a candidate kinase-NBS-LRR (kinase-NL type R-like gene, as a reference. The positions of these domains in the genome were compared and 17 kinase-NLs were predicted. We also found four TIR-NBS-LRR (TIR-NL sequences with homology to Arabidopsis TIR-NL (NM_001125847, but three out of the four TIR-NLs had tetratricopeptide repeats or a zinc finger domain in their predicted C-terminus. We also searched for kinase-LRR (KLR type sequences by homology with rice OsXa21 and Arabidopsis thaliana FLS2. As a result, 16 KLRs with similarity to OsXa21 were found. In phylogenetic analysis of these 16 KLRs, PpKLR36, PpKLR39, PpKLR40, and PpKLR43 formed a cluster with OsXa21. These four PpKLRs had deduced transmembrane domain sequences and expression of all four was confirmed. We also found 14 homologs of rice OsXB3, which is known to interact with OsXa21 and is involved in signal transduction. Protein-protein interaction was observed between the four PpKLRs and at least two of the XB3 homologs in Y2H analysis.

  7. A targeted library screen reveals a new inhibitor scaffold for protein kinase D.

    Directory of Open Access Journals (Sweden)

    Manuj Tandon

    Full Text Available Protein kinase D (PKD has emerged as a potential therapeutic target in multiple pathological conditions, including cancer and heart diseases. Potent and selective small molecule inhibitors of PKD are valuable for dissecting PKD-mediated cellular signaling pathways and for therapeutic application. In this study, we evaluated a targeted library of 235 small organic kinase inhibitors for PKD1 inhibitory activity at a single concentration. Twenty-eight PKD inhibitory chemotypes were identified and six exhibited excellent PKD1 selectivity. Five of the six lead structures share a common scaffold, with compound 139 being the most potent and selective for PKD vs PKC and CAMK. Compound 139 was an ATP-competitive PKD1 inhibitor with a low double-digit nanomolar potency and was also cell-active. Kinase profiling analysis identified this class of small molecules as pan-PKD inhibitors, confirmed their selectivity again PKC and CAMK, and demonstrated an overall favorable selectivity profile that could be further enhanced through structural modification. Furthermore, using a PKD homology model based on similar protein kinase structures, docking modes for compound 139 were explored and compared to literature examples of PKD inhibition. Modeling of these compounds at the ATP-binding site of PKD was used to rationalize its high potency and provide the foundation for future further optimization. Accordingly, using biochemical screening of a small number of privileged scaffolds and computational modeling, we have identified a new core structure for highly potent PKD inhibition with promising selectivity against closely related kinases. These lead structures represent an excellent starting point for the further optimization and the design of selective and therapeutically effective small molecule inhibitors of PKD.

  8. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination. (United States)

    Rabinow, Leonard; Samson, Marie-Laure


    DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa alleles induce somatic female-to-male sex transformations, which can be enhanced when combined with mutations in loci encoding SR and SR-like proteins. The Doa locus encodes six different kinases, of which a 69-kDa isoform is expressed solely in females. Expression of this isoform is itself under the regulation of the somatic sex determination regulatory network, thus forming a putative positive autoregulatory loop which would reinforce the choice of the female cell-fate. We speculate that this loop is part of the evolutionary ancestral sex-determination machinery, based upon evidence demonstrating the existence of an autoregulatory loop involving TRA and TRA2 in several other insect species.

  9. Involvement of Mitogen-Activated Protein Kinase Pathways in Staphylococcus aureus Invasion of Normal Osteoblasts (United States)

    Ellington, John K.; Elhofy, Adam; Bost, Kenneth L.; Hudson, Michael C.


    Staphylococcus aureus invades osteoblasts and can persist in the intracellular environment. The present study examined the role of osteoblast mitogen-activated protein kinase (MAPK) pathways in bacterial invasion. S. aureus infection of normal human and mouse osteoblasts resulted in an increase in the phosphorylation of the extracellular signal-regulated protein kinases (ERK 1 and 2). This stimulation of ERK 1 and 2 correlated with the time course of S. aureus invasion, and bacterial adherence induced the MAPK pathway. ERK 1 and 2 phosphorylation was time and dose dependent and required active S. aureus gene expression for maximal induction. The nonpathogenic Staphylococcus carnosus was also able to induce ERK 1 and 2 phosphorylation, albeit at lower levels than S. aureus. Phosphorylation of the stress-activated protein kinases was increased in both infected human and mouse osteoblasts; however, the p38 MAPK pathway was not activated in response to S. aureus. Finally, the transcription factor c-Jun, but not Elk-1 or ATF-2, was phosphorylated in response to S. aureus infection. PMID:11500391

  10. Protein Kinase C Regulates Late Cell Cycle-Dependent Gene Expression (United States)

    Darieva, Zoulfia; Han, Namshik; Warwood, Stacey; Doris, Kathryn S.; Morgan, Brian A.


    The control of the cell cycle in eukaryotes is exerted in part by the coordinated action of a series of transcription factor complexes. This is exemplified by the Mcm1p-Fkh2p-Ndd1p complex in Saccharomyces cerevisiae, which controls the cyclical expression of the CLB2 cluster of genes at the G2/M phase transition. The activity of this complex is positively controlled by cyclin-dependent kinase (CDK) and polo kinases. Here, we demonstrate that the protein kinase Pkc1p works in the opposite manner to inhibit the activity of the Mcm1p-Fkh2p-Ndd1p complex and the expression of its target genes. In particular, Pkc1p causes phosphorylation of the coactivator protein Ndd1p. Reductions in Pkc1p activity and the presence of Pkc1p-insensitive Ndd1p mutant proteins lead to changes in the timing of CLB2 cluster expression and result in associated late cell cycle defects. This study therefore identifies an important role for Pkc1p in controlling the correct temporal expression of genes in the cell cycle. PMID:22966207

  11. Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast. (United States)

    Thai, Vu; Dephoure, Noah; Weiss, Amit; Ferguson, Jacqueline; Leitao, Ricardo; Gygi, Steven P; Kellogg, Douglas R


    Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2ACdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2ACdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2ACdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2ACdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2ACdc55 by multiple overlapping mechanisms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Inhibition of Vascular Smooth Muscle Growth via Signaling Crosstalk between AMP-Activated Protein Kinase and cAMP-Dependent Protein Kinase

    Directory of Open Access Journals (Sweden)

    Joshua Daniel Stone


    Full Text Available Abnormal vascular smooth muscle (VSM growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK and cAMP-dependent protein kinase (PKA. Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remains unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells, the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSM cell migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashions. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

  13. Mitogen-activated protein kinase-activated protein kinase 2 deficiency reduces insulin sensitivity in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jan Freark de Boer

    Full Text Available Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2 is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2-/- mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD-induced adipose tissue inflammation and insulin resistance. After feeding MK2-/- and WT control mice a HFD (60% energy from fat for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2-/- mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2-/- mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2-/- mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4 in adipose tissue of MK2-/- mice was reduced by 55% (p<0.05 and 33% (p<0.05 on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2-/- display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.

  14. Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit.


    Pu, R T; Osmani, S A


    NIMA is a cell cycle regulated protein kinase required, in addition to p34cdc2/cyclin B, for initiation of mitosis in Aspergillus nidulans. Like cyclin B, NIMA accumulates when cells are arrested in G2 and is degraded as cells traverse mitosis. However, it is stable in cells arrested in mitosis. NIMA, and related kinases, have an N-terminal kinase domain and a C-terminal extension. Deletion of the C-terminus does not completely inactivate NIMA kinase activity but does prevent functional compl...

  15. Activation of AMP-activated Protein Kinase by Metformin Induces Protein Acetylation in Prostate and Ovarian Cancer Cells. (United States)

    Galdieri, Luciano; Gatla, Himavanth; Vancurova, Ivana; Vancura, Ales


    AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC), which catalyzes carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting reaction in de novo synthesis of fatty acids. AMPK thus regulates homeostasis of acetyl-CoA, a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Nucleocytosolic concentration of acetyl-CoA affects histone acetylation and links metabolism and chromatin structure. Here we show that activation of AMPK with the widely used antidiabetic drug metformin or with the AMP mimetic 5-aminoimidazole-4-carboxamide ribonucleotide increases the inhibitory phosphorylation of ACC and decreases the conversion of acetyl-CoA to malonyl-CoA, leading to increased protein acetylation and altered gene expression in prostate and ovarian cancer cells. Direct inhibition of ACC with allosteric inhibitor 5-(tetradecyloxy)-2-furoic acid also increases acetylation of histones and non-histone proteins. Because AMPK activation requires liver kinase B1, metformin does not induce protein acetylation in liver kinase B1-deficient cells. Together, our data indicate that AMPK regulates the availability of nucleocytosolic acetyl-CoA for protein acetylation and that AMPK activators, such as metformin, have the capacity to increase protein acetylation and alter patterns of gene expression, further expanding the plethora of metformin's physiological effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Activation of AMP-activated Protein Kinase by Metformin Induces Protein Acetylation in Prostate and Ovarian Cancer Cells* (United States)

    Galdieri, Luciano; Gatla, Himavanth; Vancurova, Ivana; Vancura, Ales


    AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC), which catalyzes carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting reaction in de novo synthesis of fatty acids. AMPK thus regulates homeostasis of acetyl-CoA, a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Nucleocytosolic concentration of acetyl-CoA affects histone acetylation and links metabolism and chromatin structure. Here we show that activation of AMPK with the widely used antidiabetic drug metformin or with the AMP mimetic 5-aminoimidazole-4-carboxamide ribonucleotide increases the inhibitory phosphorylation of ACC and decreases the conversion of acetyl-CoA to malonyl-CoA, leading to increased protein acetylation and altered gene expression in prostate and ovarian cancer cells. Direct inhibition of ACC with allosteric inhibitor 5-(tetradecyloxy)-2-furoic acid also increases acetylation of histones and non-histone proteins. Because AMPK activation requires liver kinase B1, metformin does not induce protein acetylation in liver kinase B1-deficient cells. Together, our data indicate that AMPK regulates the availability of nucleocytosolic acetyl-CoA for protein acetylation and that AMPK activators, such as metformin, have the capacity to increase protein acetylation and alter patterns of gene expression, further expanding the plethora of metformin's physiological effects. PMID:27733682

  17. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer. (United States)

    Hiratsuka, T; Sano, T; Kato, H; Komatsu, N; Imajo, M; Kamioka, Y; Sumiyama, K; Banno, F; Miyata, T; Matsuda, M


    Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders. © 2017 International

  18. Molecular evolution of a-kinase anchoring protein (AKAP-7: implications in comparative PKA compartmentalization

    Directory of Open Access Journals (Sweden)

    Johnson Keven R


    Full Text Available Abstract Background A-Kinase Anchoring Proteins (AKAPs are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA, directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18 are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport. Results Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels that promote the production of AKAP7γ instead of AKAP7δ. Conclusions This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.

  19. Identification and Characterization of Amlexanox as a G Protein-Coupled Receptor Kinase 5 Inhibitor

    Directory of Open Access Journals (Sweden)

    Kristoff T. Homan


    Full Text Available G protein-coupled receptor kinases (GRKs have been implicated in human diseases ranging from heart failure to diabetes. Previous studies have identified several compounds that selectively inhibit GRK2, such as paroxetine and balanol. Far fewer selective inhibitors have been reported for GRK5, a target for the treatment of cardiac hypertrophy, and the mechanism of action of reported compounds is unknown. To identify novel scaffolds that selectively inhibit GRK5, a differential scanning fluorometry screen was used to probe a library of 4480 compounds. The best hit was amlexanox, an FDA-approved anti-inflammatory, anti-allergic immunomodulator. The crystal structure of amlexanox in complex with GRK1 demonstrates that its tricyclic aromatic ring system forms ATP-like interactions with the hinge of the kinase domain, which is likely similar to how this drug binds to IκB kinase ε (IKKε, another kinase known to be inhibited by this compound. Amlexanox was also able to inhibit myocyte enhancer factor 2 transcriptional activity in neonatal rat ventricular myocytes in a manner consistent with GRK5 inhibition. The GRK1 amlexanox structure thus serves as a springboard for the rational design of inhibitors with improved potency and selectivity for GRK5 and IKKε.

  20. Structural insights into the architecture and allostery of full-length AMP-activated protein kinase. (United States)

    Zhu, Li; Chen, Lei; Zhou, Xiao-Ming; Zhang, Yuan-Yuan; Zhang, Yi-Jiong; Zhao, Jing; Ji, Shang-Rong; Wu, Jia-Wei; Wu, Yi


    AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of α catalytic subunit, β scaffolding subunit, and γ regulatory subunit with critical roles in maintaining cellular energy homeostasis. However, the molecular architecture of the intact complex and the allostery associated with the adenosine binding-induced regulation of kinase activity remain unclear. Here, we determine the three-dimensional reconstruction and subunit organization of the full-length rat AMPK (α1β1γ1) through single-particle electron-microscopy. By comparing the structures of AMPK in ATP- and AMP-bound states, we are able to visualize the sequential conformational changes underlying kinase activation that transmits from the adenosine binding sites in the γ subunit to the kinase domain of the α subunit. These results not only make substantial revision to the current model of AMPK assembly, but also highlight a central role of the linker sequence of the α subunit in mediating the allostery of AMPK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Overexpression of atypical protein kinase C in HeLa cells facilitates macropinocytosis via Src activation. (United States)

    Tisdale, Ellen J; Shisheva, Assia; Artalejo, Cristina R


    Atypical protein kinase C (aPKC) is the first recognized kinase oncogene. However, the specific contribution of aPKC to cancer progression is unclear. The pseudosubstrate domain of aPKC is different from the other PKC family members, and therefore a synthetic peptide corresponding to the aPKC pseudosubstrate (aPKC-PS) sequence, which specifically blocks aPKC kinase activity, is a valuable tool to assess the role of aPKC in various cellular processes. Here, we learned that HeLa cells incubated with membrane permeable aPKC-PS peptide displayed dilated heterogeneous vesicles labeled with peptide that were subsequently identified as macropinosomes. A quantitative membrane binding assay revealed that aPKC-PS peptide stimulated aPKC recruitment to membranes and activated Src. Similarly, aPKC overexpression in transfected HeLa cells activated Src and induced macropinosome formation. Src-aPKC interaction was essential; substitution of the proline residues in aPKC that associate with the Src-SH3 binding domain rendered the mutant kinase unable to induce macropinocytosis in transfected cells. We propose that aPKC overexpression is a contributing factor to cell transformation by interacting with and consequently promoting Src activation and constitutive macropinocytosis, which increases uptake of extracellular factors, required for altered cell growth and accelerated cell migration. Copyright © 2014. Published by Elsevier Inc.

  2. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  3. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins. (United States)

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R


    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  4. Role of nonreceptor protein tyrosine kinases during phospholipase C-gamma 1-related uterine contractions in the rat. (United States)

    Phillippe, Mark; Sweet, Leigh M; Bradley, Diana F; Engle, Daniel


    Activated phospholipase C1, produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases are involved in the activation of phospholipase C1 in rat uterine tissue. In vitro contraction studies were performed utilizing isoform specific protein tyrosine kinase inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-phospholipase C1, total phospholipase C1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (Lck kinase inhibitor) and PP1 (c-Src kinase inhibitor). Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of phospholipase C1. Western blots confirmed expression of Lck kinase and c-Src kinase in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of phospholipase C1 and contractile activity in the rat uterus.

  5. Role of Protein Kinase C (PKC in Podocytes and Development of Glomerular Damage in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Beina eTeng


    Full Text Available The early glomerular changes in diabetes include a podocyte phenotype with loss of slit diaphragm proteins, changes in the actin cytoskeleton and foot process architecture. This review focusses on the role of the Protein Kinase C family in podocytes and points out the differential roles of classical, novel and atypical PKCs in podocytes. Some PKC-isoforms are indispensable for proper glomerular development and slit diaphragm maintenance whereas others might be harmful when activated in the diabetic milieu. Therefore some might be interesting treatment targets in the early phase of diabetes.

  6. Protein kinase C-dependent dephosphorylation of tyrosine hydroxylase requires the B56δ heterotrimeric form of protein phosphatase 2A.

    Directory of Open Access Journals (Sweden)

    Jung-Hyuck Ahn

    Full Text Available Tyrosine hydroxylase, which plays a critical role in regulation of dopamine synthesis, is known to be controlled by phosphorylation at several critical sites. One of these sites, Ser40, is phosphorylated by a number of protein kinases, including protein kinase A. The major protein phosphatase that dephosphorylates Ser40 is protein phosphatase-2A (PP2A. A recent study has also linked protein kinase C to the dephosphorylation of Ser40 [1], but the mechanism is unclear. PP2A isoforms are comprised of catalytic, scaffold, and regulatory subunits, the regulatory B subunits being able to influence cellular localization and substrate selection. In the current study, we find that protein kinase C is able to phosphorylate a key regulatory site in the B56δ subunit leading to activation of PP2A. In turn, activation of the B56δ-containing heterotrimeric form of PP2A is responsible for enhanced dephosphorylation of Ser40 of tyrosine hydroylase in response to stimulation of PKC. In support of this mechanism, down-regulation of B56δ expression in N27 cells using RNAi was found to increase dopamine synthesis. Together these studies reveal molecular details of how protein kinase C is linked to reduced tyrosine hydroxylase activity via control of PP2A, and also add to the complexity of protein kinase/protein phosphatase interactions.

  7. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur


    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  8. Staurosporine increases toxicity of gemcitabine in non-small cell lung cancer cells: role of protein kinase C, deoxycytidine kinase and ribonucleotide reductase

    NARCIS (Netherlands)

    Sigmond, Jennifer; Bergman, Andries M.; Leon, Leticia G.; Loves, Willem J. P.; Hoebe, Eveline K.; Peters, Godefridus J.


    Gemcitabine, a deoxycytidine analog, active against non-small cell lung cancer, is phosphorylated by deoxycytidine kinase (dCK) to active nucleotides. Earlier, we found increased sensitivity to gemcitabine in P-glycoprotein (SW-2R160) and multidrug resistance-associated protein (SW-2R120),

  9. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz


    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  10. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria


    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  11. The human biliverdin reductase-based peptide fragments and biliverdin regulate protein kinase Cδ activity: the peptides are inhibitors or substrate for the protein kinase C. (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Tudor, Cicerone; Hagen, Fred K; Maines, Mahin D


    PKCδ, a Ser/Thr kinase, promotes cell growth, tumorigenesis, and apoptosis. Human biliverdin reductase (hBVR), a Ser/Thr/Tyr kinase, inhibits apoptosis by reducing biliverdin-IX to antioxidant bilirubin. The enzymes are activated by similar stimuli. Reportedly, hBVR is a kinase-independent activator of PKCδ and is transactivated by the PKC (Gibbs, P. E., Miralem, T., Lerner-Marmarosh, N., Tudor, C., and Maines, M. D. (2012) J. Biol. Chem. 287, 1066-1079). Presently, we examined interactions between the two proteins in the context of regulation of their activities and defining targets of hBVR phosphorylation by PKCδ. LC-MS/MS analysis of PKCδ-activated intact hBVR identified phosphorylated serine positions 21, 33, 230, and 237, corresponding to the hBVR Src homology-2 domain motif (Ser(230) and Ser(237)), flanking the ATP-binding motif (Ser(21)) and in PHPS sequence (Ser(33)) as targets of PKCδ. Ser(21) and Ser(230) were also phosphorylated in hBVR-based peptides. The Ser(230)-containing peptide was a high affinity substrate for PKCδ in vitro and in cells; the relative affinity was PKCδ > PKCβII > PKCζ. Two overlapping peptides spanning this substrate, KRNRYLSF and SFHFKSGSL, were effective inhibitors of PKCδ kinase activity and PKCδ-supported activation of transcription factors Elk1 and NF-κB. Only SFHFKSGSL, in PKCδ-transfected phorbol 12-myristate 13-acetate-stimulated cells, caused membrane blebbing and cell loss. Biliverdin noncovalently inhibited PKCδ, whereas PKCδ potentiated hBVR reductase activity and accelerated the rate of bilirubin formation. This study, together with previous findings, reveals an unexpected regulatory interplay between PKCδ and hBVR in modulating cell death/survival in response to various activating stimuli. In addition, this study has identified novel substrates for and inhibitors of PKCδ. We suggest that hBVR-based technology may have utility to modulate PKCδ-mediated functions in the cell.

  12. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells. (United States)

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E


    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  13. Intramolecular activation of a Ca(2+)-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase (United States)

    Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)


    Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.

  14. PGD2 stimulates osteoprotegerin synthesis via AMP-activated protein kinase in osteoblasts: Regulation of ERK and SAPK/JNK. (United States)

    Kainuma, Shingo; Tokuda, Haruhiko; Kuroyanagi, Gen; Yamamoto, Naohiro; Ohguchi, Reou; Fujita, Kazuhiko; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu


    AMP-activated protein kinase (AMPK), a key enzyme sensing cellular energy metabolism, is currently known to regulate multiple metabolic pathways. Osteoprotegerin plays a pivotal role in the regulation of bone metabolism by inhibiting osteoclast activation. We have previously reported that prostaglandin D2 (PGD2) stimulates the synthesis of osteoprotegerin through the activation of p38 mitogen-activated protein (MAP) kinase, p44/p42 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. On the basis of these findings, we herein investigated the implication of AMPK in PGD2-stimulated osteoprotegerin synthesis in these cells. PGD2 induced the phosphorylation of AMPKα (Thr-172) and AMPKβ (Ser-108), and the phosphorylation of acetyl-coenzyme A carboxylase, a direct AMPK substrate. Compound C, an AMPK inhibitor, which suppressed the phosphorylation of acetyl-coenzyme A carboxylase, significantly attenuated both the release and the mRNA levels of osteoprotegerin stimulated by PGD2. The PGD2-induced phosphorylation of p44/p42 MAP kinase and SAPK/JNK but not p38 MAP kinase were markedly inhibited by compound C. These results strongly suggest that AMPK regulates the PGD2-stimulated osteoprotegerin synthesis at a point upstream of p44/p42 MAP kinase and SAPK/JNK in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. (United States)

    Roelants, Françoise M; Breslow, David K; Muir, Alexander; Weissman, Jonathan S; Thorner, Jeremy


    The Orm family proteins are conserved integral membrane proteins of the endoplasmic reticulum that are key homeostatic regulators of sphingolipid biosynthesis. Orm proteins bind to and inhibit serine:palmitoyl-coenzyme A transferase, the first enzyme in sphingolipid biosynthesis. In Saccharomyces cerevisiae, Orm1 and Orm2 are inactivated by phosphorylation in response to compromised sphingolipid synthesis (e.g., upon addition of inhibitor myriocin), thereby restoring sphingolipid production. We show here that protein kinase Ypk1, one of an essential pair of protein kinases, is responsible for this regulatory modification. Myriocin-induced hyperphosphorylation of Orm1 and Orm2 does not occur in ypk1 cells, and immunopurified Ypk1 phosphorylates Orm1 and Orm2 robustly in vitro exclusively on three residues that are known myriocin-induced sites. Furthermore, the temperature-sensitive growth of ypk1(ts) ypk2 cells is substantially ameliorated by deletion of ORM genes, confirming that a primary physiological role of Ypk1-mediated phosphorylation is to negatively regulate Orm function. Ypk1 immunoprecipitated from myriocin-treated cells displays a higher specific activity for Orm phosphorylation than Ypk1 from untreated cells. To identify the mechanism underlying Ypk1 activation, we systematically tested several candidate factors and found that the target of rapamycin complex 2 (TORC2) kinase plays a key role. In agreement with prior evidence that a TORC2-dependent site in Ypk1(T662) is necessary for cells to exhibit a wild-type level of myriocin resistance, a Ypk1(T662A) mutant displays only weak Orm phosphorylation in vivo and only weak activation in vitro in response to sphingolipid depletion. Additionally, sphingolipid depletion increases phosphorylation of Ypk1 at T662. Thus, Ypk1 is both a sensor and effector of sphingolipid level, and reduction in sphingolipids stimulates Ypk1, at least in part, via TORC2-dependent phosphorylation.

  16. Involvement of Ca(2+)/calmodulin-dependent protein kinases in mycelial growth of the basidiomycetous mushroom, Coprinus cinereus. (United States)

    Kameshita, Isamu; Yamada, Yusuke; Nishida, Tetsuyuki; Sugiyama, Yasunori; Sueyoshi, Noriyuki; Watanabe, Akira; Asada, Yasuhiko


    Although multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) are widely distributed in animal cells, the occurrence of CaM-kinases in the basidiomycetous mushroom has not previously been documented. When the extracts from various developmental stages from mycelia to the mature fruiting body of Coprinus cinereus were analyzed by Western blotting using Multi-PK antibodies, which had been generated to detect a wide variety of protein serine/threonine kinases (Ser/Thr kinases), a variety of stage-specific Ser/Thr kinases was detected. Calmodulin (CaM) overlay assay using digoxigenin-labeled CaM detected protein bands of 65 kDa, 58 kDa, 46 kDa, 42 kDa, and 38 kDa only in the presence of CaCl(2), suggesting that these bands were CaM-binding proteins. When the CaM-binding fraction was prepared from mycelial extract of C. cinereus by CaM-Sepharose and analyzed with Multi-PK antibodies, two major immunoreactive bands corresponding to 65 kDa and 46 kDa were detected. CaM-binding fraction, thus obtained, exhibited Ca(2+)/CaM-dependent protein kinase activity toward protein substrates such as histones. These CaM-kinases were found to be highly expressed in the actively growing mycelia, but not in the resting mycelial cells. Mycelial growth was enhanced by the addition of CaCl(2) in the culture media, but inhibited by the addition of EGTA or trifluoperazine, a potent CaM inhibitor. This suggested that CaM-dependent enzymes including CaM-kinases play crucial roles in mycelial growth of basidiomycete C. cinereus.

  17. Protein Expression and Purification of the Hsp90-Cdc37-Cdk4 Kinase Complex from Saccharomyces cerevisiae. (United States)

    Verba, Kliment A; Agard, David A


    Interactions between Hsp90, its co-chaperone Cdc37 and kinases have been biochemically studied for over three decades and have been shown to be functionally important in organisms from yeast to humans. However, formation of a stable complex for structural studies has been elusive. In this protocol we describe expression and purification of Hsp90-Cdc37-Cdk4 kinase protein complex from Saccharomyces cerevisiae utilizing the viral 2A sequences to titrate the three proteins at similar levels.

  18. Molecular assembly of rhodopsin with G protein-coupled receptor kinases (United States)

    He, Yuanzheng; Gao, Xiang; Goswami, Devrishi; Hou, Li; Pal, Kuntal; Yin, Yanting; Zhao, Gongpu; Ernst, Oliver P; Griffin, Patrick; Melcher, Karsten; Xu, H Eric


    G protein-coupled receptor kinases (GRKs) play pivotal roles in desensitizing GPCR signaling but little is known about how GRKs recognize and phosphorylate GPCRs due to the technical difficulties in detecting the highly dynamic GPCR/GRK interaction. By combining a genetic approach with multiple biochemical assays, we identified the key determinants for the assembly of the prototypical GPCR rhodopsin with its kinase GRK1. Our work reveals that the regulatory G-protein signaling homology (RH) domain of GRKs is the primary binding site to GPCRs and an active conformation of the GRK1 kinase domain is required for efficient interaction with rhodopsin. In addition, we provide a mechanistic solution for the longstanding puzzle about the gain-of-function Q41L mutation in GRK5. This mutation is in the RH domain and increases the capacity of the GRK mutant to interact with and to desensitize GPCRs. Finally we present the principal architecture of a rhodopsin/GRK complex through negative stain electron microscopy reconstruction. Together, these data define the key components for the rhodopsin/GRK1 interaction and provide a framework for understanding GRK-mediated desensitization of GPCRs. PMID:28524165

  19. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita


    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  20. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.; Rustad, Tige; Ollodart, Anja R.; Wright, Aaron T.; Sherman, David R.; Grundner, Christoph


    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.

  1. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail:


    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  2. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie


    The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin...... as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell......-like-, cysteine-rich, epidermal growth factor-like, and transmembrane domain; and a cytoplasmic tail. The 90-kDa mature form of human ADAM12 is generated in the trans-Golgi through cleavage of the prodomain by a furin-peptidase and is stored intracellularly until translocation to the cell surface...

  3. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.


    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK ( that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...... in vitro and 13 PKA phosphorylation sites were identified by mass spectrometry. NetPhosK was 100% sensitive and 41% specific in predicting PKA sites in the four proteins. These results demonstrate the potential of using integrated computational and experimental methods for detailed investigations...

  4. Mitogen-activated protein kinase phosphatase-1 (MKP-1) in retinal ischemic preconditioning. (United States)

    Dreixler, John C; Bratton, Anthony; Du, Eugenie; Shaikh, Afzhal R; Savoie, Brian; Alexander, Michael; Marcet, Marcus M; Roth, Steven


    We previously described the phenomenon of retinal ischemic pre-conditioning (IPC) and we have shown the role of various signaling proteins in the protective pathways, including the mitogen-activated protein kinase p38. In this study we examined the role in IPC of mitogen-activated protein kinase phosphatase-1 (MKP-1), which inactivates p38. Ischemia was produced by elevation of intraocular pressure above systolic arterial blood pressure in adult Wistar rats. Preconditioning was produced by transient retinal ischemia for 5 min, 24 h prior to ischemia. Small interfering RNA (siRNA) to MKP-1 or a control non-silencing siRNA, was injected into the vitreous 6 h prior to IPC. Recovery was assessed by electroretinography (ERG) and histology. The a-and b-waves, and oscillatory potentials (OPs), measured before and 1 week after ischemia, were then normalized relative to pre-ischemic baseline, and corrected for diurnal variation in the normal non-ischemic eye. The P2, or post-photoreceptor component of the ERG (which reflects function of the rod bipolar cells in the inner retina), was derived using the Hood-Birch model. MKP-1 was localized in specific retinal cells using immunohistochemistry; levels of mitogen-activated protein kinases were measured using Western blotting. Injection of siRNA to MKP-1 significantly attenuated the protective effect of IPC as reflected by decreased recovery of the electroretinogram a and b-waves and the P2 after ischemia. The injection of siRNA to MKP-1 reduced the number of cells in the retinal ganglion cell and outer nuclear layers after IPC and ischemia. Blockade of MKP-1 by siRNA also increased the activation of p38 at 24 h following IPC. MKP-1 siRNA did not alter the levels of phosphorylated jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) after IPC. The results suggest the involvement of dual-specificity phosphatase MKP-1 in IPC and that MKP-1 is involved in IPC by regulating levels of activated MAPK p38

  5. Differential Hypermethylation of Death-Associated Protein Kinase Promoter in Central Neurocytoma and Oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Chia-Li Chung


    Full Text Available Background. Central neurocytoma and oligodendroglioma are rare tumors of the central nervous system. However, diagnosis between these two types of tumors is challenging due to their many cytological and histological similarities. Death-associated protein kinase (DAPK is a calcium/calmodulin-regulated serine/threonine protein kinase involved in many apoptosis pathways, and repressed expression of DAPK by promoter hypermethylation has been found in a variety of human cancers. The purpose of this study was to assess DAPK protein expression and promoter hypermethylation in central neurocytoma and oligodendroglioma. Method. Central neurocytoma and oligodendroglioma samples were obtained from age- and sex-matched patients. DAPK protein expression was performed using immunohistochemical assays in formalin-fixed, paraffin-embedded sections. DAPK promoter hypermethylation was carried out using bisulfite-modified genomic DNA in methylation-specific PCR followed by separation in agarose gels. Findings. A statistically significant difference (P=0.021 in DAPK promoter hypermethylation between central neurocytoma (76.9% and oligodendroglioma (20% was observed. High levels of DAPK protein expression were generally found in oligodendroglioma (90%, compared with 38.5% in central neurocytoma (P=0.054; not statistically significant. There was an inverse correlation between DAPK protein expression and DAPK promoter hypermethylation in the cohort of 23 patients (P=0.002. Conclusions. The results show that DAPK promoter hypermethylation and repressed expression of DAPK protein were more common in central neurocytoma than in oligodendroglioma. Thus, DAPK promoter hypermethylation could be useful for differential diagnosis between these two types of tumors, whereas DAPK protein expression might be less predictive. The role of DAPK promoter hypermethylation in the pathogenesis of central neurocytoma warrants further study.

  6. Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Kuang-Ren Chung


    Full Text Available Mitogen-activated protein kinase (MAPK- mediated signaling pathways have been known to have important functions in eukaryotic organisms. The mechanisms by which the filamentous fungus Alternaria alternata senses and responds to environmental signals have begun to be elucidated. Available data indicate that A. alternata utilizes the Fus3, Hog1 and Slt2 MAPK-mediated signaling pathways, either separately or in a cooperative manner, for conidia formation, resistance to oxidative and osmotic stress, and pathogenesis to citrus. This review provides an overview of our current knowledge of MAPK signaling pathways, in conjunction with the two-component histidine kinase and the Skn7 response regulator, in the tangerine pathotype of A. alternata.

  7. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA


    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  8. Protein Kinase CK2: A Targetable BCR-ABL Partner in Philadelphia Positive Leukemias

    Directory of Open Access Journals (Sweden)

    Alessandro Morotti


    Full Text Available BCR-ABL-mediated leukemias, either Chronic Myeloid Leukemia (CML or Philadelphia positive Acute Lymphoblastic Leukemia (ALL, are the paradigm of targeted molecular therapy of cancer due to the impressive clinical responses obtained with BCR-ABL specific tyrosine kinase inhibitors (TKIs. However, BCR-ABL TKIs do not allow completely eradicating both CML and ALL. Furthermore, ALL therapy is associated with much worse responses to TKIs than those observed in CML. The identification of additional pathways that mediate BCR-ABL leukemogenesis is indeed mandatory to achieve synthetic lethality together with TKI. Here, we review the role of BCR-ABL/protein kinase CK2 interaction in BCR-ABL leukemias, with potentially relevant implications for therapy.

  9. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. (United S