WorldWideScience

Sample records for calcium-dependent chloride channel

  1. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium...

  2. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  3. Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine.

    Science.gov (United States)

    Schreiber, Rainer; Faria, Diana; Skryabin, Boris V; Wanitchakool, Podchanart; Rock, Jason R; Kunzelmann, Karl

    2015-06-01

    Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.

  4. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    Science.gov (United States)

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca(2+)) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca(2+)-independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca(2+) activation and ion selectivity. A "Ca(2+) clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca(2+). Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca(2+). We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca(2+)-dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca(2+) dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  5. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  6. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  7. Block by a putative antiarrhythmic agent of a calcium-dependent potassium channel in cultured hippocampal neurons.

    Science.gov (United States)

    McLarnon, J G

    1990-05-04

    The actions of a new, putative antiarrhythmic drug, KC-8851 on single channel currents in hippocampal CA1 neurons have been studied. A calcium-dependent potassium current IK(Ca) was activated in the cultured neurons when a solution containing 140 mM K+ and 0.2 mM Ca2+ was applied to inside-out patches. Addition of the compound KC-8851, at concentrations between 1-50 microM, resulted in significant, dose-dependent, decreases in the mean open times of the K channel. The onward (blocking) rate constant was determined from a simple channel blockade scheme and was 5 x 10(7) M-1s-1; this rate constant was not dependent on voltage. Addition of KC-8851 to the solution bath with outside-out patches also caused significant decreases in the mean open times of the IK(Ca) channel consistent with channel blockade by the drug.

  8. Cyclic-AMP regulation of calcium-dependent K channels in an insect central neurone.

    Science.gov (United States)

    David, J A; Pitman, R M

    1996-01-26

    In the cockroach fast coxal depressor motoneurone, either the muscarinic agonist McN-A-343 or dibutyryl cAMP (Db-cAMP) induced a reduction in voltage-dependent outward current. The response to McN is due to suppression of a calcium-dependent potassium current (IK,Ca) produced secondarily to a reduction in voltage-dependent calcium current (ICa). The response to Db-cAMP was investigated in order to establish whether cAMP might mediate the response to McN. ICa was suppressed by 3-isobutyl-1-methylxanthine (IBMX) but not by Db-cAMP. The effects of IBMX were therefore unlikely to be the result of phosphodiesterase inhibition. Since caffeine also suppressed ICa, the observed effect of IBMX is probably due to release of Ca2+ from intracellular stores. IK,Ca, evoked by injection of Ca2+, was reduced by Db-cAMP or forskolin but not by McN. These results indicate that the electrical response to McN in this neurone is not mediated by changes in cAMP.

  9. Anion channels in Chara corallina tonoplast membrane: Calcium dependence and rectification

    NARCIS (Netherlands)

    Berecki, G.; Varga, Z.; Iren, F. van; Duijn, B. van

    1999-01-01

    Tonoplast K+ channels of Chara corallina are well characterized but only a few reports mention anion channels, which are likely to play an important role in the tonoplast action potential and osmoregulation of this plant. For experiments internodal cells were isolated. Cytoplasmic droplets were form

  10. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

    Science.gov (United States)

    Fanger, C M; Ghanshani, S; Logsdon, N J; Rauer, H; Kalman, K; Zhou, J; Beckingham, K; Chandy, K G; Cahalan, M D; Aiyar, J

    1999-02-26

    Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.

  11. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair.

    Science.gov (United States)

    Lek, Angela; Evesson, Frances J; Lemckert, Frances A; Redpath, Gregory M I; Lueders, Ann-Katrin; Turnbull, Lynne; Whitchurch, Cynthia B; North, Kathryn N; Cooper, Sandra T

    2013-03-20

    Dysferlin is proposed as a key mediator of calcium-dependent muscle membrane repair, although its precise role has remained elusive. Dysferlin interacts with a new membrane repair protein, mitsugumin 53 (MG53), an E3 ubiquitin ligase that shows rapid recruitment to injury sites. Using a novel ballistics assay in primary human myotubes, we show it is not full-length dysferlin recruited to sites of membrane injury but an injury-specific calpain-cleavage product, mini-dysferlinC72. Mini-dysferlinC72-rich vesicles are rapidly recruited to injury sites and fuse with plasma membrane compartments decorated by MG53 in a process coordinated by L-type calcium channels. Collective interplay between activated calpains, dysferlin, and L-type channels explains how muscle cells sense a membrane injury and mount a specialized response in the unique local environment of a membrane injury. Mini-dysferlinC72 and MG53 form an intricate lattice that intensely labels exposed phospholipids of injury sites, then infiltrates and stabilizes the membrane lesion during repair. Our results extend functional parallels between ferlins and synaptotagmins. Whereas otoferlin exists as long and short splice isoforms, dysferlin is subject to enzymatic cleavage releasing a synaptotagmin-like fragment with a specialized protein- or phospholipid-binding role for muscle membrane repair.

  12. Lubiprostone: a chloride channel activator.

    Science.gov (United States)

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  13. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.

    Science.gov (United States)

    el Manira, A; Tegnér, J; Grillner, S

    1994-10-01

    1. The possible involvement of calcium-dependent potassium channels (KCa) in the termination of locomotor bursts was investigated by administration of a specific blocker, apamin, in the lamprey spinal cord in vitro. The effects were examined by recording the efferent activity in ventral roots and by intracellular recording from interneurons and motoneurons. During fictive locomotion induced by N-methyl-D-aspartate (NMDA), apamin was found to affect both the frequency of bursting and the regularity of the locomotor pattern. 2. At the single cell level, NMDA can induce pacemaker-like membrane potential oscillations in individual neurons after administration of tetrodotoxin. Apamin (2.5 microM) produced a marked increase of the duration of the depolarizing plateau phase occurring during these NMDA-induced oscillations; this shows that the repolarization of the plateau is initiated by a progressive activation of apamin-sensitive KCa-channels. 3. The action potential is followed by an afterhyperpolarization (AHP) with a fast and a slow phase (sAHP). The latter is known to be caused by apamin-sensitive KCa-channels. During repetitive firing, the interspike interval is dependent on the amplitude and the duration of the sAHP. Apamin caused a reduction of the spike frequency adaptation with a concomitant increase in the firing frequency. In some cells, apamin in addition reduced the threshold for the action potential. Apamin-sensitive KCa-channels thus will be involved in controlling both the onset and the duration of neuronal firing in the lamprey spinal cord. 4. During fictive locomotion induced by NMDA (40-200 microM), a blockade of KCa-channels by apamin produced an increase of the coefficient of variation (mean = 167%, n = 26), which was statistically significant in 21 out of 26 experiments. At 40-150 microM NMDA, an average increase in cycle duration was 77% and statistically significant in 15 out of 20 preparations. At 200 microM NMDA (corresponding to higher burst

  14. Activation of calcium-dependent potassium channels in rat brain neurons by neurotrophin-3 and nerve growth factor

    OpenAIRE

    Holm, Ninna R.; Christophersen, Palle; Olesen, Søren P.; Gammeltoft, Steen

    1997-01-01

    The neurotrophins are signaling factors that are essential for survival and differentiation of distinct neuronal populations during the development and regeneration of the nervous system. The long-term effects of neurotrophins have been studied in detail, but little is known about their acute effects on neuronal activity. Here we use permeabilized whole-cell patch clamp to demonstrate that neurotrophin-3 (NT-3) and nerve growth factor activate calcium-dependent, paxilline-sensitive potassium ...

  15. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites.

    Science.gov (United States)

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro

    2003-10-30

    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  16. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit;

    2011-01-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20...... patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...... in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p...

  17. Regulated trafficking of the CFTR chloride channel

    NARCIS (Netherlands)

    Braakman, L.J.; Kleizen, B.; Jonge, H.R. de

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Wh

  18. Effects of manipulating slowpoke calcium-dependent potassium channel expression on rhythmic locomotor activity in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Erin C. McKiernan

    2013-03-01

    Full Text Available Rhythmic motor behaviors are generated by networks of neurons. The sequence and timing of muscle contractions depends on both synaptic connections between neurons and the neurons’ intrinsic properties. In particular, motor neuron ion currents may contribute significantly to motor output. Large conductance Ca2+-dependent K+ (BK currents play a role in action potential repolarization, interspike interval, repetitive and burst firing, burst termination and interburst interval in neurons. Mutations in slowpoke (slo genes encoding BK channels result in motor disturbances. This study examined the effects of manipulating slo channel expression on rhythmic motor activity using Drosophila larva as a model system. Dual intracellular recordings from adjacent body wall muscles were made during spontaneous crawling-related activity in larvae expressing a slo mutation or a slo RNA interference construct. The incidence and duration of rhythmic activity in slo mutants were similar to wild-type control animals, while the timing of the motor pattern was altered. slo mutants showed decreased burst durations, cycle durations, and quiescence intervals, and increased duty cycles, relative to wild-type. Expressing slo RNAi in identified motor neurons phenocopied many of the effects observed in the mutant, including decreases in quiescence interval and cycle duration. Overall, these results show that altering slo expression in the whole larva, and specifically in motor neurons, changes the frequency of crawling activity. These results suggest an important role for motor neuron intrinsic properties in shaping the timing of motor output.

  19. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  20. Regulated trafficking of the CFTR chloride channel.

    Science.gov (United States)

    Kleizen, B; Braakman, I; de Jonge, H R

    2000-08-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.

  1. Phosphatase inhibitors activate normal and defective CFTR chloride channels

    OpenAIRE

    Becq, F; Jensen, T J; Chang, X B; Savoia, A.; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epi...

  2. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    Science.gov (United States)

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits.

  3. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/ CIPK6 calcium sensor/protein kinase complex

    Institute of Scientific and Technical Information of China (English)

    Katrin Held; Jean-Baptiste Thibaud; J(o)rg Kudla; Francois Pascaud; Christian Eckert; Pawel Gajdanowicz; Kenji Hashimoto; Claire Corratgé-Faillie; Jan Niklas Offenborn; Beno(i)t Lacombe; Ingo Dreyer

    2011-01-01

    Potassium (K+) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K+ channels remain poorly understood. Here, we show that the calcium (Ca2+)sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM)targeting of the K+ channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering pheuotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca2+-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca2+ sensor modulates K+ channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.

  4. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  5. Functional architecture of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  6. Chloride channels of platelets%血小板氯通道

    Institute of Scientific and Technical Information of China (English)

    陈晓琳; 尹松梅

    2004-01-01

    Chloride channels distribute widely in the body, and participate in many physiological actions and regulatory processes. Based on their physiological roles and molecular structures, six kinds of chloride channels have been identified: (1) The chloride channels family; (2) Cystic fibrosis transmembrane conductance regulator; (3) Swelling-activated chloride channels; (4) Calcium-activated chloride channels; (5) The p64 (CLIC) gene family; (6) γ-aminobutyric acid and glycine receptors. The chloride channels do exist in platelets, and their appearances are dependent on the presence of intracellular calcium. Blocking agents of chloride channels inhibit the thrombin-activated platelet aggregation and the elevation of the intracellular calcium concentration in a dose-dependent manner. It is suggested that chloride channels play a role in the activation of platelets. In addition, chloride channels act on both the cell volume regulation and the intracellular pH regulation in platelets.

  7. Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

    Science.gov (United States)

    Wijerathne, Tharaka Darshana; Kim, Jihyun; Yang, Dongki

    2017-01-01

    Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat–containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical BKCa activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting γ2 subunit, hLRRC52. As previously reported, Slo3 K+ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 K+ current, and internal alkalinization and Ca2+ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 K+ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular Ca2+. In contrast, elevation of intracellular Ca2+ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate Ca2+-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

  8. Epithelial Sodium and Chloride Channels and Asthma

    Institute of Scientific and Technical Information of China (English)

    Wen Wang; Hong-Long Ji

    2015-01-01

    Objective:To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel.Data Sources:The data analyzed in this review were the English articles from 1980 to 2015 from journal databases,primarily PubMed and Google Scholar.The terms used in the literature search were:(1) ENaCs;cystic fibrosis (CF) transmembrane conductance regulator (CFTR);asthma/asthmatic,(2) ENaC/sodium salt;CF;asthma/asthmatic,(3) CFTR/chlorine ion channels;asthma/asthmatic,(4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt;asthma/asthmatic,lung/pulmonary/respiratory/tracheal/alveolar,and (5) CFTR;CF;asthma/asthmatic (ti).Study Selection:These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015).The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors.Results:Airway surface liquid dehydration can cause airway inflammation and obstruction.ENaC and CFTR are closely related to the airway mucociliary clearance.Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations.Conclusions:Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.

  9. Lack of conventional ATPase properties in CFTR chloride channel gating.

    Science.gov (United States)

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  10. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    OpenAIRE

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride ...

  11. Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity

    Directory of Open Access Journals (Sweden)

    Piotr Bregestovski

    2009-12-01

    Full Text Available This review briefly discusses the main approaches for monitoring chloride (Cl−, the most abundant physiological anion. Noninvasive monitoring of intracellular Cl− ([Cl−]i is a challenging task owing to two main difficulties: (i the low transmembrane ratio for Cl−, approximately 10:1; and (ii the small driving force for Cl−, as the Cl− reversal potential (ECl is usually close to the resting potential of the cells. Thus, for reliable monitoring of intracellular Cl−, one has to use highly sensitive probes. From several methods for intracellular Cl− analysis, genetically encoded chloride indicators represent the most promising tools. Recent achievements in the development of genetically encoded chloride probes are based on the fact that yellow fluorescent protein (YFP exhibits Cl−-sensitivity. YFP-based probes have been successfully used for quantitative analysis of Cl− transport in different cells and for high-throughput screening of modulators of Cl−-selective channels. Development of a ratiometric genetically encoded probe, Clomeleon, has provided a tool for noninvasive estimation of intracellular Cl− concentrations. While the sensitivity of this protein to Cl− is low (EC50 about 160 mM, it has been successfully used for monitoring intracellular Cl− in different cell types. Recently a CFP–YFP-based probe with a relatively high sensitivity to Cl− (EC50 about 30 mM has been developed. This construct, termed Cl-Sensor, allows ratiometric monitoring using the fluorescence excitation ratio. Of particular interest are genetically encoded probes for monitoring of ion channel distribution and activity. A new molecular probe has been constructed by introducing into the cytoplasmic domain of the Cl−-selective glycine receptor (GlyR channel the CFP–YFP-based Cl-Sensor. This construct, termed BioSensor-GlyR, has been successfully expressed in cell lines. The new genetically encoded chloride probes offer means of screening

  12. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia.

    OpenAIRE

    Duszyk, M; French, A S; Man, S F

    1992-01-01

    Apical membranes of human airway epithelial cells have significant chloride permeability, which is reduced in cystic fibrosis (CF), causing abnormal electrochemistry and impaired mucociliary clearance. At least four types of chloride channels have been identified in these cells, but their relative roles in total permeability and CF are unclear. Noise analysis was used to measure the conductance of chloride channels in human nasal epithelial cells. The data indicate that channels with a mean c...

  13. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  14. The CIC-3 chloride channels in cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Dayue Darrel DUAN

    2011-01-01

    CIC-3 is a member of the CIC voltage-gated chloride(Cl-) channel superfamily. Recent studies have demonstrated the abundant expression and pleiotropy of CIC-3 in cardiac atrial and ventricular myocytes, vascular smooth muscle cells, and endothelial cells.CIC-3 Cl- channels can be activated by increase in cell volume, direct stretch of β1-integrin through focal adhesion kinase and many active molecules or growth factors including angiotensin Ⅱ and endothelin-1-mediated signaling pathways, Ca2+/calmodulin-dependent protein kinase Ⅱ and reactive oxygen species. CIC-3 may function as a key component of the volume-regulated Cl- channels, a superoxide anion transport and/or NADPH oxidase interaction partner, and a regulator of many other transporters. CIC-3 has been implicated in the regulation of electrical activity, cell volume, proliferation, differentiation, migration, apoptosis and intracellular pH. This review will highlight the major findings and recent advances in the study of CIC-3 Cl- channels in the cardiovascular system and discuss their important roles in cardiac and vascular remodeling during hypertension, myocardial hypertrophy, ischemia/reperfusion, and heart failure.

  15. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  16. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    Science.gov (United States)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  17. Function of chloride intracellular channel 1 in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Peng-Fei Ma; Jun-Qiang Chen; Zhen Wang; Jin-Lu Liu; Bo-Pei Li

    2012-01-01

    AIM:To investigate the effect of chloride intracellular channel 1 (CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction (RT-PCR).Four segments of small interference RNA (siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3% (P =0.002) in SGC-7901 and 35.55% (P =0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells (62.24%,P =0.000) and MGC-803 cells (52.67%,P =0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31% (P =0.000) and 33.62% (P =0.001) in SGC-7901 and 40.74% (P =0.000) and 29.26% (P =0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.CONCLUSION:High CLIC1 expression can efficiently inhibit proliferation and

  18. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.

  19. Identification of Herbal Compound lmperatorin with Adverse Effects on ANO1 and CFTR Chloride Channels

    Institute of Scientific and Technical Information of China (English)

    HAO Feng; YI Fei; ZHANG Di; NING Yan; SU Wei-heng; FENG Xue-chao; YANG Hong; MA Tong-hui

    2011-01-01

    Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion,smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM 16A(ANO 1 or anoctamin-i ) is a bona fide calcium-acvtivated chloride channel. A few small molecule CaCCs regulators are available for functional and therapeutic studies. We screened 126 natural compounds from Chinese herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells to coexpress ANOI and an iodide-sensitive fluorescent indicator(EYFP-HI48Q/I152L). lmperatorin, a coumarin compound, was identifled to inhibit ANOl-mediated chloride transport activated by multiple calcium-elevating agonists. The inhibitory effect is dose-dependent with IC50 ~14.63 μmol/L. Interestingly, imperatorin activated CFTR chloride channel with EC50 ~35.52 μmol/L. The adverse effects of imperatorin on CaCC and CFTR chloride channels will make it useful in pharmacological dissection of chloride transport in airway and intestinal epithelium. Further studies are required to evaluate the therapeutic effects of imperatorin on hypertension, asthma and certain tumors.

  20. Requirement for chloride channel function during the hepatitis C virus life cycle

    OpenAIRE

    Igloi, Z; Mohl, BP; Lippiat, JD; Harris, M.; Mankouri, J

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation o...

  1. Modulation of chloride channel functions by the plant lignan compounds kobusin and eudesmin

    Directory of Open Access Journals (Sweden)

    Yu eJiang

    2015-11-01

    Full Text Available Plant lignans are diphenolic compounds widely present in vegetables, fruits and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR and calcium-activated chloride channels (CaCCs chloride channels. The compounds potentiated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds potentiated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 75 M for kobusin and 100 M for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.

  2. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    Science.gov (United States)

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation.

  3. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    Science.gov (United States)

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter.

  4. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-12-01

    Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.

  5. Anion conductance selectivity mechanism of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  6. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    Science.gov (United States)

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  7. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    OpenAIRE

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-01-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR ch...

  8. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Science.gov (United States)

    Wever, Claudia M; Farrington, Danielle; Dent, Joseph A

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  9. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Directory of Open Access Journals (Sweden)

    Claudia M Wever

    Full Text Available New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  10. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

    Science.gov (United States)

    Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

  11. Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia

    Directory of Open Access Journals (Sweden)

    Chih-Yung Tang

    2011-01-01

    Full Text Available The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type or an autosomal recessive (Becker type pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms.

  12. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain...

  13. The ABC protein turned chloride channel whose failure causes cystic fibrosis.

    Science.gov (United States)

    Gadsby, David C; Vergani, Paola; Csanády, László

    2006-03-23

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  14. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    OpenAIRE

    Tao, T.; Xie, J; Drumm, M L; Zhao, J.; Davis, P B; Ma, J.

    1996-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200...

  15. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    Science.gov (United States)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  16. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis

    Science.gov (United States)

    Zhang, Haiwen; Zhao, Fu-Geng; Tang, Ren-Jie; Yu, Yuexuan; Song, Jiali; Wang, Yuan; Li, Legong; Luan, Sheng

    2017-01-01

    The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis. Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters. PMID:28202726

  17. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance

    Institute of Scientific and Technical Information of China (English)

    Paul; Linsdell

    2014-01-01

    Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of

  18. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    formation. This study indicates that chloride channel inhibitors are highly promising for treatment of osteoporosis. INTRODUCTION: The chloride channel inhibitor, NS3736, blocked osteoclastic acidification and resorption in vitro with an IC50 value of 30 microM. When tested in the rat ovariectomy model......: In conclusion, we show for the first time that chloride channel inhibitors can be used for prevention of ovariectomy-induced bone loss without impeding bone formation. We speculate that the coupling of bone resorption to bone formation is linked to the acidification of the resorption lacunae, thereby enabling...

  19. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  20. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.

    Science.gov (United States)

    Yang, Shuang; Yu, B O; Sui, Yujie; Zhang, Yaofang; Wang, Xue; Hou, Shuguang; Ma, Tonghui; Yang, Hong

    2013-09-01

    The naturally occurring polyphenol compound resveratrol (RES) has been receiving wide attention because of its variety of health benefits and favourable biological activities. Previous studies have shown that RES could induce intestinal chloride secretion in mouse jejunum and stimulate cAMP-dependent Cl- secretion in T84, primary cultured murine nasal septal and human sinonasal epithelial cells, but the precise molecular target is not clear. We therefore tested the hypothesis that RES may stimulate the activity of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Using cell-based fluorescent assays, transepithelial short-circuit current measurements and excised inside-out patch-clamp analysis; we found that RES dose-dependently potentiate CFTR Cl- channel activities, which was reversed by CFTR inhibitors CFTR(inh)-172 and GlyH101. Transepithelial Cl- secretion by CFTR-expressing FRT cells was stimulated by RES with half maximal concentration -80 microM. Intracellular cAMP content was not elevated by RES in FRT cells. Excised inside-out patch-clamp analysis indicated that RES significantly increased the chloride currents of CFTR. In ex vivo studies, RES stimulated the transmucosal chloride current of rat colon by short-circuit current assay. These data suggested that CFTR is a molecular target of RES. Our findings add a new molecular target to RES, and RES may represent a novel class of therapeutic lead compounds in treating CFTR-related diseases including CF and habitual constipation.

  1. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica.

    Science.gov (United States)

    Kita, Tomo; Ozoe, Fumiyo; Azuma, Masaaki; Ozoe, Yoshihisa

    2013-09-01

    l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls.

  2. Design and Synthesis of Photoaffinity Probe Candidates for the GABA-gated Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    LIU Shang-Zhong; LI Qing-X.

    2006-01-01

    In order to characterize binding sites of insecticidal compounds on GABA gated chloride channel, new photoaffinity probe candidates based on 5e-t-butyl-2e-[4-(substituted-propynyl)phenyl]-1,3-dithiane for the noncompetitive blocker (NCB) site of the γ-aminobutyric acid (GABA)-gated chloride channel were designed and synthesized, and their potency as an inhibitor on NCB was measured by 4'-ethynyl-4-n-[2,3-3H2]-propylbicycloorthobenzoate (3H EBOB) assay. The synthesized compounds showed high inhibition activities with half maximum inhibition concentrations (IC50) of lower than 35 nmol/L and were very stable in binding conditions as well photoreacted quickly at 300 nm light. These new compounds are expected to be good photoaffinity labeling probes if radioisotope iodine is incorporated.

  3. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  4. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia.

    Science.gov (United States)

    Liu, Shan-Wen; Li, Yuan; Zou, Li-Li; Guan, Yu-Tao; Peng, Shuang; Zheng, Li-Xin; Deng, Shun-Mei; Zhu, Lin-Yan; Wang, Li-Wei; Chen, Li-Xin

    2016-06-03

    Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l-1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l-1 ) to a hypotonic solution (290 mOsm l-1 ), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4'-diisothiocyanatostilbene-2,2'- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia.

  5. Photoaffinity Probe Candidates for Gamma-aminobutyric Acid (GABAA)-Gated Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    Shang Zhong LIU; Qing Xiao LI

    2004-01-01

    New photoaffinity ligand candidates were synthesized based on 5-t-butyl-2-(4- (substituted-ethynyl)phenyl)-1, 3-dithiane for the noncompetitive blocker site on the gamma- aminobutyric acid -gated chloride channel. Their half-maximal inhibition concentrations ranged from 4 to 32 nmol/L as measured by 4'-ethynyl-4-n-[2,3-3H2]-propylbicycloorthobenzoate (3H EBOB) assay.

  6. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects

    OpenAIRE

    Sweetser, Seth; Busciglio, Irene A.; Camilleri, Michael; Bharucha, Adil E.; Szarka, Lawrence A.; Papathanasopoulos, Athanasios; Burton, Duane D.; Eckert, Deborah J.; Zinsmeister, Alan R.

    2008-01-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 μg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in th...

  7. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression

    OpenAIRE

    Luyckx, Valerie A.; LeClercq, Baudouin; Dowland, Lara K.; Yu, Alan S. L.

    1999-01-01

    Dent’s disease is an X-linked inherited disorder characterized by hypercalciuria, nephrocalcinosis, nephrolithiasis, low molecular weight proteinuria, Fanconi’s syndrome, and renal failure. It is caused by inactivating mutations in CLC5, a member of the CLC voltage-gated chloride channel family. CLC5 is known to be expressed in the endosomal compartment of the renal proximal tubule, where it may be required for endosomal acidification and trafficking. Although the Fanconi’s syndrome and low m...

  8. 氯离子通道与肾脏病%Chloride channels and kidney diseases

    Institute of Scientific and Technical Information of China (English)

    蒲金赟(综述); 周建华(审校)

    2016-01-01

    氯离子是生物体内一类重要的阴离子,参与多种生理活动的调节。由相关基因突变引起的离子通道蛋白功能缺陷可导致离子通道功能异常,形成离子通道病。在肾脏,位于不同部位的肾小管上皮细胞的基侧质膜和顶质膜上分布有多种氯离子通道。研究发现,肾脏电压门控氯离子通道与Bartter综合征和Dent病有关;囊性纤维化跨膜转运调节体所致囊性纤维化病可累及肾脏。文章综述氯离子通道在维持正常肾脏功能中的作用及其机制,以及相关基因缺陷所致的肾脏疾病。%Chloride ion is an important anion in organisms, managing various physiological events. A particular gene mu-tation leads to involved channel deifciency and to develop channelopathy. In kidney, different chloride channels distribute along certain fractions of the renal tubule, located at apical and basolateral membranes of tubular epithelial cells. Previous studies dis-covered that voltage-sensitive chloride channels in kidney are associated with Bartter syndrome and Dent’s disease. In addition, the kidney can be involved by cystic ifbrosis resulting from dysfunction of cystic ifbrosis transmembrane conductance regulator. In this review, the function and mechanism of chloride channels in maintenance of normal renal function, and the renal diseases caused by related gene defects were discussed.

  9. Activation Effect of Cathartic Natural Compound Rhein to CFTR Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in intestinal exocrine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone activator of CFTR Cl- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Traditional Chinese Medicine such as aloe, cascara and senna.

  10. State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore.

    Science.gov (United States)

    Linsdell, Paul

    2014-12-01

    Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is subject to voltage-dependent open-channel block by a diverse range of cytoplasmic anions. However, in most cases the ability of these blocking substances to influence the pore opening and closing process has not been reported. In the present work, patch clamp recording was used to investigate the state-dependent block of CFTR by cytoplasmic Pt(NO2)4(2-) ions. Two major effects of Pt(NO2)4(2-) were identified. First, this anion caused fast, voltage-dependent block of open channels, leading to an apparent decrease in single-channel current amplitude. Secondly, Pt(NO2)4(2-) also decreased channel open probability due to an increase in interburst closed times. Interestingly, mutations in the pore that weakened (K95Q) or strengthened (I344K, V345K) interactions with Pt(NO2)4(2-) altered blocker effects both on Cl(-) permeation and on channel gating, suggesting that both these effects are a consequence of Pt(NO2)4(2-) interaction with a single site within the pore. Experiments at reduced extracellular Cl(-) concentration hinted that Pt(NO2)4(2-) may have a third effect, possibly increasing channel activity by interfering with channel closure. These results suggest that Pt(NO2)4(2-) can enter from the cytoplasm into the pore inner vestibule of both open and closed CFTR channels, and that Pt(NO2)4(2-) bound in the inner vestibule blocks Cl(-) permeation as well as interfering with channel opening and, perhaps, channel closure. Implications for the location of the channel gate in the pore, and the operation of this gate, are discussed.

  11. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Institute of Scientific and Technical Information of China (English)

    Hong YANG; Li-na XU; Cheng-yan HE; Xin LIU; Rou-yu FANG; Tong-hui MA

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants.Methods: A cell-based fluorescent assay to measure I- influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl- current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo.Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated l- influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay,the three compound enhanced Cl- currents in epithelia formed by CFTR-expressing FRT cells with EC5o values of 73±1.4, 56±1.7, and 50±0.5 μmol/L, respectively, and Rhein also enhanced Cl- current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimu-lated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity.Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potsntiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs.

  12. Facilitation of calcium-dependent potassium current.

    Science.gov (United States)

    Thompson, S H

    1994-12-01

    The activation of Ca-dependent K+ current, Ic, was studied in macropatches on the cell bodies of molluscan neurons. When a depolarizing voltage-clamp pulse was applied repeatedly, Ic facilitated in a manner that resembled the facilitation of synaptic transmitter release. Facilitation was characterized by an increase in Ic amplitude, a progressive increase in instantaneous outward current, and a decrease in utilization time. Experiments were done to investigate the mechanism responsible for Ic facilitation. Facilitation was reduced by microinjection of an exogenous Ca2+ buffer into the cytoplasm, indicating that facilitation is a Ca(2+)-dependent process. It was also reduced at elevated temperatures. Conversely, facilitation was greatly potentiated by blocking the Na/Ca exchange mechanism. It is concluded that the facilitation of Ca-dependent K+ current results from the accumulation of Ca2+ at the inner face of the membrane during the repeated activation of Ca2+ channels by depolarization. The Ca2+ indicator fluo-3 was used in fluorescence imaging experiments to measure changes in [Ca]i near the cell membrane during repeated depolarizing pulses and the interpretation of these results was aided by numerical simulations of Ca2+ accumulation, diffusion, and buffering in the peripheral cytoplasm. These experiments showed that the time course of Ic facilitation matches the time course of Ca2+ accumulation at the membrane. It was found that the strength of Ic facilitation varies among patches on the same neuron, suggesting that the accumulation of Ca2+ is not uniform along the inner surface of the membrane and that gradients in [Ca]i develop and are maintained during trains of depolarizing pulses. Potential mechanisms that may lead to local differences in Ca2+ accumulation and Ic facilitation are discussed.

  13. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  14. Effect of cadmium or magnesium on calcium-dependent central function that reduces blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sutoo, D.; Akiyama, K. [Univ. of Tsukuba (Japan). Inst. of Medical Sci.

    2000-03-01

    The effect of intracerebroventricular (i.c.v.) administration of cadmium or magnesium on central calcium-dependent blood pressure regulation was investigated. The systolic blood pressure of spontaneously hypertensive rats (SHR; male, 13 weeks of age) decreased following i.c.v. administration of cadmium chloride (20 nmol/rat), and increased following i.c.v. administration of magnesium chloride (20, 600, and 1200 nmol/rat). The hypotensive effect of cadmium was suppressed by i.c.v. administration of W-7 (a calmodulin antagonist, 30 {mu}g/rat). Taking into consideration these results with our previous reports, it is suggested that cadmium binds to the calcium-binding sites of calmodulin and activates calcium/calmodulin-dependent enzymes in a disorderly manner, whereas magnesium does not. Therefore, cadmium increases dopamine synthesis in the brain via a calmodulin-dependent system, and the resultant increase in dopamine levels inhibits sympathetic nerve activity and reduces blood pressure in SHR. (orig.)

  15. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    Science.gov (United States)

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  16. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    Science.gov (United States)

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  17. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    Science.gov (United States)

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  18. ClC-1 chloride channels: state-of-the-art research and future challenges

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2015-04-01

    Full Text Available The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl- homeostasis is crucial for the correct membrane repolarization and propagation of action potential. As a consequence, mutations in the CLCN1 gene cause dominant and recessive forms of Myotonia Congenita, a rare skeletal muscle channelopathy caused by abnormal membrane excitation, and clinically characterized by muscle stiffness and various degrees of transitory weakness. Elucidation of the mechanistic link between the genetic defects and the disease pathogenesis is still incomplete and, at this time, there is no specific treatment for Myotonia Congenita. Still controversial is the subcellular localization pattern of ClC-1 channels in skeletal muscle as well as its modulation by some intracellular factors. The expression of ClC-1 in other tissues such as in brain and heart and the possible assembly of ClC-1/ClC-2 heterodimers further expand the physiological properties of ClC-1 and its involvement in diseases. A recent de novo CLCN1 truncation mutation in a patient with generalized epilepsy indeed postulates an unexpected role of this channel in the control of neuronal network excitability. This review summarizes the most relevant and state-of-the-art research on ClC-1 chloride channels physiology and associated diseases.

  19. [Post-translational ligation of split CFTR severed before TMD2 and its chloride channel function].

    Science.gov (United States)

    Zhu, Fuxiang; Gong, Xiandi; Liu, Zelong; Yang, Shude; Qu, Huige; Chi, Xiaoyan

    2010-12-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion channel and the split Ssp DnaB intein-mediated protein trans-splicing was explored to co-deliver CFTR gene into eukaryotic cells with two vectors. The human CFTR cDNA was split after Glu838 codon before the second transmembrane dome (TMD2) into two halves of N- and C-parts and fused with the coding sequences of split Ssp DnaB intein. Pair of eukaryotic expression vectors pEGFP-NInt and pEYFP-IntC were constructed by inserting them into the vectors pEGFP-N1 and pEYFP-N1 respectively. The transient expression was carried out for observing the ligation of CFTR by Western blotting and recording the chloride current by patch clamps when cotransfection of the pair of vectors into baby hamster kidney (BHK) cells. The results showed that an obvious protein band proven to be ligated intact CFTR can be seen and a higher chloride current and activity of chloride channel were recorded after cotransfection. These data demonstrated that split Ssp DnaB intein could be used as a strategy in delivering CFTR gene by two vectors providing evidence for application of dual adeno-associated virus (AAV) vectors to overcome the limitation of packaging size in cystic fibrosis gene therapy.

  20. Effects of chloride channel blockers on hypotonicity-induced contractions of the rat trachea

    Science.gov (United States)

    Coelho, Roberta R; Souza, Emmanuel P; Soares, Pedro M G; Meireles, Ana Vaneska P; Santos, Geam C M; Scarparo, Henrique C; Assreuy, Ana Maria S; Criddle, David N

    2003-01-01

    We have investigated the inhibitory effects of blockers of volume-activated (Clvol) and calcium-activated (ClCa) chloride channels on hypotonic solution (HS)-induced contractions of rat trachea, comparing their effects with those of the voltage-dependent calcium channel (VDCC) blocker nifedpine. HS elicited large, stable contractions that were partially dependent on the cellular chloride gradient; a reduction to 41.45±7.71% of the control response was obtained when extracellular chloride was removed. In addition, HS-induced responses were reduced to 26.8±5.6% of the control by 1 μM nifedipine, and abolished under calcium-free conditions, indicating a substantial requirement for extracellular calcium entry, principally via VDCCs. The established Clvol blockers tamoxifen (⩽10 μM) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (1–100 μM), at concentrations previously reported to inhibit Clvol in smooth muscle, did not significantly inhibit HS-induced contractions. In contrast, the recognized ClCa blocker niflumic acid (NFA; 1–100 μM) produced a reversible, concentration-dependent inhibition of HS responses, with a reduction to 36.6±6.4% of control contractions at the highest concentration. The mixed Clvol and ClCa blocker, 5-nitro 2-(3-phenylpropylamine) benzoic acid (NPPB; 10–100 μM) also elicited concentration-related inhibition of HS-induced contractions, producing a decrease to 35.9±11.3% of the control at 100 μM. Our results show that HS induces reversible, chloride-dependent contractions of rat isolated trachea that were inhibited by NFA and NPPB, while exhibiting little sensitivity to recognized blockers of Clvol. The data support the possibility that opening of calcium-activated chloride channels under hypotonic conditions in respiratory smooth muscle may ultimately lead to VDCC-mediated calcium entry and contraction. PMID:14691057

  1. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.

    Science.gov (United States)

    Bompadre, Silvia G; Hwang, Tzyh-Chang

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  2. Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Bear, C.E.; Petrunka, C.N.; Strasberg, S.M.

    1985-05-01

    Chloride is the major inorganic anion in bile but its mechanism of passage from blood to bile is uncertain. Specific membrane channels account for most net inorganic anion flux in other cell types such as the proximal tubular cell and red blood cell; disulfonic stilbenes inhibit anion movement through these channels. Therefore, we have sought the presence of similar channels in the hepatocyte. Net inorganic anion flux or conductance was initiated in isolated rat hepatocytes by valinomycin in the presence of an outward potassium gradient. Potassium concentration in the extracellular medium increased from 2.75 +/- 0.02 in control cell suspensions to 3.15 +/- 0.04 in valinomycin-treated cell suspensions. Membrane potential difference (Em) (mV), determined as the distribution of (/sup 14/C)tetraphenyl phosphonium ion was -28 mV in control cells and -42 mV in valinomycin-treated cells. Intracellular chloride concentration (/sup 36/Cl-) (mEq per liter of cell water) decreased significantly from 38.6 in control cells to 32.0 in valinomycin-treated cells. The observed intracellular concentrations (/sup 36/Cl-) in both control and valinomycin-treated cell suspensions closely approximates values predicted on the basis of the Nernst equation: 41 and 29 (mEq per liter of cell water), respectively, suggesting that the chloride ion is passively distributed on the basis of the membrane potential difference. Furthermore, net rate-limited cell water loss of approximately 15% of control values was associated with the above valinomycin-stimulated changes in ion distribution, as assessed using three methods of cell water volume determination.

  3. Chloride channel-dependent copper acquisition of laccase in the basidiomycetous fungus Cryptococcus neoformans

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The CLC chloride channel gene CLC-A of the pathogen yeast Cryptococcus neoformans was previously reported to be critical for multicopper laccase activity and growth at an elevated pH.This study reports that copper homeostasis was impaired in the clc-a mutant.This was demonstrated by the substantial decrease of the intracellular quantity of copper under copper-limited growth as determined by flame atomic absorption spectrometry.CLC-A is a critical factor in copper homeostasis which is required for copper acquisition of laccase in C.neoformans.

  4. Mitochondria-Rich Cells as Experimental Model in Studies of Epithelial Chloride Channels

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Amstrup, Jan; Møbjerg, Nadja

    2002-01-01

    -actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl- pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via ß-adrenergic receptors, ion selectivity, genistein stimulation...... and inhibition by glibenclamide. bbCFTR has been cloned, and immunostaining has shown that the gene product is selectively expressed in mr cells. There is cross-talk between the two pathways in the sense that activation of the conductance of the mr cell by voltage clamping excludes activation via receptor...

  5. The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.

    Science.gov (United States)

    Cater, Rosemary J; Ryan, Renae M; Vandenberg, Robert J

    2016-03-01

    Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl(-)) channels. The EAATs couple the transport of glutamate to the co-transport of three Na(+) ions and one H(+) ion into the cell, and the counter-transport of one K(+) ion out of the cell. The EAAT Cl(-) channel is activated by the binding of glutamate and Na(+), but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl(-) permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl(-) permeation and the mechanisms that underlie their split personality.

  6. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current.

    Science.gov (United States)

    Espinosa, Leon; Paret, Laurent; Ojeda, Carlos; Tourneur, Yves; Delmas, Pierre D; Chenu, Chantal

    2002-10-01

    Cell movement and spreading involve calcium-dependent processes and ionic channel activation. During bone resorption, osteoclasts alternate between spread, motile and resorptive phases. We investigated whether the electrical membrane properties of osteoclasts were linked to their membrane morphological changes. Rabbit osteoclasts were recorded by time-lapse videomicroscopy performed simultaneously with patch-clamp whole cell and single channel recordings. Original image analysis methods were developed and used to demonstrate for the first time an oscillatory activation of a spontaneous membrane current in osteoclasts, which is directly correlated to the membrane movement rate. This current was identified as a calcium-dependent potassium current (IK(Ca)) that is sensitive to both charybdotoxin and apamin and was generated by a channel with unitary conductance of approximately 25+/-2 pS. Blockade of this current also decreased osteoclast spreading and inhibited bone resorption in vitro, demonstrating a physiological role for this current in osteoclast activity. These results establish for the first time a temporal correlation between lamellipodia formation kinetics and spontaneous peaks of IK(Ca), which are both involved in the control of osteoclast spreading and bone resorption.

  7. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.

    Science.gov (United States)

    Li, Chunying; Naren, Anjaparavanda P

    2010-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.

  8. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Tao, T; Xie, J; Drumm, M L; Zhao, J; Davis, P B; Ma, J

    1996-02-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200 mM KCl with 1 mM MgCl2 (intracellular) and 50 mM KCl with no MgCl2 (extracellular), with pH maintained at 7.4 by 10 mM HEPES-Tris on both sides of the channel. In 200 mM KCl, both H and L states could be measured in stable single-channel recordings, whereas M could not. Spontaneous transitions between H and L were slow; it took 4.5 min for L-->H, and 3.2 min for H-->L. These slow conversions among subconductance states of the CFTR channel were affected by extracellular Mg; in the presence of millimolar Mg, the channel remained stable in the H state. Similar phenomena were also observed with endogenous CFTR channels in T84 cells. In high-salt conditions (1.5 M KCl), all three conductance states of the expressed CFTR channel, 12.1 pS, 8.2 pS, and 3.6 pS, became stable and seemed to gate independently from each other. The existence of multiple stable conductance states associated with the CFTR channel suggests two possibilities: either a single CFTR molecule can exist in multiple configurations with different conductance values, or the CFTR channel may contain multimers of the 170-kDa CFTR protein, and different conductance states are due to different aggregation states of the CFTR protein.

  9. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  10. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C; Penmatsa, Himabindu; Marrs, Kevin L; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J; Schuetz, John D; Naren, Anjaparavanda P

    2007-11-30

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.

  11. Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction.

    Science.gov (United States)

    Waters, Christopher W; Varuzhanyan, Grigor; Talmadge, Robert J; Voss, Andrew A

    2013-05-28

    Huntington disease is a progressive and fatal genetic disorder with debilitating motor and cognitive defects. Chorea, rigidity, dystonia, and muscle weakness are characteristic motor defects of the disease that are commonly attributed to central neurodegeneration. However, no previous study has examined the membrane properties that control contraction in Huntington disease muscle. We show primary defects in ex vivo adult skeletal muscle from the R6/2 transgenic mouse model of Huntington disease. Action potentials in diseased fibers are more easily triggered and prolonged than in fibers from WT littermates. Furthermore, some action potentials in the diseased fibers self-trigger. These defects occur because of decreases in the resting chloride and potassium conductances. Consistent with this, the expression of the muscle chloride channel, ClC-1, in Huntington disease muscle was compromised by improper splicing and a corresponding reduction in total Clcn1 (gene for ClC-1) mRNA. Additionally, the total Kcnj2 (gene for the Kir2.1 potassium channel) mRNA was reduced in disease muscle. The resulting muscle hyperexcitability causes involuntary and prolonged contractions that may contribute to the chorea, rigidity, and dystonia that characterize Huntington disease.

  12. Synthesis and Characterization of A Small Molecule CFTR Chloride Channel Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHANG Heng-jun; SU Zhong-min; ZHOU Jin-song; YANG Hong; MA Tong-hui

    2004-01-01

    A thiazolidinone CFTR inhibitor(CFTRinh-172) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor, CFTRinh-172, can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl-methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTRinh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay(Kd≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay(Kd≈0.2 μmol/L), indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTRinh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTRinh-172 for in vivo pharmacokinetics studies.

  13. Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C.; Penmatsa, Himabindu; Marrs, Kevin L.; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J.; Schuetz, John D.; Naren, Anjaparavanda P.

    2007-01-01

    SUMMARY Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, is functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. MRP4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea. PMID:18045536

  14. [Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases].

    Science.gov (United States)

    Dołowy, Krzysztof; Bednarczyk, Piotr; Hordejuk, Renata; Dworakowska, Beata; Nurowska, Ewa; Jarzabek, Wanda

    2002-01-01

    There are 9 channels of the ClC family in mammals and few others in fishes, plants, yeast and bacteria. The ClC channels are present in different tissues and play a role in transmembrane potential stabilization, transepithelial transport, cell volume regulation, acidification of intracellular organelles. The genetic defects of ClC-1 chloride channel lead to myotonias, the defect in ClC-5 channel to the formation of stones in kidney, while the defect in ClC-Kb channel leads to the Bartter's syndrome.

  15. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia.

    Directory of Open Access Journals (Sweden)

    Hongtao Sun

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR and Calcium-activated Chloride Conductance (CaCC each play critical roles in maintaining normal hydration of epithelial surfaces including the airways and colon. TGF-beta is a genetic modifier of cystic fibrosis (CF, but how it influences the CF phenotype is not understood.We tested the hypothesis that TGF-beta potently downregulates chloride-channel function and expression in two CF-affected epithelia (T84 colonocytes and primary human airway epithelia compared with proteins known to be regulated by TGF-beta.TGF-beta reduced CaCC and CFTR-dependent chloride currents in both epithelia accompanied by reduced levels of TMEM16A and CFTR protein and transcripts. TGF-beta treatment disrupted normal regulation of airway-surface liquid volume in polarized primary human airway epithelia, and reversed F508del CFTR correction produced by VX-809. TGF-beta effects on the expression and activity of TMEM16A, wtCFTR and corrected F508del CFTR were seen at 10-fold lower concentrations relative to TGF-beta effects on e-cadherin (epithelial marker and vimentin (mesenchymal marker expression. TGF-beta downregulation of TMEM16A and CFTR expression were partially reversed by Smad3 and p38 MAPK inhibition, respectively.TGF-beta is sufficient to downregulate two critical chloride transporters in two CF-affected tissues that precedes expression changes of two distinct TGF-beta regulated proteins. Our results provide a plausible mechanism for CF-disease modification by TGF-beta through effects on CaCC.

  16. A novel Toxoplasma gondii calcium-dependent protein kinase

    Directory of Open Access Journals (Sweden)

    Tzen M.

    2007-06-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite that infects all types of cells in humans. A family of calcium-dependent protein kinases (CDPKs, previously identified as important in the development of plants and protists, was recently shown to play a role in the infectivity of apicomplexans, and in motility and host cell invasion in particular. We report here the isolation of a new calcium-dependent protein kinase gene from the human toxoplasmosis parasite, Toxoplasma gondii. The gene consists of 12 exons. The encoded protein, TgCDPK4, consists of the four characteristic domains of members of the CDPK family and is most similar to PfCDPK2 from Plasmodium falciparum. We measured TgCDPK4 activity, induced by calcium influx, using a kinase assay. A calcium chelator (EGTA inhibited this activity. These findings provide evidence of signal transduction involving members of the CDPK family in T. gondii.

  17. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus.

    Science.gov (United States)

    McCavera, Samantha; Rogers, Adrian T; Yates, Darran M; Woods, Debra J; Wolstenholme, Adrian J

    2009-06-01

    Nematode glutamate-gated chloride channels are targets of the macrocyclic lactones, the most important group of anthelmintics available. In Xenopus laevis oocytes, channels formed by the GluClalpha3B subunit from the parasite Haemonchus contortus were more sensitive to l-glutamate (EC(50) = 27.6 +/- 2.7 microM) than those formed by the homologous subunit from Caenorhabditis elegans (EC(50) = 2.2 +/- 0.12 mM). Ibotenate was a partial agonist (EC(50) = 87.7 +/- 3.5 microM). The H. contortus channels responded to low concentrations of ivermectin (estimated EC(50) = approximately 0.1 +/- 1.0 nM), opening slowly and irreversibly in a highly cooperative manner: the rate of channel opening was concentration-dependent. Responses to glutamate and ivermectin were inhibited by picrotoxinin and fipronil. Mutating an N-terminal domain amino acid, leucine 256, to phenylalanine increased the EC(50) for l-glutamate to 92.2 +/- 3.5 microM, and reduced the Hill number from 1.89 +/- 0.35 to 1.09 +/- 0.16. It increased the K(d) for radiolabeled ivermectin binding from 0.35 +/- 0.1 to 2.26 +/- 0.78 nM. Two other mutations (E114G and V235A) had no effect on l-glutamate activation or ivermectin binding: one (T300S) produced no detectable channel activity, but ivermectin binding was similar to wild-type. The substitution of any aromatic amino acid for Leu256 had similar effects in the radioligand binding assay. Molecular modeling studies suggested that the GluCl subunits have a fold similar to that of other Cys-loop ligand-gated ion channels and that amino acid 256 was unlikely to play a direct role in ligand binding but may be involved in mediating the allosteric properties of the receptor.

  18. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  19. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots.

    Science.gov (United States)

    Trela, Zenon; Burdach, Zbigniew; Siemieniuk, Agnieszka; Przestalski, Stanisław; Karcz, Waldemar

    2015-01-01

    In the present study, patch-clamp techniques have been used to investigate the effect of trimethyltin chloride (Met3SnCl) on the slow vacuolar (SV) channels in vacuoles from red beet (Beta vulgaris L.) taproots. Activity of SV channels has been measured in whole-vacuole and cytosolic side-out patch configurations. It was found that addition of trimethyltin chloride to the bath solution suppressed, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant, τ, increased significantly in the presence of the organotin. When single channel activity was analyzed, only little channel activity could be recorded at 100 μM Met3SnCl. Trimethyltin chloride added to the bath medium significantly decreased (by ca. threefold at 100 μM Met3SnCl and at 100 mV voltage, as compared to the control medium) the open probability of single channels. Single channel recordings obtained in the presence and absence of trimethyltin chloride showed that the organotin only slightly (by <10%) decreased the unitary conductance of single channels. It was also found that Met3SnCl significantly diminished the number of SV channel openings, whereas it did not change the opening times of the channels. Taking into account the above and the fact that under the here applied experimental conditions (pH = 7.5) Met3SnCl is a non-dissociated (more lipophilic) compound, we suggest that the suppression of SV currents observed in the presence of the organotin results probably from its hydrophobic properties allowing this compound to translocate near the selectivity filter of the channel.

  20. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    Science.gov (United States)

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  1. Ovine congenital myotonia associated with a mutation in the muscle chloride channel gene.

    Science.gov (United States)

    Monteagudo, Luis Vicente; Tejedor, María Teresa; Ramos, Juan José; Lacasta, Delia; Ferrer, Luis Miguel

    2015-04-01

    Congenital myotonia (CM) is characterised by a delay in muscular relaxation after sudden contractions. In a recent outbreak of ovine CM affecting 1% of new-born lambs in a Spanish flock of Rasa Aragonesa sheep, a comparative pathology approach was taken: because a mutation in the muscle chloride channel gene (CLCN1) was identified as responsible for CM in goats, the same gene was sequenced in the affected lambs. A non-synonymous single nucleotide variation (SNV) in the second exon of CLCN1 was associated with this pathology. Rams carrying this SNV heterozygously were thereafter identified and replaced by wild-type homozygous young males. No additional CM cases were detected in subsequent lambing seasons.

  2. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2010-12-01

    Full Text Available Myotonia congenita (MC is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1. To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population.

  3. Emerging role of cystic fibrosis transmembrane conductance regulator- an epithelial chloride channel in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Yuning Hou; Xiaoqing Guan; Zhe Yang; Chunying Li

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator(CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.

  4. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis.

    Science.gov (United States)

    Telles, Connor J; Decker, Sarah E; Motley, William W; Peters, Alexander W; Mehr, Ali Poyan; Frizzell, Raymond A; Forrest, John N

    2016-12-01

    In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K(+) conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K(+) channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K(+) channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K(+) channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.

  5. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  6. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.

    Science.gov (United States)

    Wang, Wuyang; Linsdell, Paul

    2012-03-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.

  7. Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.

    Science.gov (United States)

    Wang, Xiaohui; Bompadre, Silvia G; Li, Min; Hwang, Tzyh-Chang

    2009-01-01

    The canonical sequence LSGGQ, also known as the signature sequence, defines the adenosine triphosphate (ATP)-binding cassette transporter superfamily. Crystallographic studies reveal that the signature sequence, together with the Walker A and Walker B motifs, forms the ATP-binding pocket upon dimerization of the two nucleotide-binding domains (NBDs) in a head-to-tail configuration. The importance of the signature sequence is attested by the fact that a glycine to aspartate mutation (i.e., G551D) in cystic fibrosis transmembrane conductance regulator (CFTR) results in a severe phenotype of cystic fibrosis. We previously showed that the G551D mutation completely eliminates ATP-dependent gating of the CFTR chloride channel. Here, we report that micromolar [Cd(2+)] can dramatically increase the activity of G551D-CFTR in the absence of ATP. This effect of Cd(2+) is not seen in wild-type channels or in G551A. Pretreatment of G551D-CFTR with the cysteine modification reagent 2-aminoethyl methane thiosulfonate hydrobromide protects the channel from Cd(2+) activation, suggesting an involvement of endogenous cysteine residue(s) in mediating this effect of Cd(2+). The mutants G551C, L548C, and S549C, all in the signature sequence of CFTR's NBD1, show robust response to Cd(2+). On the other hand, negligible effects of Cd(2+) were seen with T547C, Q552C, and R553C, indicating that a specific region of the signature sequence is involved in transmitting the signal of Cd(2+) binding to the gate. Collectively, these results suggest that the effect of Cd(2+) is mediated by a metal bridge formation between yet to be identified cysteine residue(s) and the engineered aspartate or cysteine in the signature sequence. We propose that the signature sequence serves as a switch that transduces the signal of ligand binding to the channel gate.

  8. Increased Expression of the Calcium-Activated Chloride Channel in Hclca1 in Airways of Patients with Obstructive Chronic Bronchitis

    Directory of Open Access Journals (Sweden)

    Hans-Peter Hauber

    2005-01-01

    Full Text Available BACKGROUND: Interleukin (IL-9 and its effect on enhancing the human calcium-activated chloride channel 1 (hCLCA1 expression have been shown to induce mucin production. Increased expression of hCLCA1 may, in turn, contribute to mucus overproduction in chronic obstructive pulmonary disease (COPD with a chronic bronchitis (CB phenotype.

  9. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

    Science.gov (United States)

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J.; Woodruff, Prescott G.; Solberg, Owen D.; Donne, Matthew L.; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V.; Wolters, Paul J.; Hogan, Brigid L. M.; Finkbeiner, Walter E.; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R.

    2012-01-01

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms. PMID:22988107

  10. Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Vanessa Dufour

    Full Text Available Cys-loop ligand-gated ion channels (LGICs mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480, SmGluCl-2 (Smp_015630 and SmGluCl-3 (Smp_104890. A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730. Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC in Xenopus oocytes, and shown to encode Cl⁻-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC₅₀ values of 7-26 µM. Chloride selectivity was confirmed by current-voltage (I/V relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM, indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets.

  11. Expression pattern and function of alternative splice variants of glutamate-gated chloride channel in the housefly Musca domestica.

    Science.gov (United States)

    Kita, Tomo; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2014-02-01

    Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. cDNAs encoding two alternative splice variants (MdGluClB and C) of the GluCl subunit were cloned from the housefly Musca domestica. The expression patterns of three variants, including the previously reported MdGluClA, differed among the body parts (head, thorax, abdomen, and leg) of the adult housefly and among developmental stages (embryo, larva, pupa, and adult). The MdGluClA and B transcripts were abundant in the central nervous system of the adult, whereas the MdGluClC transcript was expressed in the central nervous system and as the predominant variant in the peripheral tissues. The sensitivities to the agonist glutamate and the allosteric activator ivermectin B1a did not differ between channels containing MdGluCl variants when they were singly or co-expressed in Xenopus oocytes. By contrast, MdGluClA and B channels were more sensitive to the channel blockers fipronil and picrotoxinin than was MdGluClC channels. Heteromeric channels containing different subunit variants were more sensitive to picrotoxinin than were homomeric channels. Heteromeric channels were more sensitive to fipronil than were homomeric MdGluClC channels but not than homomeric MdGluClA and B channels. These results suggest that functionally indistinguishable but pharmacologically distinct GluCls are expressed in a spatially and temporally distinct manner in the housefly.

  12. Expression of CLC-K chloride channels in the rat cochlea.

    Science.gov (United States)

    Qu, Chunyan; Liang, Fenghe; Hu, Wei; Shen, Zhijun; Spicer, Samuel S; Schulte, Bradley A

    2006-03-01

    Current models of the lateral K+ recycling pathway in the mammalian cochlea include two multicellular transport networks separated from one another by three interstitial gaps. The first gap is between outer hair cells and Deiters cells, the second is between outer sulcus cells and type II spiral ligament fibrocytes and the third is between intermediate and marginal cells in the stria vascularis. K+ taken up by cells bordering these interstitial spaces is accompanied by Cl-. Maintaining appropriate electrolyte balance and membrane potentials in these cells requires a mechanism for exit of the resorbed Cl-. One possible candidate for regulating this Cl- efflux is ClC-K, a chloride channel previously thought to be kidney specific. Here, we demonstrate the expression of both known isoforms of ClC-K in the organ of Corti, spiral ligament and stria vascularis of the rat cochlea by immunohistochemical, Western blot and RT-PCR analysis. These results indicate a role for ClC-K in mediating Cl- recycling in the cochlea. The widespread expression of both ClC-K isoforms in the cochlea may help to explain the symptoms of Bartter's syndrome Type III, a mutation in the hClC-Kb gene (human homologue of ClC-K2), which results in renal salt wasting without deafness. These data support the hypothesis that both isoforms of ClC-K are co-expressed in some cell membranes and account for the preservation of hearing in the presence of a mutation in only one channel isoform.

  13. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects.

    Science.gov (United States)

    Sweetser, Seth; Busciglio, Irene A; Camilleri, Michael; Bharucha, Adil E; Szarka, Lawrence A; Papathanasopoulos, Athanasios; Burton, Duane D; Eckert, Deborah J; Zinsmeister, Alan R

    2009-02-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 microg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P lubiprostone 24 microg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study.

  14. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  15. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  16. A calcium-dependent potassium current is increased by a single-gene mutation in Paramecium.

    Science.gov (United States)

    Hennessey, T M; Kung, C

    1987-01-01

    The membrane currents of wild type Paramecium tetraurelia and the behavioral mutant teaA were analyzed under voltage clamp. The teaA mutant was shown to have a greatly increased outward current which was blocked completely by the combined use of internally delivered Cs+ and external TEA+. This, along with previous work (Satow, Y., Kung, C., 1976, J. Exp. Biol. 65:51-63) identified this as a K+ current. It was further found to be a calcium-activated K+ current since this increased outward K+ current cannot be elicited when the internal calcium is buffered with injected EGTA. The mutation pwB, which blocks the inward calcium current, also blocks this increased outward K+ current in teaA. This shows that this mutant current is activated by calcium through the normal depolarization-sensitive calcium channel. While tail current decay kinetic analysis showed that the apparent inactivation rates for this calcium-dependent K+ current are the same for mutant and wild type, the teaA current activates extremely rapidly. It is fully activated within 2 msec. This early activation of such a large outward current causes a characteristic reduction in the amplitude of the action potential of the teaA mutant. The teaA mutation had no effect on any of the other electrophysiological parameters examined. The phenotype of the teaA mutant is therefore a general decrease in responsiveness to depolarizing stimuli because of a rapidly activating calcium-dependent K+ current which prematurely repolarizes the action potential.

  17. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Susan K Glendinning

    Full Text Available Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316 under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in

  18. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans.

    Science.gov (United States)

    Glendinning, Susan K; Buckingham, Steven D; Sattelle, David B; Wonnacott, Susan; Wolstenholme, Adrian J

    2011-01-01

    Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C

  19. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics

    Directory of Open Access Journals (Sweden)

    Timothy Lynagh

    2014-12-01

    Full Text Available Pharmacological targeting of glutamate-gated chloride channels (GluCls is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs against schistosomiasis, flatworm GluCls should be evaluated as potential anthelmintic targets. This study sought to identify agonists or modulators of one such GluCl, SmGluCl-2 from the parasitic flatworm Schistosoma mansoni. The effects of nine glutamate-like compounds and three monoterpenoid ion channel modulators were measured by electrophysiology at SmGluCl-2 recombinantly expressed in Xenopus laevis oocytes. For comparison with an established anthelmintic target, experiments were also performed on the AVR-14B GluCl from the parasitic roundworm Haemonchus contortus. l-Glutamate was the most potent agonist at both GluCls, but l-2-aminoadipate, d-glutamate and d-2-aminoadipate activated SmGluCl-2 (EC50 1.0 ± 0.1 mM, 2.4 ± 0.4 mM, 3.6 ± 0.7 mM, respectively more potently than AVR-14B. Quisqualate activated only SmGluCl-2 whereas l-aspartate activated only AVR-14B GluCls. Regarding the monoterpenoids, both GluCls were inhibited by propofol, thymol and menthol, SmGluCl-2 most potently by thymol (IC50 484 ± 85 μM and least potently by menthol (IC50 > 3 mM. Computational docking suggested that agonist and inhibitor potency is attributable to particular interactions with extracellular or membrane-spanning amino acid residues. These results reveal that flatworm GluCls are pharmacologically susceptible to numerous agonists and modulators and indicate that changes to the glutamate γ-carboxyl or to the propofol 6-isopropyl group can alter the differential pharmacology at flatworm and roundworm GluCls. This should inform the development of more potent compounds and in turn lead to novel anthelmintics.

  20. Calcium-dependent potassium current in barnacle photoreceptor.

    Science.gov (United States)

    Bolsover, S R

    1981-12-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.

  1. Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis.

    Science.gov (United States)

    Cabrero, Pablo; Terhzaz, Selim; Romero, Michael F; Davies, Shireen A; Blumenthal, Edward M; Dow, Julian A T

    2014-09-30

    Epithelia frequently segregate transport processes to specific cell types, presumably for improved efficiency and control. The molecular players underlying this functional specialization are of particular interest. In Drosophila, the renal (Malpighian) tubule displays the highest per-cell transport rates known and has two main secretory cell types, principal and stellate. Electrogenic cation transport is known to reside in the principal cells, whereas stellate cells control the anion conductance, but by an as-yet-undefined route. Here, we resolve this issue by showing that a plasma membrane chloride channel, encoded by ClC-a, is exclusively expressed in the stellate cell and is required for Drosophila kinin-mediated induction of diuresis and chloride shunt conductance, evidenced by chloride ion movement through the stellate cells, leading to depolarization of the transepithelial potential. By contrast, ClC-a knockdown had no impact on resting secretion levels. Knockdown of a second CLC gene showing highly abundant expression in adult Malpighian tubules, ClC-c, did not impact depolarization of transepithelial potential after kinin stimulation. Therefore, the diuretic action of kinin in Drosophila can be explained by an increase in ClC-a-mediated chloride conductance, over and above a resting fluid transport level that relies on other (ClC-a-independent) mechanisms or routes. This key segregation of cation and anion transport could explain the extraordinary fluid transport rates displayed by some epithelia.

  2. Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Broadbent, Steven D; Wang, Wuyang; Linsdell, Paul

    2014-10-01

    Activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is thought to be controlled by cytoplasmic factors. However, recent evidence has shown that overall channel activity is also influenced by extracellular anions that interact directly with the extracellular loops (ECLs) of the CFTR protein. Very little is known about the structure of the ECLs or how substances interacting with these ECLs might affect CFTR function. We used patch-clamp recording to investigate the accessibility of cysteine-reactive reagents to cysteines introduced throughout ECL1 and 2 key sites in ECL4. Furthermore, interactions between ECL1 and ECL4 were investigated by the formation of disulfide crosslinks between cysteines introduced into these 2 regions. Crosslinks could be formed between R899C (in ECL4) and a number of sites in ECL1 in a manner that was dependent on channel activity, suggesting that the relative orientation of these 2 loops changes on activation. Formation of these crosslinks inhibited channel function, suggesting that relative movement of these ECLs is important to normal channel function. Implications of these findings for the effects of mutations in the ECLs that are associated with cystic fibrosis and interactions with extracellular substances that influence channel activity are discussed.

  3. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    Science.gov (United States)

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP.

  4. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  5. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  6. A solid phase honey-like channel method for synthesizing urea-ammonium chloride cocrystals on industrial scale

    Science.gov (United States)

    Xue, Bingchun; Mao, Meiling; Liu, Yanhong; Guo, Jinyu; Li, Jing; Liu, Erbao

    2016-05-01

    Unanticipated a new and simple urea-ammonium chloride cocrystal synthesis method on industrial scale was found during attempts to produce a kind of granulated compound fertilizer. The aggregation of fertilizer powder can make the interaction among particles from loose to close, which generate mechanical pressure and in turn act as the driving force to benefit cocrystal growth. Additionally, the honeycomb-like channels constructed by other coexisting compound make the water evaporates more moderate, which can help the formation of supersaturated solution at suitable rate, further promote the growth of cocrystal. This approach possibly opens a new route toward the developing methodologies for cocrystal synthesis.

  7. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  8. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Science.gov (United States)

    Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  9. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  10. Inhibition of ANO1/TMEM16A Chloride Channel by Idebenone and Its Cytotoxicity to Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Yohan Seo

    Full Text Available The expression levels of anoctamin 1 (ANO1, TMEM16A, a calcium-activated chloride channel (CaCC, are significantly increased in several tumors, and inhibition of ANO1 is known to reduce cell proliferation and migration. Here, we performed cell-based screening of a collection of natural products and drug-like compounds to identify inhibitors of ANO1. As a result of the screening, idebenone, miconazole and plumbagin were identified as novel ANO1 inhibitors. Electrophysiological studies showed that idebenone, a synthetic analog of coenzyme Q10, completely blocked ANO1 activity in FRT cells expressing ANO1 without any effect on intracellular calcium signaling and CFTR, a cAMP-regulated chloride channel. The CaCC activities in PC-3 and CFPAC-1 cells expressing abundant endogenous ANO1 were strongly blocked by idebenone. Idebenone inhibited cell proliferation and induced apoptosis in PC-3 and CFPAC-1 cells, but not in A549 cells, which do not express ANO1. These data suggest that idebenone, a novel ANO1 inhibitor, has potential for use in cancer therapy.

  11. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers.

    Science.gov (United States)

    Camilleri, Michael; Bharucha, Adil E; Ueno, Ryuji; Burton, Duane; Thomforde, George M; Baxter, Kari; McKinzie, Sanna; Zinsmeister, Alan R

    2006-05-01

    Chloride channels modulate gastrointestinal neuromuscular functions in vitro. Lubiprostone, a selective type 2 chloride channel (ClC-2) activator, induces intestinal secretion and has been shown to relieve constipation in clinical trials; however, the effects of lubiprostone on gastric function and whole gut transit in humans are unclear. Our aim was to compare the effects of the selective ClC-2 activator lubiprostone on maximum tolerated volume (MTV) of a meal, postprandial symptoms, gastric volumes, and gastrointestinal and colonic transit in humans. We performed a randomized, parallel-group, double-blind, placebo-controlled study evaluating the effects of lubiprostone (24 microg bid) in 30 healthy volunteers. Validated methods were used: scintigraphic gastrointestinal and colonic transit, SPECT to measure gastric volumes, and the nutrient drink ("satiation") test to measure MTV and postprandial symptoms. Lubiprostone accelerated small bowel and colonic transit, increased fasting gastric volume, and retarded gastric emptying. MTV values were reduced compared with placebo; however, the MTV was within the normal range for healthy adults in 13 of 14 participants, and there was no significant change compared with baseline measurements. Lubiprostone had no significant effect on postprandial gastric volume or aggregate symptoms but did decrease fullness 30 min after the fully satiating meal. Thus the ClC-2 activator lubiprostone accelerates small intestinal and colonic transit, which confers potential in the treatment of constipation.

  12. Neuroprotective effects of ClC-3 chloride channel in glutamate-induced retinal ganglion cell RGC-5 apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Ning Han; Ligang Jiang; Yajuan Zheng; Lifeng Liu

    2011-01-01

    Transforming growth factor β plays a role in regulation of apoptosis in ClC-3 and the Smads signaling pathway, although the underlying mechanisms remain unclear. The present study determined possible signal transduction mechanisms based on CIC-3 expression, which accordingly affected apoptosis of retinal ganglion cells in a glutamate-induced retinal ganglion cell RGC-5 apoptosis model. Results revealed significantly increased cell survival rate and significantly decreased apoptosis rate following apoptosis of ClC-3 cDNA-transfected glutamate-induced retinal ganglion cells. Following inhibition of the ClC-3 chloride channel using RNAi technology, cell survival and apoptosis rates were reversed. In addition, expression of transforming growth factor β2, Smads2, Smads3, Smads4, and Smads7 increased to varying degrees. These results suggest that ClC-3 chloride channel plays a protective role in glutamate-induced apoptosis of retinal ganglion cells, and transforming growth factor β/Smads signal transduction pathways are involved in this process.

  13. Basolateral potassium channels of rabbit colon epithelium: role in sodium absorption and chloride secretion.

    Science.gov (United States)

    Turnheim, Klaus; Plass, Herbert; Wyskovsky, Wolfgang

    2002-02-18

    In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence

  14. Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.

    Science.gov (United States)

    Zhou, Zi-Liang; Jiang, Jing; Yin, Jiang-An; Cai, Shi-Qing

    2014-06-25

    Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.

  15. Contribution of a lysine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.

    Science.gov (United States)

    Negoda, Alexander; El Hiani, Yassine; Cowley, Elizabeth A; Linsdell, Paul

    2017-02-21

    The anion selectivity and conductance of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are determined predominantly by interactions between permeant anions and the narrow region of the channel pore. This narrow region has therefore been described as functioning as the "selectivity filter" of the channel. Multiple pore-lining transmembrane segments (TMs) have previously been shown to contribute to the selectivity filter region. However, little is known about the three-dimensional organization of this region, or how multiple TMs combine to determine its functional properties. In the present study we have used patch clamp recording to identify changes in channel function associated with the formation of disulfide cross-links between cysteine residues introduced into different TMs within the selectivity filter. Cysteine introduced at position L102 in TM1 was able to form disulfide bonds with F337C and T338C in TM6, two positions that are known to play key roles in determining anion permeation properties. Consistent with this proximal arrangement of L102, F337 and T338, different mutations at L102 altered anion selectivity and conductance properties in a way that suggests that this residue plays an important role in determining selectivity filter function, albeit a much lesser role than that of F337. These results suggest an asymmetric three-dimensional arrangement of the key selectivity filter region of the pore, as well as having important implications regarding the molecular mechanism of anion permeation.

  16. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  17. Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation*♦

    Science.gov (United States)

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.

    2012-01-01

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050

  18. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation.

    Science.gov (United States)

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J

    2012-12-07

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.

  19. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Directory of Open Access Journals (Sweden)

    Oscar Sacchi

    Full Text Available The permeability of the nicotinic channel (nAChR at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh, were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV resulted in a change of the synaptic potassium/sodium permeability ratio (P(K/P(Na from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh, by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn and of the EPSC decay time constant. Reduction of [Cl(-](o to 18 mM resulted in a change of P(K/P(Na from 1.57 (control to 2.26, associated with a reversible shift of E(ACh by about -10 mV. Application of 200 nM αBgTx evoked P(K/P(Na and g(syn modifications similar to those observed in reduced [Cl(-](o. The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K/P(Na changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization, while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  20. Voltage- and calcium-dependent motility of saccular hair bundles

    Science.gov (United States)

    Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2015-12-01

    Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.

  1. Calcium dependence of Eugenol tolerance and toxicity in Saccharomyces cerevisiae

    OpenAIRE

    Stephen K Roberts; Martin McAinsh; Hanna Cantopher; Sean Sandison

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. ...

  2. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    Science.gov (United States)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  3. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

    Directory of Open Access Journals (Sweden)

    Goldstein Peter A

    2005-01-01

    Full Text Available Abstract Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.

  4. The secret life of CFTR as a calcium-activated chloride channel.

    Science.gov (United States)

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.

  5. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.

    Science.gov (United States)

    Linsdell, Paul

    2015-07-01

    Binding of cytoplasmic anionic open channel blockers within the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is antagonized by extracellular Cl(-). In the present work, patch clamp recording was used to investigate the interaction between extracellular Cl(-) (and other anions) and cytoplasmic Pt(NO2)4(2-) ions inside the CFTR channel pore. In constitutively open (E1371Q-CFTR) channels, these different anions bind to two separate sites, located in the outer and inner vestibules of the pore respectively, in a mutually antagonistic fashion. A mutation in the inner vestibule (I344K) that greatly increased Pt(NO2)4(2-) binding affinity also greatly strengthened antagonistic Cl(-):blocker interactions as well as the voltage-dependence of block. Quantitative analysis of ion binding affinity suggested that the I344K mutation strengthened interactions not only with intracellular Pt(NO2)4(2-) ions but also with extracellular Cl(-), and that altered blocker Cl(-)- and voltage-dependence were due to the introduction of a novel type of antagonistic ion:ion interaction inside the pore that was independent of Cl(-) binding in the outer vestibule. It is proposed that this mutation alters the arrangement of anion binding sites inside the pore, allowing both Cl(-) and Pt(NO2)4(2-) to bind concurrently within the inner vestibule in a strongly mutually antagonistic fashion. However, the I344K mutation does not increase single channel conductance following disruption of Cl(-) binding in the outer vestibule in R334Q channels. Implications for the arrangement of ion binding sites in the pore, and their functional consequences for blocker binding and for rapid Cl(-) permeation, are discussed.

  6. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    OpenAIRE

    Fischer, H.; Machen, T E

    1996-01-01

    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantl...

  7. Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeon

    Full Text Available Calcium (Ca(2+-activated chloride (Cl(- channels (CaCCs play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca(2+-activated Cl(- currents (ICl(Ca regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca remains unclear. The transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1, has been recently validated as a CaCC and is widely expressed in various secretory epithelia and nervous tissues. Despite the fact that tmem16a was first cloned in the retina, there is little information on its cellular localization and function in the mammalian retina. In this study, we found that ANO1 was abundantly expressed as puncta in 2 synaptic layers. More specifically, ANO1 immunoreactivity was observed in the presynaptic terminals of various retinal neurons, including photoreceptors. ICl(Ca was first detected in dissociated rod bipolar cells expressing ANO1. ICl(Ca was abolished by treatment with the Ca(2+ channel blocker Co(2+, the L-type Ca(2+ channel blocker nifedipine, and the Cl(- channel blockers 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB and niflumic acid (NFA. More specifically, a recently discovered ANO1-selective inhibitor, T16Ainh-A01, and a neutralizing antibody against ANO1 inhibited ICl(Ca in rod bipolar cells. Under a current-clamping mode, the suppression of ICl(Ca by using NPPB and T16Ainh-A01 caused a prolonged Ca(2+ spike-like depolarization evoked by current injection in dissociated rod bipolar cells. These results suggest that ANO1 confers ICl(Ca in retinal neurons and acts as an intrinsic regulator of the presynaptic membrane potential during synaptic transmission.

  8. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

    Directory of Open Access Journals (Sweden)

    Javier Alamilla

    Full Text Available The medial nucleus of the trapezoid body (MNTB is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO is of interest because this immature inhibitory projection is known to undergo tonotopic refinement during an early postnatal period, and because during this period individual MNTB terminals in the LSO transiently release glycine GABA and glutamate. Developmental changes in calcium-dependent release are understood to be required to allow various auditory nuclei to follow high frequency activity; however, little is known about maturation of calcium-dependent release in the MNTB-LSO pathway, which has been presumed to have less stringent requirements for high-fidelity temporal following. In acute brainstem slices of rats age postnatal day 1 to 15 we recorded whole-cell responses in LSO principal neurons to electrical stimulation in the MNTB in order to measure sensitivity to external calcium, the contribution of different voltage-gated calcium channel subtypes to vesicular release, and the maturation of these measures for both GABA/glycine and glutamate transmission. Our results establish that release of glutamate at MNTB-LSO synapses is calcium-dependent. Whereas no significant developmental changes were evident for glutamate release, GABA/glycine release underwent substantial changes over the first two postnatal weeks: soon after birth L-type, N-type, and P/Q-type voltage-gated calcium channels (VGCCs together mediated release, but after hearing onset P/Q-type VGCCs predominated. Blockade of P/Q-type VGCCs reduced the estimated quantal number for GABA/gly and glutamate transmission at P5-8 and the frequency of evoked miniature glycinergic events at P12-15, without apparent effects on spontaneous release of

  9. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated.

  10. The CLC-2 Chloride Channel Modulates ECM Synthesis, Differentiation, and Migration of Human Conjunctival Fibroblasts via the PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Sun, Lixia; Dong, Yaru; Zhao, Jing; Yin, Yuan; Zheng, Yajuan

    2016-06-09

    Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel (CLC)-2 in migration, transition to myofibroblasts and extracellular matrix (ECM) synthesis of HconF, a small interfering RNA (siRNA) approach was applied. TGF-β1-induced migration and transition of fibroblasts to myofibroblasts characterized by α-smooth muscle actin (α-SMA) expression, supported by increased endogenous expression of CLC-2 protein and mRNA transcripts. ECM (collagen I and fibronectin) synthesis in HConF was enhanced by TGF-β1. CLC-2 siRNA treatment reduced TGF-β1-induced cell migration, transition of fibroblasts to myofibroblasts, and ECM synthesis of HConF. CLC-2 siRNA treatment in the presence of TGF-β1 inhibited phosphorylation of PI3K and Akt in HConF. These findings demonstrate that CLC-2 chloride channels are important for TGF-β1-induced migration, differentiation, and ECM synthesis via PI3K/Akt signaling in HConF.

  11. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.

    Science.gov (United States)

    Picollo, Alessandra; Liantonio, Antonella; Babini, Elena; Camerino, Diana Conte; Pusch, Michael

    2007-04-01

    CLC-K Cl(-) channels belong to the CLC protein family. In kidney and inner ear, they are involved in transepithelial salt transport. Mutations in ClC-Kb lead to Bartter's syndrome, and mutations in the associated subunit barttin produce Bartter's syndrome and deafness. We have previously found that 3-phenyl-CPP blocks hClC-Ka and rClC-K1 from the extracellular side in the pore entrance. Recently, we have shown that niflumic acid (NFA), a nonsteroidal anti-inflammatory fenamate, produces biphasic behavior on human CLC-K channels that suggests the presence of two functionally different binding sites: an activating site and a blocking site. Here, we investigate in more detail the interaction of NFA on CLC-K channels. Mutants that altered block by 3-phenyl-2-(p-chlorophenoxy)propionic acid (CPP) had no effect on NFA block, indicating that the inhibition binding site of NFA is different from that of 3-phenyl-CPP and flufenamic acid. Moreover, NFA does not compete with extracellular Cl(-) ions, suggesting that the binding sites of NFA are not located deep in the pore. Differently from ClC-Ka, on the rat homologue ClC-K1, NFA has only an inhibitory effect. We developed a quantitative model to describe the complex action of NFA on ClC-Ka. The model predicts that ClC-Ka possesses two NFA binding sites: when only one site is occupied, NFA increases ClC-Ka currents, whereas the occupation of both binding sites leads to channel block.

  12. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  13. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  14. Physiological roles and diseases of tmem16/anoctamin proteins: are they all chloride channels?

    Institute of Scientific and Technical Information of China (English)

    Charity DURAN; H Criss HARTZELL

    2011-01-01

    The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca2+-activated Cl- channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8),has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia,and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family.

  15. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    OpenAIRE

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R.; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine res...

  16. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.

    Science.gov (United States)

    El Hiani, Yassine; Negoda, Alexander; Linsdell, Paul

    2016-05-01

    Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.

  17. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  18. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Science.gov (United States)

    Xu, Yan; Furutani, Shogo; Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  19. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia.

    Science.gov (United States)

    Dargelos, E; Poussard, S; Brulé, C; Daury, L; Cottin, P

    2008-02-01

    The calcium-dependent proteolytic system is composed of cysteine proteases named calpains. They are ubiquitous or tissue-specific enzymes. The two best characterised isoforms are the ubiquitously expressed mu- and m-calpains. Besides its regulation by calcium, calpain activity is tightly controlled by calpastatin, the specific endogenous inhibitor, binding to phospholipids, autoproteolysis and phosphorylation. Calpains are responsible for limited proteolytic events. Among the multitude of substrates identified so far are cytoskeletal and membrane proteins, enzymes and transcription factors. Calpain activity is involved in a large number of physiological and pathological processes. In this review, we will particularly focus on the implication of the calcium-dependent proteolytic system in relation to muscle physiology. Because of their ability to remodel cytoskeletal anchorage complexes, calpains play a major role in the regulation of cell adhesion, migration and fusion, three key steps of myogenesis. Calcium-dependent proteolysis is also involved in the control of cell cycle. In muscle tissue, in particular, calpains intervene in the regeneration process. Another important class of calpain substrates belongs to apoptosis regulating factors. The proteases may thus play a role in muscle cell death, and as a consequence in muscle atrophy. The relationships between calcium-dependent proteolysis and muscle dysfunctions are being further developed in this review with a particular emphasis on sarcopenia.

  20. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    Science.gov (United States)

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  1. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes.

    Science.gov (United States)

    Kanaporis, Giedrius; Blatter, Lothar A

    2016-11-01

    Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca(2+)-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl(-) channel blocker DIDS or lowering external Cl(-) concentration identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.

  2. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  3. Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision.

    Science.gov (United States)

    Iovchev, Mladen; Boutanaev, Alexander; Ivanov, Ivaylo; Wolstenholme, Adrian; Nurminsky, Dmitry; Semenov, Eugene

    2006-01-01

    A recently identified gene, hclA (synonym: ort), codes for an ionotrophic histamine receptor subunit in Drosophila melanogaster, and known hclA mutations lead to defects in the visual system, neurologic disorders and changed responsiveness to neurotoxins. To investigate whether this novel class of receptors is common across the Insecta, we analysed the genomes of 15 other insect species (Diptera, Hymenoptera, Coleoptera, Lepidoptera) and revealed orthologs of hclA in all of them. The predicted receptor domain of HCLA is extensively conserved (86-100% of identity) among the 16 proteins. Minor changes in the amino acid sequence that includes the putative transmembrane domains (TMs) 1-3 were found in non-drosophilid species only. Substantial amino acid variability was observed in the signal polypeptides, the intracellular loop domains and in TM4, in good accordance with known data on sequence variations in ligand-gated ion channels. Pairwise comparisons revealed three consensus sequences for N-glycosylation, conserved in HCLAs of all species studied, as well as a drosophilid-specific putative phosphorylation site. Real-time PCR analysis demonstrated that hclA-mRNA is abundant in heads of adult Drosophila. However, species- and sex-specific variations of the hclA expression levels were also observed.

  4. The chloride intracellular channel 5A stimulates podocyte Rac1, protecting against hypertension-induced glomerular injury.

    Science.gov (United States)

    Tavasoli, Mahtab; Li, Laiji; Al-Momany, Abass; Zhu, Lin-Fu; Adam, Benjamin A; Wang, Zhixiang; Ballermann, Barbara J

    2016-04-01

    Glomerular capillary hypertension elicits podocyte remodeling and is a risk factor for the progression of glomerular disease. Ezrin, which links podocalyxin to actin in podocytes, is activated through the chloride intracellular channel 5A (CLIC5A)-dependent phosphatidylinositol 4,5 bisphosphate (PI[4,5]P2) accumulation. Because Rac1 is involved in podocyte actin remodeling and can promote PI[4,5]P2 production we determined whether CLIC5A-dependent PI[4,5]P2 generation and ezrin activation are mediated by Rac1. In COS7 cells, CLIC5A expression stimulated Rac1 but not Cdc42 or Rho activity. CLIC5A also stimulated phosphorylation of the Rac1 effector Pak1 in COS7 cells and in cultured mouse podocytes. CLIC5A-induced PI[4,5]P2 accumulation and Pak1 and ezrin phosphorylation were all Rac1 dependent. In DOCA/Salt hypertension, phosphorylated Pak increased in podocytes of wild-type, but not CLIC5-deficient mice. In DOCA/salt hypertensive mice lacking CLIC5, glomerular capillary microaneurysms were more frequent and albuminuria was greater than in wild-type mice. Thus, augmented hypertension-induced glomerular capillary injury in mice lacking CLIC5 results from abrogation of Rac1-dependent Pak and ezrin activation, perhaps reducing the tensile strength of the podocyte actin cytoskeleton.

  5. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Sunny Yang XIANG; Linda L YE; LI-lu Marie DUAN; Li-hui LIU; Zhi-dong GE; John A AUCHAMPACH; Garrett J GROSS; Dayue Darrel DUAN

    2011-01-01

    Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postcondtioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.Methods: CFTR knockout (CFTR-/-) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used.In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4%±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4%±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR-/-) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTRgene abolished the protective effects of IPC against I/R-induced apoptosis.Conclusion: These results provide compelling evidence for a critical role for CFTR Cl- channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.

  6. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Tanaya Chatterjee

    Full Text Available Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX and Accessory cholera enterotoxin (Ace secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC inhibitors, namely CaCCinh-A01, digallic acid (DGA and tannic acid. Biophysical studies indicate that the unfolding (induced by urea free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders.

  7. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    Science.gov (United States)

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  8. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    Science.gov (United States)

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.

  9. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung.

    Science.gov (United States)

    Hassan, Fatemat; Nuovo, Gerard J; Crawford, Melissa; Boyaka, Prosper N; Kirkby, Stephen; Nana-Sinkam, Serge P; Cormet-Boyaka, Estelle

    2012-01-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3'UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.

  10. AB095. Increased expression of TMEM16A/Ano1 chloride channel associated with diabetic erectile dysfunction

    Science.gov (United States)

    Ruan, Yajun; Chen, Yingwei; Li, Mingchao; Wang, Tao; Yang, Jun; Rao, Ke; Wang, Shaogang; Yang, Weimin; Liu, Jihong; Ye, Zhangqun

    2016-01-01

    Objective To investigate the presence, location and functional role of TMEM16A/anotamin-1 (Ano1) calcium-activated chloride channel (CaCC) in the penile of rats with diabetic erectile dysfunction. Methods Eight-week-old male Sprague-Dawley (SD) rats were administrated streptozotocin (diabetic) or citrate buffer (control) randomly. Erectile function was measured by cavernous nerve electrostimulation at 12th week after diabetes was induced. The effect of Ano1 specific inhibitor—T16Ainh-A01 on intracavernous pressure (ICP) was evaluated. Then the penile tissues were harvested for molecular exploration. Real-time PCR and Western Blotting were used to assess the expression of Ano1 in penile tissues. Immunofluorescent labelling of penile tissue allowed localization of Ano1. Cavernous smooth muscle cell (CSMC) was cultured in high glucose medium. The change of Ano1 was measured using Western Blotting. The proliferation of CSMC was evaluated by cell counting kit-8 (CCK-8). Results Erectile function was impaired in diabetic rats. The expression of Ano1 was increased in rats with diabetic erectile dysfunction at mRNA and protein levels. Immunofluorescent labelling revealed the presence of Ano1 mainly in cavernous smooth muscle cells. The inhibition of Ano1 increased the ICP of DED rats. High glucose in vitro enhanced the proliferation of CSMC and the expression level of Ano1. Conclusions Ano1 is expressed in rat penile tissue and is increased with diabetes mellitus. The inhibition of Ano1 increased the ICP of DED rats. The alerted Ano1 may be associated with diabetic erectile dysfunction. It is a potential therapy target for ED in the future.

  11. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus.

    Science.gov (United States)

    Tandon, Ritesh; LePage, Keith T; Kaplan, Ray M

    2006-11-01

    The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses. Both genes possess the sequence characteristics typical of GluCls, and phylogenetic analysis confirms that these genes are evolutionarily closely related to GluCls of other nematodes and flies. Complete coding sequences of C. nassatus GluCl-alpha and GluCl-beta were subcloned into pTL1 mammalian expression vector, and proteins were expressed in COS-7 cells. Ivermectin-binding characteristics were determined by incubating COS-7 cell membranes expressing C. nassatus GluCl-alpha and GluCl-beta proteins with [(3)H]ivermectin. In competitive binding experiments, fitting the data to a one site competition model, C. nassatus GluCl-alpha was found to bind [(3)H]ivermectin with a high amount of displaceable binding (IC(50)=208 pM). Compared to the mock-transfected COS-7 cells, the means of [(3)H]ivermectin binding were significantly different for C. nassatus GluCl-alpha and the Haemonchus contortus GluCl (HcGluCla) (p=0.018 and 0.023, respectively) but not for C. nassatus GluCl-beta (p=0.370). This is the first report of orthologs of GluCl genes and in vitro expression of an ivermectin-binding protein in a cyathostomin species. These data suggest the likelihood of a similar mechanism of action of AM drugs in these parasites, and suggest that mechanisms of resistance may also be similar.

  12. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.

    Science.gov (United States)

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine residue within the H-loop located in the C-terminal part of the NBD. However, the contribution of the corresponding region (H-loop) of NBD2 to the CFTR channel gating has not been examined so far. Here we report that the alanine substitution of the conserved dipeptide HR motif (HR-->AA) in the H-loop of NBD2 leads to prolonged open states of CFTR channel, indicating that the H-loop is required for efficient channel closing. On the other hand, the HR-->AA substitution lead to the substantial decrease of CFTR-mediated current density (pA/pF) in transfected HEK 293 cells, as recorded in the whole-cell patch-clamp analysis. These results suggest that the H-loop of NBD2, apart from being required for CFTR channel closing, may be involved in regulating CFTR trafficking to the cell surface.

  13. CFTR and calcium-activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype.

    Science.gov (United States)

    Fischer, Horst; Illek, Beate; Sachs, Lorne; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2010-10-01

    Using cell culture models, we have investigated the relative importance of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCC) in Cl secretion by mucous and serous cells of human airway glands. In transepithelial recordings in Ussing chambers, the CFTR inhibitor CFTR(inh)-172 abolished 60% of baseline Cl secretion in serous cells and 70% in mucous. Flufenamic acid (FFA), an inhibitor of CaCC, reduced baseline Cl secretion by ∼20% in both cell types. Methacholine and ATP stimulated Cl secretion in both cell types, which was largely blocked by treatment with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and partially by mucosal FFA or CFTR(inh)-172 with the exception of methacholine responses in mucous cells, which were not blocked by FFA and partially (∼60%) by CFTR(inh)-172. The effects of ionomycin on short-circuit current (I(sc)) were less than those of ATP or methacholine. Forskolin stimulated Cl secretion only if Cl in the mucosal medium was replaced by gluconate. In whole cell patch-clamp studies of single isolated cells, cAMP-induced Cl currents were ∼3-fold greater in serous than mucous cells. Ionomycin-induced Cl currents were 13 times (serous) or 26 times (mucous) greater than those generated by cAMP and were blocked by FFA. In serous cells, mRNA for transmembrane protein 16A (TMEM16A) was ∼10 times more abundant than mRNA for CFTR. In mucous cells it was ∼100 times more abundant. We conclude: 1) serous and mucous cells both make significant contributions to gland fluid secretion; 2) baseline Cl secretion in both cell types is mediated predominantly by CFTR, but CaCC becomes increasingly important after mediator-induced elevations of intracellular Ca; and 3) the high CaCC currents seen in patch-clamp studies and the high TMEM16A expression in intact polarized cells sheets are not reflected in transepithelial current recordings.

  14. Murine calcium-activated chloride channel family member 3 induces asthmatic airway inflammation independently of allergen exposure

    Institute of Scientific and Technical Information of China (English)

    MEI Li; HE Li; WU Si-si; ZHANG Bo; XU Yong-jian; ZHANG Zhen-xiang; ZHAO Jian-ping

    2013-01-01

    Background Expression of murine calcium-activated chloride channel family member 3 (mCLCA3) has been reported to be increased in the airway epithelium of asthmatic mice challenged with ovalbumin (OVA).However,its role in asthmatic airway inflammation under no OVA exposure has not yet been clarified.Methods mCLCA3 plasmids were transfected into the airways of normal BALB/c mice.mCLCA3 expression and airway inflammation in mouse lung tissue were evaluated.Cell differentials and cytokines in bronchoalveolar lavage fluid (BALF) were analyzed.The expression of mCLCA3 protein and mucus protein mucin-5 subtype AC (MUC5AC) were analyzed by Western blotting.The mRNA levels of mCLCA3,MUC5AC and interleukin-13 (IL-13) were determined quantitatively.Results mCLCA3 expression was not detected in the control group while strong immunoreactivity was detected in the OVA and mCLCA3 plasmid groups,and was strictly localized to the airway epithelium.The numbers of inflammatory cells in lung tissue and BALF were increased in both mCLCA3 plasmid and OVA groups.The protein and mRNA levels of mCLCA3 and MUC5AC in the lung tissue were significantly increased in the mCLCA3 plasmid and OVA groups compared to the control group.The level of IL-13,but not IL-4,IL-5,IFN-γ,CCL2,CCL5 or CCL11,was significantly increased compared with control group in BALF in the mCLCA3 plasmid and OVA groups.The level of IL-13 in the BALF in the mCLCA3 plasmid group was much higher than that in the OVA group (P <0.05).The level of mCLCA3 mRNA in lung tissue was positively correlated with the levels of MUC5AC mRNA in lung tissue,IL-13 mRNA in lung tissue,the number of eosinophils in BALF,and the content of IL-13 protein in BALF.The level of IL-13 mRNA in lung tissue was positively correlated with the number of eosinophils in BALF and the level of MUC5AC mRNA in lung tissue.Conclusion These findings suggest that increased expression of a single-gene,mCLCA3,could simulate an asthma attack,and its mechanism may

  15. Effect of antiallergic herbal agents on chloride channel-3 and immune microenvironment in nasal mucosal epithelia of allergic rhinitis rabbits

    Institute of Scientific and Technical Information of China (English)

    WANG Li-feng; XU Li-juan; GUO Feng-hua; WANG Li-na; SHEN Xiao-hong

    2010-01-01

    Background Allergic rhinitis (AR) is a Th2 dominant cytokine response. Chloride channel-3 (CIC-3) plays an important role in nasal mucosal edema and inflammatory pathologic changes in AR. Antiallergic herbal agents (AHA) are antiallergic herbal products. In the previous study, we have demonstrated that AHA clearly inhibited allergic medium and relieved allergic reaction of AR. The aim of this study was to evaluate the function of CIC-3 and discuss the possible therapeutic effects of AHA on immune microenvironment in AR.Methods AHA were produced and used to treat AR. An animal model of an AR rabbit was established by ovalbumin (OVA). The rhinitis rabbits were randomly divided into three groups: AHA treated group (AHATG), model group (MG) and healthy control group (HCG). The expressions of CIC-3 protein were examined by immunohistochemical method. The mucosal epithelial cells of all the rabbit groups were primarily cultured with tissue culture method in vitro with or without rhlL-4 or rhlL-2. Furthermore, the expressions of CIC-3 mRNA were detected by real-time PCR. The levels of monocyte chemotactic factor-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) protein in culture supernatants were measured by ELISA.Results The expressions of CIC-3 mRNA increased more in mucosal epithelial cells of MG than those in AHATG and HCG (P0.05).Conclusions AHA can inhibit the secretions of CIC-3, MCP-1 and VCAM-1 in mucosal epithelia and improve inflammatory reaction of AR. CIC-3 plays an important role in the secretion of cytokines and mucosal inflammatory response in AR. RhlL-4 can enhance the secretion of CIC-3, MCP-1 and VCAM-1 in mucosal epithelial cells, especially during the AR process. These enhanced effects of rhlL-4 were significantly suppressed by AHA. The secretions of CIC-3, MCP-1 and VCAM-1 can not be induced obviously by rhlL-2 in mucosal epithelial cells in AR.

  16. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.

    Science.gov (United States)

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-05-29

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.

  17. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília

    2017-01-19

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  18. 公丁香提取物抑制CFTR氯离子通道的发现与研究%The extract of clove inhibits CFTR chloride channel

    Institute of Scientific and Technical Information of China (English)

    栾剑; 张耀方; 杨红

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride chan‐nel .In recent years ,the blockers of CFTR become the new hot spot in the treatment of secretory di‐arrhea .The aim of this research is using high‐throughput screening techniques screened blockers of CFTR chloride channel from traditional Chinese medicine .In this study ,after 40000 fractions of Chi‐nese herbal medicine have been screened ,clove extract was found .In cell‐based fluorescence assays and voltage clamp experiments ,the best active fraction‐E06 significantly blocks CFTR chloride chan‐nel .Therefore ,clove extract screened from traditional Chinese medicine blocks CFTR chloride chan‐nel and provides a theoretical basis for the in‐depth study of anti‐diarrheal drugs .%囊性纤维化跨膜电导调节因子(CFTR)是一种上皮细胞顶膜中表达的氯离子通道,是近年来治疗分泌型腹泻的新热点。利用高通量筛选技术,自中国传统中药中筛选能够抑制CFTR氯离子通道的中药组分。结果显示,自500种中草药的40000种中药组分中筛选到公丁香。经细胞荧光实验和电压膜片钳实验验证公丁香最佳活性孔———E06对CFTR具有明显的抑制作用,IC50=103 mg/L 。本研究结果为深入探讨公丁香的抗泻药物研发提供理论依据。

  19. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  20. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis.

    Science.gov (United States)

    Faure, Grazyna; Bakouh, Naziha; Lourdel, Stéphane; Odolczyk, Norbert; Premchandar, Aiswarya; Servel, Nathalie; Hatton, Aurélie; Ostrowski, Maciej K; Xu, Haijin; Saul, Frederick A; Moquereau, Christelle; Bitam, Sara; Pranke, Iwona; Planelles, Gabrielle; Teulon, Jacques; Herrmann, Harald; Roldan, Ariel; Zielenkiewicz, Piotr; Dadlez, Michal; Lukacs, Gergely L; Sermet-Gaudelus, Isabelle; Ollero, Mario; Corringer, Pierre-Jean; Edelman, Aleksander

    2016-07-17

    Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.

  1. Calcium-dependent 86 Rb efflux and ethanol intoxication: studies of human red blood cells and rodent brain synaptosomes.

    Science.gov (United States)

    Yamamoto, H A; Harris, R A

    1983-04-08

    Effects of ethanol on calcium-dependent potassium efflux were investigated in red blood cells (RBC) from humans and brain synaptosomes from rats and mice. 86 Rb was used as a tracer for potassium. Synaptosomes and RBC were lysed and resealed with 86 Rb and calcium-EGTA buffers to regulate intracellular levels of ionized calcium. In vitro addition of ethanol (100 mM) stimulated the calcium-dependent 86 Rb efflux of synaptosomes. This stimulation was blocked by apamin, an inhibitor of the calcium-dependent potassium current of nerve cells. In addition, intracerebroventricular injection of apamin inhibited ethanol-induced narcosis in mice, providing behavioral evidence for the importance of calcium-stimulated potassium efflux in alcohol intoxication. In vitro addition of ethanol, propanol or butanol increased calcium-dependent 86 Rb efflux of human RBC at low concentrations of free calcium, but did not change the calcium-independent efflux of 86 Rb. These results suggest that the calcium-dependent 86 Rb efflux of nerve endings may have an important role in the pharmacological and toxicological effects of ethanol.

  2. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  3. Histamine potentiates neuronal excitation by blocking a calcium-dependent potassium conductance.

    Science.gov (United States)

    Haas, H L

    1984-04-01

    Histaminergic neurones send their axons to the whole forebrain. The diffuse projection is consistent with a modulatory role of these pathways. In hippocampal slices from rats a mechanism for this modulation is described, on pyramidal neurones of the CA 1 area: Strong excitations induced by intracellular current injection, ionophoretic administration of glutamate or synaptic stimulation normally restrict themselves by the activation of the calcium-dependent potassium current (gK(Ca) ). This current causes a long lasting afterhyperpolarization and an accommodation of firing. Their block by histamine and impromidine (reversed by metiamide and cimetidine) leads to a profound potentiation of excitatory signals. It is suggested that HA, through H2 receptors, accelerates the removal of intracellular free Ca++ ions.

  4. Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy.

    Directory of Open Access Journals (Sweden)

    Kayode K Ojo

    Full Text Available Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1 is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for

  5. Cellular localization and biochemical characterization of a novel calcium-dependent protein kinase from tobacco

    Institute of Scientific and Technical Information of China (English)

    Yun WANG; Mei ZHANG; Ke KE; Ying Tang LU

    2005-01-01

    By screening tobacco cDNA library with MCK1 as a probe, we isolated a cDNA clone NtCPK5 (accession number AY971376), which encodes a typical calcium-dependent protein kinase. Sequence analyses indicated that NtCPK5 is related to both CPKs and CRKs superfamilies and has all of the three conserved domains of CPKs. The biochemical activity of NtCPK5 was calcium-dependent. NtCPK5 had Vmax and Km of 526 nmol/min/mg and 210 μg/ml respectively with calf thymus histone (fraction Ⅲ, abbreviated to histone Ⅲs) as substrate. For substrate syntide-2, NtCPK5 showed a higher. Vmax of 2008 nmol/min/mg and a lower Km of 30 μM. The K0.5 of calcium activation was 0.04 μM or 0.06 μM for histone Ⅲs or syntide-2 respectively. The putative myristoylation and palmitoylation consensus sequence of NtCPK5 suggests that it could be a membrane-anchoring protein. Indeed, our transient expression experiments with wild type and mutant forms of NtCPK5/GFP fusion proteins showed that NtCPK5 was localized to the plasma membrane of onion epidermal cells and that the localization required the N-terminal acylation sites of NtCPK5/GFP. Taking together, our data have demonstrated the biochemical characteristics of a novel protein NtCPK5 and its subcellular localization as a membrane-anchoring protein.

  6. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-10-10

    Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.

  7. Nanomolar-Potency Aminophenyl-1,3,5-triazine Activators of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Channel for Prosecretory Therapy of Dry Eye Diseases.

    Science.gov (United States)

    Lee, Sujin; Phuan, Puay-Wah; Felix, Christian M; Tan, Joseph-Anthony; Levin, Marc H; Verkman, Alan S

    2017-02-09

    Dry eye disorders are a significant health problem for which limited therapeutic options are available. CFTR is a major prosecretory chloride channel at the ocular surface. We previously identified, by high-throughput screening, aminophenyl-1,3,5-triazine CFTRact-K089 (1) that activated CFTR with EC50 ≈ 250 nM, which when delivered topically increased tear fluid secretion in mice and showed efficacy in an experimental dry eye model. Here, functional analysis of aminophenyl-1,3,5-triazine analogs elucidated structure-activity relationships for CFTR activation and identified substantially more potent analogs than 1. The most potent compound, 12, fully activated CFTR chloride conductance with EC50 ≈ 30 nM, without causing cAMP or calcium elevation. 12 was rapidly metabolized by hepatic microsomes, which supports its topical use. Single topical administration of 25 pmol of 12 increased tear volume in wild-type mice with sustained action for 8 h and was without effect in CFTR-deficient mice. Topically delivered 12 may be efficacious in human dry eye diseases.

  8. Altered expression of renal bumetanide-sensitive sodium-pota-ssium-2 chloride cotransporter and Cl- channel -K2 gene in angiotensin Ⅱ-infused hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    YE Tao; LIU Zhi-quan; SUN Chao-feng; ZHENG Yong; MA Ai-qun; FANG Yuan

    2005-01-01

    Background Little information is available regarding the effect of angiotensin Ⅱ (Ang Ⅱ) on the bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), the thiazide-sensitive sodium-chloride cotransporter (NCC), and the Cl- channel (CLC)-K2 at both mRNA and protein expression level in Ang Ⅱ-induced hypertensive rats. This study was conducted to investigate the influence of Ang Ⅱ with chronic subpressor infusion on nephron-specific gene expression of NKCC2, NCC and CLC-K2. Results Ang Ⅱ significantly increased blood pressure and up-regulated NKCC2 mRNA and protein expression in the kidney. Expression of CLC-K2 mRNA in the kidney increased 1.6 fold (P<0.05).There were no changes in NCC mRNA or protein expression in AngII-treated rats versus control. Conclusions Chronic subpressor Ang Ⅱ infusion can significantly alter NKCC2 and CLC-K2 mRNA expression in the kidney, and protein abundance of NKCC2 in kidney is positively regulated by Ang Ⅱ. These effects may contribute to enhanced renal Na+ and Cl- reabsorption in response to Ang Ⅱ.

  9. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels.

    Science.gov (United States)

    Mei, XiuQin; Li, SongSong; Li, QuSheng; Yang, YuFeng; Luo, Xuan; He, BaoYan; Li, Hui; Xu, ZhiMin

    2014-07-01

    Soil salinity is known to enhance cadmium (Cd) accumulation in crops. However, the mechanism by which this occurs independent of the surrounding soil remains unclear. In this study, root adsorption and uptake of salt cations and Cd by edible amaranth under NaCl salinity stress were investigated in hydroponic cultures with 0, 40, 80, 120, and 160mM of NaCl and 27nM Cd. The dominant Cd species in the nutrient solution changed from free Cd(2+) to Cd chlorocomplexes as NaCl salinity increased. High salinity significantly reduced K, Ca, and Cd root adsorption and K, Ca, Mg, and Cd uptake. High salinity decreased root adsorption of Cd by 43 and 58 percent and Cd uptake by 32 and 36 percent in salt-tolerant and salt-sensitive cultivars, respectively. Transformation of Cd from free ion to chlorocomplexes is unlikely to have significantly affected Cd uptake by the plant because of the very low Cd concentrations involved. Application of Ca ion channel blocker significantly reduced Na, K, Ca, Mg, and Cd uptake by the roots, while blocking K ion channels significantly reduced Na and K uptake but not Ca, Mg, and Cd uptake. These results suggest that Na was absorbed by the roots through both Ca and K ion channels, while Cd was absorbed by the roots mainly through Ca ion channels and not K ion channels. Salinity caused a greater degree of reduction in Cd adsorption and uptake in the salt-sensitive cultivar than in the salt-tolerant cultivar. Thus, competition between Na and Cd for Ca ion channels can reduce Cd uptake at very low Cd concentrations in the nutrient solution.

  10. Effects of glycoprotein Ⅱb/Ⅲa antagonists and chloride channel blockers on platelet cytoplasmic free calcium

    Institute of Scientific and Technical Information of China (English)

    YIN Song-mei; XIE Shuang-feng; NIE Da-nian; LI Yi-qing; LI Hai-ming; MA Li-ping; WANG Xiu-ju; WU Yu-dan; FENG Jian-hong

    2005-01-01

    @@ Platelet activation plays an important role in thrombosis. Platelet glycoprotein Ⅱb/Ⅲa (GP Ⅱb/Ⅲa) is the receptor of fibrinogen. Platelet cross-linking with fibrinogen through GPⅡb/Ⅲa is the process of thrombosis. Ca2+ is an important intracellular second messenger in platelet activation. It has been reported that GPⅡb/Ⅲa receptors were involved in the calcium influx of activated platelet, and GPⅡb/Ⅲa receptor had characteristics of calcium channel or an adjacent calcium channel.

  11. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    Science.gov (United States)

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

  12. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Fischer, H; Machen, T E

    1996-12-01

    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantly dependent on the membrane potential, while the low-frequency Lorentzian was unaffected. Excision of forskolin-stimulated patches into ATP-containing solution significantly reduced the amplitude of the voltage-dependent high-frequency Lorentzian. Addition of the tyrosine kinase p60c-src to excised, active, CFTR-containing membrane patches increased mean currents by 54%, increased the corner frequency of the low-frequency Lorentzian, and recovered the high-frequency Lorentzian and its characteristics. Treatment with lambda-phosphatase inactivated src-induced currents and changes in gating. When active patches were excised under conditions in which patch-associated tyrosine phosphatases were blocked with sodium vanadate, the high-frequency gating remained relatively unchanged. The results suggest that CFTR's open probability and its voltage-dependent fast gate are dependent on tyrosine phosphorylation, and that membrane-associated tyrosine phosphatases are responsible for inactivation of the fast gate after patch excision.

  13. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Van Bakel, I.; Craig, I.W. [Univ. of Oxford (United Kingdom)] [and others

    1995-10-10

    Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3{prime} part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus. 31 refs., 5 figs.

  14. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish.

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2014-09-01

    Full Text Available Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50 value of around 200 nM, being cooperative (n(H = 2 for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new

  15. Calcium-dependent protein kinases in plants: evolution, expression and function.

    Science.gov (United States)

    Valmonte, Gardette R; Arthur, Kieren; Higgins, Colleen M; MacDiarmid, Robin M

    2014-03-01

    Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.

  16. Plasmodium berghei calcium dependent protein kinase 1 is not required for host cell invasion.

    Science.gov (United States)

    Jebiwott, Sylvia; Govindaswamy, Kavitha; Mbugua, Amos; Bhanot, Purnima

    2013-01-01

    Plasmodium Calcium Dependent Protein Kinase (CDPK1) is required for the development of sexual stages in the mosquito. In addition, it is proposed to play an essential role in the parasite's invasive stages possibly through the regulation of the actinomyosin motor and micronemal secretion. We demonstrate that Plasmodium berghei CDPK1 is dispensable in the parasite's erythrocytic and pre-erythrocytic stages. We successfully disrupted P. berghei CDPK1 (PbCDPK1) by homologous recombination. The recovery of erythrocytic stage parasites lacking PbCDPK1 (PbCDPK1-) demonstrated that PbCDPK1 is not essential for erythrocytic invasion or intra-erythrocytic development. To study PbCDPK1's role in sporozoites and liver stage parasites, we generated a conditional mutant (CDPK1 cKO). Phenotypic characterization of CDPK1 cKO sporozoites demonstrated that CDPK1 is redundant or dispensable for the invasion of mammalian hepatocytes, the egress of parasites from infected hepatocytes and through the subsequent erythrocytic cycle. We conclude that P. berghei CDPK1 plays an essential role only in the mosquito sexual stages.

  17. Plasmodium berghei calcium dependent protein kinase 1 is not required for host cell invasion.

    Directory of Open Access Journals (Sweden)

    Sylvia Jebiwott

    Full Text Available Plasmodium Calcium Dependent Protein Kinase (CDPK1 is required for the development of sexual stages in the mosquito. In addition, it is proposed to play an essential role in the parasite's invasive stages possibly through the regulation of the actinomyosin motor and micronemal secretion. We demonstrate that Plasmodium berghei CDPK1 is dispensable in the parasite's erythrocytic and pre-erythrocytic stages. We successfully disrupted P. berghei CDPK1 (PbCDPK1 by homologous recombination. The recovery of erythrocytic stage parasites lacking PbCDPK1 (PbCDPK1- demonstrated that PbCDPK1 is not essential for erythrocytic invasion or intra-erythrocytic development. To study PbCDPK1's role in sporozoites and liver stage parasites, we generated a conditional mutant (CDPK1 cKO. Phenotypic characterization of CDPK1 cKO sporozoites demonstrated that CDPK1 is redundant or dispensable for the invasion of mammalian hepatocytes, the egress of parasites from infected hepatocytes and through the subsequent erythrocytic cycle. We conclude that P. berghei CDPK1 plays an essential role only in the mosquito sexual stages.

  18. Extracts from plants used in Mexican traditional medicine activate Ca(2+)-dependent chloride channels in Xenopus laevis oocytes.

    Science.gov (United States)

    Rojas, A; Mendoza, S; Moreno, J; Arellano, R O

    2003-01-01

    The two-electrode voltage-clamp technique was employed to investigate the effects of chloroform-methanol (1:1) extracts derived from five medicinal plants on Xenopus laevis oocytes. When evaluated at concentrations of 1 to 500 microg/ml, the extracts prepared from the aerial parts of Baccharis heterophylla H.B.K (Asteraceae), Chenopodium murale L. (Chenopodiaceae), Desmodium grahami Gray (Leguminosae) and Solanum rostratum Dun (Solanaceae) produced concentration-dependent oscillatory inward currents in the oocytes, while the extract of Gentiana spathacea did not induce any response. The reversal potential of the currents elicited by the active extracts was -17 +/- 2 mV and was similar to the chloride equilibrium potential in oocytes. These ionic responses were independent of extracellular calcium. However, they were eliminated by overnight incubation with BAPTA-AM (10 microM), suggesting that the currents were dependent on intracellular Ca2+ increase. Thus the plant extracts activate the typical oscillatory Ca(2+)-dependent Cl- currents generated in the Xenopus oocyte membrane more probably via a mechanism that involves release of Ca2+ from intracellular reservoirs. These observations suggest that Xenopus oocyte electrophysiological recording constitutes a suitable assay for the study of the mechanisms of action of herbal medicines.

  19. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

    DEFF Research Database (Denmark)

    Poulsen, Kristian Arild; Andersen, E C; Hansen, C F;

    2010-01-01

    Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT......3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD...

  20. Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel

    OpenAIRE

    Betto, Giulia; Cherian, O. Lijo; Pifferi, Simone; Cenedese, Valentina; Boccaccio, Anna; Menini, Anna

    2014-01-01

    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl− channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio se...

  1. Dehydrocostuslactone, a sesquiterpene lactone activates wild-type and ΔF508 mutant CFTR chloride channel.

    Science.gov (United States)

    Wang, Xue; Zhang, Yao-Fang; Yu, Bo; Yang, Shuang; Luan, Jian; Liu, Xin; Yang, Hong

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) represents the main cAMP-activated Cl⁻ channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. The aim of this study was to identify natural compounds that are able to stimulate wild-type (wt) and ΔF508 mutant CFTR channel activities in CFTR-expressing Fischer rat thyroid (FRT) cells. We found that dehydrocostuslactone [DHC, (3aS, 6aR, 9aR, 9bS)-decahydro-3,6,9-tris (methylene) azuleno [4,5-b] furan-2(3H)-one)] dose dependently potentiates both wt and ΔF508 mutant CFTR-mediated iodide influx in cell-based fluorescent assays and CFTR-mediated Cl⁻ currents in short-circuit current studies, and the activations could be reversed by the CFTR inhibitor CFTRinh-172. Maximal CFTR-mediated apical Cl⁻ current secretion in CFTR-expressing FRT cells was stimulated by 100 μM DHC. Determination of intracellular cAMP content showed that DHC modestly but significantly increased cAMP level in FRT cells, but cAMP elevation effects contributed little to DHC-stimulated iodide influx. DHC also stimulated CFTR-mediated apical Cl⁻ current secretion in FRT cells expressing ΔF508-CFTR. Subsequent studies demonstrated that activation of CFTR by DHC is forskolin dependent. DHC represents a new class of CFTR potentiators that may have therapeutic potential in CFTR-related diseases.

  2. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  3. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Zhiyong Ma

    Full Text Available Severe acidic pH-activated chloride channel (ICl,acid has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4 was lower for SHRs than Wistar rats (all 1. Furthermore, patch clamp recordings of ICl,acid and intracellular Ca(2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.

  4. TMEM16A:钙激活氯通道研究进展%TMEM16A:progress in calcium activated chloride channels

    Institute of Scientific and Technical Information of China (English)

    刘雅妮; 张海林

    2011-01-01

    钙激活氯通道(calcium-activated chloride channels,CaCCs)组织分布广泛,参与了众多生理过程,如感觉传导、神经和心肌兴奋性调节、腺体和上皮分泌等,甚至可能参与细胞分裂周期与细胞增殖.钙激活氯通道生理病理意义如此重要,但直到2008年才报道了跨膜蛋白16A(transmembrane protein 16A,TMEM16A)为钙激活氯通道的分子基础,同时研究揭示TMEM16A在一些肿瘤组织中表达明显上调.该文即对钙激活氯通道的生理、病理学意义进行综述.%The Ca + activated Cl channels ( CaCCs ) play a variety of physiological roles in many organs and tissues, including transduction of sensory stimuli, regulation of neuronal and cardiac excitability, and transepithelial Cl secretion. In addition, CaCCs may be involved in the cell division cycle and cell proliferation. The molecular identity of CaCCs remained controversial until 2008 when TMEM16A, a member of the transmembraneprotein 16 family, was identified as an important subunit of CaCCs. In this review, the physiological and pathophysiological roles of CaCCs are discussed.

  5. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......, and control of heart beat. Here we show that the rostral compact formation's ambiguus neurons, which control the esophageal phase of swallowing, display calcium-dependent plateau potentials in response to tetanic orthodromic stimulation or current injection. Whole cell recordings were made from visualized...... neurons in the rostral nucleus ambiguus using a slice preparation from the newborn mouse. Biocytin-labeling revealed dendritic trees with pronounced rostrocaudal orientations confined to the nucleus ambiguus, a morphological profile matching that of vagal motoneurons projecting to the esophagus. Single...

  6. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions.

    Science.gov (United States)

    Bozoky, Zoltan; Krzeminski, Mickael; Muhandiram, Ranjith; Birtley, James R; Al-Zahrani, Ateeq; Thomas, Philip J; Frizzell, Raymond A; Ford, Robert C; Forman-Kay, Julie D

    2013-11-19

    Intrinsically disordered proteins play crucial roles in regulatory processes and often function as protein interaction hubs. Here, we present a detailed characterization of a full-length disordered hub protein region involved in multiple dynamic complexes. We performed NMR, CD, and fluorescence binding studies on the nonphosphorylated and highly PKA-phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) regulatory region, a ∼200-residue disordered segment involved in phosphorylation-dependent regulation of channel trafficking and gating. Our data provide evidence for dynamic, phosphorylation-dependent, multisite interactions of various segments of the regulatory region for its intra- and intermolecular partners, including the CFTR nucleotide binding domains 1 and 2, a 42-residue peptide from the C terminus of CFTR, the SLC26A3 sulphate transporter and antisigma factor antagonist (STAS) domain, and 14-3-3β. Because of its large number of binding partners, multivalent binding of individually weak sites facilitates rapid exchange between free and bound states to allow the regulatory region to engage with different partners and generate a graded or rheostat-like response to phosphorylation. Our results enrich the understanding of how disordered binding segments interact with multiple targets. We present structural models consistent with our data that illustrate this dynamic aspect of phospho-regulation of CFTR by the disordered regulatory region.

  7. Glutamate-gated chloride channel subunit cDNA sequencing of Cochliomyia hominivorax (Diptera: Calliphoridae): cDNA variants and polymorphisms.

    Science.gov (United States)

    Lopes, Alberto Moura Mendes; de Carvalho, Renato Assis; de Azeredo-Espin, Ana Maria Lima

    2014-09-01

    The New World screwworm (NWS) Cochliomyia hominivorax (Coquerel) is one of the major myiasis-causing flies that injures livestock and leads to losses of ~US$ 2.7 billions/year in the Neotropics. Ivermectin (IVM), a macrocyclic lactone (ML), is the most used preventive insecticide for this parasite and targets the glutamate-gated chloride (GLUCLα) channels. Several authors have associated altered GluClα homologues to MLs resistance in invertebrates, although studies about resistance in NWS are limited to other genes. Here, we aimed to characterise the NWS GluClα (ChGluClα) cDNA and to search for alterations associated with IVM resistance in NWS larvae from a bioassay. The open reading frame of the ChGluClα comprised 1,359 bp and encoded a sequence of 452 amino acids. The ChGluClα cDNAs of the bioassay larvae showed different sequences that could be splice variants, which agree with the occurrence of alternative splicing in GluClα homologues. In addition, we found cDNAs with premature stop codons and the K242R SNP, which occurred more frequently in the surviving larvae and was located close to mutation (L256F) involved in ML resistance. Although these alterations were in low frequency, the ChGluClα sequencing will allow further studies to find alterations in the gene of resistant natural populations.

  8. Mapping of long-range INS promoter interactions reveals a role for calcium-activated chloride channel ANO1 in insulin secretion.

    Science.gov (United States)

    Xu, Zhixiong; Lefevre, Gaelle M; Gavrilova, Oksana; Foster St Claire, Mark B; Riddick, Gregory; Felsenfeld, Gary

    2014-11-25

    We used circular chromatin conformation capture (4C) to identify a physical contact in human pancreatic islets between the region near the insulin (INS) promoter and the ANO1 gene, lying 68 Mb away on human chromosome 11, which encodes a Ca(2+)-dependent chloride ion channel. In response to glucose, this contact was strengthened and ANO1 expression increased, whereas inhibition of INS gene transcription by INS promoter targeting siRNA decreased ANO1 expression, revealing a regulatory effect of INS promoter on ANO1 expression. Knockdown of ANO1 expression caused decreased insulin secretion in human islets, establishing a physical proximity-dependent feedback loop involving INS transcription, ANO1 expression, and insulin secretion. To explore a possible role of ANO1 in insulin metabolism, we carried out experiments in Ano1(+/-) mice. We observed reduced serum insulin levels and insulin-to-glucose ratios in high-fat diet-fed Ano1(+/-) mice relative to Ano1(+/+) mice fed the same diet. Our results show that determination of long-range contacts within the nucleus can be used to detect novel and physiologically relevant mechanisms. They also show that networks of long-range physical contacts are important to the regulation of insulin metabolism.

  9. Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel.

    Science.gov (United States)

    Betto, Giulia; Cherian, O Lijo; Pifferi, Simone; Cenedese, Valentina; Boccaccio, Anna; Menini, Anna

    2014-06-01

    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca(2+)-activated Cl(-) channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl(-) with other anions (PX/PCl) was SCN(-) > I(-) > NO3 (-) > Br(-) > Cl(-) > F(-) > gluconate. When external Cl(-) was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 µM Ca(2+) were modified according to the sequence of permeability ratios, with anions more permeant than Cl(-) slowing both activation and deactivation and anions less permeant than Cl(-) accelerating them. Moreover, replacement of external Cl(-) with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl(-) with SCN(-) shifted G-V to more negative potentials. Dose-response relationships for Ca(2+) in the presence of different extracellular anions indicated that the apparent affinity for Ca(2+) at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca(2+) in the presence of intracellular SCN(-) also increased compared with that in Cl(-). Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating.

  10. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  11. Calcium-dependent and calcium-sensitizing pathways in the mature and immature ductus arteriosus.

    Science.gov (United States)

    Clyman, Ronald I; Waleh, Nahid; Kajino, Hiroki; Roman, Christine; Mauray, Francoise

    2007-10-01

    Studies performed in sheep and baboons have shown that after birth, the normoxic muscle media of ductus arteriosus (DA) becomes profoundly hypoxic as it constricts and undergoes anatomic remodeling. We used isolated fetal lamb DA (pretreated with inhibitors of prostaglandin and nitric oxide production) to determine why the immature DA fails to remain tightly constricted during the hypoxic phase of remodeling. Under normoxic conditions, mature DA constricts to 70% of its maximal active tension (MAT). Half of its normoxic tension is due to Ca(2+) entry through calcium L-channels and store-operated calcium (SOC) channels. The other half is independent of extracellular Ca(2+) and is unaffected by inhibitors of sarcoplasmic reticulum (SR) Ca(2+) release (ryanodine) or reuptake [cyclopiazonic acid (CPA)]. The mature DA relaxes slightly during hypoxia (to 60% MAT) due to decreases in calcium L-channel-mediated Ca(2+) entry. Inhibitors of Rho kinase and tyrosine kinase inhibit both Ca(2+)-dependent and Ca(2+)-independent DA tension. Although Rho kinase activity may increase during gestation, immature DA develop lower tensions than mature DA, primarily because of differences in the way they process Ca(2+). Calcium L-channel expression increases with advancing gestation. Under normoxic conditions, differences in calcium L-channel-mediated Ca(2+) entry account for differences in tension between immature (60% MAT) and mature (70% MAT) DA. Under hypoxic conditions, differences in both calcium L-channel-dependent and calcium L-channel-independent Ca(2+) entry, account for differences in tension between immature (33% MAT) and mature (60% MAT) DA. Stimulation of Ca(2+) entry through reverse-mode Na(+)/Ca(2+) exchange or CPA-induced SOC channel activity constrict the DA and eliminate differences between immature and mature DA during both hypoxia and normoxia.

  12. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition.

    Science.gov (United States)

    Kelly, Mairead; Trudel, Stephanie; Brouillard, Franck; Bouillaud, Frederick; Colas, Julien; Nguyen-Khoa, Thao; Ollero, Mario; Edelman, Aleksander; Fritsch, Janine

    2010-04-01

    Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibition of the CFTR chloride channel by these compounds has been suggested to be of pharmacological interest in the treatment of secretory diarrheas and polycystic kidney disease. In addition, functional inhibition of CFTR by CFTR(inh)-172 has been proposed to be sufficient to mimic the CF inflammatory profile. In the present study, we investigated the effects of the two compounds on reactive oxygen species (ROS) production and mitochondrial membrane potential in several cell lines: the CFTR-deficient human lung epithelial IB3-1 (expressing the heterozygous F508del/W1282X mutation), the isogenic CFTR-corrected C38, and HeLa and A549 as non-CFTR-expressing controls. Both inhibitors were able to induce a rapid increase in ROS levels and depolarize mitochondria in the four cell types, suggesting that these effects are independent of CFTR inhibition. In HeLa cells, these events were associated with a decrease in the rate of oxygen consumption, with GlyH-101 demonstrating a higher potency than CFTR(inh)-172. The impact of CFTR inhibitors on inflammatory parameters was also tested in HeLa cells. CFTR(inh)-172, but not GlyH-101, induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). CFTR(inh)-172 slightly decreased interleukin-8 secretion, whereas GlyH-101 induced a slight increase. These results support the conclusion that CFTR inhibitors may exert nonspecific effects regarding ROS production, mitochondrial failure, and activation of the NF-kappaB signaling pathway, independently of CFTR inhibition.

  13. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules.

    Science.gov (United States)

    Christensen, Erik I; Devuyst, Olivier; Dom, Geneviève; Nielsen, Rikke; Van der Smissen, Patrick; Verroust, Pierre; Leruth, Michèle; Guggino, William B; Courtoy, Pierre J

    2003-07-08

    Loss of the renal endosome-associated chloride channel, ClC-5, in Dent's disease and knockout (KO) mice strongly inhibits endocytosis of filtered proteins by kidney proximal tubular cells (PTC). The underlying mechanism remains unknown. We therefore tested whether this endocytic failure could primarily reflect a loss of reabsorption by the multiligand receptors, megalin, and cubilin, caused by a trafficking defect. Impaired protein endocytosis in PTC of ClC-5 KO mice was demonstrated by (i) a major decreased uptake of injected 125I-beta 2-microglobulin, but not of the fluid-phase tracer, FITC-dextran, (ii) reduced labeling of endosomes by injected peroxidase and for the endogenous megalin/cubilin ligands, vitamin D- and retinol-binding proteins, and (iii) urinary appearance of low-molecular-weight proteins and the selective cubilin ligand, transferrin. Contrasting with preserved mRNA levels, megalin and cubilin abundance was significantly decreased in kidney extracts of KO mice. Percoll gradients resolving early and late endosomes (Rab5a, Rab7), brush border (villin, aminopeptidase M), and a dense peak comprising lysosomes (acid hydrolases) showed a disappearance of the brush border component for megalin and cubilin in KO mice. Quantitative ultrastructural immunogold labeling confirmed the overall decrease of megalin and cubilin in PTC and their selective loss at the brush border. In contrast, total contents of the rate-limiting endocytic catalysts, Rab5a and Rab7, were unaffected. Thus, impaired protein endocytosis caused by invalidation of ClC-5 primarily reflects a trafficking defect of megalin and cubilin in PTC.

  14. Extracellular Calcium-Dependent Modulation of Endothelium Relaxation in Rat Mesenteric Small Artery

    DEFF Research Database (Denmark)

    Hangaard, Lise; Jessen, Peter B; Kamaev, Dmitrii

    2015-01-01

    The nature of NO- and COX-independent endothelial hyperpolarization (EDH) is not fully understood but activation of small- and intermittent-conductance Ca(2+)-activated K(+) channels (SKCa and IKCa) is important. Previous studies have suggested that the significance of IKCa depends on [Ca(2+)]out...

  15. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)

    Science.gov (United States)

    2012-09-01

    Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum , Proc Natl Acad Sci U S A...Calcium signaling and amyloid toxicity in Alzheimer disease, J Biol Chem 285 (2010) 12463-12468. [14] H.A. Lashuel, P.T. Lansbury, Are amyloid

  16. Chloride channels in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1982-01-01

    A study of the voltage and time dependence of a transepithelial Cl- current in toad skin (Bufo bufo) by the voltage-clamp method leads to the conclusion that potential has a dual role for Cl- transport. One is to control the permeability of an apical membrane Cl-pathway, the other is to drive Cl...

  17. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins

    Science.gov (United States)

    2013-09-01

    signaling and amyloid toxicity in Alzheimer disease, J Biol Chem 285 (2010) 12463-12468. [14] H.A. Lashuel, P.T. Lansbury, Are amyloid diseases caused by...protein aggregates that mimic bacterial pore-forming toxins?, Q Rev Biophys 39 (2006) 167-201. [15] N. Arispe, E. Rojas, H.B. Pollard, Alzheimer ...disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum , Proc Natl Acad Sci U S A 90 (1993) 567

  18. A Drosophila mutation that eliminates a calcium-dependent potassium current.

    Science.gov (United States)

    Elkins, T; Ganetzky, B; Wu, C F

    1986-11-01

    A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle action potential was significantly lengthened in slo flies, indicating that IC plays the major role in its repolarization.

  19. A Drosophila mutation that eliminates a calcium-dependent potassium current.

    OpenAIRE

    Elkins, T; Ganetzky, B; Wu, C F

    1986-01-01

    A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle action potential was significantly lengthened in slo flies, indicating that IC plays the major role...

  20. Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties

    Science.gov (United States)

    Rostamnia, Sadegh; Doustkhah, Esmail; Estakhri, Saba; Karimi, Ziba

    2016-02-01

    The growth of silver chloride nanoparticles within the pore channels of functionalized SBA-15 mesoporous was achieved by sequential dipping steps in alternating bath of potassium chloride and silver nitrate under ultrasound irradiation at pH=9. The effects of sequential dipping steps in growth of the AgCl nanoparticles have been studied. The growth and formation of AgCl nanoparticles inside the sulfonated SBA-15 were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of the synthesized materials was investigated against Escherichia coli (E.coli) using the conventional diffusion-disc method. The materials showed high antibacterial activity.

  1. Membrane sialic acid influences basophil histamine release by interfering with calcium dependence

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Skov, P S

    1987-01-01

    The influence of the cell membrane content of sialic acid on basophil histamine release was examined in vitro in allergic patients and normal controls. Enzymatical removal of sialic acid enhanced histamine release induced by allergen and anti-IgE, whereas an increase in membrane sialic acid content....... This difference, together with the previous finding that alterations in membrane sialic acid content is reflected in the cell sensitivity to extracellular calcium, suggest an interaction between membrane sialic acid and the calcium channels involved in basophil histamine release....

  2. Discrete-state representation of ion permeation coupled to fast gating in a model of CLC-chloride channels: analytic estimation of the state-to-state rate constants.

    Science.gov (United States)

    Coalson, Rob D; Cheng, Mary Hongying

    2011-09-01

    Analytical estimation of state-to-state rate constants is carried out for a recently developed discrete state model of chloride ion motion in a CLC chloride channel (Coalson and Cheng, J. Phys. Chem. B 2010, 114, 1424). In the original presentation of this model, the same rate constants were evaluated via three-dimensional Brownian dynamics simulations. The underlying dynamical theory is an appropriate single- or multiparticle three-dimensional Smoluchowski equation. Taking advantage of approximate geometric symmetries (based on the details of the model channel geometry), well-known formulas for state-to-state transition rates are appealed to herein and adapted as necessary to the problem at hand. Rates of ionic influx from a bulk electrolyte reservoir to the nearest binding site within the channel pore are particularly challenging to compute analytically because they reflect multi-ion interactions (as opposed to single-ion dynamics). A simple empirical correction factor is added to the single-ion rate constant formula in this case to account for the saturation of influx rate constants with increasing bulk Cl(-) concentration. Overall, the agreement between all analytically estimated rate constants is within a factor of 2 of those computed via three-dimensional Brownian dynamics simulations, and often better than this. Current-concentration curves obtained using rate constants derived from these two different computational approaches agree to within 25%.

  3. Renal- and calcium-dependent vascular effects of Polybia paulista wasp venom

    Directory of Open Access Journals (Sweden)

    JFC Vinhote

    2011-01-01

    Full Text Available In the present study, the effects of Polybia paulista venom (PPV on renal and vascular tissues were investigated. Isolated kidneys perfused with PPV (1 and 3 μg/mL had increased perfusion pressure, renal vascular resistance, urinary flow, and glomerular filtration rate; and reduced sodium tubular transport. Histological evaluation demonstrated deposits of proteins in Bowman's space and tubular lumen, and focal areas of necrosis. The venom promoted a cytotoxic effect on Madin-Darby canine kidney (MDCK cells. A significant increase in lactic dehydrogenase levels was observed in response to venom exposure. In isolated mesenteric vascular beds, pressure and vascular resistance augmented in a dose-dependent manner. PPV increased the contractility of aortic rings maintained under basal tension. This contractile response was inhibited when preparations were maintained in Ca2+-free medium. Likewise, verapamil, a voltage-gated calcium channel blocker, also inhibited the contractile response. In this study, phentolamine, a blocker of α-adrenergic receptor blocker, significantly reduced the contractile effect of PPV in the aortic ring. In conclusion, PPV produced nephrotoxicity, which suggests a direct effect on necrotic cellular death in renal tubule cells. The vascular contractile effect of PPV appears to involve calcium influx through voltage-gated calcium channels via adrenergic regulation.

  4. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  5. Tubocurarine blocks a calcium-dependent potassium current in rat tumoral pituitary cells.

    Science.gov (United States)

    Vacher, P; Vacher, A M; Mollard, P

    1998-04-30

    We investigated the effects of potassium channel inhibitors on electrical activity, membrane ionic currents, intracellular calcium concentration ([Ca2+]i) and hormone release in GH3/B6 cells (a line of pituitary origin). Patch-clamp recordings show a two-component after hyperpolarization (AHP) following each action potential (current clamp) or a two-component tail current (voltage-clamp). Both components can be blocked by inhibiting Ca2+ influx. Application of D-tubocurarine (dTc) (20-500 microM) reversibly suppressed the slowly decaying Ca2+-activated K+ tail current (I AHPs) in a concentration-dependent manner. On the other hand, low doses of tetraethylammonium ions (TEA+) only blocked the rapidly decaying voltage- and Ca2+-activated K+ tail current (I AHPf). Therefore, GH3/B6 cells exhibit at least two quite distinct Ca2+-dependent K+ currents, which differ in size, voltage- and Ca2+-sensitivity, kinetics and pharmacology. These two currents also play quite separate roles in shaping the action potential. d-tubocurarine increased spontaneous Ca2+ action potential firing, whereas TEA increased action potential duration. Thus, both agents stimulated Ca2+ entry. I AHPs is activated by a transient increase in [Ca2+]i such as a thyrotrophin releasing hormone-induced Ca2+ mobilization. All the K+ channel inhibitors we tested: TEA, apamin, dTC and charybdotoxin, stimulated prolactin and growth hormone release in GH3/B6 cells. Our results show that I AHPs is a good sensor for subplasmalemmal Ca2+ and that dTc is a good pharmacological tool for studying this current.

  6. Computational investigation of sphingosine kinase 1 (SphK1) and calcium dependent ERK1/2 activation downstream of VEGFR2 in endothelial cells

    Science.gov (United States)

    Bazzazi, Hojjat; Popel, Aleksander S.

    2017-01-01

    Vascular endothelial growth factor (VEGF) is a powerful regulator of neovascularization. VEGF binding to its cognate receptor, VEGFR2, activates a number of signaling pathways including ERK1/2. Activation of ERK1/2 is experimentally shown to involve sphingosine kinase 1 (SphK1) activation and its calcium-dependent translocation downstream of ERK1/2. Here we construct a rule-based computational model of signaling downstream of VEGFR2, by including SphK1 and calcium positive feedback mechanisms, and investigate their consequences on ERK1/2 activation. The model predicts the existence of VEGF threshold in ERK1/2 activation that can be continuously tuned by cellular concentrations of SphK1 and sphingosine 1 phosphate (S1P). The computer model also predicts powerful effects of perturbations in plasma and ER calcium pump rates and the current through the CRAC channels on ERK1/2 activation dynamics, highlighting the critical role of intracellular calcium in shaping the pERK1/2 signal. The model is then utilized to simulate anti-angiogenic therapeutic interventions targeting VEGFR2-ERK1/2 axis. Simulations indicate that monotherapies that exclusively target VEGFR2 phosphorylation, VEGF, or VEGFR2 are ineffective in shutting down signaling to ERK1/2. By simulating therapeutic strategies that target multiple nodes of the pathway such as Raf and SphK1, we conclude that combination therapy should be much more effective in blocking VEGF signaling to EKR1/2. The model has important implications for interventions that target signaling pathways in angiogenesis relevant to cancer, vascular diseases, and wound healing. PMID:28178265

  7. The tyrosine phosphatase HD-PTP (PTPN23) is degraded by calpains in a calcium-dependent manner.

    Science.gov (United States)

    Castiglioni, Sara; Maier, Jeanette A M

    2012-05-04

    HD-PTP (PTPN23) is a non-transmembrane protein tyrosine phosphatase which contributes to the signal transduction pathways involved in the regulation of cell migration and invasion. We here demonstrate in T24 bladder carcinoma cells that HD-PTP undergoes calcium-dependent degradation which can be prevented by specific calpain inhibitors. In addition, treatment of the cells with the calpain inhibitor calpeptin results in the redistribution of endogenous HD-PTP to the periphery of the cells. Since (i) calpains are overexpressed in some tumors and (ii) the downregulation of HD-PTP enhances cell migration and invasion, we propose that HD-PTP degradation by calpains might result in the acquisition of a more aggressive phenotype in neoplastic cells.

  8. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis.

    Science.gov (United States)

    Retzlaff, Jennifer; Thamm, Kristina; Ghosh, Chandra C; Ziegler, Wolfgang; Haller, Hermann; Parikh, Samir M; David, Sascha

    2017-03-09

    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection leading to systemic inflammation and endothelial barrier breakdown. The vascular-destabilizing factor Angiopoietin-2 (Angpt-2) has been implicated in these processes in humans. Here we screened in an unbiased approach FDA-approved compounds with respect to Angpt-2 suppression in endothelial cells (ECs) in vitro. We identified Flunarizine - a well-known anti-migraine calcium channel (CC) blocker - being able to diminish intracellular Angpt-2 protein in a time- and dose-dependent fashion thereby indirectly reducing the released protein. Moreover, Flunarizine protected ECs from TNFα-induced increase in Angpt-2 transcription and vascular barrier breakdown. Mechanistically, we could exclude canonical Tie2 signalling being responsible but found that three structurally distinct T-type - but not L-type - CC blockers can suppress Angpt-2. Most importantly, experimental increase in intracellular calcium abolished Flunarizine's effect. Flunarizine was also able to block the injurious increase of Angpt-2 in murine endotoxemia in vivo. This resulted in reduced pulmonary adhesion molecule expression (intercellular adhesion molecule-1) and tissue infiltration of inflammatory cells (Gr-1). Our finding could have therapeutic implications as side effects of Flunarizine are low and specific sepsis therapeutics that target the dysregulated host response are highly desirable.

  9. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator.

    Science.gov (United States)

    Gualandris, A; Jones, T E; Strickland, S; Tsirka, S E

    1996-04-01

    Tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to active plasmin, is produced in the rat and mouse hippocampus and participates in neuronal plasticity. To help define the role of tPA in the nervous system, we have analyzed the regulation of its expression in the neuronal cell line PC12. In control cultures, tPA activity is exclusively cell-associated, and no activity is measurable in the culture medium. When the cells are treated with depolarizing agents, such as KCI, tPA activity becomes detectable in the medium. The increased secreted tPA activity is not accompanied by an increase in tPA mRNA levels, and it is not blocked by protein synthesis inhibitors. In contrast, tPA release is abolished by Ca2+ channel blockers, suggesting that chemically induced membrane depolarization stimulates the secretion of preformed enzyme. Moreover, KCI has a similar effect in vivo when administered to the murine brain via an osmotic pump: tPA activity increases along the CA2-CA3 regions and dentate gyrus of the hippocampal formation. These results demonstrate a neuronal activity-dependent secretory mechanism that can rapidly increase the amount of tPA in neuronal tissue.

  10. Cyclic AMP enhances calcium-dependent potassium current in Aplysia neurons.

    Science.gov (United States)

    Ewald, D; Eckert, R

    1983-12-01

    The effect on the Ca-dependent potassium current, IK(Ca), of procedures that increase intracellular cAMP levels was studied in Aplysia neurons using three different pharmacological approaches. Exposure to cAMP analogues which were either resistant to or protected from phosphodiesterase hydrolysis caused an increase in IK(Ca) from 30 to 50% in 10 min. The degree of reversibility of this effect varied from complete with db cAMP to very little with pcpt cAMP. Exposure to cholera toxin, which stimulates the synthesis of endogenous cAMP, increased IK(Ca) 25% in 10 min and the effect was not reversible. Both approaches were effective in all seven neuron types studied. Application of serotonin plus phosphodiesterase inhibitor caused an increase in IK(Ca) in neuron R15 but not in the other neuron types. Application of pentylene tetrazole (PTZ) led to a decrease in IK(Ca). It is proposed that elevation of cyclic AMP mediates an increased sensitivity of the IK(Ca) channel to Ca ions.

  11. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny.

    Science.gov (United States)

    Bodinier, Charlotte; Boulo, Viviane; Lorin-Nebel, Catherine; Charmantier, Guy

    2009-03-01

    The expression and localization of the cystic fibrosis transmembrane conductance regulator (CFTR) were determined in four osmoregulatory tissues during the ontogeny of the sea-bass Dicentrarchus labrax acclimated to fresh water and sea water. At hatch in sea water, immunolocalization showed an apical CFTR in the digestive tract and integumental ionocytes. During the ontogeny, although CFTR was consistently detected in the digestive tract, it shifted from the integument to the gills. In fresh water, CFTR was not present in the integument and the gills, suggesting the absence of chloride secretion. In the kidney, the CFTR expression was brief from D4 to D35, prior to the larva-juvenile transition. CFTR was apical in the renal tubules, suggesting a chloride secretion at both salinities, and it was basolateral only in sea water in the collecting ducts, suggesting chloride absorption. In the posterior intestine, CFTR was located differently from D4 depending on salinity. In sea water, the basolateral CFTR may facilitate ionic absorption, perhaps in relation to water uptake. In fresh water, CFTR was apical in the gut, suggesting chloride secretion. Increased osmoregulatory ability was acquired just before metamorphosis, which is followed by the sea-lagoon migration.

  12. Effects of lorazepam tolerance and withdrawal on GABA[sub A] receptor operated chloride channels in mice selected for differences in ethanol withdrawal severity

    Energy Technology Data Exchange (ETDEWEB)

    Allan, A.M.; Baier, L.D.; Zhang, Xiaoying (Washington Univ. School of Medicine, St. Louis, MO (United States))

    1992-01-01

    Withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) mice were treated with 5 mg/kg lorazepam for 7 days via implanted osmotic mini pumps. Following chronic drug treatment, brains were assayed for GABA-mediated chloride flux (GABA-Cl[sup [minus

  13. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus.

    Science.gov (United States)

    Bourque, C W

    1988-03-01

    1. Magnocellular neurosecretory neurones were impaled in the supraoptic nucleus of perfused explants of rat hypothalamus. Membrane currents were studied at 35 degrees C using the single-microelectrode voltage-clamp technique. 2. Depolarizing voltage steps applied from -100 mV evoked a transient outward current (TOC) from a threshold of -75 mV. From this potential, the amplitude of the current increased non-linearly with voltage. 3. Following its activation TOC reached a peak within 7 ms and subsequently decayed monotonically with a time constant of 30 ms. This time constant did not vary significantly with voltage between -75 and -55 mV. 4. The TOC showed complete steady-state inactivation at potentials positive to -55 mV. Inactivation was removed by hyperpolarization, with a mid-point near -80 mV. The removal of inactivation followed a complex time course with distinct fast (tens of milliseconds) and slow (hundreds of milliseconds) components. 5. Tail current measurements revealed that the TOC equilibrium potential (ETOC) lies near -97 mV in the presence of 3 mM [K+]o. Increasing [K+]o caused a decrease of TOC amplitude and a shift in ETOC of 57 mV/log [K+]o. The TOC is therefore predominantly a K+ current. 6. The TOC was unaffected by tetraethylammonium (up to 12 mM) but was reversibly reduced by 4-aminopyridine (ca. 50% block at 1.0 mM) and dendrotoxin (ca. 50% block at 4 nM). 7. The TOC was strongly inhibited (greater than 70%) by adding Co2+ or Mn2+ (1-3 mM) or Cd2+ (50-400 microM) to Ca-containing solutions, or by removal of Ca2+ from the perfusate. These effects were not accompanied by detectable changes in threshold voltage. The amplitude of TOC was also depressed by the organic Ca2+ channel blocker methoxyverapamil (D600). Finally replacement of Ca2+ by Ba2+ in the perfusate completely and reversibly abolished the TOC. 8. These findings suggest that neurosecretory neurones of the rat supraoptic nucleus display a transient K+ current which is strongly

  14. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels.

    Science.gov (United States)

    Stockbridge, N; Zhang, H; Weir, B

    1991-11-27

    Whole-cell and cell-free inside-out patch-clamp recording techniques were used to examine the actions of potassium channel openers pinacidil and cromakalim in enzymatically isolated smooth muscle cells of rat basilar artery. Delayed rectifier and calcium-dependent potassium currents were identified from the whole-cell recordings. Only the calcium-dependent potassium current was increased by cromakalim and pinacidil. Recordings from inside-out membrane patches revealed a large conductance voltage- and calcium-dependent potassium channel, which was blocked by charybdotoxin but unaffected by ATP less than 10 mM. Cromakalim and pinacidil increased the open probability of this channel. On the basis of these results, we suggest that such drugs, acting on cerebral arterial smooth muscle cell potassium channels, may be of some benefit in the treatment of cerebral vasospasm following subarachnoid hemorrhage.

  15. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes.

    Science.gov (United States)

    Barres, B A; Chun, L L; Corey, D P

    1988-01-01

    White matter is a compact structure consisting primarily of neuronal axons and glial cells. As in other parts of the nervous system, the function of glial cells in white matter is poorly understood. We have explored the electrophysiological properties of two types of glial cells found predominantly in white matter: type 2 astrocytes and oligodendrocytes. Whole-cells and single-channel patch-clamp techniques were used to study these cell types in postnatal rat optic nerve cultures prepared according to the procedures of Raff et al. (Nature, 303:390-396, 1983b). Type 2 astrocytes in culture exhibit a "neuronal" channel phenotype, expressing at least six distinct ion channel types. With whole-cell recording we observed three inward currents: a voltage-sensitive sodium current qualitatively similar to that found in neurons and both transient and sustained calcium currents. In addition, type 2 astrocytes had two components of outward current: a delayed potassium current which activated at 0 mV and an inactivating calcium-dependent potassium current which activated at -30 mV. Type 2 astrocytes in culture could be induced to fire single regenerative potentials in response to injections of depolarizing current. Single-channel recording demonstrated the presence of an outwardly rectifying chloride channel in both type 2 astrocytes and oligodendrocytes, but this channel could only be observed in excised patches. Oligodendrocytes expressed only one other current: an inwardly rectifying potassium current that is mediated by 30- and 120-pS channels. Because these channels preferentially conduct potassium from outside to inside the cell, and because they are open at the resting potential of the cell, they would be appropriate for removing potassium from the extracellular space; thus it is proposed that oligodendrocytes, besides myelinating axons, play an important role in potassium regulation in white matter. The conductances present in oligodendrocytes suggest a "modulated

  16. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    Science.gov (United States)

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells.

  17. Calcium-dependent and calcium-independent signals in the conglutinin-binding assay (KgBa) for immune complexes. Influence of anti-collagen-antibodies

    DEFF Research Database (Denmark)

    Holmskov, U; Haas, Henning de; Teisner, B;

    1992-01-01

    been "solubilized" (i.e., complement treated by incubation with serum) was employed as a reference. The binding of the complement-reacted IgG to solid phase conglutinin was found to be calcium-dependent and inhibitable with N-acetyl-D-glucosamine (GlcNAc). Prolonged incubation (4 days) of aggregated Ig...

  18. The activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator chloride channel%川陈皮素对囊性纤维化跨膜传导调节因子的激活作用

    Institute of Scientific and Technical Information of China (English)

    杨爽; 于波; 张耀方; 王雪; 杨红

    2013-01-01

    Aim of the present study is to investigate activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity.CFTR-mediated iodide influx assay and patch-clamp tests were done on FRT cells stably co-transfected with human CFTR and EYFP/H148Q.Nobiletin potently activated CFTR chloride channel activity in a dose-and time-dependent manner.The CFTR blocker CFTRinh-172 could completely reverse the effect.Preliminary mechanism study indicated that nobiletin activated CFTR chloride channel through a direct binding way.In addition,ex vivo tests done on mice trachea showed that nobiletin time-dependently stimulated submucosal gland fluid secretion.Nobiletin may be a therapeutic lead compound in treating CFTR-related diseases including disseminated bronchiectasis.%本实验利用荧光淬灭实验和膜片钳技术在稳定表达人CFTR和荧光绿蛋白突变体EYFP/H148Q的Fischer大鼠甲状腺上皮细胞(Fischer rat thyroid,FRT)上,测定川陈皮素(nobiletin)对囊性纤维化跨膜传导因子(cystic fibrosis transmembrane conductance regulator,CFTR)氯离子通道的激活作用.结果发现,川陈皮素以剂量依赖的方式激活CFTR氯离子通道的C1-转运活性,且这种活性是快速、可逆的,并能够被CFTR特异性抑制剂CFTRinh-172完全抑制.初步的分子机制研究表明,川陈皮素是以与CFTR直接作用来激活通道活性的.进一步的研究结果显示,川陈皮素能够有效刺激小鼠气管黏膜下腺液体分泌速度.因此,川陈皮素可能发展成为治疗包括支气管扩张在内的CFTR相关疾病的先导药物.

  19. Identification of calcium-dependent protein kinase (CDPK): A multi-functional gene family in Rafflesia cantleyi

    Science.gov (United States)

    Amini, Safoora; Goh, Hoe-Han; Wan, Kiew-Lian

    2016-11-01

    Rafflesia, a parasitic plant that belongs to the Rafflesiaceae family, is notable for producing the largest flowers in the world. This study focused on identification of Calcium-dependent protein kinases (CDPKs) due to their vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. RNA-seq data generated from three bud stages of Rafflesia cantleyi ie BS1, BS2, and BS3 and were assembled. Based on the BLAST searches of Rafflesia unique transcripts (UTs) to Arabidopsis TAIR database, a total of 14 unique transcripts (UTs) were identified as CDPK1 to CDPK5, CDPK7 to CDPK11, CDPK16, CDPK18, CDPK19, and CDPK28. These genes are expressed at all three bud stages of R. cantleyi with up-regulation pattern at BS1 vs. BS2 and BS2 vs. BS3. This result shows that the expression of CDPK gene family increases by developmental progress in Rafflesia in order to regulate biochemical and molecular changes at the cellular level in response to exposure to environmental changes. However, CDPKs functions in plants growth and defense process still need more experimental evidence to deeply understand their biological roles in R. cantleyi.

  20. Chloride : The queen of electrolytes?

    NARCIS (Netherlands)

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O. B.

    2012-01-01

    Background: Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general d

  1. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    NARCIS (Netherlands)

    P.J. French (Pim); J. Bijman (Jan); M.J. Edixhoven (Marcel); A.B. Vaandrager (Arie); B.J. Scholte (Bob); S.M. Lohmann (Suzanne); A.C. Nairn; H.R. de Jonge (Hugo)

    1995-01-01

    textabstractType II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excis

  2. Enhanced expression of a calcium-dependent protein kinase from the moss Funaria hygrometrica under nutritional starvation

    Indian Academy of Sciences (India)

    Doyel Mitra; Man Mohan Johri

    2000-12-01

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss Funaria hygrometrica, a polymerase chain reaction (PCR)-based approach was adopted to clone the gene. Using degenerate PCR primers against conserved regions of CDPKs, a 900 bp amplicon was obtained from the genomic DNA of Funaria. Southern hybridization under low stringency conditions indicated the presence of several CDPK related sequences in the Funaria genome. This observation is consistent with reports of multigene families of CDPKs in other plants. The 900 bp fragment was subsequently used to isolate a 2.2 kb partial genomic clone of the CDPK gene from Funaria. The genomic clone encodes an open reading frame (ORF) of 518 amino acids. Interestingly, unlike other CDPK genes from plants, the entire 1.5 kb ORF is not interrupted by introns. The deduced amino acid sequence of the Funaria gene shows extensive homology with CDPKs from higher plants, 73% identity with the Fragaria CDPK and 71% identity with CDPK isoform 7 of Arabidopsis. Phylogenetic analysis revealed that the Funaria CDPK is closer to the CDPKs from higher plants like strawberry and Arabidopsis as compared to those from lower plants such as the liverwort Marchantia, the green alga Chlamydomonas or another moss Tortula. Northern analysis shows enhanced expression of the CDPK transcript within 24–48 h of starvation for nitrogen, phosphorus or sulphur. So far the only other kinase which is known to be induced by nutrient starvation in plants is the wpk 4 which is a snf-1 related kinase (SnRKs). To our knowledge this is the first report that implicates a CDPK in the starvation response.

  3. Characterization and expression analysis of calcium-dependent protein kinase genes in rice(Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    WANG Jiaojiao; GUO Li; XIAO Kai

    2007-01-01

    Under abiotic stress,the calcium-dependent protein kinases (CDPKs) in plant species are activated by the fluctuated Ca2+ levels in cytoplasm and thereby provide a mechanism to decode calcium signals.In this paper,twenty-two rice CDPK genes were identified based on scanning the rice genome released in National Center for Biotechnology Information (NCBI).It was found that there were dramatic differences on the DNA length,cDNA length,open reading frame (ORF) and the translated amino acids among the rice CDPK genes,with the highest diversity on the DNA length.Calculations of the exon/intron numbers and the lengths of exon and intron revealed that all of the rice CDPK genes had the longest exon at the position of exon 1,but the lengths of introns in different genes showed different patterns.The gene structure and phylogenetic analysis indicated that the rice CDPK genes had derived at least from two different ancestors during the evolution.The expression analysis elucidated that the rice CDPK genes showed different patterns under normal growth (CK) and salt stress condition,including constitutively expression (OsCDPK4,OsCDPK18,OsCDPK19 and OsCDPK24),down- or up-regulated in roots by salt stress (OsCDPK10 and OsCDPK16),up-regulated in leaves by salt stress (OsCDPK6,OsCDPK20 and OsCDPK13),and no detected transcripts under CK and salt stress condition.There-fore,the members of rice CDPK gene family should be evolutionally divergent and several members could play an important role in transducing the signal of salt stress.

  4. The calcium-dependent protease of Loxosceles gaucho venom acts preferentially upon red cell band 3 transmembrane protein

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2003-01-01

    Full Text Available Eighty micrograms red blood cell (RBC ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.

  5. Relaxation of endothelin-1-induced pulmonary arterial constriction by niflumic acid and NPPB: mechanism(s) independent of chloride channel block.

    Science.gov (United States)

    Kato, K; Evans, A M; Kozlowski, R Z

    1999-03-01

    We investigated the effects of the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) on endothelin-1 (ET-1)-induced constriction of rat small pulmonary arteries (diameter 100-400 microm) in vitro, following endothelium removal. ET-1 (30 nM) induced a sustained constriction of rat pulmonary arteries in physiological salt solution. Arteries preconstricted with ET-1 were relaxed by niflumic acid (IC50: 35.8 microM) and NPPB (IC50: 21.1 microM) in a reversible and concentration-dependent manner. However, at concentrations known to block Ca++-activated Cl- channels, DIDS (channel blockers. When L-type Ca++ channels were blocked by nifedipine (10 microM), the ET-1-induced (30 nM) constriction was inhibited by only 5.8%. However, niflumic acid (30 microM) and NPPB (30 microM) inhibited the ET-1-induced constriction by approximately 53% and approximately 60%, respectively, both in the continued presence of nifedipine and in Ca++-free physiological salt solution. The Ca++ ionophore A23187 (10 microM) also evoked a sustained constriction of pulmonary arteries. Surprisingly, the A23187-induced constriction was also inhibited in a reversible and concentration-dependent manner by niflumic acid (IC50: 18.0 microM) and NPPB (IC50: 8.8 microM), but not by DIDS (channel blockade. One possibility is that these compounds may block the Ca++-dependent contractile processes.

  6. Chloride transference during electrochemical chloride extraction process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical titration method and lab-made chloride probes were jointly adopted to investigate the effects of water-to-cement (W/C) ratio and the impressed current density on chloride transport for cement-based materials during electrochemical chloride extraction (ECE) process.The dissolution of bound chlorides and the effect of current density on dissolution were analyzed.The variations of chloride concentration at different depths and the chloride transference process were monitored.Test results show that W/C ratios adopted have slight influence on chloride extraction,while chloride extraction efficiency is mainly determined by the impressed current density.During ECE process a portion of bound chloride ions dissolved and the amount of bound chlorides released is directly proportional to current density.

  7. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).

    Science.gov (United States)

    Pusch, M; Accardi, A; Liantonio, A; Ferrera, L; De Luca, A; Camerino, D C; Conti, F

    2001-07-01

    We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.

  8. Molecular Characterization and Functional Analysis of a Novel Calcium-Dependent Protein Kinase 4 from Eimeria tenella

    Science.gov (United States)

    Dong, Hui; Zhao, Qiping; Zhu, Shunhai; Xia, Weili; Xu, Shuaibin; Xie, Yuxiang; Cui, Xiaoxia; Tang, Min; Men, Qifei; Yang, Zhiyuang; Li, Cong; Zhu, Xuelong; Han, Hongyu

    2016-01-01

    Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. The basis of cell invasion is not completely understood, but some key molecules of host cell invasion have been discovered. This paper investigated the characteristics of calcium-dependent protein kinase 4 (EtCDPK4), a critical molecule in E. tenella invasion of host cells. A full-length EtCDPK4 cDNA was identified from E. tenella using rapid amplification of cDNA ends. EtCDPK4 had an open reading frame of 1803 bp encoding a protein of 600 amino acids. Quantitative real-time PCR and western blotting were used to explore differences in EtCDPK4 transcription and translation in four developmental stages of E. tenella. EtCDPK4 was expressed at higher levels in sporozoites, but translation was higher in second-generation merozoites. In vitro invasion inhibition assays explored whether EtCDPK4 was involved in invasion of DF-1 cells by E. tenella sporozoites. Polyclonal antibodies against recombinant EtCDPK4 (rEtCDPK4) inhibited parasite invasion, decreasing it by approximately 52%. Indirect immunofluorescence assays explored EtCDPK4 distribution during parasite development after E. tenella sporozoite invasion of DF-1 cells in vitro. The results showed that EtCDPK4 might be important in sporozoite invasion and development. To analyze EtCDPK4 functional domains according to the structural characteristics of EtCDPK4 and study the kinase activity of rEtCDPK4, an in vitro phosphorylation system was established. We verified that rEtCDPK4 was a protein kinase that was completely dependent on Ca2+ for enzyme activity. Specific inhibitors of rEtCDPK4 activity were screened by kinase activity in vitro. Some specific inhibitors were applied to assays of DF-1 cell invasion by E. tenella sporozoites to confirm that the inhibitors functioned in vitro. W-7, H-7, H-89, and myristoylated peptide inhibited DF-1 invasion by E. tenella sporozoites. The experimental results showed

  9. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  10. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  11. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  12. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels

    Directory of Open Access Journals (Sweden)

    Rodrigo eAlzamora

    2011-06-01

    Full Text Available Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl- secretion in distal colon. The aims of this study were to determine the molecular signalling mechanisms of action of berberine on Cl- secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80  8 M. In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl- conductance or basolateral Na+-K+-ATPase activity. Berberine stimulated p38 MAPK, PKC and PKA, but had no effect on p42/p44 MAPK and PKC. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl- secretion was partially blocked by HBDDE (65 %, an inhibitor of PKC and to a smaller extent by inhibition of p38 MAPK with SB202190 (15 %. Berberine treatment induced an increase in association between PKC and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl- secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKC-dependent pathway.

  13. Similar expression patterns of bestrophin-4 and cGMP dependent Ca2+-activated chloride channel activity in the vasculature

    DEFF Research Database (Denmark)

    Bouzinova, Elena V.; Larsen, Per; Matchkov, Vladimir

    2008-01-01

    Bestrophin protein is involved in ion transport across the basolateral membrane of the retinal pigment epithelium. The mammalian genome encodes 4 members of the bestrophin family. Bestrophins have been proposed to comprise a new family of Ca2+-activated Cl- channels1. We have recently demonstrated......- current in SMCs of different origins. Immunohistochemistry identified bestrophin-4 both in endothelial and SMCs of the vascular tree in the brain, heart, kidney and mesentery, but not in the lungs. We suggest that bestrophin-4 is important for the cGMP dependent, Ca2+ activated Cl- conductance in many...

  14. State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels

    OpenAIRE

    Miranda, Pablo; Contreras, Jorge E.; Plested, Andrew J. R.; Sigworth, Fred J.; Holmgren, Miguel; Giraldez, Teresa

    2013-01-01

    Large-conductance voltage- and calcium-dependent potassium channels (BK, “Big K+”) are important controllers of cell excitability. In the BK channel, a large C-terminal intracellular region containing a “gating-ring” structure has been proposed to transduce Ca2+ binding into channel opening. Using patch-clamp fluorometry, we have investigated the calcium and voltage dependence of conformational changes of the gating-ring region of BK channels, while simultaneously monitoring channel conductan...

  15. Tribenzylammonium chloride

    Directory of Open Access Journals (Sweden)

    Waly Diallo

    2014-05-01

    Full Text Available Single crystals of the title salt, C21H21NH+·Cl−, were isolated as a side product from the reaction involving [(C6H5CH23NH]2[HPO4] and Sn(CH33Cl in ethanol. Both the cation and the anion are situated on a threefold rotation axis. The central N atom in the cation has a slightly distorted tetrahedral environment, with angles ranging from 107.7 to 111.16 (10°. In the crystal, the tribenzylammonium cations and chloride anions are linked through N—H...Cl and C—H...Cl hydrogen bonds, leading to the formation of infinite chains along [001]. The crystal studied was a merohedral twin.

  16. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  17. Stimulation of wild-type, F508del- and G551D-CFTR chloride channels by non toxic modified pyrrolo[2,3-b]pyrazine derivatives

    Directory of Open Access Journals (Sweden)

    Luc eDannhoffer

    2011-08-01

    Full Text Available Cystic Fibrosis is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of Cystic Fibrosis Transmembrane conductance Regulator (CFTR protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193 or 4 (RP185 significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells and in primary culture of human bronchial epithelial cells. Whole cell and single patch clamp recordings showed that RP193 induced a linear, time and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GPinh-5a. Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del human bronchial epithelial cells and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities.

  18. 呼吸道上皮细胞钠/氯离子通道与支气管哮喘%Epithelial sodium and chloride channels and bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    王雯; 吉宏龙

    2015-01-01

    支气管哮喘(简称哮喘)是一种慢性气道疾病,表现为气道高反应性和气道炎症导致的可逆性气道阻塞.研究显示,呼吸道上皮细胞钠/氯离子通道(ENaC/CFTR)调节黏液纤毛系统从而参与了慢性气道疾病的发病机制.ENaC及CFTR共同调节黏液的水质层,从而影响气道纤毛清除能力.调节上皮通道蛋白的特异性拮抗剂或激活剂将为哮喘和其他慢性气道疾病的预防和治疗开拓新的研究前景.%Bronchial asthma (asthma) is a chronic respiratory disease characterized by reversible airway obstruction with bronchial hyper-responsiveness and inflammation.Airway cilia system is implicated in the pathogenesis of chronic airway diseases.Epithelial sodium channels (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are closely related to the mucociliary clearance.ENaC and CFTR jointly adjust the water layer of mucus, which affects the airway cilia clearance ability.Specific antagonists or activating agents of ENaC and CFTR could be novel pharmaceutical interventions for the prevention and treatment of asthma as well as other chronic airway diseases.

  19. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone.

    Science.gov (United States)

    Moeser, Adam J; Nighot, Prashant K; Engelke, Kory J; Ueno, Ryuji; Blikslager, Anthony T

    2007-02-01

    Previous studies utilizing an ex vivo porcine model of intestinal ischemic injury demonstrated that prostaglandin (PG)E(2) stimulates repair of mucosal barrier function via a mechanism involving Cl(-) secretion and reductions in paracellular permeability. Further experiments revealed that the signaling mechanism for PGE(2)-induced mucosal recovery was mediated via type-2 Cl(-) channels (ClC-2). Therefore, the objective of the present study was to directly investigate the role of ClC-2 in mucosal repair by evaluating mucosal recovery in ischemia-injured intestinal mucosa treated with the selective ClC-2 agonist lubiprostone. Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers, and short-circuit current (I(sc)) and transepithelial electrical resistance (TER) were measured in response to lubiprostone. Application of 0.01-1 microM lubiprostone to ischemia-injured mucosa induced concentration-dependent increases in TER, with 1 microM lubiprostone stimulating a twofold increase in TER (DeltaTER = 26 Omega.cm(2); P lubiprostone (1 microM) stimulated higher elevations in TER despite lower I(sc) responses compared with the nonselective secretory agonist PGE(2) (1 microM). Furthermore, lubiprostone significantly (P lubiprostone stimulated elevations in TER and reductions in mannitol flux in ischemia-injured intestine associated with structural changes in tight junctions. Prostones such as lubiprostone may provide a selective and novel pharmacological mechanism of accelerating recovery of acutely injured intestine compared with the nonselective action of prostaglandins such as PGE(2).

  20. Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network

    OpenAIRE

    Shinoda, Yo; Sadakata, Tetsushi; Nakao, Kazuhito; Katoh-Semba, Ritsuko; Kinameri, Emi; Furuya, Asako; Yanagawa, Yuchio; Hirase, Hajime; Furuichi, Teiichi

    2011-01-01

    Calcium-dependent activator protein for secretion 2 (CAPS2) is a dense-core vesicle-associated protein that is involved in the secretion of BDNF. BDNF has a pivotal role in neuronal survival and development, including the development of inhibitory neurons and their circuits. However, how CAPS2 affects BDNF secretion and its biological significance in inhibitory neurons are largely unknown. Here we reveal the role of CAPS2 in the regulated secretion of BDNF and show the effect of CAPS2 on the ...

  1. The calcium-dependent protein kinase 3 of toxoplasma influences basal calcium levels and functions beyond egress as revealed by quantitative phosphoproteome analysis.

    OpenAIRE

    Moritz Treeck; Sanders, John L.; Rajshekhar Y Gaji; Kacie A LaFavers; Child, Matthew A.; Gustavo Arrizabalaga; Elias, Joshua E.; John C Boothroyd

    2014-01-01

    Calcium-dependent protein kinases (CDPKs) are conserved in plants and apicomplexan parasites. In Toxoplasma gondii, TgCDPK3 regulates parasite egress from the host cell in the presence of a calcium-ionophore. The targets and the pathways that the kinase controls, however, are not known. To identify pathways regulated by TgCDPK3, we measured relative phosphorylation site usage in wild type and TgCDPK3 mutant and knock-out parasites by quantitative mass-spectrometry using stable isotope-labelin...

  2. Effects of caffeine on intracellular calcium, calcium current and calcium-dependent potassium current in anterior pituitary GH3 cells.

    Science.gov (United States)

    Kramer, R H; Mokkapatti, R; Levitan, E S

    1994-01-01

    Caffeine elicits physiological responses in a variety of cell types by triggering the mobilization of Ca2+ from intracellular organelles. Here we investigate the effects of caffeine on intracellular Ca2+ concentration ([Ca2+]i) and ionic currents in anterior pituitary cells (GH3) cells. Caffeine has a biphasic effect on Ca(2+)-activated K+ current [IK(Ca)]: it induces a transient increase superimposed upon a sustained inhibition. While the transient increase coincides with a rise in [Ca2+]i, the sustained inhibition of IK(Ca) is correlated with a sustained inhibition of the L-type Ca2+ current. The L-type Ca2+ current is also inhibited by other agents that mobilize intracellular Ca2+, including thyrotropin releasing hormone (TRH) and ryanodine, but in a matter distinct from caffeine. Unlike the caffeine effect, the TRH-induced inhibition "washes-out" under whole-cell patch-clamp conditions and is eliminated by intracellular Ca2+ chelators. Likewise, the ryanodine-induced inhibition desensitizes while the caffeine-induced inhibition does not. Simultaneous [Ca2+]i and Ca2+ current measurements show that caffeine can inhibit Ca2+ current without changing [Ca2+]i. Single-channel recordings show that caffeine reduces mean open time without affecting single-channel conductance of L-type channels. Hence the effects of caffeine on ion channels in GH3 cells are attributable both to mobilization of intracellular Ca2+ and to a direct effect on the gating of L-type Ca2+ channels.

  3. Modulating effect of calcium activated potassium and chloride channels on detrusor instability%钙激活钾/氯通道对大鼠逼尿肌不稳定调节作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨航; 宋波; 金锡御; 杨昕

    2003-01-01

    目的研究钙激活钾/氯通道对逼尿肌不稳定的调节作用的变化,探讨其在逼尿肌不稳定(Detrusor instability,DI)发生中的作用.方法采用Wistar大鼠DI模型,常规制备正常及DI逼尿肌条,体外张力测定其自发收缩频率和幅度,观察通道阻断剂及开放剂的作用.结果 DI组自发收缩频率与张力较对照组显著增加.大电导钙激活钾通道(Big conductance calcium activated potassium channel,BKca)阻断后,对照组频率降低而张力增加,DI组仅频率明显提高,开放后对照组频率与张力均降低,DI组仅频率明显下降.小电导钙激活钾通道(Small conductance calcium activated potassium channel,SKca)阻断后两组的频率与张力均明显增加,而开放后则对照组均降低,DI组仅频率下降.钾通道阻断或开放后对照组频率与张力的变化幅度明显高于DI组.钙激活氯通道(Calcium activated chloride channel,Clca)阻断后,DI组频率与张力下降,而对照组无明显改变.结论钙激活钾/氯通道反馈调节逼尿肌的收缩,DI时Kca作用下调而Clca作用上调,提示钙相关的调节异常在DI的发生中具有重要作用.

  4. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation.

    Science.gov (United States)

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi

    2015-02-09

    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.

  5. Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats.

    Science.gov (United States)

    Biala, G; Budzynska, B

    2008-03-01

    Reinstatement of drug-seeking behaviour in animals is relevant to relapse to drug taking in humans. We used the conditioned place preference version of the reinstatement model to investigate the establishment, extinction, reinstatement and cross-reinstatement of nicotine-induced place conditioning in rats. Nicotine produced a place preference to the compartment paired with its injections during conditioning (0.5 mg/kg, i.p., three drug sessions). Once established, nicotine place preference was extinguished by repeated training. Following this extinction phase, nicotine-experienced rats were challenged with nicotine (0.5 mg/kg, i.p.), a cannabinoid receptor agonist WIN55,212-2 (0.5 mg/kg, i.p.), ethanol (0.5 g/kg, i.p.) or d-amphetamine (2 mg/kg, i.p.). The priming injections of nicotine, WIN55,212-2 and ethanol, but not of d-amphetamine renewed a preference for the compartment previously paired with nicotine. Finally, we examined the influence of the calcium channel antagonists, nimodipine (5 and 10 mg/kg, i.p.) and flunarizine (5 and 10 mg/kg, i.p.), on the reinstatement of nicotine place conditioning induced by WIN55,212-2 and ethanol. It was shown that the calcium channel blockers attenuated the reinstatement of nicotine-conditioned response induced by both drugs. As reinstatement of drug-seeking is a factor for the development of dependence, the L-type calcium channel antagonists may be useful in the relapse-prevention phase of addiction treatment, including cannabinoid, ethanol, and/or nicotine dependence.

  6. Stimulation rate modulates effects of the dihydropyridine CGP 28 392 on cardiac calcium-dependent action potentials.

    OpenAIRE

    Kamp, T. J.; Miller, R. J.; Sanguinetti, M C

    1985-01-01

    Calcium (Ca2+)-dependent action potentials were recorded from 22 mM potassium (K+)-depolarized guinea-pig papillary muscle at several different pacing frequencies in the absence and presence of CGP 28 392 (10 microM), a Ca2+ channel agonist. The maximum upstroke velocity (Vmax) of the slow response action potential was measured to determine relative changes in Ca2+ current as a function of pacing frequency. CGP 28 392 increased Vmax more than two fold at low rates of stimulation (1 or 12 puls...

  7. Mutation of neuronal channels of sodium and chloride associated with generalized epilepsy with febrile seizures plus (gefs+ Mutaciones de los canales neuronales de sodio y cloro asociadas a epilepsia generalizada con convulsiones febriles plus

    Directory of Open Access Journals (Sweden)

    Gabriel Bedoya Berrío

    2004-02-01

    Full Text Available Generalized Epilepsy with Febrile Seizures Plus (GEFS+ is a frequent entity characterized by generalized seizures with a wide phenotypic variety; the age of onset is 3 months and it persists beyond 6 years. Seizures may or may not be induced by fever. The disease has shown an autosomic dominant trait, incomplete penetrance and association with mutations on the genes that encode voltage-dependent sodium channels and the chloride neuronal channels on the central nervous system. The wide spectrum GEFS+ phenotype has been related with others entities such as Severe Myoclonic Epilepsy of Infancy (SMEI and Intractable Childhood Epilepsy with Frequent Generalized Tonic-Clonic Seizures (ICEGTC; they have mutations in common with GEFS+ according to several recently published articles. This review compiles up to date information about EGCF+ with the aim of giving the reader a knowledge of this entity and of its association with mutations that participate in its pathogenesis. La Epilepsia Generalizada Con Convulsiones Febriles Plus (EGCF+, es una entidad relativamente común. Se caracteriza por convulsiones de tipo generalizado con una gran variabilidad fenotípica; se presenta desde los 3 meses de edad y persiste más allá de los 6 años; las convulsiones pueden ser precipitadas por fiebre pero se presentan también sin ella. La enfermedad se ha asociado a herencia autosómica dominante con penetrancia incompleta, en la que intervienen mutaciones de los genes que codifican los canales iónicos de sodio dependientes del voltaje y de los canales iónicos de cloro en las neuronas del Sistema Nervioso Central (SNC. El amplio fenotipo de la EGCF+ se ha encontrado en asociación con otras entidades como la Epilepsia Mioclónica Severa del Lactante (EMSL y la Epilepsia Generalizada Tónico-Clónica Intratable de la Infancia (EGTCII, las cuales han presentado mutaciones comunes con las de la EGCF+, según informes recientemente publicados. Esta revisi

  8. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis%囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道

    Institute of Scientific and Technical Information of China (English)

    BOMPADRE; Silvia; G; HWANG; Tzyh-Chang

    2007-01-01

    囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族.CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因.这种疾病患者各组织上皮细胞内Cl-转运失调.目前,与CF相关的不同突变超过1 400种.CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控.近期研究发现CFTR的NBDs与其它ABC蛋白一样可以二聚化.二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2.ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用.ABP2由NBD2上的Walk A和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象.有一些CFTR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路.%The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1

  9. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    Science.gov (United States)

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  10. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum.

    Science.gov (United States)

    Hirst, G D; Johnson, S M; van Helden, D F

    1985-04-01

    Experiments were performed in current-clamped and voltage-clamped after-hyperpolarizing (AH) neurones of the guinea-pig myenteric plexus to examine the properties of the potassium conductance (gK, Ca) underlying the slow calcium-activated after-hyperpolarization (VK, Ca). The action potential plateau lengthened by the addition of tetraethylammonium chloride (TEA) to the bathing medium was compared to VK, Ca. Results were consistent with enhanced calcium entry causing an increase of VK, Ca. 4-Aminopyridine (4-AP) directly reduced VK, Ca. Voltage-clamp data of gK, Ca were well fitted by a process with a delay (approximately equal to 60 ms) followed by exponential activation (time constant approximately equal to 300 ms) and inactivation (time constant approximately equal to 2 s). The presence of a small, much slower inactivating process was noted. Values for time constants were similar to those reported by Morita, North & Tokimasa (1982) and North & Tokimasa (1983) where gK, Ca was measured during VK, Ca subsequent to action potential stimulation. The relation between gK, Ca (or the calcium-activated potassium current IK, Ca) and estimated calcium influx resulting from short-duration calcium currents elicited at various voltages was compared. Both the integral of the calcium current and gK, Ca showed a similar dependence on the depolarizations used to elicit IK, Ca except there was a positive shift of about 4 mV for the gK, Ca curve. This shift was attributed to a requirement for calcium ions to prime the gK, Ca mechanism. An inward ion charge movement of about 8 pC was required before significant activation of gK, Ca occurred. After the 'priming' condition had been established, the sensitivity of gK, Ca to inward calcium current measured at the resting potential was about 500 pS/pC of inward charge. Large calcium entry obtained by prolonged calcium currents caused saturation of the peak amplitude of IK, Ca and initiated currents with slower time to peak amplitude and

  11. Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1.

    Science.gov (United States)

    Moine, Espérance; Dimier-Poisson, Isabelle; Enguehard-Gueiffier, Cécile; Logé, Cédric; Pénichon, Mélanie; Moiré, Nathalie; Delehouzé, Claire; Foll-Josselin, Béatrice; Ruchaud, Sandrine; Bach, Stéphane; Gueiffier, Alain; Debierre-Grockiego, Françoise; Denevault-Sabourin, Caroline

    2015-11-13

    Using a structure-based design approach, we have developed a new series of imidazo[1,2-b]pyridazines, targeting the calcium-dependent protein kinase-1 (CDPK1) from Toxoplasma gondii. Twenty derivatives were thus synthesized. Structure-activity relationships and docking studies confirmed the binding mode of these inhibitors within the ATP binding pocket of TgCDPK1. Two lead compounds (16a and 16f) were then identified, which were able to block TgCDPK1 enzymatic activity at low nanomolar concentrations, with a good selectivity profile against a panel of mammalian kinases. The potential of these inhibitors was confirmed in vitro on T. gondii growth, with EC50 values of 100 nM and 70 nM, respectively. These best candidates also displayed low toxicity to mammalian cells and were selected for further in vivo investigations on murine model of acute toxoplasmosis.

  12. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.

  13. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea.

    Science.gov (United States)

    Syam Prakash, S R; Jayabaskaran, Chelliah

    2006-11-01

    In plants, calcium-dependent protein kinases (CPKs) constitute a unique family of enzymes consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. We isolated two cDNAs encoding calcium-dependent protein kinase isoforms (CaCPK1 and CaCPK2) from chickpea. Both isoforms were expressed as fusion proteins in Escherichia coli. Biochemical analyses have identified CaCPK1 and CaCPK2 as Ca(2+)-dependent protein kinases since both enzymes phosphorylated themselves and histone III-S as substrate only in the presence of Ca(2+). The kinase activity of the recombinant enzymes was calmodulin independent and sensitive to CaM antagonists W7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazoilum. Phosphoamino acid analysis revealed that the isoforms transferred the gamma-phosphate of ATP only to serine residues of histone III-S and their autophosphorylation occurred on serine and threonine residues. These two isoforms showed considerable variations with respect to their biochemical and kinetic properties including Ca(2+) sensitivities. The recombinant CaCPK1 has a pH and temperature optimum of pH 6.8-8.6 and 35-42 degrees C, respectively, whereas CaCPK2 has a pH and temperature optimum of pH 7.2-9 and 35-42 degrees C, respectively. Taken together, our results suggest that CaCPK1 and CaCPK2 are functional serine/threonine kinases and may play different roles in Ca(2+)-mediated signaling in chickpea plants.

  14. 硫化氢激活H9c2心肌细胞容积调节性氯通道%Hydrogen Sulfide Activated Volume-Regulated Chloride Channel in H9c2 Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    杨春涛; 左婉红; 赵斌; 赵磊; 蔡典其; 陈丽新; 王立伟; 冯鉴强; 廖新学

    2012-01-01

    目的 观察硫化氨(H2S)对H9c2心肌细胞容积调节性氯通道(VRCC)的影响.方法 培养大鼠H9c2 心肌细胞,用H2S供体硫氢化钠(NaHS)处理H9c2心肌细胞.分别应用Western blot和全细胞膜片钳技术分析蛋白的表达和VRCC的开放和关闭.结果 等张灌流液处理的H9c2心肌细胞可记录到微弱的背景氯电流.低张灌流液处理可明显增加H9c2心肌细胞的氯电流(P<0.0l),高张灌流液处理则可减弱这种增强作用(P<0.05).Western blot检测显示H9c2心肌细胞上存在ClC-3氯通道蛋白的表达.用400 μmol/L NaHS处理0~30 min可激活H9c2心肌细胞上的氯通道,高张灌流液处理抑制NaHS处理诱导的氯通道激活.400μmol/L NaHS处理0~30min对H9c2心肌细胞ClC-3氯通道蛋白的表达无明显影响(P>0.05).结论 H9c2心肌细胞存在VRCC和ClC-3氯通道蛋白的表达,H2S处理可激活VRCC而不影响ClC-3氯通道蛋白的表达.%Aim To investigate the effect of hydrogen sulfide (H2S) on volume-regulated chloride channel (VRCC). Methods H9c2 cardiomyoeytes were cultured and treated with sodium hydrosulfide (NaHS, a H2S donor). Expression of C1C-3 protein and VRCC chloride current (/c-VRCc) were measured by Western blot assay and whole cell patch clamp, respectively. Results When H9c2 cardiomyocytes were placed in the isotonic solution, la was slightly activated. Hypotonicity obviously enhanced la(P 0. 05). Conclusions Both VRCC and C1C-3 protein were expressed in H9c2 cardiomyocytes. H2S activated VRCC in a ClC-3-independent manner.

  15. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop

    Directory of Open Access Journals (Sweden)

    Carolina eLeon-Pinzon

    2014-06-01

    Full Text Available The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca2+ entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca2+ transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca2+ entry through L-type channels activated Ca2+-induced Ca2+ release. A resulting fast Ca2+ transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca2+ transient also triggered the transport of distant clusters of vesicles towards the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca2+ increase in the submembrane shell. This localized Ca2+ increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca2+ and this Ca2+ evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine

  16. Netrin-1 stimulates developing GnRH neurons to extend neurites to the median eminence in a calcium- dependent manner.

    Directory of Open Access Journals (Sweden)

    Victoria F Low

    Full Text Available Hypothalamic gonadotropin-releasing hormone (GnRH neurons are required for fertility in all mammalian species studied to date. In rodents, GnRH neuron cell bodies reside in the rostral hypothalamus, and most extend a single long neuronal process in the caudal direction to terminate at the median eminence (ME, the site of hormone secretion. The molecular cues that GnRH neurites use to grow and navigate to the ME during development, however, remain poorly described. Reverse transcription-PCR (RT-PCR identified mRNAs encoding Netrin-1, and its receptor, DCC, in the fetal preoptic area (POA and mediobasal hypothalamus (MBH, respectively, from gestational day 12.5 (GD12.5, a time when the first GnRH neurites extend toward the MBH. Moreover, a subpopulation of GnRH neurons from GD14.5 through GD18.5 express the Netrin-1 receptor, DCC, suggesting a role for Netrin-1/DCC signaling in GnRH neurite growth and/or guidance. In support of this notion, when GD15.5 POA explants, containing GnRH neurons actively extending neurites, were grown in three-dimensional collagen gels and challenged with exogenous Netrin-1 (100 ng/ml or 400 ng/ml GnRH neurite growth was stimulated. In addition, Netrin-1 provided from a fixed source was able to stimulate outgrowth, although it did not appear to chemoattract GnRH neurites. Finally, the effects of Netrin-1 on the outgrowth of GnRH neurites could be inhibited by blocking either L-type voltage-gated calcium channels (VGCCs with nifedipine (10 µM, or ryanodine receptors with ryanodine (10 µM. This is consistent with the role of Ca2+ from extra- and intracellular sources in Netrin-1/DCC-dependent growth cone motility in other neurons. These results indicate that Netrin-1 directly stimulates the growth of a subpopulation of GnRH neurites that express DCC, provide further understanding of the mechanisms by which GnRH nerve terminals arrive at their site of hormone secretion, and identify an additional neuronal population

  17. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  18. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents the state-of-the art: an analytical model which describes chloride profiles in concrete as function of depth...... makes physical sense for the design engineer, i.e. the achieved chloride diffusion coefficients at 1 year and 100 years, D1 and D100 respectively, and the corresponding achieved chloride concentrations at the exposed concrete surface, C1 and C100. Data from field exposure supports the assumption of time...... dependent surface chloride concentrations and the diffusion coefficients. Model parameters for Portland cement concretes with and without silica fume and fly ash in marine atmospheric and submerged South Scandinavian environment are suggested in a companion paper based on 10 years field exposure data....

  19. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    . The results show that K+-induced contraction of smooth muscle cells in the afferent arteriole is highly sensitive to chloride, whereas neurotransmitter release and ensuing contraction is not dependent on chloride. Thus, there are different activation pathways for depolarizing vasoconstrictors......-Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...

  20. Calcium-Dependent Protein Kinase in Ginger Binds with Importin-α through Its Junction Domain for Nuclear Localization, and Further Interacts with NAC Transcription Factor

    Science.gov (United States)

    Vivek, Padmanabhan Jayanthi; Resmi, Mohankumar Saraladevi; Sreekumar, Sweda; Sivakumar, K. C.; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ elevations in plant cells regulating the gene expression linked with various cellular processes like stress response, growth and development, metabolism, and cytoskeleton dynamics. Ginger is an extensively used spice due to its unique flavor and immense medicinal value. The two major threats that interfere with the large scale production of ginger are the salinity and drought stress. ZoCDPK1 (Zingiber officinale Calcium-dependent protein kinase 1) is a salinity and drought-inducible CDPK gene isolated from ginger and undergoes dynamic subcellular localization during stress conditions. ZoCDPK1, with signature features of a typical Ca2+ regulated kinase, also possesses a bipartite nuclear localization sequence (NLS) in its junction domain (JD). A striking feature in ZoCDPK1 is the rare occurrence of a coupling between the NLS in JD and consensus sequences in regulatory domain. Here, we further identified its nature of nuclear localization and its interaction partners. In the homology model generated for ZoCDPK1, the regulatory domain mimics the crystal structure of the regulatory domain in Arabidopsis CDPK1. Molecular docking simulation of importin (ZoIMPα), an important protein involved in nuclear translocation, into the NLS of ZoCDPK1 was well-visualized. Furthermore, the direct interaction of ZoCDPK1 and ZoIMPα proteins was studied by the yeast 2-hybrid (Y2H) system, which confirmed that junction domain (JD) is an important interaction module required for ZoCDPK1 and ZoIMPα binding. The probable interacting partners of ZoCDPK1 were also identified using Y2H experiment. Of the 10 different stress-related interacting partners identified for ZoCDPK1, NAC transcription factor (TF) needs special mention, especially in the context of ZoCDPK1 function. The interaction between ZoCDPK1 and NAC TF, in fact, corroborate with the results of gene expression and over-expression studies of ZoCDPK1. Hence

  1. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling.

    Science.gov (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2014-11-01

    Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.

  2. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...

  3. Role of Quercetin in Modulating Chloride Transport in the Intestine

    Science.gov (United States)

    Yu, Bo; Jiang, Yu; Jin, Lingling; Ma, Tonghui; Yang, Hong

    2016-01-01

    Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Cl− transport in a dose-dependent manner, with EC50 ~37 μM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Cl− currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Cl− currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase, and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels. PMID:27932986

  4. Role of quercetin in modulating chloride transport in the intestine

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2016-11-01

    Full Text Available Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR and calcium-activated chloride channels (CaCCs are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Clˉ transport in a dose-dependent manner, with EC50 ~37 µM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Clˉ currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex-vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Clˉ currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.

  5. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2016-12-01

    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  6. Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network.

    Science.gov (United States)

    Shinoda, Yo; Sadakata, Tetsushi; Nakao, Kazuhito; Katoh-Semba, Ritsuko; Kinameri, Emi; Furuya, Asako; Yanagawa, Yuchio; Hirase, Hajime; Furuichi, Teiichi

    2011-01-04

    Calcium-dependent activator protein for secretion 2 (CAPS2) is a dense-core vesicle-associated protein that is involved in the secretion of BDNF. BDNF has a pivotal role in neuronal survival and development, including the development of inhibitory neurons and their circuits. However, how CAPS2 affects BDNF secretion and its biological significance in inhibitory neurons are largely unknown. Here we reveal the role of CAPS2 in the regulated secretion of BDNF and show the effect of CAPS2 on the development of hippocampal GABAergic systems. We show that CAPS2 is colocalized with BDNF, both synaptically and extrasynaptically in axons of hippocampal neurons. Overexpression of exogenous CAPS2 in hippocampal neurons of CAPS2-KO mice enhanced depolarization-induced BDNF exocytosis events in terms of kinetics, frequency, and amplitude. We also show that in the CAPS2-KO hippocampus, BDNF secretion is reduced, and GABAergic systems are impaired, including a decreased number of GABAergic neurons and their synapses, a decreased number of synaptic vesicles in inhibitory synapses, and a reduced frequency and amplitude of miniature inhibitory postsynaptic currents. Conversely, excitatory neurons in the CAPS2-KO hippocampus were largely unaffected with respect to field excitatory postsynaptic potentials, miniature excitatory postsynaptic currents, and synapse number and morphology. Moreover, CAPS2-KO mice exhibited several GABA system-associated deficits, including reduced late-phase long-term potentiation at CA3-CA1 synapses, decreased hippocampal theta oscillation frequency, and increased anxiety-like behavior. Collectively, these results suggest that CAPS2 promotes activity-dependent BDNF secretion during the postnatal period that is critical for the development of hippocampal GABAergic networks.

  7. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  8. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  9. Disease causing mutations of calcium channels.

    Science.gov (United States)

    Lorenzon, Nancy M; Beam, Kurt G

    2008-01-01

    Calcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease. Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca(2+) ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca(2+) stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores.

  10. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    Science.gov (United States)

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.

  11. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    Science.gov (United States)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  12. Dynamic [Cl{sup -}]{sub i} measurement with chloride sensing quantum dots nanosensor in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuchi; Mao Hua; Wong, Lid B, E-mail: ywang@biotechplex.com [BioTechPlex Corporation, 1205 Linda Vista Drive Suite A, San Marcos, CA 92078 (United States); Cytoptics Corporation, 1205 Linda Vista Drive Suite B, San Marcos, CA 92078 (United States)

    2010-02-05

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl{sup -}]{sub i}) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl{sup -}]{sub i} in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl{sup -}]{sub i}. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl{sup -}]{sub i}. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  13. Benzalkonium Chloride and Glaucoma

    OpenAIRE

    Rasmussen, Carol A.; Kaufman, Paul L.; Kiland, Julie A.

    2014-01-01

    Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapo...

  14. 高浓度胆汁改变肠上皮细胞氯通道蛋白-2和通透性%High concentration bile changes the chloride channel protein-2 and permeability of intestinal epithelium cell line

    Institute of Scientific and Technical Information of China (English)

    陈振勇; 张劲; 杨鹏; 黄文广; 冯贤松

    2011-01-01

    Objective To investigate the effects of bile on chloride channel protein-2 (CLC-2)and permeability of intestinal epithelium cell.Methods Rat intestinal epithelium cell line IEC-6 was cultured.They were exposed to 5.0%,1.0%,0.1% rat bile and chloride channel agonist Lubiprostone.After 20 h cultured,transepithelial electrical resistance (TER) of the monostratal cells was measured.The change of CLC-2 and zonula occludens-1 (ZO-1) were examined by Western blotting,and the images were analysed quantitatively.Results The TEER of 5% group was most lower.The average relative gradations of Western blotting images in 5.0% group and 1.0% were lower obviously than those in control group (0.30 ± 0.05,0.37 ± 0.08 vs.0.56 ± 0.08) ( all P < 0.05 ).The relative gradations of ZO-1 were decreaseded only in 5.0% group.After Lubiprostone added,the TER in 5.0% group was upgraded (451.3 ± 60.5 )Ω·cm2,and the average relative gradations of ZO-1 (0.32 ± 0.04).Conclusion High concentration of bile destroied enterocyte chloride channel and tight junction protein,increase epithelium permeabihty.%目的 观察胆汁对肠上皮细胞氯离子通道和通透性的影响.方法 鼠肠上皮细胞株IEC-6分别与5.0%、1.0%、0.1%胆汁及氯通道激动剂接触.20h后检测跨膜电阻,Western blot分析氯离子通道蛋白-2(CLC-2)和紧密连接闭锁小带-1(ZO-1)表达的变化及各条带的相对灰度值.结果 5.0%浓度组降低跨膜电阻作用最强.5.0%和1.0%组的CLC-2蛋白相对灰度值(0.30±0.05和0.37±0.08)低于对照组(P均<0.05).5.0%组的ZO-1相对表达量下降.添加氯通道激动剂后,5.0%浓度组的跨膜电阻(451.3±60.5)Ω.cm2及ZO-1相对表达量(0.32±0.04)较对照组上升明显(P均<0.05).结论 高浓度胆汁破坏肠上皮细胞氯离子通道和紧密连接蛋白,增加上皮细胞通透性.

  15. Fungal colonization with Pneumocystis correlates to increasing chloride channel accessory 1 (hCLCA1 suggesting a pathway for up-regulation of airway mucus responses, in infant lungs

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez

    2014-01-01

    Full Text Available Fungal colonization with Pneumocystis is associated with increased airway mucus in infants during their primary Pneumocystis infection, and to severity of COPD in adults. The pathogenic mechanisms are under investigation. Interestingly, increased levels of hCLCA1 – a member of the calcium-sensitive chloride conductance family of proteins that drives mucus hypersecretion – have been associated with increased mucus production in patients diagnosed with COPD and in immunocompetent rodents with Pneumocystis infection. Pneumocystis is highly prevalent in infants; therefore, the contribution of Pneumocystis to hCLCA1 expression was examined in autopsied infant lungs. Respiratory viruses that may potentially increase mucus, were also examined. hCLCA1 expression was measured using actin-normalized Western-blot, and the burden of Pneumocystis organisms was quantified by qPCR in 55 autopsied lungs from apparently healthy infants who died in the community. Respiratory viruses were diagnosed using RT-PCR for RSV, metapneumovirus, influenza, and parainfluenza viruses; and by PCR for adenovirus. hCLCA1 levels in virus positive samples were comparable to those in virus-negative samples. An association between Pneumocystis and increased hCLCA1 expression was documented (P=0.028. Additionally, increasing Pneumocystis burden correlated with increasing hCLCA1 protein expression levels (P=0.017. Results strengthen the evidence of Pneumocystis-associated up-regulation of mucus-related airway responses in infant lungs. Further characterization of this immunocompetent host-Pneumocystis-interaction, including assessment of potential clinical significance, is warranted.

  16. Ion channels-related diseases.

    Science.gov (United States)

    Dworakowska, B; Dołowy, K

    2000-01-01

    There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.

  17. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  18. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  19. Oxomemazine hydro-chloride.

    Science.gov (United States)

    Siddegowda, M S; Butcher, Ray J; Akkurt, Mehmet; Yathirajan, H S; Ramesh, A R

    2011-08-01

    IN THE TITLE COMPOUND [SYSTEMATIC NAME: 3-(5,5-dioxo-phen-othia-zin-10-yl)-N,N,2-trimethyl-propanaminium chloride], C(18)H(23)N(2)O(2)S(+)·Cl(-), the dihedral angle between the two outer aromatic rings of the phenothia-zine unit is 30.5 (2)°. In the crystal, the components are linked by N-H⋯Cl and C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.

  20. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria.

    Science.gov (United States)

    Xu, Shangcheng; Pi, Huifeng; Zhang, Lei; Zhang, Nixian; Li, YuMing; Zhang, Huiliang; Tang, Ju; Li, Huijuan; Feng, Min; Deng, Ping; Guo, Pan; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Wang, Wang; Reiter, Russel J; Yu, Zhengping; Zhou, Zhou

    2016-04-01

    Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.

  1. Stimulation of Wild-Type, F508del- and G551D-CFTR Chloride Channels by Non-Toxic Modified pyrrolo[2,3-b]pyrazine Derivatives.

    Science.gov (United States)

    Dannhoffer, Luc; Billet, Arnaud; Jollivet, Mathilde; Melin-Heschel, Patricia; Faveau, Christelle; Becq, Frédéric

    2011-01-01

    Cystic fibrosis (CF) is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of cystic fibrosis transmembrane conductance regulator (CFTR) protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl)[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193) or 4 (RP185) significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells, and in primary culture of human bronchial epithelial cells (HBEC). Whole-cell and single patch-clamp recordings showed that RP193 induced a linear, time- and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GP(inh)5a). Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del) HBEC and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities.

  2. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses to norepineph......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular...... chloride. We conclude that norepinephrine and ANG II use different mechanisms for contraction and that extracellular chloride is essential for contraction in afferent arterioles after activation of voltage-dependent calcium channels. We suggest that a chloride influx pathway is activated concomitantly...

  3. Benzalkonium chloride and glaucoma.

    Science.gov (United States)

    Rasmussen, Carol A; Kaufman, Paul L; Kiland, Julie A

    2014-01-01

    Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology.

  4. Chloride on the Move

    KAUST Repository

    Li, Bo

    2017-01-09

    Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele to control root-to-shoot delivery of Cl−.

  5. Heartwood extract of Rhus verniciflua Stokes and its active constituent fisetin attenuate vasoconstriction through calcium-dependent mechanism in rat aorta.

    Science.gov (United States)

    Park, Jung-Min; Lee, Jun-Hyeong; Na, Chun-Soo; Lee, Dongho; Lee, Jin-Yong; Satoh, Masahiko; Lee, Moo-Yeol

    2016-01-01

    Rhus verniciflua Stokes (RVS) exert cardiovascular protective activity by promoting blood circulation, but its active ingredients and underlying mechanism have yet to be identified. This study investigated the vascular effects of RVS, focusing on vasoconstriction and smooth muscle Ca(2+) signaling. RVS heartwood extract attenuated contraction of aortic rings induced by the vasoconstrictors serotonin and phenylephrine, and inhibited the Ca(2+) signaling evoked by serotonin in vascular smooth muscle cells. Subsequent activity-guided fractionation identified fisetin as an active constituent exerting a Ca(2+) inhibitory effect. Fisetin could inhibit major Ca(2+) mobilization pathways including extracellular Ca(2+) influx mediated by the L-type voltage-gated Ca(2+) channel, Ca(2+) release from the intracellular store and store-operated Ca(2+) entry. In accordance with Ca(2+) inhibitory effect, fisetin attenuated vasoconstriction by serotonin and phenylephrine. These results suggest that the anticontractile effect, which is presumably mediated by inhibition of Ca(2+) signaling, may contribute to the improvement of blood circulation by RVS.

  6. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Science.gov (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  7. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  8. Lipoxin A4 induces apoptosis of renal interstitial fibroblasts via calcium-dependent up-regulation of calpain 10 and Smac expressions

    Institute of Scientific and Technical Information of China (English)

    Shenghua Wu; Chao Lu; Ling Dong; Guoping Zhou; Ziqing Chen

    2005-01-01

    Objective: To examine whether lipoxin A4 (LXA4) induces apoptosis of renal interstitial fibroblasts and explore the mechanisms of signal pathway of LXA4. Methods: Rat renal interstitial fibroblasts (NRK-49F cells) were exposed to LXA4 at different concentrations. Prior to the experiment, the cells were transfected with Smac or calpain 10 antisense oligodeoxynucleotide (ODN), or treated with calcium channel inhibitor SK&F96365. Apoptosis of cells was recognized by double staining using acridine orange and ethidium bromide, observed in laser scanning confocal microscope, and counted by a flow cytometer. Caspase-3 activities were measured by colorimetric assay. The levels of free cytosolic calcium ([Ca2+ ]i) were analyzed in fura-2-loaded cells by laser scanning confocal microscopy. Expression of calpain 10 mRNA was determined by RT-PCR. Expressions of Smac protein and threonine phosphorylated Akt1 proteins at 308 site were determined by a Western blotting analysis. Activity of signal transducers and activators of transcription-3 (STAT3) was determined by electrophoretic mobility shift assay. Results: LXA4 at the concentrations of 0.1 and 1μmol/L induced 9.83% and 33.82% apoptosis of NRK-49F cells respectively, reduced at S and G2-M phase and increased the cells at G0-G1 phase in a dose-dependent manner. Treatment of the cells with LXA4 increased the expressions of calpain 10 and Smac, the levels of [Ca2+ ]i and activity of caspase-3. It also down-regulated the DNA-binding activity of STAT3 and expression of threonine phosphorylated Akt1. Transfection of the cells with calpain 10 antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of calpain 10, and ameliorated the decreased activity of STAT3. Transfection of the cells with Smac antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of Smac. Pretreatment of the cells with SK & F96365 inhibited the LXA4-induced apoptosis, levels of [Ca2+ ]i

  9. Effect of Chloride Channels on Apoptotic Volume Decrease and Apoptosis in Nasopharyngeal Carcinoma Cells%氯通道在鼻咽癌细胞凋亡性细胞容积减小和细胞凋亡中的作用

    Institute of Scientific and Technical Information of China (English)

    潘廷才; 杨林杰; 刘善文; 李华荣; 朱林燕; 叶文才; 王立伟; 陈丽新

    2011-01-01

    目的:探讨氯通道在5-氟尿嘧啶(5-Fu)诱导的低分化鼻咽癌细胞CNE-2Z凋亡性细胞容积减小(AVD)和细胞凋亡中的作用.方法:培养CNE-2Z细胞后,分别用100μmol/L 5-Fu(5-Fu组)、100μmol/L 5-Fu+100μmol/L 5-硝基-2-(3-苯丙胺)苯甲酸(5-Fu+NPPB组)处理细胞,采用活细胞影像系统实时拍摄细胞图像,检测细胞容积变化,Hochest 33258荧光染色技术检测细胞凋亡并计算细胞凋亡率.结果:5-Fu处理使细胞皱缩,体积变小;5-Fu+NPPB处理后细胞体积变化不明显.在5个不同时间点,细胞受到5-Fu刺激后,标准化细胞容积(Vst)均小于对照组,5-Fu+NPPB组对细胞Vst的影响均小于5-Fu组,差异均有统计学意义.对照组细胞凋亡率(1.8+0.5)%,5-Fu处理使细胞凋亡率增加至(49.2±2.6)%,5-Fu+NPPB处理使细胞凋亡率降至(12.5±2.9)%.结论:抑制氯通道可显著拮抗5-Fu诱导的凋亡性细胞容积减小和细胞凋亡.%Objective: To investigate the roles of chloride channels in apoptotic volume decrease (AVD) and apoptosis in nasopharyngeal carcinoma cells (CNE-2Z). Methods: The CNE-2Z was cultured and treated with 100 μmol/L 5-Fu (5-Fu group), 100 μmol/L 5-Fu+l00 μmol/L 5-nitro-2-(3-phenylpropylamino) henzoic acid (5-Fu+NPPB group). Changes of the cell volume were monitored and analyzed by the time-lapse imaging technique. Cell apoptotic rates were measured and analysed by Hoechst 33258 staining. Results : The results showed that 5-Fu induced the early cell volume decrease in a few minutes. The cell shrinkage and volume decrease were found after 5-Fu treatment. No significant change was found in cell volume after treatment with 5-Fu+NPPB. The cell volumes were significantly decreased in 5 time points in 5-Fu group than those of control. The effect of 5-Fu+NPPB on the cell volume was significantly smaller than that of 5-Fu. The apoptotic rate induced by 5-Fu was (49.2±2.6)% compared with (1.8±0.5)% in control group. The apoptotic rate was

  10. Block of a Ca(2+)-activated potassium channel by cocaine.

    Science.gov (United States)

    Premkumar, L S

    2005-04-01

    The primary target for cocaine is believed to be monoamine transporters because of cocaine's high-affinity binding that prevents re-uptake of released neurotransmitter. However, direct interaction with ion channels has been shown to be important for certain pharmacological/toxicological effects of cocaine. Here I show that cocaine selectively blocks a calcium-dependent K(+) channel in hippocampal neurons grown in culture (IC(50)=approximately 30 microM). Single-channel recordings show that in the presence of cocaine, the channel openings are interrupted with brief closures (flicker block). As the concentration of cocaine is increased the open-time is reduced, whereas the duration of brief closures is independent of concentration. The association and dissociation rate constants of cocaine for the neuronal Ca(2+)-activated K(+ )channels are 261+/-37 microM: (-1)s(-1) and 11451+/-1467 s(-1). The equilibrium dissociation constant (K(B)) for cocaine, determined from single-channel parameters, is 43 microM. The lack of voltage dependence of block suggests that cocaine probably binds to a site at the mouth of the pore. Block of Ca(2+)-dependent K(+) channels by cocaine may be involved in functions that include broadening of the action potential, which would facilitate transmitter release, enhancement of smooth muscle contraction particularly in blood vessels, and modulation of repetitive neuronal firing by altering the repolarization and afterhyperpolarization phases of the action potential.

  11. Studies Update Vinyl Chloride Hazards.

    Science.gov (United States)

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  12. Parameters Affecting Hydrogen Chloride Measurements

    Science.gov (United States)

    1993-06-01

    contain sea salt, which is hygroscopic because of the magnesium chloride present, or ammonium bisulfate , which mostly comes from sulfur pollution and is...boosters release hydrogen chloride as a combustion product, and hydrazines or nitric acid can be spilled from liquid fuel motors. Monitoring the...solubility constant, and the second is the acid ionization constant. From experimental work, the product of the two constants is well established (Reference

  13. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  14. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution....

  15. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility.

  16. The relationship between cytosolic calcium-dependent phospholipase A2(cPLA2) and schizophrenia%胞浆型磷脂酶A2基因多态性与精神分裂症的关系

    Institute of Scientific and Technical Information of China (English)

    张志Jun; Wei; Jun; 等

    2001-01-01

    Objective:To determine allelic association of the Ban Ipolymorphism for cytosolic calcium-dependent phospholipase A2 (cPLA2) gene with schizophrenia in Indian. Method:cPLA2 gene allelic frequency and genotype were examined with the methods of the polymerase chain reaction (PCR) and restrictive fragment length polymorphism (RFLP) analysis in samples of 89 unrelated patients with schizophrenia and 78 normal controls. Results:Ban I digestion of the PCR fragments showed ploymorphic site named site A. The allelic frequency showed significant difference between two groups of the subjects (P<0.02). But schizophrenic patients showed excess A2A2 homozygotic genotype as compared with normal controls(P<0.02). Conclusion:Allelic association of the Ban I polymorphism for calcium-dependent cPLA2 gene is with schizophrenia in India.The gene might be one of candidate genes or in linkage disequilibrium with other causal genes in schizophrenia.%目的:分析印度人群钙依赖性胞浆型磷脂酶A2(cPLA2)BanI限制性内切酶基因多态性与精神分裂症的相互关系。 方法:应用聚合酶链式反应(PCR)限制性片段长度多态性(RFLP)方法,在89例精神分裂症患者和78例健康人群中观察比较cPLA2等位基因和基因型频数分布。 结果:PCR产物的BanI限制性酶切片段于cPLA2基因第一非编码区显示多态性位点,命名为位点A;患者组和健康对照组cPLA2等位基因频数呈显著差异(P<0.02);精神分裂症患者显示A2/A2纯合基因型显著增加(P<0.02)。 结论:cPLA2基因多态性与印度人群精神分裂症相关联;cPLA2基因可能为精神分裂症候选基因之一,或与其他致病基因呈连锁不平衡。

  17. Estradiol inhibits Ca2+ and K+ channels in smooth muscle cells from pregnant rat myometrium.

    Science.gov (United States)

    Okabe, K; Inoue, Y; Soeda, H

    1999-07-02

    The purpose of this study was to investigate the actions of 17beta-estradiol on the electrical activity of pregnant rat myometrium. The longitudinal layer of the myometrium was dissected from pregnant rats (17 to 19 days of gestation), and single cells were isolated by enzymatic digestion. Calcium currents and potassium currents were recorded by the whole-cell voltage-clamp method, and the single calcium-dependent potassium current was recorded by the outside-out patch-clamp method. The effects of 17beta-estradiol on these currents were investigated. When a myometrial cell was held at -50 mV, depolarization to a potential more positive than -30 mV produced an inward current followed by a slowly developing outward current. Application of tetraethylammonium inhibited the outward current while the inward current was completely abolished in a calcium-free solution. Estradiol at high concentrations (> 3 microM) inhibited both inward and outward currents in a voltage-dependent manner. Removal of estradiol restored the amplitude of the outward but not of the inward current. Estradiol (30 microM) also inhibited the activity of single calcium-dependent potassium channels without changing single channel conductance. In conclusion, estradiol at high concentrations inhibited: (1) voltage-dependent calcium, (2) calcium-dependent potassium and (3) voltage-dependent potassium currents. These actions of estradiol would prevent action potential generation and after-hyperpolarizations. Suppression of the after-hyperpolarization might further prevent spike generation due to slowing of the calcium channel's recovery from the inactivated state.

  18. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  19. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene...

  20. [Role of voltage-dependent ion channels in epileptogenesis].

    Science.gov (United States)

    Ricard-Mousnier, B; Couraud, F

    1993-10-01

    The aim of this review is to gather information in favour of the involvement of voltage-dependent ion channels in epileptogenesis. Although, up to now, no study has shown that epilepsy is accompanied by a modification in the activity to these channels, the recently acquired knowledge of their physiology allows to presume would favor their involvement in epileptogenesis. The results from electrophysiological studies are as follows: a persistent sodium current increases neuronal excitability whereas potassium currents have an inhibitory role. In particular, calcium-dependent potassium current are involved in the post-hyperpolarization phases which follows PDS. Calcium currents are also involved in the genesis of the "bursting pacemaker" activity displayed by the neurons presumed to be inducers of the epileptic activity. Biochemical data has shown that as a consequence of epileptic activity, sodium and calcium channels are down regulated. This down-regulation could be a way to reduces neuronal hyperexcitability. Pharmacological data demonstrate the drugs which activate calcium channels or which inhibit potassium channels have a convusilvant effect. On the contrary, agents which block calcium or sodium channels or which properties. Among the latter ones, some antiepileptic drugs can be found. In summary situations which lead to increase in calcium and sodium currents and/or to an inhibition in potassium currents are potentially epileptogenic.

  1. Evidence of calcium-dependent pathway in the regulation of human beta1,3-glucuronosyltransferase-1 (GlcAT-I) gene expression: a key enzyme in proteoglycan synthesis.

    Science.gov (United States)

    Barré, Lydia; Venkatesan, Narayanan; Magdalou, Jacques; Netter, Patrick; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2006-08-01

    The importance of heparan- and chondroitin-sulfate proteoglycans in physiological and pathological processes led to the investigation of the regulation of beta1,3-glucuronosyltransferase I (GlcAT-I), responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide, a key step prior to polymerization of chondroitin- and heparan-sulfate chains. We have cloned and functionally characterized GlcAT-I 5'-flanking regulatory region. Mutation analysis and electrophoretic mobility shift assays demonstrated the importance of Sp1 motif located at -65/-56 position in promoter activity. Furthermore, we found that elevation of intracellular calcium concentration by the calcium ionophore ionomycin stimulated GlcAT-I gene expression as well as glycosaminoglycan chain synthesis in HeLa cells. Bisanthracycline, an anti-Sp1 compound, inhibited GlcAT-I basal promoter activity and suppressed ionomycin induction, suggesting the importance of Sp1 in calcium induction of GlcAT-I gene expression. Nuclear protein extracts from ionomycin-induced cells exhibited an increased DNA binding of Sp1 factor to the consensus sequence at position -65/-56. Signaling pathway analysis and MEK inhibition studies revealed the important role of p42/p44 MAPK in the stimulation of GlcAT-I promoter activity by ionomycin. The present study identifies, for the first time, GlcAT-I as a target of calcium-dependent signaling pathway and evidences the critical role of Sp1 transcription factor in the activation of GlcAT-I expression.

  2. Genome-Wide Identification of Calcium Dependent Protein Kinase Gene Family in Plant Lineage Shows Presence of Novel D-x-D and D-E-L Motifs in EF-Hand Domain.

    Science.gov (United States)

    Mohanta, Tapan K; Mohanta, Nibedita; Mohanta, Yugal K; Bae, Hanhong

    2015-01-01

    Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca(2+) concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca(2+) ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins.

  3. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  4. Calcium dependent magnesium uptake in myocardium.

    Science.gov (United States)

    Bianchi, C P; Liu, D

    1993-01-01

    The frog myocardium maintains magnesium content at a steady state level when stimulated at 0.4Hz while being perfused with Ringer's solution containing 1 x 10(-3) M Ca2+ and 5 x 10(-7) M magnesium. When calcium is removed 43% of tissue magnesium is lost within 30 seconds or 12 beats. Restoration of calcium to the perfusion solution causes reaccumulation of magnesium from a solution containing 5 x 10(-7) M magnesium. The reaccumulation of magnesium indicates a highly selective transport system for magnesium which is dependent upon the presence of calcium. Calcium appears to reduce the leak of magnesium from the myocardium and enhances the transport of magnesium into the myocardial cell. Intracellular magnesium is a necessary cofactor for hundreds of enzymes, and is essential for protein synthesis and as an extracellular divalent cation helps to stabilize excitable membranes in conjunction with calcium. The concentration of ionized magnesium in the sarcoplasm of myocardial muscle has an average value of 1.45 mM +/- 1.37 (standard deviation), N = 19) with a range of 0.5 to 3.6 mM (1). The heart with its numerous mitochondria and high enzymatic activity is vulnerable to myocardial damage due to magnesium loss. The isolated frog ventricle conserves intracellular magnesium when perfused with Ringer's solution containing no added magnesium and maintains function for hours. The ability to conserve magnesium suggests a low permeability of the sarcolemma to magnesium and an extremely efficient inward transport system. Removal of calcium as well as magnesium from the perfusion solution causes a rapid loss of tension in the electrically driven frog ventricle (0.4) Hz.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution

    Science.gov (United States)

    Ha, Hung; Payer, Joe

    2011-01-01

    The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer. PMID:21516171

  6. The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution.

    Science.gov (United States)

    Ha, Hung; Payer, Joe

    2011-02-28

    The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer.

  7. Ion channel expression in the developing enteric nervous system.

    Directory of Open Access Journals (Sweden)

    Caroline S Hirst

    Full Text Available The enteric nervous system arises from neural crest-derived cells (ENCCs that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.

  8. Ion Channel Expression in the Developing Enteric Nervous System

    Science.gov (United States)

    Stamp, Lincon A.; Fegan, Emily; Dent, Stephan; Cooper, Edward C.; Lomax, Alan E.; Anderson, Colin R.; Bornstein, Joel C.; Young, Heather M.; McKeown, Sonja J.

    2015-01-01

    The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons. PMID:25798587

  9. Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels.

    Science.gov (United States)

    Premkumar, A; Horan, C R; Gage, P W

    2005-03-01

    A chemically synthesized peptide consisting of the C-terminus of the M protein of the Dengue virus type 1 strain Singapore S275/90 (DVM-C) produced ion channel activity in artificial lipid bilayers. The channels had a variable conductance and were more permeable to sodium and potassium ions than to chloride ions and more permeable to chloride ions than to calcium ions. Hexamethylene amiloride (100 microM) and amantadine (10 microM), blocked channels formed by DVM-C. Ion channels may play an important role in the life cycle of many viruses and drugs that block these channels may prove to be useful antiviral agents.

  10. Solvolyses of Benzoyl Chlorides in Weakly Nucleophilic Media

    Directory of Open Access Journals (Sweden)

    Haldon Carl Harris

    2011-07-01

    Full Text Available Rate constants and activations parameters are reported for solvolyses of p-Z-substituted benzoyl chlorides (1, Z = OMe, Me, H, and Cl in 97% w/w hexafluoroisopropanol-water (97H. Additional kinetic data are reported for solvolyses in acetic and formic acids. Plots of log k vs. σp in 97H are consistent with previous research showing that a cationic reaction channel is dominant, even for solvolyses of 1, Z = NO2. A benzoyl cation intermediate was trapped by Friedel-Crafts reaction with 1,3,5-trimethoxybenzene in hexafluoroisopropanol. The results are explained by an SN2-SN1 spectrum of mechanisms with variations in nucleophilic solvent assistance. Ab initio calculations of heterolytic bond dissociation energies of various chloro- and fluoro-substituted and other benzoyl chlorides are correlated with log k for solvolyses.

  11. [Headspace GC/MS analysis of residual vinyl chloride and vinylidene chloride in polyvinyl chloride and polyvinylidene chloride products].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Kawamura, Yoko; Suzuki, Masako; Aoyama, Taiki

    2005-02-01

    A headspace GC/MS analysis method for the simultaneous determination of residual vinyl chloride (VC) and vinylidene chloride (VDC) in polyvinyl chloride (PVC) and polyvinylidene chloride (PVDC) products was developed. A test sample was swelled overnight with N,N-dimethylacetamide in a sealed vial. The vial was incubated for 1 hour at 90 degrees C, then the headspace gas was analyzed by GC/MS using a PLOT capillary column. The recoveries from spiked PVC and PVDC samples were 90.0-112.3% for VC and 85.2-108.3% for VDC. The determination limits were 0.01 microg/g for VC and 0.06/microg/g for VDC, respectively. By this method, VC was detected in two PVC water supply pipes at the levels of 0.61 and 0.01 microg/g. On the other hand, VC and VDC were not detected in any of the food container-packages or toys tested.

  12. 1,5-Diaminotetrazolium chloride

    Directory of Open Access Journals (Sweden)

    Ling-Qiao Meng

    2010-04-01

    Full Text Available The title compound, CH5N6+·Cl−, crystallized with two indepedent 1,5-diaminotetrazolium cations and two independent chloride anions in the asymmetric unit. In the crystal, there are a number of N—H...Cl hydrogen-bonding interactions, which generate a three-dimensional network.

  13. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    OpenAIRE

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A.

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− ch...

  14. 21 CFR 173.375 - Cetylpyridinium chloride.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No... Nutrition's Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or...

  15. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.

    Science.gov (United States)

    Painter, Richard G; Bonvillain, Ryan W; Valentine, Vincent G; Lombard, Gisele A; LaPlace, Stephanie G; Nauseef, William M; Wang, Guoshun

    2008-06-01

    Chloride anion is essential for myeloperoxidase (MPO) to produce hypochlorous acid (HOCl) in polymorphonuclear neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. However, as the chloride level was raised, the killing efficiency increased in a dose-dependent manner. By using specific inhibitors to selectively block NADPH oxidase, MPO, and cystic fibrosis transmembrane conductance regulator (CFTR) functions, neutrophil-mediated killing of PsA could be attributed to three distinct mechanisms: CFTR-dependent and oxidant-dependent; chloride-dependent but not CFTR- and oxidant-dependent; and independent of any of the tested factors. Therefore, chloride anion is involved in oxidant- and nonoxidant-mediated bacterial killing. We previously reported that neutrophils from CF patients are defective in chlorination of ingested bacteria, suggesting that the chloride channel defect might impair the MPO-hydrogen peroxide-chloride microbicidal function. Here, we compared the competence of killing PsA by neutrophils from normal donors and CF patients. The data demonstrate that the killing rate by CF neutrophils was significantly lower than that by normal neutrophils. CF neutrophils in a chloride-deficient environment had only one-third of the bactericidal capacity of normal neutrophils in a physiological chloride environment. These results suggest that CFTR-dependent chloride anion transport contributes significantly to killing PsA by normal neutrophils and when defective as in CF, may compromise the ability to clear PsA.

  16. Progress of Carbonation in Chloride Contaminated Concretes

    OpenAIRE

    Wang, Yaocheng; Basheer, P. A.M.; Nanukuttan, S; Bai, Y.

    2016-01-01

    Concretes used in marine environment are generally under the cyclic effect of CO2 and chloride ions (Cl-). To date, the influence of carbonation on ingress of chloride ions in concretes has been widely studied; in comparison, study on the influence of Cl- on the progress of carbonation is limited. During the study, concretes were exposed to independent and combined mechanisms of carbonation and chloride ingress regimes. Profiles of apparent pH and chloride concentration were used to indicate ...

  17. Microbial reductive dehalogenation of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  18. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O,...

  19. Cystic Fibrosis (CF): Chloride Sweat Test

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cystic Fibrosis (CF) Chloride Sweat Test KidsHealth > For Parents > Cystic Fibrosis (CF) Chloride Sweat Test Print A A A ... It Is A chloride sweat test helps diagnose cystic fibrosis (CF) , an inherited disorder that makes kids sick ...

  20. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the...

  1. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full review... revocation of the antidumping duty order on barium chloride from China would be likely to lead...

  2. 21 CFR 172.180 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  3. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  4. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital.

    Science.gov (United States)

    Nardou, Romain; Yamamoto, Sumii; Chazal, Geneviève; Bhar, Asma; Ferrand, Nadine; Dulac, Olivier; Ben-Ari, Yehezkel; Khalilov, Ilgam

    2011-04-01

    Phenobarbital produces its anti-epileptic actions by increasing the inhibitory drive of γ-aminobutyric acid. However, following recurrent seizures, γ-aminobutyric acid excites neurons because of a persistent increase of chloride raising the important issue of whether phenobarbital could aggravate persistent seizures. Here we compared the actions of phenobarbital on initial and established ictal-like events in an in vitro model of mirror focus. Using the in vitro three-compartment chamber preparation with the two hippocampi and their commissural fibres placed in three different chambers, kainate was applied to one hippocampus and phenobarbital contralaterally, either after one ictal-like event or after many recurrent ictal-like events that produce an epileptogenic mirror focus. Field, perforated patch and single-channel recordings were used to determine the effects of γ-aminobutyric acid and their modulation by phenobarbital, and alterations of the chloride cotransporters were investigated using sodium-potassium-chloride cotransporter 1 and potassium chloride cotransporter 2 antagonists, potassium chloride cotransporter 2 immunocytochemistry and sodium-potassium-chloride cotransporter 1 knockouts. Phenobarbital reduced initial ictal-like events and prevented the formation of a mirror focus when applied from the start. In contrast, phenobarbital aggravated epileptiform activities when applied after many ictal-like events by enhancing the excitatory actions of γ-aminobutyric acid due to increased chloride. The accumulation of chloride and the excitatory actions of γ-aminobutyric acid in mirror foci neurons are mediated by the sodium-potassium-chloride cotransporter 1 chloride importer and by downregulation and internalization of the chloride-exporter potassium-chloride cotransporter 2. Finally, concomitant applications of the sodium-potassium-chloride cotransporter 1 antagonist bumetanide and phenobarbital decreased excitatory actions of γ-aminobutyric acid and

  5. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.

    OpenAIRE

    Fulmer, S B; Schwiebert, E M; M.M. Morales; Guggino, W B; Cutting, G R

    1995-01-01

    Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopu...

  6. [Properties of cholinergic receptor-mediated ion channels on type I vestibular hair cells of guinea pigs].

    Science.gov (United States)

    Zhu, Yun; Kong, Wei-Jia; Xia, Jiao; Zhang, Yu; Cheng, Hua-Mao; Guo, Chang-Kai

    2008-06-25

    To confirm the existence of cholinergic receptors on type I vestibular hair cells (VHCs I) of guinea pigs and to study the properties of the cholinergic receptor-mediated ion channels on VHCs I, electrophysiological responses of isolated VHCs I to external ACh were examined by means of whole-cell patch-clamp recordings. The results showed that 7.5% (21/279) VHCs I were found to be sensitive to ACh (10-1000 μmol/L). ACh generated an outward current in a steady, slow, dose-dependent [EC(50) was (63.78±2.31) μmol/L] and voltage-independent manner. In standard extracellular solution, ACh at the concentration of 100 μmol/L triggered a calcium-dependent current of (170±15) pA at holding potential of -50 mV, and the current amplitude could be depressed by extracellularly added calcium-dependent potassium channel antagonist TEA. The time interval for the next complete activation of ACh-sensitive current was no less than 1 min. The ion channels did not shut off even when they were exposed to ACh for an extended period of time (8 min). The results suggest that dose-dependent, calcium-dependent and voltage-independent cholinergic receptors were located on a few of the VHCs I investibular epithelium of guinea pigs. The cholinergic receptors did not show desensitization to ACh. This work reveals the existence of efferent neurotransmitter receptors on VHCs I and helps in understanding the function of vestibular efferent nervous system, and may provide some useful information on guiding the clinical rehabilitative treatment of vertigo.

  7. 人类胞内氯离子通道蛋白3在原核细胞及真核细胞内的表达%The expression of human intracellular chloride channel protein 3 in eukaryotic and prokaryotic cells

    Institute of Scientific and Technical Information of China (English)

    李春雨; 潘林鑫; 刘晓颖; 范礼斌

    2014-01-01

    目的研究人类胞内氯离子通道蛋白3(CLIC3)在真核细胞中的定位和表达,及其GST融合蛋白在原核细胞中的表达。方法以含人CLIC3的全长cDNA序列的质粒为模板,PCR扩增CLIC3片段,构建真核表达载体pcDNA3.1-CLIC3-FLAG,检测其定位及表达;构建原核表达载体pGEX-5X-3-CLIC3,转化到大肠杆菌 BL21菌株,IPTG诱导融合蛋白GST-CLIC3表达。结果细胞免疫荧光结果表明 CLIC3在COS7细胞质和细胞核中均有分布;Western blot结果显示CLIC3在HEK-293T细胞中能有效表达;考马斯亮蓝染色结果表明融合蛋白GST-CLIC3在BL21菌株中能有效表达。结论人类的CLIC3蛋白COS7、HEK-293T及大肠杆菌BL21菌株均能有效表达,为进一步了解CLIC3的功能奠定了一定的基础。%Objective To investigate the expression and localization of the human chloride channel protein 3 (CLIC3) in eukaryotic cells, and the expression of GST fusion protein in prokaryotic cells. Methods Plasmids containing full length of human CLIC3 cDNA was used as PCR template to construct the prokaryotic and eukaryotic expression vectors. The pcDNA3. 1-CLIC3-FLAG was transfected into COS7 and HEK-293T cells respectively to detect the localization and expression of CLIC3. The pGEX-5X-3-CLIC3 was transformed into E. coli BL21 to inves-tigate the expression of fusion protein GST-CLIC3 . Results The immunofluorescence results indicated that CLIC3 was distributed in both cytoplasm and nucleus of COS7 cells;Western blot showed CLIC3 could be effectively ex-pressed in HEK-293T cells;Coomassie blue staining proved GST-CLIC3 could be expressed in E. coli BL21. Con-clusion Human CLIC3 protein can be expressed effectively both in eukaryotic and prokaryotic cells, which is im-portant for further research on the function of human CLIC3 .

  8. Oxomemazine hydro­chloride

    OpenAIRE

    Siddegowda, M. S.; Butcher, Ray J.; Mehmet Akkurt; Yathirajan, H.S.; Ramesh, A. R.

    2011-01-01

    In the title compound [systematic name: 3-(5,5-dioxophenothiazin-10-yl)-N,N,2-trimethylpropanaminium chloride], C18H23N2O2S+·Cl−, the dihedral angle between the two outer aromatic rings of the phenothiazine unit is 30.5 (2)°. In the crystal, the components are linked by N—H...Cl and C—H...Cl hydrogen bonds and C—H...π interactions.

  9. Shock compression of polyvinyl chloride

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2016-04-01

    This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.

  10. Developing chloride resisting concrete using PFA

    Energy Technology Data Exchange (ETDEWEB)

    Dhir, R.K.; El-Mohr, M.A.K.; Dyer, T.D. [Univ. of Dundee (United Kingdom). Dept. of Civil Engineering

    1997-11-01

    PFA concrete mixes were designed to optimize resistance to chloride ingress. Chloride binding capacity, intrinsic permeability and their concomitant influence on the coefficient of chloride diffusion have been investigated. PFA replacements up to 67% and exposure concentrations of 0.1, 0.5, 1.0 and 5.0 mole/liter were used. Chloride binding capacity was found to increase with increasing PFA replacement up to 50% and to then decline. It increased with chloride exposure concentration as well as water/binder ratio. The coefficient of chloride diffusion of concrete samples was found to be dependent on both the intrinsic permeability of the concrete and the ability of its cement matrix to bind chlorides.

  11. Ultrastructural Observation of the Skin Chloride Cells of Japanese Flounder Paralichthys olivaceus and Turbot Scophthamus maximus Larvae

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The ultrastructures of skin chloride cells in cultured Japanese flounder and turbot larvae in metamorphosis, which grow in the same feeding conditions, are examined with a transmission electron microscope. These developed skin chloride cells were shaped like flattened ellipsoids and similar in morphology and ultrastructure to typical chloride cells of euryhaline fish gill. They locate in the epidermis and contract with the extra and interior environment through the apical pit and narrow channels. The cytoplasm of cell is full of numerous mitochondria and a ramifying network of tubules. The degeneration of skin chloride cells is observed with development of Japanese flounder larvae. Skin chloride cells of turbot are less developmental than those of Japanese flounder in the same developmental stage.

  12. Mechanosensitive Channels

    Science.gov (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  13. 苹果钙依赖型蛋白激酶基因家族的进化研究%Evolution of Calcium-dependent Protein Kinase Gene Family in Apple (Malus domestica)

    Institute of Scientific and Technical Information of China (English)

    陈飞; 尹欢; 梁英海; 蔡斌

    2013-01-01

    The 26 characterized Calcium -dependent Protein Kinase ( CDPK) genes were encoded from the genome of apple ( Malus domestica) .The similarities and differences among CDPK members were acquired by comparison of gene structure and do-main organization .Through the analysis of third -class structure of protein , the mutation of apple CDPK at key locus was obtained , which might cause major differences in auto -inhibition and activation of CDPK structure.The phylogenetic tree of the members of apple CDPK was analyzed , which got the origin of the 26 CDPKs and 21 amplifications .The preliminary expression of CDPK in ap-ple was understood by EST data .The complex evolutionary history of perfect apple CDPK members laid the foundation on carrying out the validation of functional contact and gene utilization .%在全基因组水平挖掘了26个苹果的CDPK基因,并通过基因结构和结构域组织的比较得到各成员之间的异同点,再通过蛋白质三级结构的分析,获得了苹果CDPK在重要的关键位点的突变,而这可能引起结构的自抑制和激活的重大差别。结合多个物种CDPK的挖掘,并与苹果CDPK各成员建立的系统发育树进行分析,得到了苹果26个CDPK的起源和21次扩增历史。借助于苹果CDPK表达的EST数据了解了苹果CDPK的初步表达情况,这些完善的苹果CDPK成员间复杂的进化历史对于开展后续验证成员间彼此的功能联系以及基因的利用奠定了基础。

  14. The effect of verapamil and diltiazem on cardiac stimulant effect of adrenaline and calcium chloride on isolated frog heart

    Directory of Open Access Journals (Sweden)

    Lakhavat Sudhakar, Naveen Kumar T, Tadvi NA, Venkata Rao Y

    2013-04-01

    Full Text Available Background: Calcium channel blockers block voltage dependent L-type of calcium channel and thus reduce the frequency of opening of these channels in response to depolarization. The result is a marked decrease in transmembrane calcium current associated with long lasting relaxation of vascular smooth muscle, reduction in contractility in cardiac muscle, decrease in pacemaker activity in the SA node and decrease in conduction velocity in the AV node. Among Calcium channel blockers verapamil, is cardio selective, nifedipine is vascular smooth muscle selective, while diltiazem exhibits intermediate selectivity. Methods: In the present study, the effect of two Ca++ channel blocker, Verapamil and Diltiazem were compared on the isolated frog heart by using adrenaline & calcium chloride as standard on frog heart contractility. Results and conclusion: Adrenaline and calcium chloride increased the amplitude of contraction of isolated perfused frog heart. The L- type of Ca2+ channel blockers verapamil and diltiazem produced dose dependent (2mg, 4mg, 8mg, and 16mg reduction in the amplitude of contraction produced by calcium chloride in isolated perfused frog heart. There was no statistical significant difference (p > 0.05 between the inhibitory effect of diltiazem and verapamil on calcium chloride induced contraction of isolated frog heart.

  15. Research on Regulating and Controlling Roles of Chloride and Zinc Ions to Swine Sperm Calcium Channel and Some Enzyme Activities%氯、锌离子对猪精子钙通道和若干酶活调控作用的研究

    Institute of Scientific and Technical Information of China (English)

    周明; 刘芳芳; 李晓东; 邢立东; 吴金节; 解正会; 郭森

    2012-01-01

    The regulating and controlling roles of chloride and zinc ions to swine sperm calcium channel and their mechanism were studied.Semen from healthy boar were filtered with gauze and divided into three groups,each group having 6 repeats.The group 1 semen was not added anything;the group 2 and 3 semen were added NaCl and ZnSO 4 solution respectively.Being mixed and placed 2.5 h,various parameters of 3 experimental semen were measured.Experimental results showed that:(1) supplementation of optimum chlorine ions or zinc ions in semen could stimulate migration of calcium ions from Seminal plasm to sperm,thus calcium ion concentration in sperm raised significantly(P 〈 0.05),calcium ion concentration in Seminal plasm decreasesd slightly;(2) supplementation of chlorine or zinc ions in semen could strengthen sperm motility highly significantly(P 〈 0.01);(3) after supplementation of zinc ions in semen,the activities of AKP,CA and AC and the concentration of cAMP in sperm increased highly significantly(P 〈 0.01),the activities of AKP and AC in seminal plasm raised highly significantly(P 〈 0.01),the concentration of cAMP in seminal plasm increased significantly(P 〈 0.05);(4) after supplementation of chlorine ions in semen,the activities of AKP and AC in seminal plasm raised highly significantly(P 〈 0.01),the concentration of cAMP in Seminal l plasm increased significantly(P 〉 0.05).These results suggested that supplementation of optimum zinc or chlorine ions in boar semen may up-regulate the function of sperm calcium channel,and can improve the activities of AKP,CA and AC and the concentration of cAMP in semen,strengthen sperm motility.%研究了氯离子、锌离子等对猪精子钙通道的调控作用及其机理。将由健康公猪采得的精液经纱布过滤后分为3组,每组6个重复。第1组精液不加任何物质,第2、3组精液分别加氯化钠液和硫酸锌液,混匀并静置2.5h后,观测精子

  16. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  17. Hydrolysis of cupric chloride in aqueous ammoniacal ammonium chloride solutions

    Directory of Open Access Journals (Sweden)

    Limpo, J. L.

    1995-06-01

    Full Text Available Cupric solubility in the CuCl2-NH4Cl-NH3-H2O system for chloride concentrations lower than 4 molal in the temperature range 25-60 °C was studied. The experimental results show that for chloride concentration between 3.0 and 1.0 molal the cupric solubility is determined by the solubility of the cupric hydroxychloride Cu(OH1.5Cl0.5. For a chloride concentration value of 4.0 molal, there are two cupric compounds, the hydroxychloride Cu(OH1.5Cl0.5 or the diammine chloride Cu(NH32Cl2, on which the solubility of Cu(II depends, according to the temperature and the value of the ratio [NH3]Total/[Cu]Total.

    Se estudia la solubilidad del Cu(II en el sistema CuCl2-NH4Cl-NH3-H2O para concentraciones de cloruro inferiores a 4 molal en el intervalo de temperaturas 25-60 °C. Los resultados experimentales muestran que, para concentraciones de cloruros comprendidas entre 3,0 y 1,0 molal, la solubilidad cúprica viene determinada por la solubilidad del hidroxicloruro cúprico, Cu(OH1.5Cl0.5. Para concentraciones de cloruro 4,0 molal, existen dos compuestos cúpricos, el hidroxicloruro, Cu(OH1.5Cl0.5 o el cloruro de diamina, Cu(NH32Cl2, de los que, de acuerdo con la temperatura y con el valor de la relación [NH3]Total/[Cu]Total depende la solubilidad del Cu(II.

  18. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    Science.gov (United States)

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  19. Oxomemazine hydro­chloride

    Science.gov (United States)

    Siddegowda, M. S.; Butcher, Ray J.; Akkurt, Mehmet; Yathirajan, H. S.; Ramesh, A. R.

    2011-01-01

    In the title compound [systematic name: 3-(5,5-dioxo­phen­othia­zin-10-yl)-N,N,2-trimethyl­propanaminium chloride], C18H23N2O2S+·Cl−, the dihedral angle between the two outer aromatic rings of the phenothia­zine unit is 30.5 (2)°. In the crystal, the components are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions. PMID:22090928

  20. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality....

  1. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  2. Effects of calcium ion, calpains, and calcium channel blockers on retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, Mitsuru

    2011-01-01

    Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP). These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  3. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  4. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    Energy Technology Data Exchange (ETDEWEB)

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  5. Sodium chloride precipitation reaction coefficient from crystallization experiment in a microfluidic device

    Science.gov (United States)

    Naillon, A.; Joseph, P.; Prat, M.

    2017-04-01

    The crystal growth of sodium chloride from an aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with analytical and numerical computations. The crystal growth kinetics is recorded using a high speed camera in order to determine the intrinsic precipitation reaction coefficient. The study reveals that the crystal growth rates determined in previous studies are all affected by the ions transport phenomena in the solution and thus not representative of the precipitation reaction. It is suggested that accurate estimate of sodium chloride precipitation reaction coefficient presented here offers new opportunities for a better understanding of important issues involved in the damages of porous materials induced by the salt crystallization.

  6. Time-resolved energy transfer from single chloride terminated nanocrystals to graphene

    CERN Document Server

    Ajayi, O A; Cotlet, M; Petrone, N; Gu, T; Wolcott, A; Gesuele, F; Hone, J; Owen, J S; Wong, C W

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4 times reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  7. Chloride Ion Critical Content in Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloride ion critical content was studied under soaking and cycle of dry and wet conditions,with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential. The experimental results show that chloride ion critical content is primarily determined by the water cement ratio, while for the same concrete mixture the chloride ion critical content in soaking conditions is larger than that in a cycle of dry and wet conditions.

  8. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...... have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion...

  9. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  10. Green process to recover magnesium chloride from residue solution of potassium chloride production plant

    Institute of Scientific and Technical Information of China (English)

    Lin WANG; Yunliang HE; Yanfei WANG; Ying BAO; Jingkang WANG

    2008-01-01

    The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant, which comes from the leach solution of a potash mine in Laos, is designed and optimized. The res-idue solution contains magnesium chloride above 25 wt-%, potassium chloride and sodium chloride together below 5 wt-% and a few other ions such as Br-, SO2-4and Ca2+. The recovery process contains two steps: the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride. The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt. The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production. The produced magnesium chloride is up to industrial criteria.

  11. ENVIRONMENTAL EXPOSURE TO VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-09-01

    Full Text Available Vinyl chloride (VC monomer is a wellknown carcinogenic and mutagenic substance causes liver damages, angiosarcoma of the liver, acro – osteolysis, sclerodermalike changes in workers chronically exposed to this gas. There are following VC emitors to the environment: VC production plants, polymerization facilities and planes where polyvinyl products are fabricated. Because of that, the general population is coming into VC contact through polluted air, food and water. VC concentration in all mentioned sites is very low, often not detectable. There was found any health risk for the general population. The VC air concentration in the vicinity to antropogenic emitors is always higher. Such a situation may causes undesirable health effect for residents living in the neighbourhood. Epidemiological studies are performed to detect the adverse VC effect in selected cohorts. Non of the study did not confirmed cases of angiosarcoma among residents living near a vinyl chloride sites. VC production is growing permanently, so VC emission will be higher. Because of that health monitoring of general population and especially of selected groups seems to be necessary in the future.

  12. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  13. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  14. Glucose stimulates calcium-activated chloride secretion in small intestinal cells.

    Science.gov (United States)

    Yin, Liangjie; Vijaygopal, Pooja; MacGregor, Gordon G; Menon, Rejeesh; Ranganathan, Perungavur; Prabhakaran, Sreekala; Zhang, Lurong; Zhang, Mei; Binder, Henry J; Okunieff, Paul; Vidyasagar, Sadasivan

    2014-04-01

    The sodium-coupled glucose transporter-1 (SGLT1)-based oral rehydration solution (ORS) used in the management of acute diarrhea does not substantially reduce stool output, despite the fact that glucose stimulates the absorption of sodium and water. To explain this phenomenon, we investigated the possibility that glucose might also stimulate anion secretion. Transepithelial electrical measurements and isotope flux measurements in Ussing chambers were used to study the effect of glucose on active chloride and fluid secretion in mouse small intestinal cells and human Caco-2 cells. Confocal fluorescence laser microscopy and immunohistochemistry measured intracellular changes in calcium, sodium-glucose linked transporter, and calcium-activated chloride channel (anoctamin 1) expression. In addition to enhancing active sodium absorption, glucose increased intracellular calcium and stimulated electrogenic chloride secretion. Calcium imaging studies showed increased intracellular calcium when intestinal cells were exposed to glucose. Niflumic acid, but not glibenclamide, inhibited glucose-stimulated chloride secretion in mouse small intestines and in Caco-2 cells. Glucose-stimulated chloride secretion was not seen in ileal tissues incubated with the intracellular calcium chelater BAPTA-AM and the sodium-potassium-2 chloride cotransporter 1 (NKCC1) blocker bumetanide. These observations establish that glucose not only stimulates active Na absorption, a well-established phenomenon, but also induces a Ca-activated chloride secretion. This may explain the failure of glucose-based ORS to markedly reduce stool output in acute diarrhea. These results have immediate potential to improve the treatment outcomes for acute and/or chronic diarrheal diseases by replacing glucose with compounds that do not stimulate chloride secretion.

  15. Comparing polyaluminum chloride and ferric chloride for antimony removal.

    Science.gov (United States)

    Kang, Meea; Kamei, Tasuku; Magara, Yasumoto

    2003-10-01

    Antimony has been one of the contaminants required to be regulated, however, only limited information has been collected to date regarding antimony removal by polyaluminium chloride (PACl) and ferric chloride (FC). Accordingly, the possible use of coagulation by PACl or FC for antimony removal was investigated. Jar tests were used to determine the effects of solution pH, coagulant dosage, and pre-chlorination on the removal of various antimony species. Although high-efficiency antimony removal by aluminum coagulation has been expected because antimony is similar to arsenic in that both antimony and arsenic are a kind of metalloid in group V of the periodic chart, this study indicated: (1) removal density (arsenic or antimony removed per mg coagulant) for antimony by PACl was about one forty-fifth as low as observed for As(V); (2) although the removal of both Sb(III) and Sb(V) by coagulation with FC was much higher than that of PACl, a high coagulant dose of 10.5mg of FeL(-1) at optimal pH of 5.0 was still not sufficient to meet the standard antimony level of 2 microg as SbL(-1) for drinking water when around 6 microg as SbL(-1) were initially present. Consequently, investigation of a more appropriate treatment process is necessary to develop economical Sb reduction; (3) although previous studies concluded that As(V) is more effectively removed than As(III), this study showed that the removal of Sb(III) by coagulation with FC was much more pronounced than that of Sb(V); (4) oxidation of Sb(III) with chlorine decreased the ability of FC to remove antimony. Accordingly, natural water containing Sb(III) under anoxic condition should be coagulated without pre-oxidation.

  16. Electrochemical Behavior of Copper in Thionyl Chloride Solutions.

    Science.gov (United States)

    1980-12-01

    lithium - thionyl chloride batteries . Thionyl chloride is known *3 to react...electrolyte for lithium - thionyl chloride batteries . 8R. K. McAlpine and B. A. Soule, Prescott and Johnson’s Qualitative Chemical Analysis, D. Van...black carbon electrodes, cupric chloride appears to be a useful cathode additive for lithium - thionyl chloride batteries . Preliminary results2l

  17. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  18. Chronopotentiometric chloride sensing using transition time measurement

    NARCIS (Netherlands)

    Abbas, Y.; Graaf, de D.B.; Olthuis, W.; Berg, van den A.

    2013-01-01

    Detection of chloride ions is crucial to accurately access the concrete structure durability[1]. The existing electrochemical method of chloride ions detection in concrete, potentiometry[1], is not suitable for in-situ measurement due to the long term stability issue of conventional reference electr

  19. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this...

  20. 29 CFR 1926.1117 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1117 Vinyl chloride. Note: The requirements applicable to construction work under this section are identical to...

  1. Chemische contaminanten in diervoeder additief Choline Chloride

    NARCIS (Netherlands)

    Traag, W.A.; Hoogenboom, L.A.P.; Jong, de J.; Egmond, van H.J.; Dam, ten G.

    2010-01-01

    Dit briefrapport beschrijft de resultaten van een onderzoek naar chemische contaminanten in Choline Chloride. De doelstellingen waren: 1) Inzicht te verkrijgen in het voorkomen van (gebromeerde) vlamvertragers en broomdioxines in het diervoederadditief Choline Chloride en het, op basis van de result

  2. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  3. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  4. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lena Rubi

    2015-06-01

    Full Text Available Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B. Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.

  5. Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes

    Directory of Open Access Journals (Sweden)

    Ravshan Z. Sabirov

    2011-12-01

    Full Text Available Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd3+ ions but not by phloretin. Surprisingly, [(dihydroindenyloxy] alkanoic acid (DIOA, a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD phase of cellular response to hypotonicity was mildly suppressed by Gd3+ ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl− channels.

  6. Glutamate transporters combine transporter- and channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate transp

  7. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  8. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    Science.gov (United States)

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting.

  9. Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaofeng; DU Huizhi; YANG Pin

    2006-01-01

    Although lithium possesses neuroprotective functions, the molecular mechanism underlying its actions has not been fully elucidated. In the present paper, the effects of lithium chloride on voltage-dependent potassium currents in the CA1 pyramidal neurons acutely isolated from rat hippocampus were studied using the whole-cell patch-clamp technique. Depolarizing test pulses activated two components of outward potassium currents: a rapidly activating and inactivating component, IA and a delayed component, IK. Results showed that lithium chloride increased the amplitude of IA in a concentration-dependent manner. Half enhancement concentration (EC50) was 22.80±5.45 μmol·L-1. Lithium chloride of 25 μmol·L-1 shifted the steady-state activation curve and inactivation curve of IA to more negative potentials, but mainly affected the activation kinetics. The amplitude and the activation processes of IK were not affected by lithium chloride. The effects of lithium chloride on potassium channel appear to possess neuroprotective properties by Ca2+-lowing effects modulate neuronal excitability by activating IA in rat hippocampal neurons.

  10. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    Science.gov (United States)

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.

  11. Chloride Ingress into Concrete under Water Pressure

    OpenAIRE

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent; Hansen, Kurt Kielsgaard

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 kPa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly infl...

  12. Reliability-Based Planning of Chloride Measurements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1996-01-01

    on measurements of the chloride content obtained from the given structure. In the present paper optimal planning of measurements of the chloride content in reinforced concrete structures is considered. It is shown how optimal experimental plans can be obtained using FORM-analysis. Bayesian statistics are used......In reinforced concrete structures corrosion is initiated when the chloride concentration around the reinforcement exceeds a threshold value. If corrosion starts then expensive repairs can be necessary. The estimation of the probability that corrosion has been initiated in a given structure is based...

  13. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  14. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  15. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  16. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammoni...

  17. Qualitative Determination of Nitrate with Triphenylbenzylphosphonium Chloride.

    Science.gov (United States)

    Berry, Donna A.; Cole, Jerry J.

    1984-01-01

    Discusses two procedures for the identification of nitrate, the standard test ("Brown Ring" test) and a new procedure using triphenylbenzylphosphonium chloride (TPBPC). Effectiveness of both procedures is compared, with the TPBPC test proving to be more sensitive and accurate. (JM)

  18. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  19. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent;

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  20. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: April 9, 2010. FOR FURTHER INFORMATION CONTACT:...

  1. Telomerization of Vinyl Chloride with Chloroform Initiated by Ferrous Chloride-Dimethylacetamide under Ultrasonic Conditions

    Directory of Open Access Journals (Sweden)

    Hua Qian

    2015-01-01

    Full Text Available Telomerization of vinyl chloride with chloroform was investigated using ferrous chloride-dimethylacetamide system, and 42.1% yield, more than four times the one reported before, was achieved. The addition of ultrasound further improved the reaction and yield was raised to 51.9% with trace byproducts at highly reduced reaction time and temperature. Ferrous chloride-dimethylacetamide under ultrasonic irradiation acts as a very efficient catalyst system for the 1 : 1 telomerization.

  2. Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating

    OpenAIRE

    Csanády, László; Töröcsik, Beáta

    2014-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current ...

  3. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system.

    Science.gov (United States)

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin

    2014-04-01

    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  4. An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Linu S Abraham

    2010-08-01

    Full Text Available The large conductance, voltage- and calcium-dependent potassium (BK channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 Mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.

  5. Cesium chloride-induced torsades de pointes

    OpenAIRE

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-01-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear ...

  6. The kinetics of the hydrogen chloride oxidation

    Directory of Open Access Journals (Sweden)

    Gonzalez Martinez Isai

    2013-01-01

    Full Text Available Hydrogen chloride (HCl oxidation has been investigated on technical membrane electrode assemblies in a cyclone flow cell. Influence of Nafion loading, temperature and hydrogen chloride mole fraction in the gas phase has been studied. The apparent kinetic parameters like reaction order with respect to HCl, Tafel slope and activation energy have been determined from polarization data. The apparent kinetic parameters suggest that the recombination of adsorbed Cl intermediate is the rate determining step.

  7. Effect of Chloride Type on Penetration of Chloride Ions in Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of chloride type on the diffusivity of chloride ions in concrete was studied by experiment. The result shows that the glectric resistance of concrete and the chloride diffusion coefficient are influenced by chloride type. For the same water/cement ratio (W/C), the diffusion coefficient D in KCl solution is larger than that in NaCl solution; however, the concrete resistance in KCl solution is smaller than that in NaCl solution. The experimental result is analyzed with theory of diffusion.

  8. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  9. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  10. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping

    Directory of Open Access Journals (Sweden)

    H. Guan

    2009-09-01

    Full Text Available Chloride is commonly used as an environmental tracer for studying water flow and solute transport in the environment. It is especially useful for estimating groundwater recharge based on the commonly used chloride mass balance (CMB method. Strong spatial variability in chloride deposition in coastal areas is one difficulty encountered in appropriately applying the CMB approach. Furthermore, intensive vegetation clearance for agriculture, for example during the European settlement in many coastal areas of Australia, may have perturbed catchment chloride balance conditions for appropriate use in CMB applications. In order to deal with these issues, a high resolution chloride deposition map in the coastal region is needed. In this study, we examined geographic, orographic, and atmospheric factors influencing chloride deposition in the Mount Lofty Ranges (MLR, a coastal hilly area of approximately 9000 km2 spatial extent in South Australia, using partial correlation and regression analyses. The results indicate that coastal distance, and terrain aspect and slope are two most significant factors controlling chloride deposition. Coastal distance accounts for 65% spatial variability in chloride deposition, with terrain aspect and slope for 8%. The deposition gradient is about 0.08 gm-2 year-1 km-1 as one progresses inland. The results are incorporated into a published de-trended residual kriging approach (ASOADeK to produce a 1 km×1 km resolution annual chloride deposition map and a bulk precipitation chloride concentration map. The average uncertainty of the deposition map is about 30% in the western MLR, and over 50% in the eastern MLR. The maps will form a very useful basis for examining catchment chloride balances for use in the CMB application in the study area.

  11. A comprehensive probabilistic model of chloride ingress in unsaturated concrete

    OpenAIRE

    Bastidas-Arteaga, Emilio; Chateauneuf, Alaa; Sánchez-Silva, Mauricio; Bressolette, Philippe; Schoefs, Franck

    2011-01-01

    International audience; Corrosion induced by chloride ions has become a critical issue for many reinforced concrete structures. The chloride ingress into concrete has been usually simplified as a diffusion problem where the chloride concentration throughout concrete is estimated analytically. However, this simplified approach has several limitations. For instance, it does not consider chloride ingress by convection which is essential to model chloride penetration in unsaturated conditions as ...

  12. Congenital Chloride Diarrhea: Diagnosis by Easy-Accessible Chloride Measurement in Feces

    Directory of Open Access Journals (Sweden)

    C. Gils

    2016-01-01

    Full Text Available Background. Congenital chloride diarrhea (CCD is an autosomal recessive disorder caused by mutations in the genes encoding the intestinal Cl−/HCO3- exchanger and is clinically characterized by watery, profound diarrhea, electrolyte disturbances, and metabolic alkalosis. The CCD diagnosis is based on the clinical symptoms and measurement of high chloride concentration in feces (>90 mmol/L and is confirmed by DNA testing. Untreated CCD is lethal, while long-term clinical outcome improves when treated correctly. Case Presentation. A 27-year-old woman had an emergency caesarian due to pain and discomfort in gestational week 36 + 4. The newborn boy had abdominal distension and yellow fluid per rectum. Therapy with intravenous glucose and sodium chloride decreased his stool frequency and improved his clinical condition. A suspicion of congenital chloride diarrhea was strongly supported using blood gas analyzer to measure an increased chloride concentration in the feces; the diagnosis was confirmed by DNA testing. Discussion. Measurement of chloride in feces using an ordinary blood gas analyzer can serve as a preliminary analysis when congenital chloride diarrhea is suspected. This measurement can be easily performed with a watery feces composition. An easy-accessible chloride measurement available will facilitate the diagnostics and support the initial treatment if CCD is suspected.

  13. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  14. Mutational consequences of aberrant ion channels in neurological disorders.

    Science.gov (United States)

    Kumar, Dhiraj; Ambasta, Rashmi K; Kumar, Pravir

    2014-11-01

    Neurological channelopathies are attributed to aberrant ion channels affecting CNS, PNS, cardiac, and skeletal muscles. To maintain the homeostasis of excitable tissues, functional ion channels are necessary to rely electrical signals, whereas any malfunctioning serves as an intrinsic factor to develop neurological channelopathies. Molecular basis of these disease is studied based on genetic and biophysical approaches, e.g., loci positional cloning, whereas pathogenesis and bio-behavioral analysis revealed the dependency on genetic mutations and inter-current triggering factors. Although electrophysiological studies revealed the possible mechanisms of diseases, analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels (Na(+), K(+), Ca(2+),Cl(-)), (ii) pathophysiology involved in the onset of their associated channelopathies, and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium, and chloride ion channel subtypes.

  15. Dynamic Electrochemical Measurement of Chloride Ions.

    Science.gov (United States)

    Abbas, Yawar; de Graaf, Derk B; Olthuis, Wouter; van den Berg, Albert

    2016-02-05

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement, long-term and continuous monitoring is limited due to the inherent drift and the requirement of a stable reference electrode. We utilized the chronopotentiometric approach to minimize drift and avoid the use of a conventional reference electrode. A galvanostatic pulse is applied to an Ag/AgCl electrode which initiates a faradic reaction depleting the Cl- ions near the electrode surface. The transition time, which is the time to completely deplete the ions near the electrode surface, is a function of the ion concentration, given by the Nernst equation. The square root of the transition time is in linear relation to the chloride ion concentration. Drift of the response over two weeks is negligible (59 µM/day) when measuring 1 mM [Cl-]using a current pulse of 10 Am(-2). This is a dynamic measurement where the moment of transition time determines the response and thus is independent of the absolute potential. Any metal wire can be used as a pseudo-reference electrode, making this approach feasible for long-term measurement inside concrete structures.

  16. Chloride binding site of neurotransmitter sodium symporters.

    Science.gov (United States)

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  17. CLC channel function and dysfunction in health and disease

    Directory of Open Access Journals (Sweden)

    Gabriel eStölting

    2014-10-01

    Full Text Available CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of CLC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels in patients suffering from Bartter syndrome identified the determinants of chloride conductances in the limb of Henle. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological

  18. Voltage-Gated Channels as Causative Agents for Epilepsies

    Directory of Open Access Journals (Sweden)

    Mutasem Abuhamed

    2008-01-01

    Full Text Available Problem statement: Epilepsy is a common neurological disorder that afflicts 1-2% of the general population worldwide. It encompasses a variety of disorders with seizures. Approach: Idiopathic epilepsies were defined as a heterogeneous group of seizure disorders that show no underlying cause .Voltage-gated ion channels defect were recognized etiology of epilepsy in the central nervous system. The aim of this article was to provide an update on voltage-gated channels and their mutation as causative agents for epilepsies. We described the structures of the voltage-gated channels, discuss their current genetic studies, and then review the effects of voltage-gated channels as causative agents for epilepsies. Results: Channels control the flow of ions in and out of the cell causing depolarization and hyper polarization of the cell. Voltage-gated channels were classified into four types: Sodium, potassium calcium ands chloride. Voltage-gated channels were macromolecular protein complexes within the lipid membrane. They were divided into subunits. Each subunit had a specific function and was encoded by more than one gen. Conclusion: Current genetic studies of idiopathic epilepsies show the importance of genetic influence on Voltage-gated channels. Different genes may regulate a function in a channel; the channel defect was directly responsible for neuronal hyper excitability and seizures.

  19. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.

    Science.gov (United States)

    Yau, Hau-Jie; Baranauskas, Gytis; Martina, Marco

    2010-10-15

    The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.

  20. Cloning and characterization of SK2 channel from chicken short hair cells.

    Science.gov (United States)

    Matthews, T M; Duncan, R K; Zidanic, M; Michael, T H; Fuchs, P A

    2005-06-01

    In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74+/-0.17 microM. The expressed channels were blocked by apamin (IC(50)=73.3+/-5.0 pM) and d-tubocurarine (IC(50)=7.6+/-1.0 microM), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.

  1. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry.

  2. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive plantago species : regulation of channel activity by salt stress.

    Science.gov (United States)

    Maathuis, F J; Prins, H B

    1990-01-01

    Plantago media L. and Plantago maritima L. differ in their strategy toward salt stress, a major difference being the uptake and distribution of ions. Patch clamp techniques were applied to root cell vacuoles to study the tonoplast channel characteristics. In both species the major channel found was a 60 to 70 picosiemens channel with a low ion selectivity. The conductance of this channel for Na(+) was the same as for K(+), P(K) (+)/P(Na) (+) = 1, whereas the cation/anion selectivity (P(K) (+)/P(c1) (-)) was about 5. Gating characteristics were voltage and calcium dependent. An additional smaller channel of 25 picosiemens was present in P. maritima. In the whole vacuole configuration, the summation of the single channel currents resulted in slowly activated inward currents (t((1/2)) = 1.2 second). Inwardly directed, ATP-dependent currents could be measured against a DeltapH gradient of 1.5 units over the tonoplast. This observation strongly indicated the physiological intactness of the used vacuoles. The open probability of the tonoplast channels dramatically decreased when plants were grown on NaCl, although single channel conductance and selectivity were not altered.

  3. SN2 and SN2' reaction dynamics of cyclopropenyl chloride with halide ion : A direct ab initio molecular dynamics (MD) study

    OpenAIRE

    Tachikawa, Hiroto

    2005-01-01

    Direct ab initio molecular dynamics (MD) calculations have been carried out for the reaction of cyclopropenyl chloride with halide ion (F–) (F– + (CH)3Cl → F(CH)3 + Cl–) in gas phase. Both SN2 and SN2′ channels were found as product channels. These channels are strongly dependent on the collision angle of F– to the target (CH)3Cl molecule. The collision at one of the carbon atoms of the C=C double bond leads to the SN2′ reaction channel; whereas the collision at the methylene carbon atom lead...

  4. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  5. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  6. Hazards of lithium thionyl chloride batteries

    Science.gov (United States)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  7. EVALUATION OF BACTERICIDAL EFFECTIVENESS OF BENZALKONIUM CHLORIDE

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1996-06-01

    Full Text Available Benzalkonium chloride is a quaternary ammounium Compounds derivative under different names such as Afxhang, Hamoon, Mahan etc, which have great and expanded use in sanitation and medical affairs. Bactericidal activity of these disinfectants was fulfilled according to National Standard Method No.2842 on Staph. Aureus, Sal. Typhimouium and E. coli. This laboratory test showed that, except Mahan that has not bactericidal efficacy on E.coli at concentration 0.4 percent, other disinfectants under the study in concentrations of 0.4, 0.8, 1, 1.2 percent have reliable antibacterial properties, and bacterial resistance to benzalkonium chloride has not occurred yet.

  8. Cesium chloride-induced torsades de pointes.

    Science.gov (United States)

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-09-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear temporal relationship between cesium ingestion and the arrhythmia, which later resolved following discontinuation of cesium therapy. Serial cesium plasma and whole blood levels were measured over the ensuing six months and pharmacokinetic analysis was performed.

  9. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  10. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures.

    Science.gov (United States)

    Rundén-Pran, E; Haug, F M; Storm, J F; Ottersen, O P

    2002-01-01

    BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.

  11. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    Science.gov (United States)

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  12. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    LUIZ HENRIQUE CÉSAR VASCONCELOS

    2016-03-01

    Full Text Available Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus and Web of Science to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  13. Solvothermal synthesis of strontium phosphate chloride nanowire

    Science.gov (United States)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  14. Controlling chloride ions diffusion in concrete.

    Science.gov (United States)

    Zeng, Lunwu; Song, Runxia

    2013-11-28

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle.

  15. Influence of compaction on chloride ingress

    NARCIS (Netherlands)

    Zlopasa, J.

    2012-01-01

    Experiences from practice show the need for more of an understanding and optimization of the compaction process in order to design a more durable concrete structure. Local variations in compaction are very often the reason for initiation of local damage and initiation of chloride induced corrosion.

  16. Liquid crystalline critical dynamics in decylammonium chloride

    CERN Document Server

    Lee, K W; Lee, C E; Kang, K H; Rhee, C; Kang, J K

    1999-01-01

    Collective chain dynamics and phase transitions in a model biomembrane, decylammonium chloride (C sub 1 sub 0 H sub 2 sub 1 NH sub 3 Cl), were studied by means of proton nuclear magnetic resonance. Our measurements sensitively reflect the critical dynamics associated with the smectic C to smectic A transition of the lipid bilayer.

  17. Chloride migration in concrete with superabsorbent polymers

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2015-01-01

    Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete mixt...

  18. Gebromeerde vlamvertragers en broomdioxines in Choline Chloride

    NARCIS (Netherlands)

    Egmond, van H.J.; Traag, W.A.; Hoogenboom, L.A.P.

    2008-01-01

    Sinds begin 2008 worden in het Nationaal Plan Diervoeder Choline Chloride monsters (= diervoeder additief) gevonden waarbij de DR CALUX screenings-assay een sterk verdacht signaal geeft, maar bij de GC-HRMS geen dioxines en dl-PCB's worden gevonden. Dit rapport beschrijft de resultaten van nader ond

  19. Amperometric Sensor for Detection of Chloride Ions

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-09-01

    Full Text Available Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV we estimated the limit of detection (3 S/N as 500 nM.

  20. 21 CFR 582.3845 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  1. 29 CFR 1910.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... possible exposure conditions. (2) Protective garments shall be provided clean and dry for each use. (i... Required Authorized Personnel Only (3) Containers of polyvinyl chloride resin waste from reactors or other... which may be useful: A. For kidney dysfunction: urine examination for albumin, red blood cells,...

  2. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  3. Spatial variability of chloride in concrete within homogeneously exposed areas

    NARCIS (Netherlands)

    Angst, U.M.; Polder, R.B.

    2014-01-01

    The concept of variability is increasingly considered in service life predictions. This paper reports experimental data on the spatial distribution of chloride in uncracked concrete subjected to homogeneous exposure. Chloride concentrations were measured with potentiometric sensors embedded in concr

  4. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  5. Hydrolysis of ferric chloride in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  6. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    Science.gov (United States)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the

  7. Aspergilli Response to Benzalkonium Chloride and Novel-Synthesized Fullerenol/Benzalkonium Chloride Nanocomposite

    OpenAIRE

    Nikola Unković; Milica Ljaljević Grbić; Miloš Stupar; Jelena Vukojević; Vesna Janković; Danica Jović; Aleksandar Djordjević

    2015-01-01

    A comprehensive comparative analysis of antifungal potential of benzalkonium chloride and newly synthesized fullerenol/benzalkonium chloride nanocomposite was conducted to assess the possible impact of carbon-based nanocarrier on antimicrobial properties of the commonly used biocide. Physical characterization of synthesized nanocomposite showed zeta potential of +37.4 mV and inhomogeneous particles size distribution, with nanocomposite particles’ dimensions within 30–143 nm and maximum number...

  8. Prenatal susceptibility to carcinogenesis by xenobiotic substances including vinyl chloride.

    OpenAIRE

    Rice, J M

    1981-01-01

    The carcinogenicity of vinyl chloride for experimental animals when administered transplacentally is reviewed in comparison with known transplacental carcinogens, including those that, like vinyl chloride, are dependent on enzyme-mediated metabolic conversion to a reactive intermediate in maternal or fetal tissues. Vinyl chloride is converted by mixed-function oxidases to the reactive metabolite chlorooxirane, the carcinogenicity of which is also reviewed. Vinyl chloride is unequivocally a tr...

  9. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    Science.gov (United States)

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days.

  10. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be safely used in food in accordance with...

  11. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride

    OpenAIRE

    Youngbeom Ahn; Jeong Myeong Kim; Ohgew Kweon; Seong-Jae Kim; Jones, Richard C.; Kellie Woodling; Goncalo Gamboa da Costa; LiPuma, John J.; David Hussong; Marasa, Bernard S.; Cerniglia, Carl E.

    2016-01-01

    ABSTRACT Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethyl...

  12. Retention of vinyl chloride in the human lung.

    OpenAIRE

    Krajewski, J.; Dobecki, M; Gromiec, J

    1980-01-01

    Experiments with volunteers showed that 42% of an inhaled dose of vinyl chloride is retained in the lungs. This value is independent of the concentration of vinyl chloride in the air. Elimination of vinyl chloride through the lungs is negligible since its concentration in expired air decreases immediately after the cessation of exposure.

  13. Kinetics of Vinyl Chloride Polymerization with Mixture of Initiators

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Kinetic models for the rate constants of vinyl chloride polymerization in the presence of initiator mixtures were proposed. They may be used to design the initiator recipes for the vinyl chloride polymerization with uniform rate at different temperatures at which various grades of poly(vinyl chloride) will be prepared.

  14. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  15. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    Science.gov (United States)

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.

  16. VGIchan: Prediction and Classification of Voltage-Gated Ion Channels

    Institute of Scientific and Technical Information of China (English)

    Sudipto Saha; Jyoti Zack; Balvinder Singh; G.P.S. Raghava

    2006-01-01

    This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at www.imtech.res.in/raghava/vgichan/.

  17. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  18. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  19. A truncated CFTR protein rescues endogenous ΔF508-CFTR and corrects chloride transport in mice

    OpenAIRE

    Cormet-Boyaka, Estelle; Hong, Jeong S.; Berdiev, Bakhram K.; Fortenberry, James A.; Rennolds, Jessica; Clancy, J. P.; Benos, Dale J.; Boyaka, Prosper N.; Eric J Sorscher

    2009-01-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (ΔF508) in the CF transmembrane conductance regulator (CFTR) protein. The ΔF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of end...

  20. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (Bufo bufo)

    DEFF Research Database (Denmark)

    Kristensen, P; Larsen, Erik Hviid

    1978-01-01

    Substitution of chloride in the outside bathing medium of the toad skin with bromide, iodide, nitrate and sulphate leads to a reduction in the apparent exchange diffusion of chloride across this tissue, and also to a reduction of the chloride current recorded during hyperpolarization. A series of...

  1. Characteristics of chloride currents activated by noradrenaline in rabbit ear artery cells.

    Science.gov (United States)

    Amédée, T; Large, W A; Wang, Q

    1990-09-01

    1. Responses to noradrenaline were studied in isolated rabbit ear artery cells with the nystatin method of whole-cell patch-clamp recording. With this technique it was possible to obtain reproducible responses to noradrenaline which was not possible with traditional whole-cell recording. 2. With NaCl as the major constituent of the bathing solution (potassium-free pipette and external solutions) the reversal potential (Er) of the noradrenaline-evoked current was about 0 mV. When external chloride was replaced by thiocyanate, iodide, nitrate and bromide, Er was shifted to more negative potentials which indicates that a chloride conductance increase contributes to the current activated by noradrenaline. 3. When sodium was substituted by Tris, N-methyl-D-glucamine, choline or barium, Er of the noradrenaline-evoked current did not alter. This result suggests that a cation conductance is not implicated in the response to noradrenaline recorded with the nystatin method of whole-cell recording. 4. The chloride current activated by noradrenaline was blocked by the selective alpha 1-adrenoceptor antagonist prazosin but was not affected by the alpha 2-adrenoceptor antagonist yohimbine. 5. When cells were exposed to zero calcium bathing solutions the amplitude of the current elicited by noradrenaline was unaffected when measured within 1-2 min in zero calcium conditions. Continued exposure to 0 Ca + 1 mM-EGTA solution reversibly abolished the chloride current to noradrenaline. 6. In the presence of caffeine, which releases Ca2+ from internal stores and itself induced an inward current (at a holding potential of -50 mV), noradrenaline did not elicit a current. These data suggest that the chloride current evoked by noradrenaline results from an increase in intracellular concentration of calcium derived from internal stores. 7. The chloride channel blocking agents 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS; 0.5 mM) and furosemide (0.5 mM) produced partial

  2. catena-Poly[[[tetraaquasamarium(III]-di-μ-isonicotinato-κ4O:O′] chloride

    Directory of Open Access Journals (Sweden)

    Ke-Jun Wu

    2008-01-01

    Full Text Available In the structure of the title compound, {[Sm(C6H4NO22(H2O4]Cl}n, the unique SmIII atom lies on a crystallographic twofold axis and is eight-coordinated by four O atoms from four isonicotinate ligands and four water molecules in a slightly distorted square-antiprismatic coodination environment. The SmIII atoms are bridged by two carboxylate groups of two isonicotinate ligands, forming an extended chain along the c-axis direction. These chains are cross-linked through hydrogen bonds, forming a three-dimensional framework, with channels which accommodate the chloride anions.

  3. CFTR mediated chloride secretion in the avian renal proximal tubule.

    Science.gov (United States)

    Laverty, Gary; Anttila, Ashley; Carty, Jenava; Reddy, Varudhini; Yum, Jamie; Arnason, Sighvatur S

    2012-01-01

    In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.

  4. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a... is not to exceed 0.02 g vinyl chloride/kg (0.04 lb vinyl chloride/ton) of polyvinyl chloride...

  5. Calcium/thionyl chloride battery technology

    Science.gov (United States)

    Counts, T.

    1985-12-01

    This final report documents the development efforts conducted by the Lithium Batteries Group of the Couples Department of Eagle-Picher Industries. The objective of the project was to develop calcium-thionyl chloride cell technology. The original project was divided into two main tasks. Task One was to consist of component optimization and stability studies. Once sufficiently advanced, the ongoing results of Task One were to be integrated with Task Two. Task Two was to consist of demonstration of an optimized primary cell. In July, 1983, the program was redirected. Task Two was split, with effort to be directed toward both the original primary cell and toward a high discharge rate reserve configuration cell. Additional electrolyte salts were to be evaluated as a means of improving the storability of the active calcium-thionyl chloride cell.

  6. Benzalkonium chloride. Health hazard evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Bernholc, N.M.

    1984-01-01

    Health hazards associated with the use of benzalkonium chlorides (BAC) are reviewed. Benzalkonium chloride is extensively used as a cationic disinfectant. It is found in a great many over-the-counter and prescription eye products, disinfectants, shampoos, and deodorants, and is used in concentrations that range from 0.001 to 0.01% in eyedrops, up to 2.5% in concentrated liquid disinfectants. Solutions of 0.03 to 0.04% BAC may cause temporary eye irritation in humans but are unlikely to cause any skin response except in persons allergic to quaternary ammonium compounds. Inhalation of a vaporized 10% solution of BAC produced a bronchospasmodic reaction in a previously sensitized individual. At present no other human health effects from BAC have been documented or inferred from exposure to such dilute concentrations.

  7. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1996-01-01

    The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those to water vapor have been measured at 30℃ and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.

  8. STABILISATION OF SILTY CLAY SOIL USING CHLORIDE

    Directory of Open Access Journals (Sweden)

    TAMADHER T. ABOOD

    2007-04-01

    Full Text Available The object of this paper is to investigate the effect of adding different chloride compounds including (NaCl, MgCl2, CaCl2 on the engineering properties of silty clay soil. Various amounts of salts (2%, 4%, and 8% were added to the soil to study the effect of salts on the compaction characteristics, consistency limits and compressive strength. The main findings of this study were that the increase in the percentage of each of the chloride compounds increased the maximum dry density and decrease the optimum moisture content. The liquid limit, plastic limit and plasticity index decreased with the increase in salt content. The unconfinedcompressive strength increased as the salt content increased.

  9. Iron (III) chloride doping of CVD graphene.

    Science.gov (United States)

    Song, Yi; Fang, Wenjing; Hsu, Allen L; Kong, Jing

    2014-10-03

    Chemical doping has been shown as an effective method of reducing the sheet resistance of graphene. We present the results of our investigations into doping large area chemical vapor deposition graphene using Iron (III) Chloride (FeCl(3)). It is shown that evaporating FeCl(3) can increase the carrier concentration of monolayer graphene to greater than 10(14) cm(-2) and achieve resistances as low as 72 Ω sq(-1). We also evaluate other important properties of the doped graphene such as surface cleanliness, air stability, and solvent stability. Furthermore, we compare FeCl(3) to three other common dopants: Gold (III) Chloride (AuCl(3)), Nitric Acid (HNO(3)), and TFSA ((CF(3)SO(2))(2)NH). We show that compared to these dopants, FeCl(3) can not only achieve better sheet resistance but also has other key advantages including better solvent stability.

  10. Effects of calcium channel antagonists on the motivational effects of nicotine and morphine in conditioned place aversion paradigm.

    Science.gov (United States)

    Budzynska, Barbara; Polak, Piotr; Biala, Grazyna

    2012-03-01

    The motivational component of drug withdrawal may contribute to drug seeking and relapse through the negative reinforcement-related process; thus, it is important to understand the mechanisms that mediate affective withdrawal behaviors. The present study was undertaken to examine the calcium-dependent mechanism of negative motivational symptoms of nicotine and morphine withdrawal using the conditioned place aversion (CPA) paradigm. Rats were chronically treated with nicotine (1.168 mg/kg, free base, s.c., 11 days, three times daily) or morphine (10 mg/kg,s.c., 11 days, twice daily). Then, during conditioning, rats pre-treated with nicotine or morphine received a nicotinic receptor antagonist mecamylamine (3.5 mg/kg) or an opioid receptor antagonist naloxone (1 mg/kg) to precipitate withdrawal in their initially preferred compartment, or saline in their non-preferred compartment. Our results demonstrated that after three conditioning sessions, mecamylamine induced a clear place aversion in rats that had previously received nicotine injections, and naloxone induced a significant place aversion in rats that had previously received morphine injections. Further, the major findings showed that calcium channel antagonists, i.e., nimodipine, verapamil and flunarizine (5 and 10 mg/kg, i.p.), injected before the administration of mecamylamine or naloxone, attenuated nicotine or morphine place aversion. As an outcome, these findings support the hypothesis that similar calcium-dependent mechanisms are involved in aversive motivational component associated with nicotine a morphine withdrawal. We can suggest that calcium channel blockers have potential for alleviating nicotine and morphine addiction by selectively decreasing the incentive motivational properties of both drugs, and may be beneficial as smoking cessation or opioid dependence pharmacotherapies.

  11. Benzalkonium Chloride Intoxication Mimicking Herpes Zoster Encephalitis

    OpenAIRE

    Güler, Ekrem; Olgar, Şeref; Davutoğlu, Mehmet; Garipardıç, Mesut; Karabiber, Hamza

    2011-01-01

    Benzalkonium chloride (BAC) is a frequently used disinfectant and its most well-known side effect is contact dermatitis. In this report, two children who had vesicular dermatitis, headache, lethargy, fever and encephalopathy mimicking Herpes zoster encephalitis were presented. Their consciousness level improved on the second day. From the medical history it was understood that the mother had applied 20% BAC solution to the scalps of two children. The aim of the presentation of this report is ...

  12. Benzalkonium Chloride Intoxication Mimicking Herpes Zoster Encephalitis

    OpenAIRE

    Ekrem Güler; Şeref Olgar; Mehmet Davutoğlu; Mesut Garipardıç; Hamza Karabiber

    2014-01-01

    Benzalkonium chloride (BAC) is a frequently used disinfectant and its most well-known side effect is contact dermatitis. In this report, two children who had vesicular dermatitis, headache, lethargy, fever and encephalopathy mimicking Herpes zoster encephalitis were presented. Their consciousness level improved on the second day. From the medical history it was understood that the mother had applied 20% BAC solution to the scalps of two children. The aim of the presentation of this report is...

  13. EVALUATION OF BACTERICIDAL EFFECTIVENESS OF BENZALKONIUM CHLORIDE

    OpenAIRE

    K. Imandel; M.B. Shaywaard; F. Mobaraki

    1996-01-01

    Benzalkonium chloride is a quaternary ammounium Compounds derivative under different names such as Afxhang, Hamoon, Mahan etc, which have great and expanded use in sanitation and medical affairs. Bactericidal activity of these disinfectants was fulfilled according to National Standard Method No.2842 on Staph. Aureus, Sal. Typhimouium and E. coli. This laboratory test showed that, except Mahan that has not bactericidal efficacy on E.coli at concentration 0.4 percent, other disinfectants under ...

  14. Inactivation of Viruses by Benzalkonium Chloride

    Science.gov (United States)

    Armstrong, J. A.; Froelich, E. J.

    1964-01-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  15. Electrochemical Studies in Aluminum Chloride Melts

    Science.gov (United States)

    1976-07-31

    Molten Salt Systems", Symposium on Molten Salts, Symposium Volume, The Electrochemical Society , in press (1976). Manuscripts in Preparation--Related to...Fused Salt Technology, Electrochemical Society Meeting, Chicaao, May 8-13, 1973. R. A. Osteryoung, R. H. Abel, L. G. Boxall and B. H. Vassos, "An...aluminate Melts", Electrochemical Society , San Francisco, CA, May, 1974. R. A. Osteryoung, "Chemistry in Aluminum Chloride Melts", Fifth International

  16. Developing Polymer Cathode Material for the Chloride Ion Battery.

    Science.gov (United States)

    Zhao, Xiangyu; Zhao, Zhigang; Yang, Meng; Xia, Hui; Yu, Tingting; Shen, Xiaodong

    2017-01-25

    The chloride ion battery is an attractive rechargeable battery owing to its high theoretical energy density and sustainable components. An important challenge for research and development of chloride ion batteries lies in the innovation of the cathode materials. Here we report a nanostructured chloride ion-doped polymer, polypyrrole chloride, as a new type of potential cathode material for the chloride ion battery. The as-prepared polypyrrole chloride@carbon nanotubes (PPyCl@CNTs) cathode shows a high reversible capacity of 118 mAh g(-1) and superior cycling stability. Reversible electrochemical reactions of the PPyCl@CNTs cathode based on the redox reactions of nitrogen species and chloride ion transfer are demonstrated. Our work may guide and offer electrode design principles for accelerating the development of rechargeable batteries with anion transfer.

  17. The Accelerated Test of Chloride Permeability of Concrete

    Institute of Scientific and Technical Information of China (English)

    TAN Ke-feng; ODD E Gjφrv

    2003-01-01

    The availability of accelerated chloride permeability test and the effect of w/c ratio, incorporation of silica fume, maximum aggregate size and aggregate type on the chloride permeability were studied. The mathematic analysis certifies that there is a linear relationship between accelerated test and natural diffusion. Test results show that the chloride permeability of concrete increases as w/c ratio increases whilst a limited amount of replacement of cement with silica fume, the chloride permeability decreases dramatically. The maximum aggregate size in the range of 8 to 25 mm seems also affect chloride permeability but with a much less significant level. The chloride permeability of silica fume lightweight aggregate concrete is very low, especially the concrete made with dry lightweight concrete. The chloride permeability can be evaluated by this accelerated test method.

  18. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  19. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  20. Boldine action against the stannous chloride effect.

    Science.gov (United States)

    Reiniger, I W; Ribeiro da Silva, C; Felzenszwalb, I; de Mattos, J C; de Oliveira, J F; da Silva Dantas, F J; Bezerra, R J; Caldeira-de-Araújo, A; Bernardo-Filho, M

    1999-12-15

    Peumus boldus extract has been used in popular medicine in the treatment of biliar litiase, hepatic insufficiency and liver congestion. Its effects are associated to the substance boldine that is present in its extract. In the present work, we evaluated the influence of boldine both in: (i) the structural conformation of a plasmid pUC 9.1 through gel electrophoresis analysis; and in (ii) the survival of the strain of Escherichia coli AB1157 submitted to reactive oxygen species (ROS), generated by a Fenton like reaction, induced by stannous chloride. Our results show a reduction of the lethal effect induced by stannous chloride on the survival of the E. coli culture in the presence of boldine. The supercoiled form of the plasmid is not modified by stannous chloride in the presence of boldine. We suggest that the protection induced by boldine could be explained by its anti-oxidant mechanism. In this way, the boldine could be reacting with stannous ions, protecting them against the oxidation and, consequently, avoiding the generation of ROS.

  1. Understanding microwave vessel contamination by chloride species.

    Science.gov (United States)

    Recchia, Sandro; Spanu, Davide; Bianchi, Davide; Dossi, Carlo; Pozzi, Andrea; Monticelli, Damiano

    2016-10-01

    Microwaves are widely used to assist digestion, general sample treatment and synthesis. The use of aqua regia is extensively adopted for the closed vessel mineralization of samples prior to trace element detection, leading to the contamination of microwave vessels by chlorine containing species. The latter are entrapped in the polymeric matrix of the vessels, leading to memory effects that are difficult to remove, among which the risk of silver incomplete recoveries by removal of the sparingly soluble chloride is the predominant one. In the present paper, we determined by mass spectrometry that hydrogen chloride is the species entrapped in the polymeric matrix and responsible for vessel contamination. Moreover, several decontamination treatments were considered to assess their efficiency, demonstrating that several cleaning cycles with water, nitric acid or silver nitrate in nitric acid were inefficient in removing chloride contamination (contamination reduction around 90%). Better results (≈95% decrease) were achieved by a single decontamination step in alkaline environment (sodium hydroxide or ammonia). Finally, a thermal treatment in a common laboratory oven (i.e. without vacuum and ventilation) was tested: a one hour heating at 150°C leads to a 98.5% decontamination, a figure higher than the ones obtained by wet treatments which requires comparable time. The latter treatment is a major advancement with respect to existing treatments as it avoids the need of a vacuum oven for at least 17h as presently proposed in the literature.

  2. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  3. Quantum Multiple Access Channel

    Institute of Scientific and Technical Information of China (English)

    侯广; 黄民信; 张永德

    2002-01-01

    We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the yon Neumann entropy and the conditional yon Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.

  4. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  5. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  6. Anti-chloride permeability and anti-chloride corrodibility of a green high performance concrete admixture in concrete

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yongbao; LIU Xinrong; LIU Dongyan; CHEN Jiangong; HUANG Xiongjun

    2003-01-01

    The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electrochemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.

  7. Chloride Ingress in Concrete with Different Age at Time of First Chloride Exposure

    DEFF Research Database (Denmark)

    Hansen, Esben Østergaard; Iskau, Martin Riis; Hasholt, Marianne Tange

    2016-01-01

    Concrete structures cast in spring have longer time to hydrate and are therefore denser and more resistant to chloride ingress when first subjected to deicing salts in winter than structures cast in autumn. Consequently, it is expected that a spring casting will have a longer service life....... This hypothesis is investigated in the present study by testing drilled cores from concrete cast in 2012 and 2013 on the Svendborgsund Bridge. The cores are subject to petrographic examination and mapping of chloride profiles. Moreover, chloride migration coefficients have been measured. The study shows...... that the effect of the extra time of hydration obtained when casting in spring increases the expected service life of the concrete structure significantly....

  8. Niflumic acid blocks native and recombinant T-type channels.

    Science.gov (United States)

    Balderas, Enrique; Ateaga-Tlecuitl, Rogelio; Rivera, Manuel; Gomora, Juan C; Darszon, Alberto

    2012-06-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation, and the acrosome reaction (AR), all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the AR. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl(-) channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different Ca(V)3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing Ca(V)3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC(50) of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed Ca(V)3.1 and Ca(V)3.3 channels were more sensitive to NA than Ca(V)3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of Ca(V)3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed Ca(V)3.1 channels, including their sensitivity to NA. As Ca(V)3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel Ca(V)3.2 isoform is responsible for them.

  9. Evidence for renal ischaemia as a cause of mercuric chloride nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G. [Farmacologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina); Elias, M.M. [Farmacologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina)

    1995-09-01

    The present study was undertaken to investigate if the source of oxidative stress and the renal injury produced by mercuric chloride could be renal ischaemia. Verapamil Vp was used because it was described that calcium channel blockers protect cells from nephrotoxicants and from ischaemia. Vp (75 {mu}g/kg, i.v.; 30 min before HgCl{sub 2} injection) prevented mercuric chloride renal injury observed 1 h post-HgCl{sub 2} injection as measured by clearance techniques. Vp also prevented the diminution of non-protein-sulfhydryls (NPSH) and the increased lipd peroxidation (LPO) induced by HgCl{sub 2} in renal tissue. Hg{sup 2+} toxicokinetic alterations were not observed in Vp plus HgCl{sub 2} treated rats, nor was Vp ability found as a free radical scavenger in renal tissue homogenates. The results described in this study give some evidence for the role of renal ischaemia in the production of oxidative stress, generating LPO and functional and morphological renal injury described in mercuric chloride treated rats. (orig.)

  10. Endocochlear potential depends on Cl- channels: Mechanism underlying deafness in Bartter syndrome IV

    NARCIS (Netherlands)

    G. Rickheit (Gesa); H. Maier (Hannes); N. Strenzke (Nicola); C.E. Andreescu (Corina); C.I. de Zeeuw (Chris); A. Muenscher (Adrian); A.A. Zdebik (Anselm); T.J. Jentsch (Thomas)

    2008-01-01

    textabstractHuman Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a β-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in m

  11. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Ramjeesingh, M; Li, C; Kogan, I; Wang, Y; Huan, L J; Bear, C E

    2001-09-04

    The cystic fibrosis transmembrane conductance regulator (CFTR) normally functions as a phosphorylation-regulated chloride channel on the apical surface of epithelial cells, and lack of this function is the primary cause for the fatal disease cystic fibrosis (CF). Previous studies showed that purified, reconstituted CFTR can function as a chloride channel and, further, that its intrinsic ATPase activity is required to regulate opening and closing of the channel gate. However, these previous studies did not identify the quaternary structure required to mediate conduction and catalysis. Our present studies show that CFTR molecules may self-associate in CHO and Sf9 membranes, as complexes close to the predicted size of CFTR dimers can be captured by chemical cross-linking reagents and detected using nondissociative PAGE. However, CFTR function does not require a multimeric complex for function as we determined that purified, reconstituted CFTR monomers are sufficient to mediate regulated chloride conduction and ATPase activity.

  12. Protocol channels as a new design alternative of covert channels

    CERN Document Server

    Wendzel, Steffen

    2008-01-01

    Covert channel techniques are used by attackers to transfer hidden data. There are two main categories of covert channels: timing channels and storage channels. This paper introduces a third category called protocol channels. A protocol channel switches one of at least two protocols to send a bit combination to a destination while sent packets include no hidden information themselves.

  13. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  14. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1996-01-01

    The aim of this study was to investigate the mechanisms by which increases in free cytosolic calcium ([Ca2+]i) cause a decrease in macroscopic sodium absorption across principal cells of the frog skin epithelium. [Ca2+]i was measured with fura-2 in an epifluorescence microscope set-up, sodium...

  15. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Gabriel, S. E.; Stutts, M. J.

    1996-01-01

    The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath...

  16. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation?

    Science.gov (United States)

    Clusin, W T; Bristow, M R; Karagueuzian, H S; Katzung, B G; Schroeder, J S

    1982-02-18

    Calcium ions mediate the adverse effects of myocardial ischemia and have been implicated in the genesis of arrhythmias. Calcium influx blocking drugs protect against early ventricular arrhythmias during experimental coronary occlusion, and recent studies suggest that this effect is at least partly due to inhibition of myocardial cell calcium influx. Most of the pharmacologic maneuvers used to simulate acute ischemic arrhythmias in vivo also produce intracellular calcium overload. Production of calcium overload in small myocardial cell clusters causes fibrillatory electrical and mechanical activity similar to that recorded from fibrillating hearts. Fibrillation in these cell clusters is mediated not by reentrant conduction, but by the same subcellular processes that give rise to depolarizing afterpotentials and abnormal automaticity. Agents favoring calcium influx, such as beta adrenergic agonists, accentuate these processes, while agents that depress calcium influx inhibit them. Although the relation of these experimental models to clinical ischemic arrhythmias has not been fully delineated, calcium influx blocking drugs may prove useful in reducing the incidence of sudden cardiac death.

  17. Calcium-dependent potassium current in barnacle photoreceptor

    OpenAIRE

    1981-01-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays t...

  18. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].

    Science.gov (United States)

    Efimova, S S; Ostroumova, O S; Malev, V V; Shchagina, L V

    2011-01-01

    The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.

  19. Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice.

    Science.gov (United States)

    Dhooghe, Barbara; Noël, Sabrina; Bouzin, Caroline; Behets-Wydemans, Gaëtane; Leal, Teresinha

    2013-01-01

    Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15-20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF

  20. Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice.

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    Full Text Available Although lung disease is the major cause of mortality in cystic fibrosis (CF, gastrointestinal (GI manifestations are the first hallmarks in 15-20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5 inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF