WorldWideScience

Sample records for calcium-dependent chloride channel

  1. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... channels on the cell surface stimulating synchronized release of SR-calcium and inducing the shift from waves to whole-cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated...

  2. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  3. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  4. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  5. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  6. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  7. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  8. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit

    2011-01-01

    patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...

  9. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  10. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  11. The Arabidopsis GORK K+-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins

    NARCIS (Netherlands)

    van Kleeff, P. J.M.; Gao, J.; Mol, S.; Zwart, N.; Zhang, H.; Li, K. W.; de Boer, A. H.

    2018-01-01

    Potassium (K+) is a vital ion for many processes in the plant and fine-tuned ion channels control the K+-fluxes across the plasma membrane. GORK is an outward-rectifying K+-channel with important functions in stomatal closure and in root K+-homeostasis. In this study, post-translational modification

  12. Chloride channels in myotonia congenita assessed by velocity recovery cycles.

    Science.gov (United States)

    Tan, S Veronica; Z'Graggen, Werner J; Boërio, Delphine; Rayan, Dipa Raja; Norwood, Fiona; Ruddy, Deborah; Howard, R; Hanna, Michael G; Bostock, Hugh

    2014-06-01

    Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched, normal controls. MC patients exhibited increased early supernormality, but this was prevented by treatment with sodium channel blockers. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that, in dominant MC, the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. Copyright © 2013 Wiley Periodicals, Inc.

  13. Influence of calcium-dependent potassium channel blockade and nitric oxide inhibition on norepinephrine-induced contractions in two forms of genetic hypertension

    Czech Academy of Sciences Publication Activity Database

    Líšková, Silvia; Petrová, M.; Karen, Petr; Kuneš, Jaroslav; Zicha, Josef

    2010-01-01

    Roč. 4, č. 3 (2010), s. 128-134 ISSN 1933-1711 R&D Projects: GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : potassium channels * nitric oxide * norepinephrine Subject RIV: ED - Physiology Impact factor: 0.931, year: 2010

  14. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    Science.gov (United States)

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  15. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  16. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.

    Science.gov (United States)

    Tian, Meiyu; Duan, Yinzhong; Duan, Xiaohong

    2010-12-01

    Voltage gated chloride channels (ClCs) play an important role in the regulation of intracellular pH and cell volume homeostasis. Mutations of these genes result in genetic diseases with abnormal bone deformation and body size, indicating that ClCs may have a role in chondrogenesis. In the present study, we isolated chicken mandibular mesenchymal cells (CMMC) from Hamburg-Hamilton (HH) stage 26 chick embryos and induced chondrocyte maturation by using ascorbic acid and β-glycerophosphate (AA-BGP). We also determined the effect of the chloride channel inhibitor NPPB [5-nitro-2-(3-phenylpropylamino) benzoic acid] on regulation of growth, differentiation, and gene expression in these cells using MTT and real-time PCR assays. We found that CLCN1 and CLCN3-7 mRNA were expressed in CMMC and NPPB reduced expression of CLCN3, CLCN5, and CLCN7 mRNA in these cells. At the same time, NPPB inhibited the growth of the CMMC, but had no effect on the mRNA level of cyclin D1 and cyclin E (P>0.05) with/without AA-BGP treatment. AA-BGP increased markers for early chondrocyte differentiation including type II collagen, aggrecan (Ptype X collagen. NPPB antagonized AA-BGP-induced expression of type II collagen and aggrecan (Ptype X collagen (PType X collagen might function as a target of chloride channel inhibitors during the differentiation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  18. Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery

    Directory of Open Access Journals (Sweden)

    Gurney Alison M

    2005-10-01

    Full Text Available Abstract Background Uridine 5'-triphosphate (UTP and uridine 5'-diphosphate (UDP act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems. Methods The perforated-patch clamp technique was used to record the Ca2+-dependent, Cl- current (ICl,Ca activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA and large (LPA intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student's t test or one way ANOVA. Results ATP, UTP and UDP (10-4M evoked oscillating, inward currents (peak = 13–727 pA in 71–93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P -1 and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10-4M abolished currents evoked by ATP in SPA (n = 4 and LPA (n = 4, but pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS (10-4M, also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively. Currents elicited by UTP (n = 37 or UDP (n = 14 were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4 and abolished by suramin (n = 5. Both antagonists abolished the contractions in LPA. Conclusion At least two P2Y subtypes couple to ICl,Ca in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP does not correspond to any of the known P2Y subtypes. These receptors likely play a significant role in nucleotide-induced vasoconstriction.

  19. Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Webb, Timothy I.; Dixon, Christine L.

    2011-01-01

    Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated...

  20. The gastric H,K-ATPase blocker lansoprazole is an inhibitor of chloride channels

    Science.gov (United States)

    Schmarda, Andreas; Dinkhauser, Patrick; Gschwentner, Martin; Ritter, Markus; Fürst, Johannes; Scandella, Elke; Wöll, Ewald; Laich, Andreas; Rossmann, Heidi; Seidler, Ursula; Lang, Florian; Paulmichl, Markus

    2000-01-01

    It was postulated that swelling dependent chloride channels are involved in the proton secretion of parietal cells. Since omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are structurally related to phenol derivatives known to block swelling dependent chloride channels, we set out to test, whether these substances – which are known to block the H,K-ATPase – could also lead to an inhibition of swelling-dependent chloride channels. Swelling-dependent chloride channels – characterized in many different cell types – show highly conserved biophysical and pharmacological features, therefore we investigated the effect of omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 on swelling-dependent chloride channels elicited in fibroblasts, after the reduction of the extracellular osmolarity. Omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are able to block swelling-dependent chloride channels (IClswell). Lansoprazole and its protonated metabolite AG2000 act on at least two different sites of the IClswell protein: on an extracellular site which seems to be in a functional proximity to the nucleotide binding site, and on an intracellular site which allows the formation of disulfide-bridges. The inhibition of the proton pump and the simultaneous blocking of chloride channels by omeprazole, lansoprazole and its acid activated sulphenamide form AG2000, as described here could be an effective mode to restrict proton secretion in parietal cells. PMID:10711360

  1. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    Science.gov (United States)

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  2. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  3. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  4. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  5. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    Science.gov (United States)

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  6. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    Science.gov (United States)

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  7. Structure of the CLC-1 chloride channel from Homo sapiens.

    Science.gov (United States)

    Park, Eunyong; MacKinnon, Roderick

    2018-05-29

    CLC channels mediate passive Cl - conduction, while CLC transporters mediate active Cl - transport coupled to H + transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl - conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl - at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl - affinity distinguish CLC channels and transporters. © 2018, Park & MacKinnon.

  8. Evidence for a role of GABA- and glutamate-gated chloride channels in olfactory memory.

    Science.gov (United States)

    Boumghar, Katia; Couret-Fauvel, Thomas; Garcia, Mikael; Armengaud, Catherine

    2012-11-01

    In the honeybee, we investigated the role of transmissions mediated by GABA-gated chloride channels and glutamate-gated chloride channels (GluCls) of the mushroom bodies (MBs) on olfactory learning using a single-trial olfactory conditioning paradigm. The GABAergic antagonist picrotoxin (PTX) or the GluCl antagonist L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC) was injected alone or in combination into the α-lobes of MBs. PTX impaired early long-term olfactory memory when injected before conditioning or before testing. L-trans-PDC alone induced no significant effect on learning and memory but induced a less specific response to the conditioned odor. When injected before PTX, L-trans-PDC was able to modulate PTX effects. These results emphasize the role of MB GABA-gated chloride channels in consolidation processes and strongly support that GluCls are involved in the perception of the conditioned stimulus.

  9. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.

    Science.gov (United States)

    Garcia-Olivares, Jennie; Alekov, Alexi; Boroumand, Mohammad Reza; Begemann, Birgit; Hidalgo, Patricia; Fahlke, Christoph

    2008-11-15

    Eukaryotic ClC channels are dimeric proteins with each subunit forming an individual protopore. Single protopores are gated by a fast gate, whereas the slow gate is assumed to control both protopores through a cooperative movement of the two carboxy-terminal domains. We here study the role of the carboxy-terminal domain in modulating fast and slow gating of human ClC-2 channels, a ubiquitously expressed ClC-type chloride channel involved in transepithelial solute transport and in neuronal chloride homeostasis. Partial truncation of the carboxy-terminus abolishes function of ClC-2 by locking the channel in a closed position. However, unlike other isoforms, its complete removal preserves function of ClC-2. ClC-2 channels without the carboxy-terminus exhibit fast and slow gates that activate and deactivate significantly faster than in WT channels. In contrast to the prevalent view, a single carboxy-terminus suffices for normal slow gating, whereas both domains regulate fast gating of individual protopores. Our findings demonstrate that the carboxy-terminus is not strictly required for slow gating and that the cooperative gating resides in other regions of the channel protein. ClC-2 is expressed in neurons and believed to open at negative potentials and increased internal chloride concentrations after intense synaptic activity. We propose that the function of the ClC-2 carboxy-terminus is to slow down the time course of channel activation in order to stabilize neuronal excitability.

  10. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels.

    Science.gov (United States)

    Ozoe, Yoshihisa; Asahi, Miho; Ozoe, Fumiyo; Nakahira, Kunimitsu; Mita, Takeshi

    2010-01-01

    A structurally unique isoxazoline class compound, A1443, exhibits antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. This isoxazoline compound inhibits specific binding of the gamma-aminobutyric acid (GABA) receptor channel blocker [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) to housefly-head membranes, with an IC(50) value of 455pM. In contrast, the IC(50) value in rat-brain membranes is>10muM. To study the mode of action of this isoxazoline, we utilized MdGBCl and MdGluCl cDNAs, which encode the subunits of housefly GABA- and glutamate-gated chloride channels, respectively. Two-electrode voltage clamp electrophysiology was used to confirm that A1443 blocks GABA- and glutamate-induced chloride currents in Xenopus oocytes expressing MdGBCl or MdGluCl channels, with IC(50) values of 5.32 and 79.9 nM, respectively. Blockade by A1443 was observed in A2'S-MdGBCl and S2'A-MdGluCl mutant channels at levels similar to those of the respective wild-types, and houseflies expressing A2'S-MdGBCl channels were as susceptible to A1443 as standard houseflies. These findings indicate that A1443 is a novel and specific blocker of insect ligand-gated chloride channels. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma.

    Science.gov (United States)

    Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K

    2015-08-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β- and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma.

  12. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Cromer, Brett A.; Dufour, Vanessa

    2014-01-01

    Pharmacological targeting of glutamate-gated chloride channels (GluCls) is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs...

  13. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.

    Science.gov (United States)

    Jentsch, Thomas J; Pusch, Michael

    2018-07-01

    CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl - channels, whereas ClC-3 through ClC-7 are 2Cl - /H + -exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl - channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.

  14. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  15. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  16. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3.

    Science.gov (United States)

    Andrini, Olga; Keck, Mathilde; Briones, Rodolfo; Lourdel, Stéphane; Vargas-Poussou, Rosa; Teulon, Jacques

    2015-06-15

    The mutations in the CLCNKB gene encoding the ClC-Kb chloride channel are responsible for Bartter syndrome type 3, one of the four variants of Bartter syndrome in the genetically based nomenclature. All forms of Bartter syndrome are characterized by hypokalemia, metabolic alkalosis, and secondary hyperaldosteronism, but Bartter syndrome type 3 has the most heterogeneous presentation, extending from severe to very mild. A relatively large number of CLCNKB mutations have been reported, including gene deletions and nonsense or missense mutations. However, only 20 CLCNKB mutations have been functionally analyzed, due to technical difficulties regarding ClC-Kb functional expression in heterologous systems. This review provides an overview of recent progress in the functional consequences of CLCNKB mutations on ClC-Kb chloride channel activity. It has been observed that 1) all ClC-Kb mutants have an impaired expression at the membrane; and 2) a minority of the mutants combines reduced membrane expression with altered pH-dependent channel gating. Although further investigation is needed to fully characterize disease pathogenesis, Bartter syndrome type 3 probably belongs to the large family of conformational diseases, in which the mutations destabilize channel structure, inducing ClC-Kb retention in the endoplasmic reticulum and accelerated channel degradation. Copyright © 2015 the American Physiological Society.

  17. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Science.gov (United States)

    Yang, Hong; Xu, Li-na; He, Cheng-yan; Liu, Xin; Fang, Rou-yu; Ma, Tong-hui

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants. Methods: A cell-based fluorescent assay to measure I− influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl− current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo. Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated I− influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay, the three compound enhanced Cl− currents in epithelia formed by CFTR-expressing FRT cells with EC50 values of 73±1.4, 56±1.7, and 50±0.5μmol/L, respectively, and Rhein also enhanced Cl− current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimulated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity. Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potentiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs. PMID:21602836

  18. pH-modulation of chloride channels from the sarcoplasmic reticulum of skeletal muscle.

    Science.gov (United States)

    Kourie, J I

    1999-01-01

    The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pHcis) and luminal pH (pHtrans) was investigated using the lipid bilayer-vesicle fusion technique. Low pHcis 6.75-4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pHcis 7.26-7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65-75 pS) whereas at low pHcis 6.75-4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5-40 pS). Similarly, low pHtrans 4.07, but not pHtrans 6.28, modified the activity of SCl channels. The effects of low pHcis are pronounced at 10(-3) and 10(-4) M [Ca2+]cis but are not apparent at 10(-5) M [Ca2+]cis, where the subconductances of the channel are already prominent. Low pHcis-induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pHcis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels.

  19. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  20. Contribution of Ca2+-Dependent Cl- Channels to Norepinephrine-Induced Contraction of Femoral Artery Is Replaced by Increasing EDCF Contribution during Ageing

    Czech Academy of Sciences Publication Activity Database

    Líšková, Silvia; Petrová, M.; Karen, Petr; Behuliak, Michal; Zicha, Josef

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 289361 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : calcium-dependent chloride channels * endothelium-derived contracting factor * ageing Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.579, year: 2014

  1. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  2. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    Science.gov (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  3. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li; Zhang Yun

    2008-01-01

    Extracellular acidic pH-activated chloride channel I Cl,acid , has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I Cl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I Cl,acid revealed that EC 50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl - channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I Cl,acid would play a role in regulation of EC function under these pathological conditions

  4. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels.

    Science.gov (United States)

    Kamaleddin, Mohammad Amin

    2018-02-01

    Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl - and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl - flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca 2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca 2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain. © 2017 Wiley Periodicals, Inc.

  5. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    Science.gov (United States)

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica.

    Science.gov (United States)

    Kita, Tomo; Ozoe, Fumiyo; Azuma, Masaaki; Ozoe, Yoshihisa

    2013-09-01

    l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels.

    Science.gov (United States)

    Zhang, Yong; Kang, Chao; Wang, Xiao-Lan; Zhou, Min; Chen, Meng-Ting; Zhu, Xiao-Hui; Liu, Kai; Wang, Bin; Zhang, Qian-Yong; Zhu, Jun-Dong; Mi, Man-Tian

    2018-03-01

    In recent decades, the association among diet, gut microbiota, and the risk of colorectal cancer (CRC) has been established. Gut microbiota and associated metabolites, such as bile acids and butyrate, are now known to play a key role in CRC development. The aim of this study is to identify that the progression to CRC is influenced by cholic acid, sodium butyrate, a high-fat diet, or different dose of dihydromyricetin (DMY) interacted with gut microbiota. An AOM/DSS (azoxymethan/dextran sodium sulfate) model is established to study the gut microbiota compsition before and after tumor formation during colitis-induced tumorigenesis. All above dietary factors profoundly influence the composition of gut microbiota and host colonic tumorigenesis. In addition, mice with DMY-modified initial microbiota display different degrees of chemically induced tumorigenesis. Mechanism analysis reveals that gut microbiota-associated chloride channels participated in colon tumorigenesis. Gut microbiota changes occur in the hyperproliferative stage before tumor formation. Gut microbiota and host chloride channels, both of which are regulated by dietary factors, are associated with CRC development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced expression of a calcium-dependent protein kinase

    Indian Academy of Sciences (India)

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  9. Cloning and functional expression of a plant voltage-dependent chloride channel.

    Science.gov (United States)

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  10. Emerging role of cystic fibrosis transmembrane conductance regulator- an epithelial chloride channel in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Yuning Hou; Xiaoqing Guan; Zhe Yang; Chunying Li

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator(CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.

  11. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  12. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    Science.gov (United States)

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  13. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.

    Science.gov (United States)

    Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer

    2009-12-01

    Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.

  14. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron.

    Science.gov (United States)

    Hennings, J Christopher; Andrini, Olga; Picard, Nicolas; Paulais, Marc; Huebner, Antje K; Cayuqueo, Irma Karen Lopez; Bignon, Yohan; Keck, Mathilde; Cornière, Nicolas; Böhm, David; Jentsch, Thomas J; Chambrey, Régine; Teulon, Jacques; Hübner, Christian A; Eladari, Dominique

    2017-01-01

    Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule. Copyright © 2016 by the American Society of Nephrology.

  15. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    International Nuclear Information System (INIS)

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-01-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of [ 35 S]t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 μM. The binding sites of [ 35 S]TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of [ 35 S]TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of [ 35 S]TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel

  16. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  17. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  18. Exterior Site Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC Chloride Channel

    Science.gov (United States)

    Bostick, David L.; Berkowitz, Max L.

    2004-01-01

    The ClC family of anion channels mediates the efficient, selective permeation of Cl− across the biological membranes of living cells under the driving force of an electrochemical gradient. In some eukaryotes, these channels are known to exhibit a unique gating mechanism, which appears to be triggered by the permeant Cl− anion. We infer details of this gating mechanism by studying the free energetics of Cl− occupancy in the pore of a prokaryotic ClC homolog. These free energetics were gleaned from 30 ns of molecular dynamics simulation on an ∼133,000-atom system consisting of a hydrated membrane embedded StClC transporter. The binding sites for Cl− in the transporter were determined for the cases where the putative gating residue, Glu148, was protonated and unprotonated. When the glutamate gate is protonated, Cl− favorably occupies an exterior site, Sext, to form a queue of anions in the pore. However, when the glutamate gate is unprotonated, Cl− cannot occupy this site nor, consequently, pass through the pore. An additional, previously undetected, site was found in the pore near the outer membrane that exists regardless of the protonation state of Glu148. Although this suggests that, for the prokaryotic homolog, protonation of Glu148 may be the first step in transporting Cl− at the expense of H+ transport in the opposite direction, an evolutionary argument might suggest that Cl− opens the ClC gate in eukaryotic channels by inducing the conserved glutamate's protonation. During an additional 20 ns free dynamics simulation, the newly discovered outermost site, Sout, and the innermost site, Sint, were seen to allow spontaneous exchange of Cl− ions with the bulk electrolyte while under depolarization conditions. PMID:15345547

  19. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls)

    OpenAIRE

    Rufener, Lucien; Danelli, Vanessa; Bertrand, Daniel; Sager, Heinz

    2017-01-01

    Background The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. Methods In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the success...

  20. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].

    Science.gov (United States)

    Boronovskiĭ, S E; Nartsissov, Ia R

    2009-01-01

    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  1. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  2. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    Science.gov (United States)

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  3. Use of the chloride channel activator lubiprostone for constipation in adults with cystic fibrosis: a case series.

    Science.gov (United States)

    O'Brien, Catherine E; Anderson, Paula J; Stowe, Cindy D

    2010-03-01

    To describe the use of lubiprostone for constipation in 3 adults with cystic fibrosis (CF). This case series describes the use of lubiprostone for the treatment of constipation in 3 adults with CF (mean +/- SD length of therapy 17.3 +/- 1.5 mo). All 3 patients were prescribed lubiprostone 24 microg twice daily after hospitalization for treatment of intestinal obstruction. Patient 1 continues on chronic polyethylene glycol (PEG) 3350 and lubiprostone and has not had a recurrence of obstruction. Patient 2 requires aggressive chronic therapy with PEG 3350, lubiprostone, and methylnaltrexone. She has had 1 recurrence of obstruction. Patient 3 continues with lubiprostone taken several times per week with good control of constipation and no recurrence of obstruction to date. The adverse effect profile has been tolerable in all 3 patients. CF is caused by a genetic mutation resulting in a dysfunctional or absent CF transmembrane conductance regulator that normally functions as a chloride channel. This results in viscous secretions in multiple organ systems including the lungs and intestinal tract. Accumulation of viscous intestinal contents contributes to constipation, which is common among adults with CF and can sometimes lead to intestinal obstruction. Lubiprostone is indicated for chronic constipation and works by activating type 2 chloride channels (ClC-2) in the intestinal tract. Because it utilizes an alternate chloride channel, lubiprostone may be especially effective for constipation in patients with CF. Lubiprostone provides an additional option for the treatment of constipation in adults with CF. Its use in the CF population deserves further study.

  4. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  5. Unique contributions of an arginine side chain to ligand recognition in a glutamate-gated chloride channel

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Komnatnyy, Vitaly V; Pless, Stephan A

    2017-01-01

    Glutamate recognition by neurotransmitter receptors often relies on arginine (Arg) residues in the binding site, leading to the assumption that charge-charge interactions underlie ligand recognition. However, assessing the precise chemical contribution of Arg side chains to protein function......-gated chloride channel from the nematode Haemonchus contortus. Our data unveil a surprisingly small contribution of charge at a conserved arginine side chain previously suggested to form a salt bridge with the ligand, glutamate. Instead, our data show that Arg contributes crucially to ligand sensitivity via...

  6. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    Science.gov (United States)

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  7. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is unaffected by DIDS...

  8. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  9. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Science.gov (United States)

    Sacchi, Oscar; Rossi, Maria Lisa; Canella, Rita; Fesce, Riccardo

    2011-02-25

    The permeability of the nicotinic channel (nAChR) at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC) I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh), were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV) resulted in a change of the synaptic potassium/sodium permeability ratio (P(K)/P(Na)) from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh), by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn)) and of the EPSC decay time constant. Reduction of [Cl(-)](o) to 18 mM resulted in a change of P(K)/P(Na) from 1.57 (control) to 2.26, associated with a reversible shift of E(ACh) by about -10 mV. Application of 200 nM αBgTx evoked P(K)/P(Na) and g(syn) modifications similar to those observed in reduced [Cl(-)](o). The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K)/P(Na) changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization), while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  10. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Directory of Open Access Journals (Sweden)

    Oscar Sacchi

    Full Text Available The permeability of the nicotinic channel (nAChR at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh, were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV resulted in a change of the synaptic potassium/sodium permeability ratio (P(K/P(Na from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh, by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn and of the EPSC decay time constant. Reduction of [Cl(-](o to 18 mM resulted in a change of P(K/P(Na from 1.57 (control to 2.26, associated with a reversible shift of E(ACh by about -10 mV. Application of 200 nM αBgTx evoked P(K/P(Na and g(syn modifications similar to those observed in reduced [Cl(-](o. The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K/P(Na changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization, while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  11. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  12. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  13. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice

    Science.gov (United States)

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.

    2014-01-01

    Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273

  14. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera.

    Science.gov (United States)

    Démares, Fabien; Drouard, Florian; Massou, Isabelle; Crattelet, Cindy; Lœuillet, Aurore; Bettiol, Célia; Raymond, Valérie; Armengaud, Catherine

    2014-09-01

    Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1.

    Directory of Open Access Journals (Sweden)

    Bo Yang

    Full Text Available Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1 is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1 CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2 CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT; 3 Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4 In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.

  16. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  17. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Science.gov (United States)

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  19. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  20. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2015-06-19

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Science.gov (United States)

    Qi, Yanmei; Mair, Norbert; Kummer, Kai K.; Leitner, Michael G.; Camprubí-Robles, María; Langeslag, Michiel; Kress, Michaela

    2018-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception. PMID:29479306

  2. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2018-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

  3. An L319F mutation in transmembrane region 3 (TM3) selectively reduces sensitivity to okaramine B of the Bombyx mori l-glutamate-gated chloride channel.

    Science.gov (United States)

    Furutani, Shogo; Okuhara, Daiki; Hashimoto, Anju; Ihara, Makoto; Kai, Kenji; Hayashi, Hideo; Sattelle, David B; Matsuda, Kazuhiko

    2017-10-01

    Okaramines produced by Penicillium simplicissimum AK-40 activate l-glutamate-gated chloride channels (GluCls) and thus paralyze insects. However, the okaramine binding site on insect GluCls is poorly understood. Sequence alignment shows that the equivalent of residue Leucine319 of the okaramine B sensitive Bombyx mori (B. mori) GluCl is a phenylalanine in the okaramine B insensitive B. mori γ-aminobutyric acid-gated chloride channel of the same species. This residue is located in the third transmembrane (TM3) region, a location which in a nematode GluCl is close to the ivermectin binding site. The B. mori GluCl containing the L319F mutation retained its sensitivity to l-glutamate, but responses to ivermectin were reduced and those to okaramine B were completely blocked.

  4. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy

    Science.gov (United States)

    Sarcocystis neurona is the most frequent cause of Equine Protozoal Myeloencephalitis (EPM), a debilitating neurologic disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma...

  5. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  6. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  7. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.

    Science.gov (United States)

    Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W

    2012-02-07

    Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.

  8. Association of chloride intracellular channel 4 and Indian hedgehog proteins with survival of patients with pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zou, Qiong; Yang, Zhulin; Li, Daiqiang; Liu, Ziru; Yuan, Yuan

    2016-12-01

    Pancreatic cancer is the fourth most common cause of cancer-related mortality. Novel molecular biomarkers need to be identified for personalized medicine and to improve survival. The aim of this study was to examine chloride intracellular channel 4 (CLIC4) and Indian Hedgehog (Ihh) expression in benign and malignant lesions of the pancreas and to examine the eventual association between CLIC4 and Ihh expression, with clinicopathological features and prognosis of pancreatic cancer. A retrospective study of specimens collected from January 2000 to December 2011 at the Department of Pathology of the Second and Third Xiangya Hospitals, Central South University was undertaken to explore this question. Immunohistochemistry of CLIC4 and Ihh was performed with EnVision ™ in 106 pancreatic ductal adenocarcinoma specimens, 35 paracancer samples (2 cm away from the tumour, when possible or available), 55 benign lesions and 13 normal tissue samples. CLIC4 and Ihh expression in pancreatic ductal adenocarcinoma were significantly higher than in paracancer tissue and benign lesions (CLIC4: P = 0.009 and Ihh: P Ihh: P = 0.0001 respectively). CLIC4 and Ihh expression was negative in normal pancreatic tissues. The expression of CLIC4 and Ihh was associated significantly with tumour grade, lymph node metastasis, tumour invasion and poor overall survival. Thus CLIC4 and Ihh could serve as biological markers for the progression, metastasis and/or invasiveness of pancreatic ductal adenocarcinoma. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  9. The novel isoxazoline ectoparasiticide lotilaner (Credelio™: a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls

    Directory of Open Access Journals (Sweden)

    Lucien Rufener

    2017-11-01

    Full Text Available Abstract Background The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA-gated chloride channels (GABACls and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls. Lotilaner (Credelio™, a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. Methods In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms, Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon, Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. Results In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks but also of crustaceans (sea lice, while no activity on a dog GABAA receptor was observed up to a concentration of 10 μM. Conclusions Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate’s γ-aminobutyric acid-gated chloride channels (GABACls. They contribute to our understanding of the mode of

  10. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls).

    Science.gov (United States)

    Rufener, Lucien; Danelli, Vanessa; Bertrand, Daniel; Sager, Heinz

    2017-11-01

    The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms), Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon), Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly) GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks) but also of crustaceans (sea lice), while no activity on a dog GABA A receptor was observed up to a concentration of 10 μM. Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate's γ-aminobutyric acid-gated chloride channels (GABACls). They contribute to our understanding of the mode of action of this new ectoparasiticide compound.

  11. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).

    Science.gov (United States)

    Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki

    2006-01-01

    We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.

  12. Structural basis for the differential effects of CaBP1 and calmodulin on CaV1.2 calcium-dependent inactivation

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L.

    2010-01-01

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641

  13. Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation.

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L

    2010-12-08

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The old is new again: asparagine oxidation in calcium-dependent antibiotic biosynthesis.

    Science.gov (United States)

    Worthington, Andrew S; Burkart, Michael D

    2007-03-20

    Non-ribosomal peptides are built from both proteinogenic and non-proteinogenic amino acids. The latter resemble amino acids but contain modifications not found in proteins. The recent characterization of a non-heme Fe(2+) and alpha-ketoglutarate-dependent oxygenase that stereospecifically generates beta-hydroxyasparagine, an unnatural amino acid building block for the biosynthesis of calcium-dependent antibiotic, a lipopeptide antibiotic. This work improves our understanding of how these non-proteinogenic amino acids are synthesized.

  15. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    Science.gov (United States)

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

  16. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília

    2017-01-19

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  17. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels

    OpenAIRE

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl− channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl− channel activity of wild-type CFTR and delF508-CFTR mutant.The effects of n-alkanols like octanol on CFTR activity were measured by iodide (125I) efflux and patch-clamp techniques o...

  18. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  19. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2

    International Nuclear Information System (INIS)

    Mi Wei; Li Lanfen; Su Xiaodong

    2008-01-01

    Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys 114 , and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general

  20. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  1. Alcohol and the calcium-dependent potassium transport of human erythrocytes

    International Nuclear Information System (INIS)

    Harris, R.A.; Caldwell, K.K.

    1985-01-01

    In vitro exposure of human red blood cells to ethanol (100 and 400 mM) was found to increase the initial rate of calcium-dependent potassium efflux through the red cell membrane. This effect of ethanol was apparently not due to an elevation of the intracellular free calcium but rather to a direct action of the drug on the transport process as, (1) intracellular calcium concentrations were tightly buffered with EGTA, (2) ethanol did not alter the efflux of 45 Ca from the cells, and (3) dantrolene, which has been proposed to counteract the effect of ethanol on intracellular calcium levels in the erythrocyte, did not inhibit the stimulatory action of ethanol. The efflux of potassium from erythrocytes obtained from chronic alcoholics was not different from that of erythrocytes from non-alcoholic individuals. The relationship of these findings to neuronal potassium transport is discussed

  2. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms.

    Science.gov (United States)

    Wang, Xingliang; Puinean, Alin M; O Reilly, Andrias O; Williamson, Martin S; Smelt, Charles L C; Millar, Neil S; Wu, Yidong

    2017-07-01

    Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (∼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Calcium-dependent binding of Escherichia coli alpha-hemolysin to erythrocytes

    International Nuclear Information System (INIS)

    Boehm, D.F.

    1989-01-01

    Alpha hemolysin (AH), a protein secreted by certain strains of Escherichia coli, causes lysis of erythrocytes (RBCs) and is cytotoxic for other cells. The primary structure of AH contains an eight amino acid sequence tandemly repeated 13 times near the C-terminus. These repeated sequences are essential for hemolytic activity. AH also requires an unknown modification by an accessory protein, Hly C, for hemolytic activity. The role of calcium in the interaction of Ah with RBCs was investigated using recombinant strains which produced active and inactive forms of the toxin. Hemolytic activity was calcium-dependent. Osmotic protection experiments and immunoblots of SDS-PAGE separated proteins from washed, toxin-treated RBCs showed that the binding of active AH to RBCs was calcium-dependent. Binding of active AH to RBCs increased the calcium permeability of RBC membranes and resulted in changes in membrane protein profiles. The changes in membrane proteins did not cause the lysis of the cells. These results were consistent with a mechanism of lysis involving the formation of cation-selective pores in the membranes of target cells. 45 Ca-autoradiography of the recombinant hemolysins separated by SDS-PAGE and transferred to nitrocellulose showed that active AH bound calcium. The domain involved in binding calcium was identified as the tandemly repeated sequences since a deletion hemolysin missing 11 of the 13 repeated sequences did not bind calcium. This deletion hemolysin was non-hemolytic and did not bind to RBC membranes. Hemolysin lacking the Hly C modification was also non-hemolytic and did not bind to RBC membranes. This unmodified AH contained the repeated sequences and bound calcium as efficiently as active AH

  4. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.

    Science.gov (United States)

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-03-01

    1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanoloctanoloctanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.

  5. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  6. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish.

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2014-09-01

    Full Text Available Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50 value of around 200 nM, being cooperative (n(H = 2 for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new

  7. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression.

    Science.gov (United States)

    Carmichael, Stephen N; Bron, James E; Taggart, John B; Ireland, Jacqueline H; Bekaert, Michaël; Burgess, Stewart Tg; Skuce, Philip J; Nisbet, Alasdair J; Gharbi, Karim; Sturm, Armin

    2013-06-18

    Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice

  8. Similar expression patterns of bestrophin-4 and cGMP dependent Ca2+-activated chloride channel activity in the vasculature

    DEFF Research Database (Denmark)

    Bouzinova, Elena V.; Larsen, Per; Matchkov, Vladimir

    2008-01-01

    (abstract by Matchkov et. al) that siRNA mediated downregulation of bestrophin-4 is associated with the disappearance of a recently demonstrated2 cGMP-dependent Ca2+-activated Cl- current in vascular smooth muscle cells (SMCs). Here we study the distribution of bestrophin-4-and cGMP dependent Cl- channel...... expressed epitope) Western blot detected a ~65 kDa band in cell lysates from rat mesenteric small arteries and aorta, which was not seen in pulmonary arteries and when preincubated with the immunizing peptide. The distribution of bestrophin-4 mRNA and protein has a pattern similar to the cGMP-dependent Cl......- current in SMCs of different origins. Immunohistochemistry identified bestrophin-4 both in endothelial and SMCs of the vascular tree in the brain, heart, kidney and mesentery, but not in the lungs. We suggest that bestrophin-4 is important for the cGMP dependent, Ca2+ activated Cl- conductance in many...

  9. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  10. Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways

    Directory of Open Access Journals (Sweden)

    Paschalis-Adam Molyvdas

    2007-03-01

    Full Text Available The alteration of resting tension (RT from 0.5 g to 2.5 g increased significantly airway smooth muscle contractions induced by acetylcholine (ACh in rabbit trachea. The decrease in extracellular calcium concentration [Ca2+]o from 2 mM to 0.2 mM reduced ACh-induced contractions only at 2.5 g RT with no effect at 0.5 g RT. The nonselective inhibitor of nitric oxide synthase (NOS, NG-nitro-L-arginine methyl ester (L-NAME increased ACh-induced contractions at 2.5 g RT. The inhibitor of inducible NOS, S-methylsothiourea or neuronal NOS, 7-nitroindazole had no effect. At 2.5 g RT, the reduction of [Ca2+]o from 2 mM to 0.2 mM abolished the effect of L-NAME on ACh-induced contractions. The NO precursor L-arginine or the tyrosine kinase inhibitors erbstatin A and genistein had no effect on ACh-induced contractions obtained at 2.5 g RT. Our results suggest that in airways, RT affects ACh-induced contractions by modulating the activity of epithelial NOS in a calcium-dependent, tyrosine-phosphorylation-independent way.

  11. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  12. A role for barley calcium-dependent protein kinase CPK2a in the response to drought

    Directory of Open Access Journals (Sweden)

    Agata Cieśla

    2016-10-01

    Full Text Available Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L., one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index, an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley.

  13. Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects.

    Science.gov (United States)

    Zhang, Xuan; Li, Honglin; Zhang, Huiran; Liu, Yani; Huo, Lifang; Jia, Zhanfeng; Xue, Yucong; Sun, Xiaorun; Zhang, Wei

    2017-07-01

    Natural flavonoids are ubiquitous in dietary plants and vegetables and have been proposed to have antiviral, antioxidant, cardiovascular protective and anticancer effects. Transmembrane member 16A (TMEM16A)-encoded Ca 2+ -activated Cl - channels play a variety of physiological roles in many organs and tissues. Overexpression of TMEM16A is also believed to be associated with cancer progression. Therefore, inhibition of TMEM16A current may be a potential target for cancer therapy. In this study, we screened a broad spectrum of flavonoids for their inhibitory activities on TMEM16A currents. A whole-cell patch technique was used to record the currents. The BrdU assay and transwell technique were used to investigate cell proliferation and migration. At a concentration of 100 μM, 10 of 20 compounds caused significant (>50%) inhibition of TMEM16A currents. The four most potent compounds - luteolin, galangin, quercetin and fisetin - had IC 50 values ranging from 4.5 to 15 μM). To examine the physiological relevance of these findings, we also studied the effects of these flavonoids on endogenous TMEM16A currents in addition to cell proliferation and migration in LA795 cancer cells. Among the flavonoids tested, we detected a highly significant correlation between TMEM16A current inhibition and cell proliferation or reduction of migration. This study demonstrates that flavonoids inhibit TMEM16A currents and suggests that flavonoids could have anticancer effects via this mechanism. © 2017 The British Pharmacological Society.

  14. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-01-01

    Full Text Available Chloride intracellular channel 1 (CLIC1 is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM database using structure-based virtual screening and molecular dynamics (MD simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition.

  15. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A).

    Science.gov (United States)

    Truong, Eric C; Phuan, Puay W; Reggi, Amanda L; Ferrera, Loretta; Galietta, Luis J V; Levy, Sarah E; Moises, Alannah C; Cil, Onur; Diez-Cecilia, Elena; Lee, Sujin; Verkman, Alan S; Anderson, Marc O

    2017-06-08

    Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC 50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.

  16. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  18. Chloride Test

    Science.gov (United States)

    ... metabolic acidosis ) or when a person hyperventilates (causing respiratory alkalosis ). A decreased level of blood chloride (called hypochloremia) ... disease , emphysema or other chronic lung diseases (causing respiratory ... metabolic alkalosis). An increased level of urine chloride can indicate ...

  19. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  20. Effects of Hypomagnetic Conditions and Reversed Geomagnetic Field on Calcium-Dependent Proteases of Invertebrates and Fish

    Science.gov (United States)

    Kantserova, N. P.; Krylov, V. V.; Lysenko, L. A.; Ushakova, N. V.; Nemova, N. N.

    2017-12-01

    The effects of hypomagnetic conditions and the reversal of the geomagnetic field (GMF) on intracellular Ca2+-dependent proteases (calpains) of fish and invertebrates have been studied in vivo and in vitro. It is found that the intravital exposure of examined animals to hypomagnetic conditions leads to a significant decrease in its calpain activity. The activity of preparations of calcium-dependent proteases was tested in separate experiments. It is shown that preparations of Ca2+-dependent proteases from invertebrates and fish are also inactivated substantially under effect of hypomagnetic conditions. The ambiguous results obtained in the experiments with a reversed GMF do not make it possible to discuss the biological response of calcium-dependent proteases to the reversal of the GMF.

  1. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  2. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy.

    Science.gov (United States)

    Ojo, Kayode K; Dangoudoubiyam, Sriveny; Verma, Shiv K; Scheele, Suzanne; DeRocher, Amy E; Yeargan, Michelle; Choi, Ryan; Smith, Tess R; Rivas, Kasey L; Hulverson, Matthew A; Barrett, Lynn K; Fan, Erkang; Maly, Dustin J; Parsons, Marilyn; Dubey, Jitender P; Howe, Daniel K; Van Voorhis, Wesley C

    2016-12-01

    Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis. Copyright © 2016

  3. Chloride channels in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1982-01-01

    A study of the voltage and time dependence of a transepithelial Cl- current in toad skin (Bufo bufo) by the voltage-clamp method leads to the conclusion that potential has a dual role for Cl- transport. One is to control the permeability of an apical membrane Cl-pathway, the other is to drive Cl-...

  4. EXPRESSION OF CALCIUM-DEPENDENT PROTEIN KINASE (CDPK GENES IN VITIS AMURENSIS UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dubrovina A.S.

    2012-08-01

    Full Text Available Abiotic stresses, such as extreme temperatures, soil salinity, or water deficit, are one of the major limiting factors of crop productivity worldwide. Examination of molecular and genetic mechanisms of abiotic stress tolerance in plants is of great interest to plant biologists. Calcium-dependent protein kinases (CDPKs, which are the most important Ca2+ sensors in plants, are known to play one of the key roles in plant adaptation to abiotic stress. CDPK is a multigene family of enzymes. Analysis of CDPK gene expression under various abiotic stress conditions would help identify those CDPKs that might play important roles in plant adaptation to abiotic stress. We focused on studying CDPK gene expression under osmotic, water deficit, and temperature stress conditions in a wild-growing grapevine Vitis amurensis Rurp., which is native to the Russian Far East and is known to possess high adaptive potential and high level of resistance against adverse environmental conditions. Healthy V. amurensis cuttings (excised young stems with one healthy leaf were used for the treatments. For the non-stress treatment, we placed the cuttings in distilled water for 12 h at room temperature. For the water-deficit stress, detached cuttings were laid on a paper towel for 12 h at room temperature. For osmotic stress treatments, the cuttings were placed in 0.4 М NaCl and 0.4 М mannitol solutions for 12 h at room temperature. To examine temperature stress tolerance, the V. amurensis cuttings were placed in a growth chamber at +10oC and +37oC for 12 h. The total expression of VaCDPK genes was examined by semiquantitative RT-PCR with degenerate primers designed to the CDPK kinase domain. The total level of CDPK gene expression increased under salt and decreased under low temperature stress conditions. We sequenced 300 clones of the amplified part of different CDPK transcripts obtained from the analyzed cDNA probes. Analysis of the cDNA sequences identified 8 different

  5. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecí lia; Alexandre, Bruno M.; Rosa, Margarida T.G.; Sapeta, Helena; Leitã o, Antó nio E.; Ramalho, José C.; Lam, TuKiet T.; Negrã o, Só nia; Abreu, Isabel A.; Oliveira, M. Margarida

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here

  6. Extracellular Calcium-Dependent Modulation of Endothelium Relaxation in Rat Mesenteric Small Artery

    DEFF Research Database (Denmark)

    Hangaard, Lise; Jessen, Peter B; Kamaev, Dmitrii

    2015-01-01

    The nature of NO- and COX-independent endothelial hyperpolarization (EDH) is not fully understood but activation of small- and intermittent-conductance Ca(2+)-activated K(+) channels (SKCa and IKCa) is important. Previous studies have suggested that the significance of IKCa depends on [Ca(2+)]out...

  7. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    Science.gov (United States)

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  8. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  9. Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata.

    Science.gov (United States)

    Rojas, Alejandra; Torres, Mónica; Rojas, J Isela; Feregrino, Angélica; Heimer-de la Cotera, Edgar P

    2002-06-01

    In the present paper, we describe the results obtained from a preliminary pharmacological and biochemical study of the fire coral Millepora complanata, a regular component of coral reefs in the Mexican Caribbean. The protein-containing crude extract obtained from M. complanata (tested from 0.001 to 1000 microg protein/ml) caused a concentration-dependent stimulation of spontaneous contractions of the guinea pig ileum. The extract (EC(50)=11.55+/-2.36 microg/ml) was approximately 12-fold less potent than ionomycin (EC(50)=0.876+/-0.25 microg/ml) and its maximum induced contraction (1mg protein/ml) was equivalent to 68% of the response to 60mM KCl. FPLC size exclusion chromatography of the M. complanta extract afforded 12 primary fractions, of which only FV (containing proteins with molecular weights ranging from 17 to 44 kDa) and FVIII (consisting of peptides with molecular weights lesser than 1.8k Da) elicited an excitatory effect when tested at the EC(50) of the original extract. After incubation in Ca(2+)-free medium, the ileal response to FV and FVIII was significantly reduced. Blockage of L-type Ca(2+) channels with nifedipine (1 microM) inhibited FV and FVIII-evoked contractions. Cd(2+) (10 microM), an unspecific blocker of voltage-activated calcium channels, also antagonized FV and FVIII-induced effects, whereas the Na(+) channel blocker tetrodotoxin (10nM) did not significantly affect FV and FVIII responses. These results suggest that the contractions induced by the bioactive fractions obtained from the crude extract of M. complanata are caused mainly by a direct action on smooth muscle cells, via an increase in Ca(2+) permeability that occurs, at least partly, through L-type voltage-dependent Ca(2+) channels found in the cell membrane of smooth muscle. Copright 2002 Elsevier Science Ltd.

  10. Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription

    Czech Academy of Sciences Publication Activity Database

    Frischauf, I.; Litviňuková, M.; Schober, R.; Zayats, Vasilina; Svobodová, B.; Bonhenry, Daniel; Lunz, V.; Cappello, S.; Tociu, L.; Řeha, David; Stallinger, A.; Hochreiter, A.; Pammer, T.; Butorac, C.; Muik, M.; Groschner, K.; Bogeski, I.; Ettrich, Horst Rüdiger; Romanin, Ch.; Schindl, R.

    2017-01-01

    Roč. 10, č. 507 (2017), č. článku eaao0358. ISSN 1937-9145 R&D Projects: GA ČR(CZ) GA13-21053S; GA MŠk(CZ) LM2015055; GA MŠk(CZ) LTC17069 Institutional support: RVO:61388971 Keywords : COMPREHENSIVE MOLECULAR CHARACTERIZATION * FAST CA2+-DEPENDENT INACTIVATION * ACTIVATES CRAC CHANNELS Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  11. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  12. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  13. Calcium Dependence of Settlement and Nematocyst Discharge in Actinulae of the Hydroid Tubularia mesembryanthemum.

    Science.gov (United States)

    Kawaii, S; Yamashita, K; Nakai, M; Takahashi, M; Fusetani, N

    1999-02-01

    The influence of Ca2+ and Mg2+ ions on both atrichous isorhiza (AI) discharge and settlement of actinular larvae of the hydroid Tubularia mesembryanthemum was investigated. Mg2+-supplemented artificial seawater (ASW) completely inhibited both events at a concentration of 206 mM, whereas lowered Mg2+ concentrations enhanced them. Ca2+ ions in the bathing solution highly regulated AI discharge and settlement, and Mg2+ ions may down-regulate these events. The effect of inorganic Ca2+-channel blockers, including Gd3+ and La3+, was also examined. Larval settlement was inhibited by Co2+, Ni2+, Cd2+, La3+, and Gd3+, with half inhibitory concentrations (IC50) of 5800, 260, 53, 45, and 7 {mu}M, respectively; AI discharge was also inhibited by these ions, with IC50 values of 6600, 500, 78, 41, and 5 {mu}M, respectively. These results suggest possible involvement of stretch-activated Ca2+ channels in the signal transmission of both AI discharge and larval settlement. Copyright © 1999 by Marine Biological Laboratory.

  14. Adrenomedullin increased the short-circuit current in the pig oviduct through chloride channels via the CGRP receptor: mediation by cAMP and calcium ions but not by nitric oxide.

    Science.gov (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; To, Y T; O, W S; Tang, F

    2013-10-01

    The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor, and the mechanisms involved were also investigated. The presence of ADM and its receptor component proteins in the pig oviduct were confirmed using immunostaining. Short-circuit current (I(sc)) technique was employed to study chloride ion secretion in the oviductal epithelium. ADM increased I(sc) through cAMP- and calcium-activated chloride channels, and this effect could be inhibited by the CGRP receptor antagonist, hCGRP8-37. In contrast, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME), could not block the effect of ADM on I(sc). In summary, ADM may increase oviductal fluid secretion via chloride secretion independent of the nitric oxide pathway for the transport of sperm and the conceptus.

  15. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    DEFF Research Database (Denmark)

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  16. Cyclophilin B binding to platelets supports calcium-dependent adhesion to collagen.

    Science.gov (United States)

    Allain, F; Durieux, S; Denys, A; Carpentier, M; Spik, G

    1999-08-01

    We have recently reported that cyclophilin B (CyPB), a secreted cyclosporine-binding protein, could bind to T lymphocytes through interactions with two types of binding sites. The first ones, referred to as type I, involve interactions with the conserved domain of CyPB and promote the endocytosis of surface-bound ligand, while the second type of binding sites, termed type II, are represented by glycosaminoglycans (GAG). Here, we further investigated the interactions of CyPB with blood cell populations. In addition to lymphocytes, CyPB was found to interact mainly with platelets. The binding is specific, with a dissociation constant (kd) of 9 +/- 3 nmol/L and the number of sites estimated at 960 +/- 60 per cell. Platelet glycosaminoglycans are not required for the interactions, but the binding is dramatically reduced by active cyclosporine derivatives. We then analyzed the biologic effects of CyPB and found a significant increase in platelet adhesion to collagen. Concurrently, CyPB initiates a transmembranous influx of Ca(2+) and induces the phosphorylation of the P-20 light chains of myosin. Taken together, the present results demonstrate for the first time that extracellular CyPB specifically interacts with platelets through a functional receptor related to the lymphocyte type I binding sites and might act by regulating the activity of a receptor-operated membrane Ca(2+) channel.

  17. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis.

    Science.gov (United States)

    Retzlaff, Jennifer; Thamm, Kristina; Ghosh, Chandra C; Ziegler, Wolfgang; Haller, Hermann; Parikh, Samir M; David, Sascha

    2017-03-09

    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection leading to systemic inflammation and endothelial barrier breakdown. The vascular-destabilizing factor Angiopoietin-2 (Angpt-2) has been implicated in these processes in humans. Here we screened in an unbiased approach FDA-approved compounds with respect to Angpt-2 suppression in endothelial cells (ECs) in vitro. We identified Flunarizine - a well-known anti-migraine calcium channel (CC) blocker - being able to diminish intracellular Angpt-2 protein in a time- and dose-dependent fashion thereby indirectly reducing the released protein. Moreover, Flunarizine protected ECs from TNFα-induced increase in Angpt-2 transcription and vascular barrier breakdown. Mechanistically, we could exclude canonical Tie2 signalling being responsible but found that three structurally distinct T-type - but not L-type - CC blockers can suppress Angpt-2. Most importantly, experimental increase in intracellular calcium abolished Flunarizine's effect. Flunarizine was also able to block the injurious increase of Angpt-2 in murine endotoxemia in vivo. This resulted in reduced pulmonary adhesion molecule expression (intercellular adhesion molecule-1) and tissue infiltration of inflammatory cells (Gr-1). Our finding could have therapeutic implications as side effects of Flunarizine are low and specific sepsis therapeutics that target the dysregulated host response are highly desirable.

  18. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism.

    Science.gov (United States)

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R

    2001-03-01

    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  19. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    Science.gov (United States)

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  20. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process

    DEFF Research Database (Denmark)

    Coomber, S J; Bartels, E M; Elliott, G F

    2011-01-01

    contracts and breaks the microelectrode. Therefore the rigor state was studied. There is no reason to suppose a priori that a similar voltage switch does not occur during contraction, however. Calcium dependence is still apparent in muscles stretched beyond overlap (sarcomere length>3.8 μm) and is also seen...... in the gap filaments between the A- and I-band ends; further stretching abolishes the dependence. These experiments strongly suggest that calcium dependence is controlled initially by the titin component, and that this control is lost when titin filaments break. We suppose that that effect is mediated...

  1. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.

    Science.gov (United States)

    Huang, Kui; Peng, Lu; Liu, Yingying; Yao, Rundong; Liu, Zhibin; Li, Xufeng; Yang, Yi; Wang, Jianmei

    2018-03-25

    The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H 2 O 2 . Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    Science.gov (United States)

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  3. Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide.

    Science.gov (United States)

    Strieker, Matthias; Kopp, Florian; Mahlert, Christoph; Essen, Lars-Oliver; Marahiel, Mohamed A

    2007-03-20

    Non-ribosomally synthesized lipopeptide antibiotics of the daptomycin type are known to contain unnatural beta-modified amino acids, which are essential for bioactivity. Here we present the biochemical and structural basis for the incorporation of 3-hydroxyasparagine at position 9 in the 11-residue acidic lipopeptide lactone calcium-dependent antibiotic (CDA). Direct hydroxylation of l-asparagine by AsnO, a non-heme Fe(2+)/alpha-ketoglutarate-dependent oxygenase encoded by the CDA biosynthesis gene cluster, was validated by Fmoc derivatization of the reaction product and LC/MS analysis. The 1.45, 1.92, and 1.66 A crystal structures of AsnO as apoprotein, Fe(2+) complex, and product complex, respectively, with (2S,3S)-3-hydroxyasparagine and succinate revealed the stereoselectivity and substrate specificity of AsnO. The comparison of native and product-complex structures of AsnO showed a lid-like region (residues F208-E223) that seals the active site upon substrate binding and shields it from sterically demanding peptide substrates. Accordingly, beta-hydroxylated asparagine is synthesized prior to its incorporation into the growing CDA peptide. The AsnO structure could serve as a template for engineering novel enzymes for the synthesis of beta-hydroxylated amino acids.

  4. Plasmodium falciparum Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2017-10-01

    Full Text Available Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s in male gametocyte exflagellation and possibly in female gametes.

  5. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens.

    Science.gov (United States)

    Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang; Brothers, Kimberly M; Kowalski, Regis P; Huang, Jean J; Thibodeau, Patrick H; Shanks, Robert M Q

    Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Phospholipid mediated activation of calcium dependent protein kinase 1 (CaCDPK1 from chickpea: a new paradigm of regulation.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Dixit

    Full Text Available Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1 from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V(max of the enzyme activity by these phospholipids significantly decreased the K(m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K(½ = 114 nM compared to PA (K(½ = 335 nM. We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

  7. LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization1

    Science.gov (United States)

    Rutschmann, Frank; Stalder, Urs; Piotrowski, Markus; Oecking, Claudia; Schaller, Andreas

    2002-01-01

    The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 μm). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 μm, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting. PMID:12011347

  8. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats.

    Science.gov (United States)

    Koli, Swati; Prakash, Atul; Choudhury, Soumen; Mandil, Rajesh; Garg, Satish K

    2018-05-21

    Adverse effects of mercury on female reproduction are reported; however, its effect on myogenic activity of uterus and mechanism thereof is obscure. Present study was undertaken to unravel the mechanistic pathways of mercuric chloride (HgCl 2 )-induced myometrial contraction in rats. Isometric tension in myometrial strips of rats following in vitro exposure to HgCl 2 was recorded using data acquisition system-based physiograph. HgCl 2 produced concentration-dependent (10 nM-100 μM) uterotonic effect which was significantly (p Graphical Abstract Graphical abstract depicting the mechanism of mercury-induced myometrial contraction in rats. M receptor: Muscarinic receptor; PIP2: phospho-inositol bisphosphate; PLC: phospholipase-C; DAG: diacyl glycerol; IP3: inositol triphosphate; IP3R: inositol triphosphate receptor; PKC; protein kinase-C; MLCP: myosin light chain phosphatise; MYPT: myosin phosphatase; SR: sarco-endoplasmic reticulum.

  9. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  11. Investigation of function similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium

    International Nuclear Information System (INIS)

    Fischer, T.H.; Campbell, K.P.; White, G.C. II

    1987-01-01

    The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca 2+ -ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities in a dose-dependent manner with IC 50 values of 25 and 10 μM, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities, with half-maximal inhibition measured at 5 and 4 μM, respectively. Both inhibitors also affected the [ 45 Ca] calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca 2+ -ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca 2+ -ATPase proteins, quercetin has an affinity for the E-Ca 2 (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold grater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca 2+ -ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable

  12. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  13. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  14. Potassium and ANO1/TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis

    Science.gov (United States)

    Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J

    2012-01-01

    BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103

  15. Stimulation of wild-type, F508del- and G551D-CFTR chloride channels by non toxic modified pyrrolo[2,3-b]pyrazine derivatives

    Directory of Open Access Journals (Sweden)

    Luc eDannhoffer

    2011-08-01

    Full Text Available Cystic Fibrosis is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of Cystic Fibrosis Transmembrane conductance Regulator (CFTR protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193 or 4 (RP185 significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells and in primary culture of human bronchial epithelial cells. Whole cell and single patch clamp recordings showed that RP193 induced a linear, time and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GPinh-5a. Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del human bronchial epithelial cells and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities.

  16. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  17. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  18. Osmoregulation of chloride channels in epithelial cells

    NARCIS (Netherlands)

    C.H. Lim (Christina)

    2008-01-01

    markdownabstract__Abstract__ The plasma membrane of mammalian cells is formed by two layers of lipids (lipid bilayer), primarily phospholipids, glycolipids and cholesterol, in which many different proteins are embedded. Phospholipid consists of a glycerol backbone esterified to fatty acids

  19. Chloride test - blood

    Science.gov (United States)

    Serum chloride test ... A greater-than-normal level of chloride is called hyperchloremia. It may be due to: Carbonic anhydrase inhibitors (used to treat glaucoma) Diarrhea Metabolic acidosis Respiratory alkalosis (compensated) Renal ...

  20. Chloride in diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002417.htm Chloride in diet To use the sharing features on this page, please enable JavaScript. Chloride is found in many chemicals and other substances ...

  1. Mercuric chloride poisoning

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002474.htm Mercuric chloride poisoning To use the sharing features on this page, please enable JavaScript. Mercuric chloride is a very poisonous form of mercury. It ...

  2. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  3. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    Science.gov (United States)

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution.

    Science.gov (United States)

    Halling, D Brent; Kenrick, Sophia A; Riggs, Austen F; Aldrich, Richard W

    2014-02-01

    Ca(2+) activates SK Ca(2+)-activated K(+) channels through the protein Ca(2+) sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca(2+) regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca(2+) concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca(2+), SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca(2+) and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca(2+) or with CaM in molar excess. In low Ca(2+) both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca(2+). These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.

  5. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.

    Science.gov (United States)

    Kwon, Wookbong; Kim, Hyeng-Soo; Jeong, Jain; Sung, Yonghun; Choi, Minjee; Park, Song; Lee, Jinhee; Jang, Soyoung; Kim, Sung Hyun; Lee, Sanggyu; Kim, Myoung Ok; Ryoo, Zae Young

    2018-01-01

    Ten-eleven translocation methylcytosine dioxygenase 1 ( Tet1 ) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1 , c-fos , Arc , and Bdnf , followed by the activation of intracellular calcium signals ( i.e. , CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits ( Gabra2 and Gabra4 ) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. © FASEB.

  6. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  7. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...... of depth and time, when both the surface chloride concentration and the diffusion coefficient are allowed to vary in time. The model is presented in a companion paper....

  8. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  9. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    Science.gov (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chloride flux in phagocytes.

    Science.gov (United States)

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Monica Bregante

    Full Text Available We investigated the biophysical properties of the transport mediated by ion channels in hemocytes from the hemolymph of the bivalve Mytilus galloprovincialis. Besides other transporters, mytilus hemocytes possess a specialized channel sensitive to the osmotic pressure with functional properties similar to those of other transport proteins present in vertebrates. As chloride fluxes may play an important role in the regulation of cell volume in case of modifications of the ionic composition of the external medium, we focused our attention on an inwardly-rectifying voltage-dependent, chloride-selective channel activated by negative membrane potentials and potentiated by the low osmolality of the external solution. The chloride channel was slightly inhibited by micromolar concentrations of zinc chloride in the bath solution, while the antifouling agent zinc pyrithione did not affect the channel conductance at all. This is the first direct electrophysiological characterization of a functional ion channel in ancestral immunocytes of mytilus, which may bring a contribution to the understanding of the response of bivalves to salt and contaminant stresses.

  13. Calcium-dependent isolation of the 36-kilodalton substrate of pp60/sup src/-kinase. Fractionation of the phosphorylated and unphosphorylated species

    International Nuclear Information System (INIS)

    Soric, J.; Gordon, J.A.

    1986-01-01

    In this paper, the authors present a new and simple purification of the 36-kDa protein, a major substrate of both viral and growth factor-receptor associated tyrosine protein kinases, and its complex from normal and Schmidt-Ruppin strain Rous sarcoma virus-transformed chicken embryo fibroblasts that employs a DEAE-Sephacel column and introduces the calcium-dependent adsorption of 36-kDa protein. The use of EGTA step gradients differentially elutes the 36-kDa molecules from the DEAE-Sephacel column. An average total yield of the 36-kDa protein in all fractions approached 80% and represented 0.78% of the [ 35 S]methionine-labeled cellular protein. A purity of 95-99% was obtained with a yield of 60% in the central elution fractions from normal or Rous sarcoma virus-transformed chicken embryo fibroblasts. Furthermore, 2 mM EGTA elutes poorly phosphorylated molecules while heavily phosphorylated 36-kDa protein requires 4 or 6 M EGTA; a small residual fraction is released at 8-10 mM EGTA. If the EGTA step gradients were neutralized with Ca 2+ ion, elution of the 36-kDa protein is inhibited. Tyrosine phosphorylation of the 36-kDa protein is increased 2-3-fold following a short term incubation of whole cells with micromolar vanadate. The elution pattern (but not intensity) of the 36-kDa protein obtained from lysates of vanadate-treated cells was identical to untreated cell lysates. The additional phosphorylation appears to result from a recruitment of unphosphorylated 36-kDa protein as the position (but not intensity) of the phosphorylated tryptic peptides is unchanged. They conclude that the function of the 36-kDa protein may be calcium ion-dependent and may be influenced by the phosphorylation state of the protein

  14. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  15. Arsenite reduces insulin secretion in rat pancreatic β-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Salazar, Ana Maria; Sordo, Monserrat; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2008-01-01

    An increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic β-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells. Cell cycle and proliferation analysis were also performed to complement the characterization. Free [Ca 2+ ]i oscillations needed for glucose-stimulated insulin secretion were abated in the presence of subchronic low arsenite doses (0.5-2 μM). The global activity of calpains increased with 2 μM arsenite. However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 μM arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. Both proteins are needed to fuse insulin granules with the membrane to produce insulin exocytosis. Arsenite also induced a slowdown in the β cell line proliferation in a dose-dependent manner, reflected by a reduction of dividing cells and in their arrest in G2/M. Data obtained showed that one of the mechanisms by which arsenite impairs insulin secretion is by decreasing the oscillations of free [Ca 2+ ]i, thus reducing calcium-dependent calpain-10 partial proteolysis of SNAP-25. The effects in cell division and proliferation observed with arsenite exposure can be an indirect consequence of the decrease in insulin secretion

  16. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  17. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  18. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  19. Chloride removal from vitrification offgas

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  20. Chloride removal from vitrification offgas

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1995-01-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations

  1. Lithium thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  2. The medical sodium chloride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In the institute was investigated the chemical composition of rock salt of some deposits of Tajikistan and was show the presence in it admixture of ions of Ca 2 + , Mg 2 + a nd SO 2 - a nd absence of heavy metals, ammonium salts, iron, potassium and arsenic. Was elaborated the fundamental instrument-technologic scheme of sodium chloride receiving

  3. Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1994-01-01

    of chloride channels followed by a drop in the intracellular chloride concentration. The stimulation caused by the high calcium concentration may be a toxic effect or may be due to stimulation of the fusion between granules and cell membrane in a way analogous to other secretory cells....

  4. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  5. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  6. Tb3O2Cl[SeO3]2 and Tb5O4Cl3[SeO3]2: Oxide Chloride Oxoselenates(IV) of Trivalent Terbium with ''Lone-Pair'' Channel or Layer Structures

    International Nuclear Information System (INIS)

    Wontcheu, Joseph; Schleid, Thomas

    2005-01-01

    Orthorhombic Tb 3 O 2 Cl[SeO 3 ] 2 (Pnma; a = 535.16(4), b = 1530.51(9), c = 1081.72(7) pm; Z = 4) is formed by reacting a stoichiometric mixture of Tb 4 O 7 , Tb, TbCl 3 , and SeO 2 in a suitable molar ratio (12: 8: 7: 42) within seven days in an evacuated sealed silica tube at 850 C. The needle-shaped, colourless single crystals (light, water and air stable) exhibit one-dimensional strands [(Tb1) 3/3 (Tb2) 2/1 O 4/2 ] 5+ [O 2 Tb 3 ] 5+ along [100] formed by two parallel chains [OTb 4/2 ] 4+ of trans-edge connected [OTb 4 ] 10+ tetrahedra (d(O-Tb) = 220 - 231 pm) which share an extra edge per chain link. The crystal structure contains two crystallographically different Tb 3+ cations: Tb1 is coordinated as bicapped trigonal prism, while Tb2 resides in square antiprismatic coordination. The Se 4+ coordination is best described as Ψ 1 tetrahedral ([SeO 3 E] 2- ; E: non-binding electron pair). The non-binding ''lone-pair'' electrons of four [SeO 3 ] 2- groups and two Cl - anions form pseudo-hexagonal empty channels along [100] between four cationic double chains. Tb 5 O 4 Cl 3 [SeO 3 ] 2 was prepared likewise as plate-like, colourless single crystals by solid-state reaction of an admixture of Tb 4 O 7 , Tb, TbOCl, TbCl 3 , and SeO 2 (molar ratio: 9: 6: 21: 7: 28) in an evacuated sealed silica tube during seven days at 850 C. This compound crystallizes in the monoclinic system (C2/m; a = 1229.13(9), b = 546.17(4), c = 978.79(7) pm, β = 90.485(6) ; Z = 2) and contains three crystallographically different Tb 3+ cations in seven- and eightfold coordination of O 2- and Cl - anions, respectively. The crystal structure of Tb 5 O 4 Cl 3 [SeO 3 ] 2 is layered and built up of corrugated terbium-oxygen sheets [O 4 Tb 5 ] 7+ formed by edge- and vertex-shared [OTb 4 ] 10+ tetrahedra (d(O-Tb) = 226-232 pm) spreading parallel (001). The structure is strongly related to the ''lone-pair'' channel structures of Tb 2 O[SeO 3 ] 2 and Tb 3 O 2 Cl[SeO 3 ] 2 , where single ([OTb 2 ] 4

  7. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  8. Chloride Transport in Heterogeneous Formation

    Science.gov (United States)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  9. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways.

    Science.gov (United States)

    Amelot, Nicolas; Dorlhac de Borne, François; San Clemente, Hélène; Mazars, Christian; Grima-Pettenati, Jacqueline; Brière, Christian

    2012-02-01

    Cryptogein is a proteinaceous elicitor secreted by the oomycete Phytophthora cryptogea, which induces a hypersensitive response in tobacco plants. We have previously reported that in tobacco BY-2 cells treated with cryptogein, most of the genes of the phenylpropanoid pathway were upregulated and cell wall-bound phenolics accumulated. Both events were Ca(2+) dependent. In this study, we designed a microarray covering a large proportion of the tobacco genome and monitored gene expression in cryptogein-elicited BY-2 cells to get a more complete view of the transcriptome changes and to assess their Ca(2+) dependence. The predominant functional gene categories affected by cryptogein included stress- and disease-related proteins, phenylpropanoid pathway, signaling components, transcription factors and cell wall reinforcement. Among the 3819 unigenes whose expression changed more than fourfold, 90% were Ca(2+) dependent, as determined by their sensitivity to lanthanum chloride. The most Ca(2+)-dependent transcripts upregulated by cryptogein were involved in defense responses or the oxylipin pathway. This genome-wide study strongly supports the importance of Ca(2+)-dependent transcriptional regulation of regulatory and defense-related genes contributing to cryptogein responses in tobacco. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Valyl benzyl ester chloride

    Directory of Open Access Journals (Sweden)

    Grzegorz Dutkiewicz

    2010-02-01

    Full Text Available In the title compound (systematic name: 1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride, C12H18NO2+·Cl−, the ester group is approximately planar, with a maximum deviation of 0.040 (2 Å from the least-squares plane, and makes a dihedral angle of 28.92 (16° with the phenyl ring. The crystal structure is organized by N—H...Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged antiparallel are interconnected by further N—H...Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

  11. Chloride on the Move

    KAUST Repository

    Li, Bo

    2017-01-09

    Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele to control root-to-shoot delivery of Cl−.

  12. Possible role of calcium dependent protein phosphorylation in the modulation of wound induced HRGP gene activation in potatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Ussuf, K.K.; Laxmi, N.H.; Nair, P.M.

    1996-01-01

    Hydroxyproline rich glycoprotein (HRGP) gene is induced in both control and gamma irradiated potato tubers after wounding. The enhanced RNA synthesis in response to wounding correlated well with the accumulation of both HRGP gene transcripts and protein. Initially, the level of HRGP gene expression in gamma irradiated potatoes in response to wounding was 30% more than the corresponding controls. After post irradiation storage of 3-5 weeks, HRGP gene expression in response to wounding was significantly lower than the unirradiated samples. This low level of HRGP gene expression in irradiated potatoes was partially retrieved by 5 mM Ca 2+ treatment. Prior treatment with trifluoperazine, a calcium channel blocker resulted in 35% reduction in wound induced HRGP gene expression in control potatoes, further providing evidence for the involvement of Ca 2+ dependency for HRGP gene activation. A comparative study on in vivo protein phosphorylation induced by wounding in control and irradiated potatoes exhibited significant differences. A good correlation was observed in the modulation of phosphorylation and HRGP gene expression by Ca 2+ in irradiated potatoes. Wound induced signal transduction system and subsequent Ca 2+ dependent protein phosphorylation for the activation of HRGP gene is affected in potatoes after gamma irradiation, thus impairing the wound healing process adversely. (author). 25 refs., 5 figs

  13. Cerium(terbium, erbium)chloride-choline chloride aqueous systems

    International Nuclear Information System (INIS)

    Gajfutdinova, R.K.; Zhuravlev, E.F.; Bikbaeva, G.G.; Domrachev, V.N.; Vanskova, G.I.

    1985-01-01

    To clarify the effect of rare earth nature on mutual solubility of rare earth salts and amines the solubility of solid phases in the systems, consisting of choline chloride, water and cerium, terbium, erbium chlorides, has been studied. It is established, that solubility isotherms of all the systems, testify to the formation of new solid phases of the composition: Ce(Tb, Er)xCl 3 x2C 5 H 14 ONClx3H 2 O. Individuality of new solid phases is proved by DTA method, the composition is confirmed by chemical analysis and data of PMR spectra, for choline chloride and its complexes with rare earth chlorides of the given composition PMR and IR spectra are studied

  14. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  15. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  16. Calcium-Dependent Energetics of Calmodulin Domain Interactions with Regulatory Regions of the Ryanodine Receptor Type 1 (RyR1)

    Science.gov (United States)

    Newman, Rhonda A.; Sorensen, Brenda R.; Kilpatrick, Adina M.; Shea, Madeline A.

    2014-01-01

    Calmodulin (CaM) plays a vital role in calcium homeostasis by allosterically modulating intracellular calcium channels including the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1). Apo (calcium-free) CaM activates hRyR1 while calcium-saturated CaM inhibits it. Two CaM-binding regions (residues 1975–1999 and 3614–3643) identified in each RyR1 monomer were proposed to allow CaM to bridge adjacent RyR1 subunits. We explored the distinct roles of CaM domains by using fluorescence anisotropy to determine the affinity of CaM1–148 (full-length), CaM1–80 (N-domain) and CaM76–148 (C-domain) for peptides encompassing hRyR1 residues 1975–1999 or 3614–3643. Both CaM1–148 and CaM76–148 associated in a calcium-independent manner with similar affinities for hRyR1(3614–3643)p while CaM1–80 required calcium and bound ~250-fold more weakly. Association of CaM1–148, CaM1–80 and CaM76–148 with hRyR1(1975–1999)p was much less favorable than with hRyR1(3614–3643)p; differences between the two CaM domains were smaller. Equilibrium calcium titrations monitored by steady-state fluorescence demonstrated that both hRyR1 peptides increased the calcium-binding affinity of both CaM domains. These thermodynamic properties support a prior model in which the CaM C-domain associates with RyR1(3614–3643) at low levels of calcium, positioning CaM to rapidly respond to calcium efflux. However, the affinity of the N-domain of CaM for hRyR1(1975–1999)p is insufficient to explain a model in which CaM bridges adjacent RyR1 subunits within the tetramer. This indicates that other protein factors or properties of the tertiary or quaternary structure of hRyR1 contribute to the energetics of CaM-mediated regulation. PMID:25145833

  17. Dynamic electrochemical measurement of chloride ions

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, Derk B.; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement,

  18. Producing ammonium chloride from coal or shale

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, O L

    1921-02-25

    Process of producing ammonium chloride consists of mixing the substance to be treated with a chloride of an alkali or alkaline earth metal, free silica, water and free hydrochloric acid, heating the mixture until ammonium chloride distills off and collecting the ammonium chloride.

  19. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  20. 21 CFR 173.375 - Cetylpyridinium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  1. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  2. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  3. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  4. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  5. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  6. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  7. Preparation of pure anhydrous rare earth chlorides

    International Nuclear Information System (INIS)

    Bel'kova, N.L.; Slastenova, N.M.; Batyaev, I.M.; Solov'ev, M.A.

    1979-01-01

    A method has been suggested for obtaining extra-pure anhydrous REE chlorides by chloridizing corresponding oxalates by chlorine in a fluid bed, the chloridizing agents being diluted by an inert gas in a ratio of 2-to-1. The method is applicable to the manufacture of quality chlorides not only of light, but also of heavy REE. Neodymium chloride has an excited life of tau=30 μs, this evidencing the absence of the damping impurities

  8. Reaction of calcium chloride with alkali metal chlorides in melts

    International Nuclear Information System (INIS)

    Savin, V.D.; Mikhajlova, N.P.

    1984-01-01

    Thermochemical characteristics of CaCl 2 reaction with sodium, potassium, rubidium and cesium chlorides in melts at 890 deg C are determined. The values of formation enthalpies of infinitely diluted by CaCl 2 solutions (ΔH) in the chloride row increase from -22 in NaCl to -47 kJ/mol of CaCl 2 in CsCl. With increasing the concentration of calcium chloride in the solution the ΔH values decrease. The regularities of separation from the solution of the CaCl 2 -CsCl system at 890 deg C of the CaCl 2 x CsCl in solid are studied. Formation enthalpies under the given conditions constitutes -70+-3 kJ/mol

  9. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  10. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism.

    Science.gov (United States)

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan

    2014-06-01

    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  11. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  12. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  13. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  14. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  15. Pharmacokinetics of vinyl chloride in the rat

    International Nuclear Information System (INIS)

    Bolt, H.M.; Laib, R.J.; Kappus, H.; Buchter, A.

    1977-01-01

    When rats are exposed to [ 14 C]vinyl chloride in a closed system, the vinyl chloride present in the atmosphere equilibrates with the animals' organism within 15 min. The course of equilibration could be determined using rats which had been given 6-nitro-1,2,3-benzothiadiazole. This compound completely blocks metabolism of vinyl chloride. The enzymes responsible for metabolism of vinyl chloride are saturated at an atmospheric concentration of vinyl chloride of 250 ppm. Pharmacokinetic analysis shows that no significant cumulation of vinyl chloride or its major metabolites is to be expected on repeated administration of vinyl chlorides. This may be consistent with the theory that a reactive, shortly living metabolite which occurs in low concentration only, may be responsible for the toxic effects of vinyl chloride

  16. 21 CFR 184.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  17. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  18. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  19. 21 CFR 173.255 - Methylene chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  20. 21 CFR 182.8252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  1. 21 CFR 184.1446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  2. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  3. 21 CFR 582.3845 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3845 Stannous chloride. (a) Product. Stannous chloride. (b) Tolerance. This substance is generally...

  4. 21 CFR 582.6193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  5. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  6. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  7. 21 CFR 172.180 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color...

  8. 49 CFR 173.322 - Ethyl chloride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

  9. 21 CFR 582.5252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Choline chloride. 582.5252 Section 582.5252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  10. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  11. 21 CFR 582.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  12. 7 CFR 58.434 - Calcium chloride.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  13. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dimethyldialkylammonium chloride. 173.400 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.400 Dimethyldialkylammonium chloride. Dimethyldialkylammonium chloride may be safely used in food in accordance with the following prescribed conditions: (a...

  14. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  15. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  16. [Channels: a new way to revisit pathology].

    Science.gov (United States)

    Fournier, Emmanuel

    2014-02-01

    Many "essential" diseases that manifest themselves in the form of crises or fits (epilepsies, episodic ataxia, periodic paralyses, myotonia, heart rhythm disorders, etc.) are due to ionic channel dysfunction and are thus referred to as "channelopathies". Some of these disorders are congenital, due to mutations of genes encoding channel subunits, while others result from toxic, immune or hormonal disturbances affecting channelfunction. Channelopathies take on a wide variety of clinical forms, depending on the type of channel (sodium, potassium, calcium, chloride...) and the type of dysfunction (loss or gain of function). Some apparently unrelated diseases affecting distinct organs are due to a similar dysfunction of the same channel, revealing unsuspected relationships between organs and between medical specialties. In addition, a given syndrome can be caused by distinct channel dysfunctions. This provides new opportunities for diferential diagnosis and specific correction of the causal defects, although some treatments find applications across multiple medical specialties.

  17. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  18. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Ultrastructural Observation of the Skin Chloride Cells of Japanese Flounder Paralichthys olivaceus and Turbot Scophthamus maximus Larvae

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The ultrastructures of skin chloride cells in cultured Japanese flounder and turbot larvae in metamorphosis, which grow in the same feeding conditions, are examined with a transmission electron microscope. These developed skin chloride cells were shaped like flattened ellipsoids and similar in morphology and ultrastructure to typical chloride cells of euryhaline fish gill. They locate in the epidermis and contract with the extra and interior environment through the apical pit and narrow channels. The cytoplasm of cell is full of numerous mitochondria and a ramifying network of tubules. The degeneration of skin chloride cells is observed with development of Japanese flounder larvae. Skin chloride cells of turbot are less developmental than those of Japanese flounder in the same developmental stage.

  20. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Hydrolysis of cupric chloride in aqueous ammoniacal ammonium chloride solutions

    Directory of Open Access Journals (Sweden)

    Limpo, J. L.

    1995-06-01

    Full Text Available Cupric solubility in the CuCl2-NH4Cl-NH3-H2O system for chloride concentrations lower than 4 molal in the temperature range 25-60 °C was studied. The experimental results show that for chloride concentration between 3.0 and 1.0 molal the cupric solubility is determined by the solubility of the cupric hydroxychloride Cu(OH1.5Cl0.5. For a chloride concentration value of 4.0 molal, there are two cupric compounds, the hydroxychloride Cu(OH1.5Cl0.5 or the diammine chloride Cu(NH32Cl2, on which the solubility of Cu(II depends, according to the temperature and the value of the ratio [NH3]Total/[Cu]Total.

    Se estudia la solubilidad del Cu(II en el sistema CuCl2-NH4Cl-NH3-H2O para concentraciones de cloruro inferiores a 4 molal en el intervalo de temperaturas 25-60 °C. Los resultados experimentales muestran que, para concentraciones de cloruros comprendidas entre 3,0 y 1,0 molal, la solubilidad cúprica viene determinada por la solubilidad del hidroxicloruro cúprico, Cu(OH1.5Cl0.5. Para concentraciones de cloruro 4,0 molal, existen dos compuestos cúpricos, el hidroxicloruro, Cu(OH1.5Cl0.5 o el cloruro de diamina, Cu(NH32Cl2, de los que, de acuerdo con la temperatura y con el valor de la relación [NH3]Total/[Cu]Total depende la solubilidad del Cu(II.

  2. Prompt and delayed Coulomb explosion of doubly ionized hydrogen chloride molecules in intense femtosecond laser fields

    Science.gov (United States)

    Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian

    2018-06-01

    We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.

  3. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  4. Synthesis of Zirconium Lower Chlorides

    International Nuclear Information System (INIS)

    Gaviria, Juan P.

    2002-01-01

    This research is accurately related to the Halox concept of research reactor spent fuel element treatment.The aim of this project is to work the conditioning through selected chlorination of the element that make the spent fuel element. This research studied the physical chemistry conditions which produce formation of the lower zirconium chlorides through the reaction between metallic Zr and gaseous ZrCl 4 in a silica reactor.This work focused special attention in the analysis and confrontation of the published results among the different authors in order to reveal coincidences and contradictions.Experimental section consisted in a set of synthesis with different reaction conditions and reactor design. After reaction were analyzed the products on Zr shavings and the deposit growth on wall reactor.The products were strongly dependent of reactor design. It was observed that as the distance between Zr and wall reactor increased greater was tendency to lower chlorides formation.In reactors with small distance the reaction follows other way without formation of lower chlorides.Analysis on deposit growth on reactor showed that may be formed to a mixture of Si x Zr y intermetallics and zirconium oxides.Presence of oxygen in Zr and Zr-Si compounds on wall reactor reveals that there is an interaction between quartz and reactants.This interaction is in gaseous phase because contamination is observed in experiences where Zr was not in contact with reactor.Finally, it was made a global analysis of all experiences and a possible mechanism that interprets reaction ways is proposed

  5. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  6. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  7. Renal abnormalities in congenital chloride diarrhea

    International Nuclear Information System (INIS)

    Al-Hamad, Nadia M.; Al-Eisa, Amal A.

    2004-01-01

    Congenital chloride diarrhea CLD is a rare autosomal recessive disorder caused by a defect in the chloride/ bicarbonate exchange in the ileum and colon. It is characterized by watery diarrhea, abdominal distension, hypochloremic hypokalemic metabolic alkalosis with high fecal content of chloride >90 mmol/l. We report 3 patients with CLD associated with various renal abnormalities including chronic renal failure secondary to renal hypoplasia, nephrocalcinosis and congenital nephrotic syndrome. (author)

  8. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  9. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  10. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  11. Synthesis of carbon-14 labelled ethyl chloride

    International Nuclear Information System (INIS)

    Kanski, R.

    1976-01-01

    A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)

  12. Method of processing chloride waste

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Tsunashima, Mikiyasu; Horie, Masaaki; Koyama, Masafumi; Sudo, Minoru; Kitagawa, Masatoshi; Ogasawara, Tadashi.

    1991-01-01

    In a method of applying molten salt electrolysis to chloride wastes discharged from a electrolytic refining step of a dry reprocessing step for spent fuels, and removed with transuranium elements of long half-decaying time, metals capable of alloying with alkali and alkaline earth metals under melting by electrolysis are used as a cathode material, and an electrolytic temperature is made higher than the melting point of salts in a molten salt electrolysis bath, to recover Li, Ca and Na as alloys with the cathode material in a first electrolysis step. Then, the electrolytic temperature is made higher than the melting point of the chloride salts remained in the bath after the electrolysis step described above by using the cathode material, to recover Ba, Rb, Sr and Cs of nuclear fission products also as alloys with the cathode material in a second electrolysis step. Accordingly, the amount of wastes formed can be reduced, and the wastes contain no heat generating nuclear fission elements. (T.M.)

  13. Electrochemical chloride extraction of a beam polluted by chlorides after 40 years in the sea

    OpenAIRE

    BOUTEILLER, Véronique; LAPLAUD, André; MALOULA, Aurélie; MORELLE, René Stéphane; DUCHESNE, Béatrice; MORIN, Mathieu

    2006-01-01

    A beam element, naturally polluted by chlorides after 40 years of a marine tidal exposure, has been treated by electrochemical chloride extraction. The chloride profiles, before and after treatment, show that free chlorides are extrated with an efficiency of 70 % close to the steel, 50 % in the intermediate cover and only 5 % at the concrete surface. From the electrochemical characterizations (before, after, 1, 2 and 17 months after treatment), the steel potential values can, semehow, indicat...

  14. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  15. Thermochemistry of alkali chloride - lanthanoide(III) chlorides

    International Nuclear Information System (INIS)

    Blachnik, R.; Selle, D.

    1979-01-01

    The phase diagrams of the mixtures KCl + GdCl 3 resp. DyCl 3 and of CsCl + PrCl 3 (DyCl 3 , ErCl 3 , and YbCl 3 ) were investigated by differential thermal analysis. In the mixtures of lanthanoide(III) chlorides with CsCl resp. KCl three different stoichiometries of the compounds were found, namely A 3 MCl 6 , A 2 MCl 5 , and AM 2 Cl 7 . Debyeograms of the compounds A 3 MCl 6 and AM 2 Cl 7 reveal, that in the case of the latter type all compounds with the same alkali halide have identical structure, whereas in the A 3 MCl 6 compounds three different types of X-ray patterns were observed. The stabilities of the congruently melting compounds can be estimated by comparing the melting point of the compound with the temperature of an extrapolated eutectic point. (author)

  16. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  17. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  18. Synthesis of 14C-dehydrocorydaline chloride

    International Nuclear Information System (INIS)

    Zhang Rui; Wang Ding

    1988-01-01

    A method for synthesis of 14 C-dehydrocorydaline chloride is described. In the presence of sodium hydroxide, acetonylpalmatine is reacted with 14 C-methyl iodide in sealed glass ampoule to give 14 C-13-methylpalmatine iodide which is then converted to chloride. The radiochemical purity of 14 C-dehydrocorydaline determined by TLC is over 98% and the labelling efficiency is 54%

  19. Chronopotentiometric chloride sensing using transition time measurement

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, D.B.; Olthuis, Wouter; van den Berg, Albert

    2013-01-01

    Detection of chloride ions is crucial to accurately access the concrete structure durability[1]. The existing electrochemical method of chloride ions detection in concrete, potentiometry[1], is not suitable for in-situ measurement due to the long term stability issue of conventional reference

  20. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  1. 29 CFR 1926.1152 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  2. 29 CFR 1915.1052 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  3. 29 CFR 1926.1117 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... chloride. Note: The requirements applicable to construction work under this section are identical to those...

  4. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  5. Dechlorinating reaction of organic chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Yahata, Taneaki; Kihara, Shinji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ohuchi, Misao

    1996-06-01

    Dechlorination has been examined by the reaction between iron, aluminum powder or CaO and organic chlorides such as C{sub 2}HCl{sub 3} and CH{sub 2}Cl{sub 2}. Progress of the reaction was analyzed with mass spectrometer. The reaction between iron and organic chloride was rapidly occurred at the temperature between 350 and 440degC in an atmosphere of argon. Above 380degC, more than 99.5% of C{sub 2}HCl{sub 3} was decomposed within approximately 100 minutes. At 440degC, approximately 60% of C{sub 2}HCl{sub 3} was decomposed by the reaction with aluminium powder within approximately 100 minutes. At 440degC, reaction between C{sub 2}HCl{sub 3} and CaO powder were occurred rapidly in an atmosphere of argon to form CaCl{sub 2} and free carbon. Also in an atmosphere of air, nearly the same result was obtained. In this reaction, CaCl{sub 2}, CO and CO{sub 2} were formed. CH{sub 2}Cl{sub 2} was also decomposed by the reaction with iron at the temperature between 380 and 440degC. In the reaction, FeCl{sub 2}, carbon and hydrogen were formed. CH{sub 3}{sup +} and CH{sub 4} were observed during the dechlorinating reaction of CH{sub 2}Cl{sub 2}. Variation in particle size of iron powder such as 100, 150 and 250 mesh did not affect the reaction rate. (author)

  6. Chloride Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/chloridebloodtest.html Chloride Blood Test To use the sharing features on this page, please enable JavaScript. What is a Chloride Blood Test? A chloride blood test measures the ...

  7. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Apo calmodulin binding to the L-type voltage-gated calcium channel Cav1.2 IQ peptide

    International Nuclear Information System (INIS)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-01-01

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca v 1.2 subunit has been shown to bind both calcium-loaded (Ca 2+ CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca 2+ CaM can bind to the intact channel

  9. Effects of platinic chloride on Tetrahymena pyrifromis GL

    DEFF Research Database (Denmark)

    Nilsson, Jytte R.

    1992-01-01

    Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin......Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin...

  10. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  11. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  12. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    Science.gov (United States)

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  13. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-05-01

    Full Text Available Chloride is commonly used as an environmental tracer for studying water flow and solute transport in the environment. It is especially useful for estimating groundwater recharge based on the commonly used chloride mass balance (CMB method. Strong spatial variability in chloride deposition in coastal areas is one difficulty encountered in appropriately applying the method. A high-resolution bulk chloride deposition map in the coastal region is thus needed. The aim of this study is to construct a chloride deposition map in the Mount Lofty Ranges (MLR, a coastal hilly area of approximately 9000 km2 spatial extent in South Australia. We examined geographic (related to coastal distance, orographic, and atmospheric factors that may influence chloride deposition, using partial correlation and regression analyses. The results indicate that coastal distance, elevation, as well as terrain aspect and slope, appear to be significant factors controlling chloride deposition in the study area. Coastal distance accounts for 70% of spatial variability in bulk chloride deposition, with elevation, terrain aspect and slope an additional 15%. The results are incorporated into a de-trended residual kriging model (ASOADeK to produce a 1 km×1 km resolution bulk chloride deposition and concentration maps. The average uncertainty of the deposition map is about 20–30% in the western MLR, and 40–50% in the eastern MLR. The maps will form a useful basis for examining catchment chloride balance for the CMB application in the study area.

  14. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    Directory of Open Access Journals (Sweden)

    Peipei Wei

    2016-07-01

    Full Text Available The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-, on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl, enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress.

  15. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  16. Channel Modeling

    Science.gov (United States)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  17. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  18. Lithium-thionyl chloride battery

    Science.gov (United States)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A. N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  19. Spontaneous and α-adrenoceptor-induced contractility in human collecting lymphatic vessels require chloride

    DEFF Research Database (Denmark)

    Mohanakumar, Sheyanth; Majgaard, Jens; Telinius, Niklas

    2018-01-01

    - with the impermeant anion aspartate and inhibition of Cl- transport and channels with the clinical diuretics furosemide and bendroflumethiazide, as well as DIDS and NPPB. The molecular expression of calcium-activated chloride channels was investigated by RT-PCR and proteins localized using immunoreactivity....... Spontaneous and norepinephrine-induced contractility in human lymphatic vessels was highly abrogated after Cl- substitution with aspartate. 100‒300µM DIDS or NPPB inhibited spontaneous contractile behavior. Norepinephrine-stimulated tone was furthermore markedly abrogated by 200µM DIDS. Furosemide lowered...

  20. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    Science.gov (United States)

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  2. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  3. Lithium thionyl chloride high rate discharge

    Science.gov (United States)

    Klinedinst, K. A.

    1980-04-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  4. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  5. Inert Reassessment Document for Cerous Chloride

    Science.gov (United States)

    The rare earth chlorides have a wide variety of scientific applications. They a re used in superconductors, lasers, magnets, catalytic converters, fertilizes, supper alloys, cigarette lighters and as catalysts in the production of petroleum products.

  6. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  7. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  8. 21 CFR 522.1862 - Sterile pralidoxime chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile pralidoxime chloride. 522.1862 Section 522....1862 Sterile pralidoxime chloride. (a) Chemical name. 2-Formyl-1-methylpyridinium chloride oxime. (b) Specifications. Sterile pralidoxime chloride is packaged in vials. Each vial contains 1 gram of sterile...

  9. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  10. Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties

    Directory of Open Access Journals (Sweden)

    Bartłomiej Augustynek

    2018-01-01

    Full Text Available Potassium channel openers (KCOs have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases. The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.

  11. Atmospheric chloride: Its implication for foliar uptake and damage

    Science.gov (United States)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  12. Negative modulation of NMDA receptor channel function by DREAM/calsenilin/KChIP3 provides neuroprotection?

    Science.gov (United States)

    Wang, KeWei; Wang, Yun

    2012-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels highly permeable to calcium and essential to excitatory neurotransmission. The NMDARs have attracted much attention because of their role in synaptic plasticity and excitotoxicity. Evidence has recently accumulated that NMDARs are negatively regulated by intracellular calcium binding proteins. The calcium-dependent suppression of NMDAR function serves as a feedback mechanism capable of regulating subsequent Ca2+ entry into the postsynaptic cell, and may offer an alternative approach to treating NMDAR-mediated excitotoxic injury. This short review summarizes the recent progress made in understanding the negative modulation of NMDAR function by DREAM/calsenilin/KChIP3, a neuronal calcium sensor (NCS) protein. PMID:22518099

  13. Determination of chloride in MOX samples using chloride ion selective electrode

    Energy Technology Data Exchange (ETDEWEB)

    Govindan, R; Das, D K; Mallik, G K; Sumathi, A; Patil, Sangeeta; Raul, Seema; Bhargava, V K; Kamath, H S [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1997-09-01

    The chloride present in the MOX fuel is separated from the matrix by pyrohydrolysis at a temperature of 950 {+-} 50 degC and is then analyzed by chloride ion selective electrode (Cl-ISE). The range covered is 0.4-4 ppm with a precision of better than {+-}5% R.S.D. (author). 4 refs., 1 tab.

  14. Study on the chloride migration coefficient obtained following different Rapid Chloride Migration (RCM) test guidelines

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    This work presents the differences in the available Rapid Chloride Migration (RCM) test guidelines, and their influence on the values of the chloride migration coefficients DRCM, obtained following these guidelines. It is shown that the differences between the guidelines are significant and concern

  15. Laboratory investigation of electro-chemical chloride extraction from concrete with penetrated chloride

    NARCIS (Netherlands)

    Polder, R.B.; Hondel, A.W.M. van den

    2002-01-01

    Chloride extraction of concrete is a short-term electrochemical treatment against corrosion of reinforcing steel. The aim is to remove chloride ions from the concrete cover in order to reinstate passive behaviour. Physically sound concrete is left in place. To make this method more predictable and

  16. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  17. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  18. CLC channel function and dysfunction in health and disease

    Directory of Open Access Journals (Sweden)

    Gabriel eStölting

    2014-10-01

    Full Text Available CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of CLC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels in patients suffering from Bartter syndrome identified the determinants of chloride conductances in the limb of Henle. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological

  19. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  20. Advanced intermediate temperature sodium copper chloride battery

    Science.gov (United States)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  1. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continu......The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride...

  2. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  3. Determination of chloride content in crystalline silicotitanate

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Crystalline Silicotitanate (CST) is one of three options under evaluation to replace the In-Tank Precipitation process. This Salt Disposition Alternatives team identified three options for pretreatment of High Level Waste supernate: non-elutable ion exchange, precipitation with sodium tetraphenylborate or direct disposal in grout. The ion exchange option would use crystalline silicotitanate (CST). Researchers at Texas A and M and Sandia National Laboratory developed CST. The engineered form of CST was procured from UOP LLC under the trade name IONSIVreg s ign IE-911. Review of vendor literature and discussions with UOP personnel led to speculation concerning the fate of chloride ion during the manufacture process of IE-911. Walker proposed tests to examine the chloride content of CST and removal methods. This report describes the results of tests to determine the chloride levels in as received CST and washed CST

  4. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  5. Chloride migration in concrete with superabsorbent polymers

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2015-01-01

    Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete...... contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient......; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less....

  6. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  7. Hazards of lithium thionyl chloride batteries

    Science.gov (United States)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  8. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammonia...... desorption originating from the adsorbed state is directly observed below the bulk desorption temperature, as confirmed by density functional theory calculations. The desorption enthalpy of the adsorbed state of strontium chloride octa-ammine is determined with both techniques to be around 37-39 k...

  9. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  10. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  11. Crystal field influence on vibration spectra: anhydrous uranyl chloride and dihydroxodiuranyl chloride tetrahydrate

    International Nuclear Information System (INIS)

    Perrin, Andre; Caillet, Paul

    1976-01-01

    Vibrational spectra of anhydrous uranyl chloride UO 2 Cl 2 and so called basic uranyl chloride: dihydroxodiuranyl chloride tetrahydrate /UO 2 (OH) 2 UO 2 /Cl 2 (H 2 O) 4 are reported. Factor group method analysis leads for the first time to complete and comprehensive interpretation of their spectra. Two extreme examples of crystal field influence on vibrational spectra are pointed out: for UO 2 Cl 2 , one is unable to explain spectra without taking into account all the elements of primitive crystalline cell, whilst for dihydroxodiuranyl dichloride tetrahydrate the crystal packing has very little effect on vibrational spectra [fr

  12. Chloride Ingress in Concrete with Different Age at Time of First Chloride Exposure

    DEFF Research Database (Denmark)

    Hansen, Esben Østergaard; Iskau, Martin Riis; Hasholt, Marianne Tange

    2016-01-01

    Concrete structures cast in spring have longer time to hydrate and are therefore denser and more resistant to chloride ingress when first subjected to deicing salts in winter than structures cast in autumn. Consequently, it is expected that a spring casting will have a longer service life....... This hypothesis is investigated in the present study by testing drilled cores from concrete cast in 2012 and 2013 on the Svendborgsund Bridge. The cores are subject to petrographic examination and mapping of chloride profiles. Moreover, chloride migration coefficients have been measured. The study shows...

  13. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.

    1990-01-01

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  14. Absorption media for irreversibly gettering thionyl chloride

    Science.gov (United States)

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  15. Detection of chloride ion concentration using chronopotentiometry

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; van den Berg, Albert

    2013-01-01

    In this paper, a novel approach is reported for the electrochemical measurement of chloride ions using chronopotentiometry. A current pulse is applied at the Ag/AgCl working electrode and the potential change is measured with respect to another identical Ag/AgCl electrode in the bulk electrolyte.

  16. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... China AGENCY: United States International Trade Commission. ACTION: Notice of Commission determination... China. SUMMARY: The Commission hereby gives notice that it will proceed with a full review pursuant to... antidumping duty order on barium chloride from China would be likely to lead to continuation or recurrence of...

  17. Thermal Decomposition of Aluminium Chloride Hexahydrate

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Šolcová, Olga

    2005-01-01

    Roč. 44, č. 17 (2005), s. 6591-6598 ISSN 0888-5885 R&D Projects: GA ČR(CZ) GA203/02/0002 Institutional research plan: CEZ:AV0Z40720504 Keywords : aluminum chloride hexahydrate * thermal decomposition * reaction kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.504, year: 2005

  18. Reliability-Based Planning of Chloride Measurements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1996-01-01

    In reinforced concrete structures corrosion is initiated when the chloride concentration around the reinforcement exceeds a threshold value. If corrosion starts then expensive repairs can be necessary. The estimation of the probability that corrosion has been initiated in a given structure is bas...

  19. Commercial production of thallium-201 chloride

    International Nuclear Information System (INIS)

    Sokolov, S.V.; Volkova, N.M.; Skokov, V.S.

    1989-01-01

    Thallium-201 chloride pharmaceuticals production practice at the Medradiopreparat factory under USSR Ministry of Public Health is described. The factory is carried out series-produced supplies of the compound prepared according to a new practice from September, 1985. Thallium-201 extraction from cyclotron targets irradiated is carried out by the extraction method

  20. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-149 (Third Review)] Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: April 9, 2010. FOR FURTHER INFORMATION CONTACT: Amy Sherman (202-205-3289...

  1. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... China Determination On the basis of the record\\1\\ developed in the subject five-year review, the United... China would be likely to lead to continuation or recurrence of material injury to an industry in the... contained in USITC Publication 4157 (June 2010), entitled Barium Chloride from China: Investigation No. 731...

  2. 29 CFR 1910.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... employee exposure to vinyl chloride (chloroethene), Chemical Abstracts Service Registry No. 75014. (2) This section applies to the manufacture, reaction, packaging, repackaging, storage, handling or use of vinyl... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible...

  3. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  4. Amperometric Sensor for Detection of Chloride Ions

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-09-01

    Full Text Available Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV we estimated the limit of detection (3 S/N as 500 nM.

  5. Chloride concentration affects soil microbial community

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Rohlenová, Jana; Kopecký, Jan; Matucha, Miroslav

    2008-01-01

    Roč. 71, č. 7 (2008), s. 1401-1408 ISSN 0045-6535 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : soil chloride * terminal restriction fragments * soil microorganisms Subject RIV: EE - Microbiology, Virology Impact factor: 3.054, year: 2008

  6. An improved calcium chloride method preparation and ...

    African Journals Online (AJOL)

    Transformation is one of the fundamental and essential molecular cloning techniques. In this paper, we have reported a modified method for preparation and transformation of competent cells. This modified method, improved from a classical protocol, has made some modifications on the concentration of calcium chloride ...

  7. Analysis of the Rapid Chloride Migration test

    NARCIS (Netherlands)

    Spiesz, P.R.; Ballari, M.; Brouwers, H.J.H.; Ferreira, R. M.; Gulikers, J.; Andrade, C.

    2009-01-01

    In this study the Rapid Chloride Migration test (RCM) standardized as NT Build 492 and BAW-Merkblatt is reviewed. Since the traditional natural diffusion tests are laborious, time consuming and costly, they are not always preferred from a practical point of view. To overcome these disadvantages,

  8. Oral cadmium chloride intoxication in mice

    DEFF Research Database (Denmark)

    Andersen, O; Nielsen, J B; Svendsen, P

    1988-01-01

    Diethyldithiocarbamate (DDC) is known to alleviate acute toxicity due to injection of cadmium salts. However, when cadmium chloride was administered by the oral route, DDC enhanced rather than alleviated the acute toxicity; both oral and intraperitoneal (i.p.) administration of DDC had this effect...

  9. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg...

  10. Amperometric Sensor for Detection of Chloride Ions†

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-01-01

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832

  11. Amperometric Sensor for Detection of Chloride Ions.

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-09-15

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.

  12. Binary nucleation of water and sodium chloride

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Palmer, A.

    2006-01-01

    Roč. 124, č. 4 (2006), 0445091-0445096 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006

  13. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  14. Improved electrolyte for lithium-thionyl chloride battery. [Patent application

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, W.H.; McCartney, J.F.

    1980-12-17

    A lithium, thionyl chloride battery is provided with an electrolyte which makes it safe under a reverse voltage condition. The electrolyte is niobium pentachloride which is dissolved in the thionyl chloride.

  15. IRIS Toxicological Review of Vinyl Chloride (Final Report, 2000)

    Science.gov (United States)

    EPA is announcing the release of the final report, Toxicological Review of Vinyl Chloride: in support of the Integrated Risk Information System (IRIS). The updated Summary for Vinyl Chloride and accompanying Quickview have also been added to the IRIS Database.

  16. Thallium-201 chloride dynamic analysis using thallium-201 chloride and sodium iodide-131 thyroid subtraction scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Setsuo; Hiraki, Yoshio; Togami, Izumi [Okayama Univ. (Japan). School of Medicine

    1984-10-01

    The mechanism of /sup 201/Tl chloride accumulation is unclear in thyroid gland and thyroid tumor. This report examines 108 patients that received thyroid scintigraphy examinations with both /sup 201/Tl chloride and sodium /sup 131/I. The patients were diagnosed clinically and histologically whenever possible. The ROI were obtained by subtraction imaging with both isotopes and by subtraction positive and negative areas of imaging. Dynamic curves were obtained for /sup 201/Tl chloride per square unit of each ROI. The dynamic curve in the radioiodide-accumulated area was examined. The data indicate that the clearance rate of /sup 201/Tl chloride (T/sub 15/) was correlated with the sodium /sup 131/I uptake rate at 24 h (r=0.70).

  17. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  18. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  19. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  20. Potentiometric Determination of Free Chloride in Cement Paste – an ...

    African Journals Online (AJOL)

    ... cement paste.16 The accuracy and reliability of this analytical technique has been checked against a certified reference material, Merck sodium chloride solution. Confidence levels (CL0.95), of 0.03 and relative standard deviations of 0.2 % for chloride were determined for ordinary Portland cement (OPC) chloride binding ...

  1. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  2. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Science.gov (United States)

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  3. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough.

    Science.gov (United States)

    O'Brien, Darragh P; Perez, Ana Cristina Sotomayor; Karst, Johanna; Cannella, Sara E; Enguéné, Véronique Yvette Ntsogo; Hessel, Audrey; Raoux-Barbot, Dorothée; Voegele, Alexis; Subrini, Orso; Davi, Marilyne; Guijarro, J Inaki; Raynal, Bertrand; Baron, Bruno; England, Patrick; Hernandez, Belen; Ghomi, Mahmoud; Hourdel, Véronique; Malosse, Christian; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Brier, Sébastien; Ladant, Daniel; Chenal, Alexandre

    2018-01-12

    The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the

  4. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    Science.gov (United States)

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  5. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  6. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (Bufo bufo)

    DEFF Research Database (Denmark)

    Kristensen, P; Larsen, Erik Hviid

    1978-01-01

    Substitution of chloride in the outside bathing medium of the toad skin with bromide, iodide, nitrate and sulphate leads to a reduction in the apparent exchange diffusion of chloride across this tissue, and also to a reduction of the chloride current recorded during hyperpolarization. A series...

  7. Determination of Chloride Content in Cementitious Materials : From Fundamental Aspects to Application of Ag/AgCl Chloride Sensors

    NARCIS (Netherlands)

    Pargar, F.; Koleva, D.A.; van Breugel, K.

    2017-01-01

    This paper reports on the advantages and drawbacks of available test methods for the determination of chloride content in cementitious materials in general, and the application of Ag/AgCl chloride sensors in particular. The main factors that affect the reliability of a chloride sensor are presented.

  8. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  9. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  10. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  11. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  12. STABILISATION OF SILTY CLAY SOIL USING CHLORIDE

    Directory of Open Access Journals (Sweden)

    TAMADHER T. ABOOD

    2007-04-01

    Full Text Available The object of this paper is to investigate the effect of adding different chloride compounds including (NaCl, MgCl2, CaCl2 on the engineering properties of silty clay soil. Various amounts of salts (2%, 4%, and 8% were added to the soil to study the effect of salts on the compaction characteristics, consistency limits and compressive strength. The main findings of this study were that the increase in the percentage of each of the chloride compounds increased the maximum dry density and decrease the optimum moisture content. The liquid limit, plastic limit and plasticity index decreased with the increase in salt content. The unconfinedcompressive strength increased as the salt content increased.

  13. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  14. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  15. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  16. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  17. Magnetic interactions in iron (III) porphyrin chlorides

    International Nuclear Information System (INIS)

    Ernst, J.; Subramanian, Japyesan; Fuhrhop, J.H.

    1977-01-01

    Intermolecular exchange interactions in iron(III) porphyrin chlorides (porphyrin = OEP, proto, TPP) have been studied by X-ray structure, EPR and magnetic susceptibility studies. The crystal structure of Fe(III)OEP-Cl was found to be different from that of the other two. Different types of exchange broadened EPR-spectra are obtained which are attributable to the arrangement in the crystals. The EPR results correlate well with magnetic susceptibility data. (orig.) [de

  18. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  19. Radiochemical determination of methylmercury chloride Part 1

    International Nuclear Information System (INIS)

    Stary, J.; Prasilova, J.

    1976-01-01

    The isotope exchange between methylmercury species and an excess of inorganic radiomercury in sulphuric acid medium has been used for the simple determination of methylmercury chloride down to 0.01 ppm. The determination is not influenced by the presence of a great excess of other metals, however, chlorides, bromides and iodides interfere in higher concentrations. It has been found that the isotope exchange between CH 3 HgCl and 203 HgCl 4 2- (or 203 HgCl 2 ) in 0.01-3M hydrochloric acid is extremely slow, for the bimolecular reaction the rate constant is lower than 10 -3 mol -1 s -1 at 25 deg C. The isotope exchange rate between methylmercury chloride and mercuric-nitrate 0n on 0.5M sulphuric acid is higher. The isotope exchange is a bimolecular reaction with a rate constant k=0.050+-0.004 mol -1 s -1 at 25 deg C. (T.I.)

  20. Analysis of lithium/thionyl chloride batteries

    Science.gov (United States)

    Jain, Mukul

    The lithium/thionyl chloride battery (Li/SOClsb2) has received considerable attention as a primary energy source due to its high energy density, high operating cell voltage, voltage stability over 95% of the discharge, large operating temperature range (-55sp°C to 70sp°C), long storage life, and low cost of materials. In this dissertation, a one-dimensional mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed. Mathematical models can be used to tailor a battery design to a specific application, perform accelerated testing, and reduce the amount of experimental data required to yield efficient, yet safe cells. The Model was used in conjunction with the experimental data for parameter estimation and to obtain insights into the fundamental processes occurring in the battery. The diffusion coefficient and the kinetic parameters for the reactions at the anode and the cathode are obtained as a function of temperature by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49sp°C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells at Sandia National Laboratories. The model is also used to study the effect of cathode thickness and current and temperature pulsing on the cell capacity. Thionyl chloride reduction in the porous cathode is accompanied with a volume reduction. The material balance used previously in one-dimensional mathematical models of porous electrodes is invalid when the volume occupied by the reactants and the products is not equal. It is shown here how the material balance has to be modified to either account for the loss in volume, or to account for the inflow of electrolyte from the header into the active pores. The one-dimensional mathematical model of lithium/thionyl chloride primary battery is used to illustrate the effect of this material balance

  1. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  2. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  3. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  4. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  5. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Gabriel, S. E.; Stutts, M. J.

    1996-01-01

    The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath...

  6. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1996-01-01

    The aim of this study was to investigate the mechanisms by which increases in free cytosolic calcium ([Ca2+]i) cause a decrease in macroscopic sodium absorption across principal cells of the frog skin epithelium. [Ca2+]i was measured with fura-2 in an epifluorescence microscope set-up, sodium abs...

  7. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney.

    NARCIS (Netherlands)

    Peters, T.A.; Monnens, L.A.H.; Cremers, C.W.R.J.; Curfs, J.H.A.J.

    2004-01-01

    Inner ear physiology is reviewed with emphasis on features common to renal physiology. Genetic disorders in transporters/channels for chloride (ClC-K), bicarbonate (Cl(-)/HCO(3)(-) exchanger), protons (H(+)-ATPase), sodium (ENaC, NKKC1, NBC3, NHE3), potassium (KCNQ1/KCNE1, Kcc4), and water (AQP4) in

  8. Endocochlear potential depends on Cl- channels: Mechanism underlying deafness in Bartter syndrome IV

    NARCIS (Netherlands)

    G. Rickheit (Gesa); H. Maier (Hannes); N. Strenzke (Nicola); C.E. Andreescu (Corina); C.I. de Zeeuw (Chris); A. Muenscher (Adrian); A.A. Zdebik (Anselm); T.J. Jentsch (Thomas)

    2008-01-01

    textabstractHuman Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a β-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in

  9. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  10. Sorption of sulphur dioxide in calcium chloride and nitrate chloride liquids

    International Nuclear Information System (INIS)

    Trzepierczynska, I.; Gostomczyk, M.A.

    1989-01-01

    Flue gas desulphurization via application of suspensions has one inherent disadvantage: fixation of sulphur dioxide is very poor. This should be attributed to the low content of calcium ions which results from the solubility of the sorbing species. The solubility of sparingly soluble salts (CaO, CaCO 3 ) may be increased by decreasing the pH of the solution; yet, there is a serious limitation in this method: the corrosivity of the scrubber. The objective of this paper was to assess the sorbing capacity of two soluble calcium salts, calcium chloride and calcium nitrate, as a function of calcium ion concentration in the range of 20 to 82 kg/m 3 . It has been found that sorbing capacity increases with the increasing calcium ion concentration until the calcium concentration in the calcium chloride solution reaches the level of 60 kg/m 3 which is equivalent to the chloride ion content of ∼ 110 kg/m 3 . Addition of calcium hydroxide to the solutions brings about an increase in the sorbing capacity up to 1.6 kg/m 3 and 2.2 kg/m 3 for calcium chloride and calcium nitrate, respectively, as a result of the increased sorbent alkalinity. The sorption capacity of the solutions is considerably enhanced by supplementing them by acetate ions (2.8 to 13.9 kg/m 3 ). Increase in the sorption capacity of calcium nitrate solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions supplemented in the same way. (author). 12 refs, 7 refs, 4 tabs

  11. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  12. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  13. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  14. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  15. EBIO, an agent causing maintained epithelial chloride secretion by co-ordinate actions at both apical and basolateral membranes.

    Science.gov (United States)

    MacVinish, L J; Keogh, J; Cuthbert, A W

    2001-01-01

    The effect of 1-ethyl-2-benzimidazolone (EBIO) on electrogenic chloride secretion in murine colonic and nasal epithelium was investigated by the short-circuit technique. In the colon, EBIO produces a sustained current increase in the presence of amiloride, which is sensitive to furosemide. In nasal epithelium EBIO causes only a small, transient current increase. Sustained increases in current were obtained in response to forskolin in both epithelia. To examine the mechanisms by which EBIO increases chloride secretion, the effects on intracellular mediators were measured in colonic crypts. There was no effect on [Ca(2+)]i but cAMP content was increased, more so in the presence of IBMX, indicating a direct effect on adenylate cyclase. In colonic epithelia in which the apical surface was permeabilized by nystatin, and the tissue subjected to an apical to basolateral K(+) gradient, EBIO caused a current increase that was entirely sensitive to charybdotoxin (ChTX). In similarly permeabilized colons Br-cAMP caused a current increase that was entirely sensitive to 293B. Thus EBIO increases chloride secretion in the colon by coordinated actions at both the apical and basolateral faces of the cells. These include direct and indirect actions on Ca(2+)-sensitive and cAMP-sensitive K(+) channels respectively, and indirect actions on the basolateral cotransporter and apical CFTR chloride channels via cAMP. In CF colonic epithelia EBIO did not evoke chloride secretion. It is not clear why the nasal epithelium responds poorly to EBIO whereas it gives a sustained response to the related compound chlorzoxazone.

  16. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    Science.gov (United States)

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  17. Mapping the spatial distribution of chloride deposition across Australia

    Science.gov (United States)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is

  18. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  19. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    Science.gov (United States)

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  20. Buried chloride stereochemistry in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  1. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  2. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  3. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  4. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  5. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  6. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  7. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  8. On barium oxide solubility in barium-containing chloride melts

    International Nuclear Information System (INIS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-01-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl 2 -NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl 2 -MCl systems.

  9. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    Science.gov (United States)

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    Science.gov (United States)

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  11. Fault locator of an allyl chloride plant

    Directory of Open Access Journals (Sweden)

    Savković-Stevanović Jelenka B.

    2004-01-01

    Full Text Available Process safety analysis, which includes qualitative fault event identification, the relative frequency and event probability functions, as well as consequence analysis, was performed on an allye chloride plant. An event tree for fault diagnosis and cognitive reliability analysis, as well as a troubleshooting system, were developed. Fuzzy inductive reasoning illustrated the advantages compared to crisp inductive reasoning. A qualitative model forecast the future behavior of the system in the case of accident detection and then compared it with the actual measured data. A cognitive model including qualitative and quantitative information by fuzzy logic of the incident scenario was derived as a fault locator for an ally! chloride plant. The obtained results showed the successful application of cognitive dispersion modeling to process safety analysis. A fuzzy inductive reasoner illustrated good performance to discriminate between different types of malfunctions. This fault locator allowed risk analysis and the construction of a fault tolerant system. This study is the first report in the literature showing the cognitive reliability analysis method.

  12. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  13. The DELTA 181 lithium thionyl chloride battery

    Science.gov (United States)

    Sullivan, Ralph M.; Brown, Lawrence E.; Leigh, A. P.

    In 1986, the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) undertook the development of a sensor module for the DELTA 181 spacecraft, a low earth orbit (LEO) mission of less than two months duration. A large lithium thionyl chloride battery was developed as the spacecraft's primary power source, the first known such use for this technology. The exceptionally high energy density of the lithium thionyl chloride cell was the primary driver for its use, resulting in a completed battery with a specific energy density of 120 Wh/lb. Safety requirements became the primary driver shaping all aspects of the power system design and development due to concerns about the potential hazards of this relatively new, high-energy technology. However, the program was completed without incident. The spacecraft was launched on February 8, 1988, from Kennedy Space Center (KSC) with over 60,000 Wh of battery energy. It reentered on April 2, 1988, still operating after 55 days, providing a successful, practical, and visible demonstration of the use of this technology for spacecraft applications.

  14. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  15. Total gastrectomy due to ferric chloride intoxication.

    Science.gov (United States)

    Menéndez, A Mesut; Abramson, Leonardo; Vera, Raúl A; Duza, Guillermo E; Palermo, Mariano

    2015-09-01

    The ferric chloride intoxication is frequently caused by accident. Its toxicity is generally underrated, which can lead to fatal evolution or irreversible consequences. In this case, the caustic condition of the substance is related to the toxic properties of iron. A 36-year-old male patient arrives by ambulance indicating sensory deterioration. He presents erosive injuries in the buccal cavity and in the oropharynx, brownish teeth and metabolic acidosis. Toxicology tests and ferritin blood dosage are requested, which show a result from 1400 mg/dl. The symptoms are interpreted as acute iron intoxication. Due to the unfavorable evolution of his condition, an abdominal and pelvic CT scan are performed, which show extensive pneumoperitoneum and free fluid in the abdominal cavity. An exploratory laparotomy, a total gastrectomy with esophagostomy and feeding jejunostomy, washing and drainage due to perforated gastric necrosis caused by caustic ingestion are performed. In our country, there is a high rate of intoxication caused by iron compounds, although it is not statistically measured. Nevertheless, the ferric chloride intoxication is extremely infrequent. The ingestion of this product leads to complications, which are associated with the iron concentration and its condition as a caustic agent. The surgical indications in the presence of intoxication caused by iron compounds are: stomach evacuation of iron, gastric necrosis, perforation or peritonitis and stenosis. Early or prophylactic gastrectomy is contraindicated. However, if complications that require immediate surgical intervention arise, there should be no hesitation and the corresponding procedure should be performed.

  16. Enhanced expression of a calcium-dependent protein kinase from ...

    Indian Academy of Sciences (India)

    Unknown

    low calcium medium; LNM, low nitrate medium; LPM, low phosphate medium; LSM, low sulphate medium; MMG, minimal medium with glucose; NR, nitrate reductase; ORF, open reading frame; PCR, polymerase chain reaction; SnRK, sucrose non fer- menting ..... amino acids in contrast to the usual number of 31 in other.

  17. Calcium-dependent arrhythmias in transgenic mice with heart failure.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Lee, Joon S; Shusterman, Vladimir; Choi, Bum-Rak; Kubota, Toru; McTiernan, Charles F; Feldman, Arthur M; Salama, Guy

    2003-02-01

    Transgenic mice overexpressing the inflammatory cytokine tumor necrosis factor (TNF)-alpha (TNF-alpha mice) in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias on ambulatory telemetry monitoring, and decreased survival compared with nontransgenic littermates. Programmed stimulation in vitro with single extra beats elicits reentrant ventricular arrhythmias in TNF-alpha (n = 12 of 13 hearts) but not in control hearts. We performed optical mapping of voltage and Ca(2+) in isolated perfused ventricles of TNF-alpha mice to study the mechanisms that lead to the initiation and maintenance of the arrhythmias. When compared with controls, hearts from TNF-alpha mice have prolonged of action potential durations (action potential duration at 90% repolarization: 23 +/- 2 ms, n = 7, vs. 18 +/- 1 ms, n = 5; P < 0.05), no increased dispersion of refractoriness between apex and base, elevated diastolic and depressed systolic [Ca(2+)], and prolonged Ca(2+) transients (72 +/- 6 ms, n = 10, vs. 54 +/- 5 ms, n = 8; P < 0.01). Premature beats have diminished action potential amplitudes and conduct in a slow, heterogeneous manner. Lowering extracellular [Ca(2+)] normalizes conduction and prevents inducible arrhythmias. Thus both action potential prolongation and abnormal Ca(2+) handling may contribute to the initiation of reentrant arrhythmias in this heart failure model by mechanisms distinct from enhanced dispersion of refractoriness or triggered activity.

  18. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  19. When a transmembrane channel isn't, or how biophysics and biochemistry (mis)communicate.

    Science.gov (United States)

    Reviakine, Ilya

    2018-02-12

    Annexins are a family of soluble proteins that bind to acidic phospholipids such as phosphatidylserine in a calcium-dependent manner. The archetypical member of the annexin family is annexin A5. For many years, its function remained unknown despite the availability of a high-resolution structure. This, combined with the observations of specific ion conductance in annexin-bound membranes, fueled speculations about the possible membrane-spanning forms of annexins that functioned as ion channels. The channel hypothesis remained controversial and did not gather sufficient evidence to become accepted. Yet, it continues to draw attention as a framework for interpreting indirect (e.g., biochemical) data. The goal of the mini-review is to examine the data on annexin-lipid interactions from the last ~30 years from the point of view of the controversy between the two lines of inquiry: the well-characterized peripheral assembly of the annexins at membranes vs. their putative transmembrane insertion. In particular, the potential role of lipid rearrangements induced by annexin binding is highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  1. Omni channel fashion shopping

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; van Delft, L.; Borgers, A.W.J.; Pantano, E.

    2015-01-01

    This chapter gives insight into consumers' online and offline fashion shopping behavior, consumers' omni-channel usage during the shopping process, and consumer fashion shopper segments. Based on a literature review, omni-channel shopping behavior during the shopping process was operationalized.

  2. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity...... conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue...

  3. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.

    Science.gov (United States)

    Lassance-Soares, Roberta M; Cheng, Jie; Krasnov, Kristina; Cebotaru, Liudmila; Cutting, Garry R; Souza-Menezes, Jackson; Morales, Marcelo M; Guggino, William B

    2010-01-01

    This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla. Copyright © 2010 S. Karger AG, Basel.

  4. Identification of Chloride Intracellular Channel Protein 3 as a Novel Gene Affecting Human Bone Formation

    DEFF Research Database (Denmark)

    Brum, A M; Leije, M; J, Schreuders-Koedam

    2017-01-01

    is diminished and more adipocytes are seen in the bone marrow, suggesting a shift in MSC lineage commitment. Identification of specific factors that stimulate osteoblast differentiation from human MSCs may deliver therapeutic targets to treat osteoporosis. The aim of this study was to identify novel genes...... an in vivo human bone formation model in which hMSCs lentivirally transduced with the CLIC3 overexpression construct were loaded onto a scaffold (hydroxyapatite-tricalcium-phosphate), implanted under the skin of NOD-SCID mice, and analyzed for bone formation 8 weeks later. CLIC3 overexpression led to a 15...

  5. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    Science.gov (United States)

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  7. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  8. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  9. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  10. Simple Ion Channels: From Structure to Electrophysiology and Back

    Science.gov (United States)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  11. Effects of ammonium nitrate, cesium chloride and ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... Full Length Research Paper. Effects of ... constitutes 2 to 10% of plant dry weight (Leigh et al.,. 1984 ... membrane proteins has been reported, including K+ channels ... have functions in the plasma membrane and tonoplast. (Senn et al. .... analysis of K+ uptake in a solution containing 50 µM K+ showed a ...

  12. Chlorides behavior in raw fly ash washing experiments

    International Nuclear Information System (INIS)

    Zhu Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-01-01

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl 2 , and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl 2 decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al 2 O 3 .CaCl 2 ) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl 2 . Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl 2 .

  13. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  14. Hydrophobic treatment of concrete as protection against chloride penetration

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1996-01-01

    Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Hydrophobic treatment was studied as a protection agninst chloride penetration from deicing salts. Test methods were designed. Nine hydrophobic products were tested, of which three complied to the requirements on

  15. Aerobic biodegradation of vinyl chloride in groundwater samples

    International Nuclear Information System (INIS)

    Davis, J.W.; Carpenter, C.L.

    1990-01-01

    Studies were conducted to examine the biodegradation of 14 C-labeled vinyl chloride in samples taken from a shallow aquifer. Under aerobic conditions, vinyl chloride was readily degraded, with greater than 99% of the labeled material being degraded after 108 days and approximately 65% being mineralized to 14 CO 2

  16. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  17. Chloride penetration into cementitious mortar at early age

    NARCIS (Netherlands)

    Caballero, J.; Polder, R.B.; Leegwater, G.A.; Fraaij, A.L.A.

    2012-01-01

    Modern service life design methods for concrete structures use chloride diffusion data as an input parameter. Abundant data exist for concrete at 28 days and, to a lesser extent, at later ages. This paper presents chloride diffusion data for mortar at ages between 1 day and 28 days age. Rapid

  18. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat...

  19. Determination of the chloride diffusion coefficient in blended cement mortars

    NARCIS (Netherlands)

    Elfmarkova, V.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    The rapid chloride migration test (RCM) is a commonly used accelerated test for the determination of the chloride diffusion coefficient in concrete. Nevertheless, the initial development and further experience with the RCM test concern mainly the ordinary Portland cement system. Therefore, the

  20. [Forensic Analysis for 54 Cases of Suxamethonium Chloride Poisoning].

    Science.gov (United States)

    Zhao, Y F; Zhao, B Q; Ma, K J; Zhang, J; Chen, F Y

    2017-08-01

    To observe and analyze the performance of forensic science in the cases of suxa- methonium chloride poisoning, and to improve the identification of suxamethonium chloride poisoning. Fifty-four cases of suxamethonium chloride poisoning were collected. The rules of determination of suxamethonium chloride poisoning were observed by the retrospective analysis of pathological and toxicological changes as well as case features. The pathological features of suxamethonium chloride poisoning were similar to the general changes of sudden death, which mainly included acute pulmonary congestion and edema, and partly showed myocardial disarray and fracture. Suxamethonium chloride could be detected in the heart blood of all cases and in skin tissue of part cases. Suxa-methonium chloride poisoning has the characteristics with fast death and covert means, which are difficult to rescue and easily miss inspection. For the cases of sudden death or suspicious death, determination of suxamethonium chloride should be taken as a routine detection index to prevent missing inspection. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    Science.gov (United States)

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  2. Stability constants of the Europium complexes with the chloride ions

    International Nuclear Information System (INIS)

    Jimenez R, M.; Solache R, M.; Rojas H, A.

    2000-01-01

    The stability constants of lanthanides complexes with chloride ions which were determined at the same ionic force but in different media, are significantly different. It does not exist a systematic study over these stability constants. The purpose of this work is to determine the stability constants of the europium complexes with chloride ions at 303 K, by the solvents extraction method. (Author)

  3. Free and bound chloride contents in cementitious materials

    NARCIS (Netherlands)

    Marinescu, M.V.A.; Brouwers, H.J.H.; Fischer, G.; Geiker, M.; Hededal, O.; Ottoson, L.; Stang, H.

    2010-01-01

    Chloride attack is the main cause of structural damage in reinforced concrete buildings exposed to marine environments. When a certain threshold concentration of chlorides is reached at the concrete-reinforcement interface, the corrosion of the steel rebars is initiated. A part of the intruding

  4. Chloride transport in mortar at low moisture concentration

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.

    2014-01-01

    Chloride penetration into cementitious structures with a steel reinforcement results in corrosion of the steel. Concrete columns of bridges, which are in frequent contact with sea water, are an example of these structures. Understanding the chloride transport in cementitious materials can lead to

  5. Process for the preparation of a vinylidene chloride polymer composite

    NARCIS (Netherlands)

    2013-01-01

    Process for the preparation of a vinylidene chloride polymer composite comprising a solid particulate encapsulated in the vinylidene chloride polymer. The process comprises providing a dispersion of a solid particulate material in a liquid phase, said dispersion comprising a RAFT/MADIX agent;

  6. Mass transport and chloride ion complexes in occluded cell

    International Nuclear Information System (INIS)

    Tsuru, T.; Hashimoto, K.; Nishikata, A.; Haruyama, S.

    1989-01-01

    Changes in the transport and the concentration of ions in a model occluded cell are traced during galvanostatic anodic polarization of a mild steel and a stainless steel. Apparent transport numbers of anions and cations, which were estimated from chemical analysis of solution, were different from those calculated from known mobility data. At the initial stage of the polarization, the transport number of chloride ion was almost unity, and then decreased gradually. For the mild steel, the concentration of total chloride ion accumulated in the occluded compartment increased with the anodic charge passed, and the amount of chloride ion complexed with cations also increased. The chloride complex was estimated as FeCl + . For SUS304 stainless steel, the total chloride ion increased, however, the free chloride ion, which responded to an Ag/AgCl electrode remained approximately 2 mol/dm 3 . Therefore, most of the chloride ions transferred into the occluded cell formed complex ions, such as CrCl n 3-n . The number of chloride ion coordinated to ferrous and chromic ions was estimated from the data fo mass transport for the case of the mild steel and the stainless steel. (author) 9 refs., 14 figs

  7. Probabilistic Models and Computational Methods for Chloride Ingress in Concrete

    DEFF Research Database (Denmark)

    Engelund, S.

    Within the last decades it has been recognized that reinforced concrete structures are subject to a number of destructive mechanisms which might affect the structure in such a way that it is not able to fulfil its purpose efficiently. The present report focuses on chloride ingress and chloride...

  8. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  9. [Jejunal myenteric denervation induced by benzalkonium chloride].

    Science.gov (United States)

    Ramalho, F S; Santos, G C; Ramalho, L N; Kajiwara, J K; Zucoloto, S

    1994-01-01

    The effects of benzalkonium chloride (BAC) on the number of myenteric neurons, muscle thickness and external perimeter after acute (until 10 days after BAC application) and chronic (30 and 60 days after BAC application) denervation of the proximal jejunum were determined in rats. There was a significant reduction in the number of myenteric neurons of all segments treated with BAC. The extent of denervation varied along the time, and it was reduced in the denervated segments of the chronic group in comparison with the acute group. This may be due to the neuroplasticity phenomenon appearing during the chronic phase. Myenteric denervation increased the thickness of the propria muscle layer, especially in the longitudinal muscle layer, suggesting a higher sensitivity of this layer to myenteric denervation.

  10. The dissolution of chalcopyrite in chloride media

    International Nuclear Information System (INIS)

    Ibanez, T.; Velasquez, L.

    2013-01-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO 2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  11. Some reactions of uranium chloride pentafluoride

    International Nuclear Information System (INIS)

    Downs, A.J.; Gardner, C.J.

    1986-01-01

    The molecule UF 5 Cl has been isolated, together with an excess of UF 6 , in a solid matrix of Ar, N 2 , or CO and characterised by its i.r. spectrum. Under these conditions it dissociates under the action of radiation having wavelengths close to 500 nm to give UF 5 ; OCCl and OCClF are also formed on photolysis in a solid CO matrix, whereas a species believed to be U 2 F 11 is formed on photolysis in a solid N 2 matrix. CCl 3 F solutions of fluoride-rich mixtures of uranium(VI) chloride fluorides have been shown to function as chlorinating, fluorinating, or chlorofluorinating reagents in their reactions with various unsaturated molecules at temperatures low enough to preclude thermal decomposition of the mixed halides ( 0 C). (author)

  12. Aspects of the magnetism of ferrous chloride

    International Nuclear Information System (INIS)

    Carrara, P.

    1968-01-01

    This work is a critical review of the existing work on ferrous chloride and presents, as well, a number of new experimental results. First, a careful analysis of the level structure of ferrous ions in the crystalline field shows that the crystalline anisotropy is of the same order of magnitude as the exchange interactions, a feature which gives rise to some particular effects, such as an upward curvature of the magnetization curve at 0 K in a perpendicular magnetic field. Further, the very low temperature (T > 0.4 K) thermal variation of both the specific heat and magnetic susceptibility evidences a magnetic component in elementary excitations. This result suggests the presence of a large magneto-elastic coupling. Finally, an experimental study of the H-T phase diagram near T N and of the critical behaviour of the specific heat and parallel susceptibility was performed. (author) [fr

  13. Electrochemical properties of actinides in molten chlorides

    International Nuclear Information System (INIS)

    Lambertin, D.; Lacquement, J.; Sanchez, S.; Picard, G.

    2000-01-01

    The chemical properties of plutonium and cerium chlorides have been studied in the fused CaCl 2 -NaCl equimolar mixture at 550 deg. C using a tungsten working electrode and a pO 2- indicator electrode. The standard potential of Pu(III)/Pu was determined using cyclic voltammetry. The solubility product of Pu 2 O 3 was calculated by potentiometric titration. The standard potential of Ce(III)/Ce have been determined by a potentiometry method. Potentiometric titrations of Ce(III) have been shown the existence of a soluble cerium oxychloride. All these data allowed us to draw the potential-pO 2- diagram which summarises the properties of plutonium and cerium compounds in the melt. (authors)

  14. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  15. Facile Preparation of Chloride-Conducting Membranes : First Step towards a Room-Temperature Solid-State Chloride-Ion Battery

    NARCIS (Netherlands)

    Gschwind, Fabienne; Steinle, Dominik; Sandbeck, Daniel; Schmidt, Celine; von Hauff, Elizabeth

    2016-01-01

    Three types of chloride-conducting membranes based on polyvinyl chloride, commercial gelatin, and polyvinyldifluoride-hexafluoropolymer are introduced in this report. The polymers are mixed with chloride-containing salts, such as tetrabutylammonium chloride, and cast to form membranes. We studied

  16. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  17. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  18. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties.

    Directory of Open Access Journals (Sweden)

    Stefania Averaimo

    Full Text Available Chloride intracellular Channel 1 (CLIC1 is a metamorphic protein that changes from a soluble cytoplasmic protein into a transmembrane protein. Once inserted into membranes, CLIC1 multimerises and is able to form chloride selective ion channels. Whilst CLIC1 behaves as an ion channel both in cells and in artificial lipid bilayers, its structure in the soluble form has led to some uncertainty as to whether it really is an ion channel protein. CLIC1 has a single putative transmembrane region that contains only two charged residues: arginine 29 (Arg29 and lysine 37 (Lys37. As charged residues are likely to have a key role in ion channel function, we hypothesized that mutating them to neutral alanine to generate K37A and R29A CLIC1 would alter the electrophysiological characteristics of CLIC1. By using three different electrophysiological approaches: i single channel Tip-Dip in artificial bilayers using soluble recombinant CLIC1, ii cell-attached and iii whole-cell patch clamp recordings in transiently transfected HEK cells, we determined that the K37A mutation altered the single-channel conductance while the R29A mutation affected the single-channel open probability in response to variation in membrane potential. Our results show that mutation of the two charged amino acids (K37 and R29 in the putative transmembrane region of CLIC1 alters the biophysical properties of the ion channel in both artificial bilayers and cells. Hence these charged residues are directly involved in regulating its ion channel activity. This strongly suggests that, despite its unusual structure, CLIC1 itself is able to form a chloride ion channel.

  19. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  20. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  1. Method for synthesizing pollucite from chabazite and cesium chloride

    International Nuclear Information System (INIS)

    Pereira, C.

    1999-01-01

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs

  2. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  3. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  5. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  6. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-12-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  7. Channel follower leakage restrictor

    International Nuclear Information System (INIS)

    Williamson, H.E.; Smith, B.A.

    1977-01-01

    An improved means is provided to control coolant leakage between the flow channel and the lower tie plate of a nuclear fuel assembly. The means includes an opening in the lower tie plate and a movable element adjacent thereto. The coolant pressure within the tie plate biases the movable means toward the inner surface of the surrounding flow channel to compensate for any movement of the flow channel away from the lower tie plate to thereby control the leakage of coolant flow from the fuel assemblies to the spaces among the fuel assemblies of the core. 9 figures

  8. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  9. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  10. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  11. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.

    1989-01-01

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  12. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    Science.gov (United States)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  13. Many channel spectrum unfolding

    International Nuclear Information System (INIS)

    Najzer, M.; Glumac, B.; Pauko, M.

    1980-01-01

    The principle of the ITER unfolding code as used for the many channel spectrum unfolding is described. Its unfolding ability is tested on seven typical neutron spectra. The effect of the initial spectrum approximation upon the solution is discussed

  14. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  15. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  16. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  17. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  18. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family......, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading...... to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  19. Authentication over Noisy Channels

    OpenAIRE

    Lai, Lifeng; Gamal, Hesham El; Poor, H. Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios,...

  20. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  1. Stream Channel Stability.

    Science.gov (United States)

    1981-04-01

    Cycles of wetting and drying are also t ,v itiue swelling and shrinkage of the soil. S 11ied blocks or peds of soil fabric ,,ks. id downslope soil creep ...hydrographs of water and sediment at the point in question. By feeding the output from the hydrology-transport model into the finite element model...the banks as undercut banks fail. Channel irregularities such as seepage zones, cattle crossings, overbank drainage, buried channels, organic deposits

  2. Channeling and dynamic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F

    1986-01-01

    It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.

  3. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  4. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Science.gov (United States)

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  5. Studies on the mercuric chloride resistance of Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Vaczi, L; Fodor, M; Milch, H; Rethy, A

    1962-01-01

    Among 409 pathogenic Staph. aureus strains 34% have been found to be sensitive, and 66% resistant, to mercuric chloride. The incidence of mercuric chloride resistant cultures among antibiotic sensitive staphylococci was 20%; among strains resistant to penicillin or to more than one antibiotic, 70%. Mercuric chloride resistant organisms occurred chiefly among phage group I and untypable strains; they were especially common among the so called epidemic strains of phage group I, and among cultures resistant to 4-6 antibiotics. In mercuric chloride sensitivity a thirtyfold, in merthiolate sensitivity only a two-fold difference has been revealed among the strains. The sulfydryl group content of mercuric chloride resistant organisms was only 1 1/2 times higher than that of sensitive bacteria. As to p-chlor mercuric benzoate binding capacity, a twofold difference was found between mercuric chloride sensitive and resistant staphylococci. The differences in the mercuric chloride resistance of various staphylococcal strains might be due to differences in the chemical structure of the cell surface. 9 references, 1 figure, 6 tables.

  6. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  7. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  8. Determination of chloride in water. A comparison of three methods

    International Nuclear Information System (INIS)

    Steele, P.J.

    1978-09-01

    The presence of chloride in the water circuits of nuclear reactors, power stations and experimental rigs is undesirable because of the possibility of corrosion. Three methods are considered for the determination of chloride in water in the 0 to 10 μg ml -1 range. The potentiometric method, using a silver-silver chloride electrode, is capable of determining chloride above the 0.1μg ml -1 level, with a standard deviation of 0.03 to 0.12 μg ml -1 in the range 0.1 to 6.0 μg ml -1 chloride. Bromide, iodide and strong reducing agents interfere but none of the cations likely to be present has an effect. The method is very susceptible to variations in temperature. The turbidimetric method involves the production of suspended silver chloride by the addition of silver nitride solution to the sample. The method is somewhat unreliable and is more useful as a rapid, routine limit-testing technique. In the third method, chloride in the sample is pre-concentrated by co-precipitation on lead phosphate, redissolved in acidified ferric nitrate solution and determined colorimetrically by the addition of mercuric thiocyanate solution. It is suitable for determining chloride in the range 0 to 50 μg, using a sample volume of 100 to 500 ml. None of the chemical species likely to be present interferes. In all three methods, chloride contamination can occur at any point in the determination. Analyses should be carried out in conditions where airborne contamination is minimised and a high degree of cleanliness must be maintained. (author)

  9. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  10. Chloride homeostasis and chemoreception in trigeminal sensory neurons of mice

    OpenAIRE

    Radtke, Debbie

    2012-01-01

    In der vorliegenden Arbeit konnte gezeigt werden, dass trigeminale Ganglienneurone (TGNs), im Gegensatz zu den meisten zentralen Neuronen, auch postnatal eine hohe intrazelluläre Chloridkonzentration vorweisen. Die intrazelluläre Akkumulation von Chlorid wird hauptsächlich durch den Na+-K+-2Cl- Cotransporter NKCC1 gewährleistet. Auf Grund der hohen intrazellulären Chloridkonzentration führt das Öffnen von Chlorid-leitenden GABAA Rezeptoren nicht zu einem Einstrom von Chlorid-Ionen...

  11. Chloride ion erosion experiment research in cracked concrete

    Science.gov (United States)

    Ting, Shu; Yang, Li

    2017-08-01

    For the study of chloride ion erosion in cracked concrete, this essay tries to take advantages of relevant trails to build up concrete chloride ion diffusion model based on the Fick’s second law. The parameter of this model is easy to be set, and many factors such as the effect of cracks are taken into consideration in this experiment. The concept of “chloride ion diffusion coefficient of equivalent apparent” is introduced to simplify the calculation. It can help simplify the calculation process, and get a more accurate test result, as well as facilitating the practical application of this parameter.

  12. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  13. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  14. Electrochemical Migration on Electronic Chip Resistors in Chloride Environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Electrochemical migration behavior of end terminals on ceramic chip resistors (CCRs) was studied using a novel experimental setup in varying sodium chloride concentrations from 0 to 1000 ppm. The chip resistor used for the investigation was 10-kΩ CCR size 0805 with end terminals made of 97Sn3Pb...... rate of the Sn and stability of Sn ions in the solution layer play a significant role in the formation of dendrites, which is controlled by chloride concentration and potential bias. Morphology, composition, and resistance of the dendrites were dependent on chloride concentration and potential....

  15. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  16. Optical Communications Channel Combiner

    Science.gov (United States)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  17. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  18. Corneal neurotoxicity due to topical benzalkonium chloride.

    Science.gov (United States)

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-04-06

    The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.

  19. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  20. Redetermination of 1-carboxycyclohexan-1-aminium chloride

    Directory of Open Access Journals (Sweden)

    Teresa González

    2009-02-01

    Full Text Available The crystal structure of the title compound, C7H14NO2+·Cl−, was reported previously [Chacko, Srinivasan & Zand (1975. J. Cryst. Mol. Struct. 5, 353–357] from Weissenberg photographic data with R = 0.113. It has now been redetermined, providing a significant increase in the precision of the derived geometric parameters, viz. mean σ(C—C = 0.003 Å in the present work compared with 0.021 Å for the previous work. The complete cation is generated by crystallographic mirrror symmetry, with three C atoms, two O atoms and the N atom lying on the reflecting plane; the chloride anion also has m site symmetry. The crystal structure is established by a two-dimensional network of O—H...Cl and N—H...Cl hydrogen bonds, generating C12(4 and C12(7 chains, and R24(8 and R24(14 rings.

  1. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    International Nuclear Information System (INIS)

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    1982-01-01

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds 14 C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence of plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds 14 C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic

  2. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered...

  3. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  4. Channel identification machines.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  5. Optical, thermal and magnetic studies of pure and cobalt chloride doped L-alanine cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Benila, B.S., E-mail: benjane.benila@gmail.com [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India); Bright, K.C. [Department of Physics, St. John' s College, Anchal, Kollam 691 306 (India); Delphine, S. Mary [Department of Physics, Holy Cross College (Autonomous), Nagercoil 629 004 (India); Shabu, R. [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India)

    2017-03-15

    Single crystals of L-alanine cadmium chloride (LACC) and cobalt chloride (Co{sup 2+}) doped LACC have been grown by the slow evaporation solution growth technique. The grown crystals were subjected to various characterizations such as powder XRD, SXRD, FTIR, UV–vis, EDAX, TG/DTA, VSM, Dielectric and Second Harmonic Generation (SHG) measurements. The lattice parameters of the grown crystals were determined by single crystal X-ray analysis. EDAX analysis confirms the presence of Co{sup 2+} ion in the host material. The functional group and optical behavior of the crystals were identified from FTIR and UV-vis spectrum analysis. Electrical parameters such as dielectric constant, dielectric loss have been studied. The thermal stability of the compound was found out using TGA/DTA analysis. Second Harmonic Generation of the samples was confirmed by Kurtz-Perry powder technique. Magnetic properties of the crystals studied by VSM were also reported. The encouraging results show that the cobalt chloride doped LACC crystals have greater potential applications in optical devices. - Graphical abstract: Fig (a) and (b) shows the transparent, stable single crystals of pure and doped crystals were obtained using slow evaporation technique. The sizes of pure and doped crystals are 20×9×2 mm{sup 3} and 18×15×1 mm{sup 3} respectively. Fig (c) is the Hysteresis loop traced at room temperature for the pure and doped crystals explains the soft ferromagnetic nature of the doped crystal. The provision for changing the value of coercivity can be used for security, switching and sensing applications. - Highlights: • Defect free crystals of pure and Co{sup 2+} ion doped L-alanine cadmium chloride were grown. • The optical, dielectric and magnetic properties of pure crystals were enhanced by adding Co{sup 2+} ion. • High optical transmittance was obtained in the entire visible and IR region. • Addition of dopant to the pure crystal altered the coercivity. • Low dielectric

  6. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  7. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  8. Chaos in quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  9. Effect of chloride-based deicers on reinforced concrete structures.

    Science.gov (United States)

    2012-07-01

    We conducted an extensive literature review and performed laboratory tests to assess the effect of chloride-based deicers on the rebars and dowel bars in concrete and to determine whether or not deicer corrosion inhibitors help preserve the transport...

  10. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  11. Rheological properties of poly-vinyl-chloride solutions in varioussolvents

    International Nuclear Information System (INIS)

    Kurbanaliev, M.K.; Narzullaev, B.N.; Dustov, I.K.; Marupov, R.M.

    1976-01-01

    The present article is the result of studying of curves process ofpoly-vinyl-chloride solutions in wide interval of tension and velocities ofshear in thermodynamically good and bad solvents at various temperatures

  12. Combined uses of water-table fluctuation (WTF), chloride mass ...

    African Journals Online (AJOL)

    Agadaga

    isotopes methods to investigate groundwater recharge ... and isotopic characterization of groundwater, rainfall and the unsaturated zone were also carried out using a ..... Chloride concentrations in soil water extracted by lixiviation from.

  13. for the removal of triphenyltin chloride (TPT) from dockyard wastewater

    African Journals Online (AJOL)

    2014-10-06

    Oct 6, 2014 ... The use of triphenyltin chloride (TPT), a persistent organic pollutant, as a biocide has led to serious ... Activated carbon has been widely investigated for the ..... solid-state fermentation of dye-adsorbed agricultural residues.

  14. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    Andrade, C.; Fullea, J.; Toro, L.; Martinez, I.; Rebolledo, N.

    2013-01-01

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  15. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    Science.gov (United States)

    Frank, H. A.

    1980-04-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  16. Active primary lithium thionyl chloride battery for artillery applications

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, A.R.; Delnick, F.M. (Sandia National Labs., Albuquerque, NM (USA)); Miller, D.L. (Eagle-Picher Industries, Inc., Joplin, MO (USA))

    1990-01-01

    Sandia National Laboratories and Eagle Picher Industries have successfully developed an Active Lithium Thionyl Chloride (ALTC) power battery for unique artillery applications. Details of the design and the results of safety and performance will be presented. 1 ref., 5 figs.

  17. Active primary lithium thionyl chloride battery for artillery applications

    Science.gov (United States)

    Baldwin, Arlen R.; Delnick, Frank M.; Miller, David L.

    1990-03-01

    Sandia National Laboratories and Eagle Picher Industries have successfully developed an Active Lithium Thionyl Chloride (ALTC) power battery for unique artillery applications. Details of the design and the results of safety and performance will be presented.

  18. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN

    2004-01-01

    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  19. Analysis of chloride diffusivity in concrete containing red mud

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud is a solid waste produced in the alumina production process and, due to its high pH, is classified as hazardous. Its incorporation in concrete mixtures, acting as filler due to the particles fineness, might be an interesting reuse alternative. The focus of this paper is to study the chloride diffusivity of concrete mixtures containing red-mud. The concentration of chlorides was monitored by measuring the conductivity of the anolyte, which was distilled water initially. In addition, the estimation of the chloride ions diffusion coefficients in steady and non-steady conditions, Ds and Dns, was obtained from the ''time-lag'' and ''equivalent time'' between diffusion and migration experiments. Due to superfine particle-size distribution and the "filler" effect, the red mud addition seems to assure lower chloride diffusivity.

  20. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...