WorldWideScience

Sample records for calcium sulfoaluminate cement

  1. Rheological and hydration characterization of calcium sulfoaluminate cement pastes

    OpenAIRE

    García-Maté, Marta; Santacruz, Isabel; de la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Calcium sulfoaluminate (CSA) cements are currently receiving a lot of attention because their manufacture produces less CO2 than ordinary Portland cement (OPC). However, it is essential to understand all parameters which may affect the hydration processes. This work deals with the study of the effect of several parameters, such as superplasticizer (SP), gypsum contents (10, 20 and 30 wt%) and w/c ratio (0.4 and 0.5), on the properties of CSA pastes during early hydration. This characteriza...

  2. Calcium Sulfoaluminate Eco-Cement from Industrial Waste

    OpenAIRE

    Ukrainczyk, N.; Frankoviæ Mihelj, N.; Šipušić, J.

    2013-01-01

    In this paper, the potential benefits offered by calcium sulfoaluminate cement (CSA) production from industrial wastes or by-products already present in Republic of Croatia have been addressed. A variety of industrial wastes, namely phosphogypsum (PG), coal bottom ash (BA) and electric arc furnace slag (EAFS) were used as raw materials to provide additional environmental advantages in production of CSA. Mass fraction of Ye’elimite, the principal hydraulic mineral in the prepared CSA was de...

  3. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  4. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  5. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  6. The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    OpenAIRE

    Liu, Zanqun; Deng, Dehua; De Schutter, Geert

    2015-01-01

    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months expos...

  7. Influence of the calcium sulfate source on the rheological behaviour of calcium sulfoaluminate cement pastes

    OpenAIRE

    Santacruz, Isabel; García-Maté, Marta; G. Aranda, Miguel Ángel; De la Torre, Ángeles G.

    2013-01-01

    Calcium sulfoaluminate (CSA) cements are receiving increasing attention since their manufacture produces much less CO2 than ordinary Portland cement (OPC) [1]. In addition, they show interesting properties such as high early-age strengths, short setting times and impermeability. The main uses of these CSA cements are for quick repairs and pre-cast products or floor concrete applications. They are prepared by mixing the clinker with different amounts of a calcium sulfate set regulator such as ...

  8. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.

  9. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    International Nuclear Information System (INIS)

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits

  10. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  11. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends

    OpenAIRE

    Herrmann, P

    2014-01-01

    Calcium sulfoaluminate (CSA) is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. ...

  12. Effect of different retarders on the hydration of calcium sulfoaluminate eco-cement pastes

    OpenAIRE

    García-Maté, Marta; De la Torre, Ángeles G.; Aranda, Miguel A. G.; Santacruz, Isabel

    2014-01-01

    The manufacture of Calcium SulfoAluminate (CSA) cements is more environmentally friendly than that of OPC [1] as their production releases up to 40% less CO2 than the latter. The main performances of CSA cements are fast setting time, good-chemical resistance properties and high early strengths. CSA cements are prepared by mixing CSA clinker with different amounts of a calcium sulfate set regulator such as gypsum (CaSO4•2H2O), bassanite (CaSO4•½H2O), or anhydrite (CaSO4), or mixtures of th...

  13. Study of belite calcium sulfo-aluminate cement potential for zinc conditioning: From hydration to durability

    International Nuclear Information System (INIS)

    Calcium silicate cements are widely used for low- and intermediate-level radioactive waste conditioning. However, wastes produced by nuclear activities are very diverse and some of their components may chemically react with cement phases. For instance, ashes resulting from the incineration of technological wastes including neoprene and polyvinylchloride may contain substantial amounts of soluble zinc chloride. This compound is known to strongly delay or inhibit Portland cement setting. One approach to limit adverse cement-waste interactions is to select a binder showing a better compatibility with the waste while keeping cement matrix advantages (low cost, simple process, hydration with water provided by the waste...). This work thus investigates the potential of calcium sulfo-aluminate cement for zinc Zn(II) immobilization. Four aspects were considered: hydration (kinetics and products formed), properties of hydrated binders, mechanisms of zinc retention and durability of the cement pastes (based on leaching experiments and modelling). The influence of three main parameters was assessed: the gypsum content of the cement, the concentration of ZnCl2 and the thermal evolution at early age. It follows that materials based on a calcium sulfo-aluminate cement containing 20% gypsum are interesting candidates for zinc Zn(II) stabilization/solidification: there is no delay in hydration, mineralogy of the hydrated phases is slightly dependent on thermal history, mechanical strength is high, dimensional changes are limited and zinc Zn(II) is well immobilized, even if the cement paste is leached by pure water during a long period (90 d). (author)

  14. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay

  15. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, Jean-Baptiste; Dhoury, Mélanie [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Mercier, Cyrille [LMCPA, Université de Valenciennes et du Hainaut Cambrésis, 59600 Maubeuge (France); Revel, Bertrand [Centre Commun de Mesure RMN, Université Lille1 Sciences Technologies, Cité Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Le Bescop, Patrick [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Damidot, Denis [Ecole des Mines de Douai, LGCgE-GCE, 59508 Douai (France)

    2015-04-15

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.

  16. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C2B3H8; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  17. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    OpenAIRE

    Garcia-Maté, Marta; De la Torre, Angeles G; León-Reina, Laura; Aranda, Miguel A. G.; Santacruz, Isabel

    2013-01-01

    The main objective of this work is to study the hydration and properties of calciumsulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied paramet...

  18. Cementation of Radioactive Waste from a PWR with Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    Spent radioactive ion-exchange resin (SIER) and evaporation concentrates are radioactive wastes that are produced at by pressurized water reactor (PWR) nuclear power stations. Borate, which is used as a retardent for cement, is also present as a moderator in a PWR, therefore, borate will be present in both ion-exchange resins and evaporation concentrates. In this study the use of Calcium sulfoaluminate cements (SAC) as encapsulation medium for these waste streams was investigated. The study involved the manufacturing of different cement test samples with different amounts of SAC cement, waste resins (50% water content) and admixtures. In order to reduce hydration heat during 200 L solidification experiments, different admixtures were investigated. Initial results based on compressive strength tests and hydration temperature studies, indicated that zeolite was the best admixture for the current waste form. Experiments indicated that the addition of resin material into the current cement matrix reduces the hydration heat during curing Experimental results indicated that a combination of SAC (35 wt. %), zeolite (7 wt. %) mix with 42 wt. % resins (50% water content) and 16 wt. % of water forms a optimum cured monolith with low hydration heat. The microstructures of hydrated OPC, SAC and SAC with zeolite addition were studied using a Scanning Electron Microscopy (SEM). SEM results indicated that the SAC matrices consist of a needle type structure that changed gradually into a flake type structure with the addition of zeolite. Additionally, the presence of zeolite material inside the SAC matrix reduced the leaching rates of radionuclides significantly. In a final 200 L grouting test, measured results indicated a hydration temperature below 90oC withno thermal cracks after solidified. The influence of radiation on the compressive strength and possible gas generation (due to radiolysis) on cement waste forms containing different concentrations ion exchange resin was

  19. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA cement blends

    Directory of Open Access Journals (Sweden)

    P. Herrmann

    2014-05-01

    Full Text Available Calcium sulfoaluminate (CSA is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. Insufficient knowledge of this material behaviour restricts the possibilities and makes further research necessary. The research project applied a laboratory test program to elaborate the characterization of the materials. The obtained knowledge from these tests was then applied to further tests to determine application relevant key properties of CSA based pastes and mortars.The properties of pure CSA cement had been compared with the properties of CSA blends. The additions were PC, HAC, FA and GGBS with quantities of 10, 20 and 30%. The water to cement ratio was varying between 0.4, 0.5 and 0.6. General tests like fineness, XRD and XRF were used to define the present non-standardized material. Investigation of fresh pastes included measurement of setting time and calorimetry. Hardened mortar specimens of different ages were examined for compressive strength. The results showed that CSA itself hardens very rapidly and gives an early strength development. Possible ways of utilization of CSA based mortars and concretes were also emphasized in the paper.

  20. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  1. Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements.

    Science.gov (United States)

    Pace, Maria Lucia; Telesca, Antonio; Marroccoli, Milena; Valenti, Gian Lorenzo

    2011-07-15

    Calcium sulfoaluminate (CSA) cements show some desirable environmentally friendly features that include the possibility of using several industrial byproducts as raw materials in their manufacturing process. Alumina powder, from the secondary aluminum manufacture, and anodization mud, from the production process of anodized aluminum, have proved to be suitable as partial or total substitutes for an expensive natural material like bauxite. CSA clinker generating raw mixtures, containing limestone, natural gypsum, bauxite, and/or one of the alumina-rich byproducts, were heated 2 h in a laboratory electric oven at temperatures ranging from 1150 to 1300 °C. Conversion of reactants into 4CaO·3Al(2)O(3)·SO(3) (the key component of CSA cements), evaluated using X-ray diffraction (XRD) analysis, increased with an increase of both burning temperature and byproduct concentration. When examined through differential thermogravimetric and XRD analyses, a synthetic CSA clinker (made from the raw mixture incorporating alumina powder as a total replacement of bauxite) mixed with 20% gypsum showed a hydration behavior almost similar to that of an industrial CSA cement containing the same amount of gypsum. PMID:21707122

  2. Stabilization of ZnCl2-Containing Waste Using Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize radwastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl2 mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrate assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, straetlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes, or in their leachates after 3 months of leaching by pure water at pH 7. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxides family) at early age ≤ 1 day), and to chemisorption onto aluminum hydroxide at later age. (author)

  3. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    Science.gov (United States)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  4. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability.

    Science.gov (United States)

    Berger, Stéphane; Cau Dit Coumes, Céline; Le Bescop, Patrick; Damidot, Denis

    2011-10-30

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize wastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl(2) mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled its rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrates assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, strätlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes. PMID:21889260

  5. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL-1. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. C by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.

  6. Early age corrosion of aluminium in calcium sulfo-aluminate cement based composites

    International Nuclear Information System (INIS)

    At present, encapsulation of low level and intermediate level nuclear wastes using Portland Cement (PC) based matrices is a preferred approach. However, it is now widely accepted that the high pH of the pore solution of these PC-based matrices (usually above pH 12.5) can cause concerns over the stability of certain wastes containing reactive metals, such as aluminium and uranium. One potential low pH system for reducing the corrosion of aluminium is calcium sulfo-aluminate cement (CSA). However, significant heat could be generated from the hydration of CSA, causing another concern to the nuclear industry. In the current study, various additives, namely pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and limestone powder (LSP) were used to replace part of the CSA in order to reduce the heat output. The results indicated that the replacement of CSA with GGBS, PFA and LSP can reduce the heat output of 100% CSA, although it is still higher than the control GGBS/PC 9:1 system. The corrosion rate of aluminium in each of the CSA composites was slightly higher than 100% CSA, however, all the CSA systems had corrosion rates lower than GGBS/PC 9:1 after 15 hours. Therefore, the composite CSA systems investigated in this study provide a good compromise between the heat output and the resistance to the corrosion of aluminium. Hence, offers a good potential for dealing with some historical nuclear wastes where the corrosion of aluminium is a concern. (authors)

  7. Effect of calcium sulfates on the early hydration of calcium sulfoaluminate cement and the stability of embedded aluminium

    International Nuclear Information System (INIS)

    Conventional Portland cement-based systems have been considered unsuitable for immobilising nuclear wastes containing reactive metals, such as aluminium, due to the high pH of the pore solution (usually around 12.5) and free moisture. On the contrary, calcium sulfo-aluminate cement (CSA) produces a lower pH (10.5-12) environment and has an excellent water binding capability as a result of the formation of its main hydration product, ettringite. Therefore, it offers a good potential to immobilise aluminium. However, the pore solution pH and ettringite formation depend largely on the raw materials used to formulate the CSA, which is usually a blend of 75%-85% of CSA clinker and 15-25% of calcium sulfate (in the form of gypsum or anhydrite). In this paper, it was found that, compared to anhydrite, gypsum (15% wt of the blend) demonstrated the highest reduction in the corrosion of embedded Al, possibly due to its lower initial pH (around 10.5) and self-desiccating nature at the early stage of hydration. Whilst the CSA/anhydrite had a higher Al corrosion rate, the initial set was more acceptable than CSA/gypsum. Nonetheless, overall, it was concluded that CSA with gypsum (15% wt) should be considered as a base formulation for the encapsulation of Al waste. The unfavorable rapid set and high heat generation, however, demonstrated that modifications are required, potentially by using mineral additions. (authors)

  8. Calcium looping spent sorbent as a limestone replacement in the manufacture of portland and calcium sulfoaluminate cements.

    Science.gov (United States)

    Telesca, Antonio; Marroccoli, Milena; Tomasulo, Michele; Valenti, Gian Lorenzo; Dieter, Heiko; Montagnaro, Fabio

    2015-06-01

    The calcium looping (CaL) spent sorbent (i) can be a suitable limestone replacement in the production of both ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement, and (ii) promotes environmental benefits in terms of reduced CO2 emission, increased energy saving and larger utilization of industrial byproducts. A sample of CaL spent sorbent, purged from a 200 kWth pilot facility, was tested as a raw material for the synthesis of two series of OPC and CSA clinkers, obtained from mixes heated in a laboratory electric oven within temperature ranges 1350°-1500 °C and 1200°-1350 °C, respectively. As OPC clinker-generating mixtures, six clay-containing binary blends were investigated, three with limestone (reference mixes) and three with the CaL spent sorbent. All of them showed similar burnability indexes. Moreover, three CSA clinker-generating blends (termed RM, MA and MB) were explored. They included, in the order: (I) limestone, bauxite and gypsum (reference mix); (II) CaL spent sorbent, bauxite and gypsum; (III) CaL spent sorbent plus anodization mud and a mixture of fluidized bed combustion (FBC) fly and bottom ashes. The maximum conversion toward 4CaO·3Al2O3·SO3, the chief CSA clinker component, was the largest for MB and almost the same for RM and MA. PMID:25915150

  9. Long-term heat storage in calcium sulfoaluminate cement (CSA) based concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Josef P.; Winnefeld, Frank [Empa Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland). Lab. for Concrete and Construction Chemistry

    2011-07-01

    In general, the selection of materials proposed for solar heat storage is based on one of two principal processes: sensible heat storage or latent heat storage. Sensible heat storage utilizes the specific heat capacity of a material, while latent heat storage is based on the change in enthalpy (heat content) associated with a phase change of the material. Long time sensible heat storage requires excellent thermal insulation whereas latent heat storage allows permanent (seasonal) storage without significant energy losses and any special insulation. Ettringite, one of the cement hydration products, exhibits a high dehydration enthalpy. Calcium sulfoaluminate cement based concrete containing a high amount of ettringite is henceproposed as an efficient latent heat storage material. Compared to conventional heat storage materials this innovative concrete mixture has a high loss-free storage energy density (> 100-150 kWh/m{sup 3}) which is much higher than the one of paraffin or the (loss-sensitive) sensible heat of water. Like common concrete the CSA-concrete is stable and even may carry loads. The dehydration of the CSA-concrete is achieved at temperatures below 100 C. The rehydration process occurs as soon as water (liquid or vapor) is added. In contrast to paraffin, the phase change temperature is not fixed and the latent heat may be recovered at any desired temperature. Furthermore the heat conductivity of this material is high, so that the energy transfer from/to an exchange medium is easy. Additionally CSA-concrete is not flammable and absolutely safe regarding any health aspects. The cost of such CSA-concrete isin the order of normal concrete. The main application is seen in house heating systems. Solar heat, mostly generated during the summer period by means of roof collectors, can be stored in CSA-concrete until the winter. A part or even the whole annual heatingenergy may be produced and saved locally by the householder himself. Additional applications may be

  10. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals.

    Science.gov (United States)

    Qian, G R; Shi, J; Cao, Y L; Xu, Y F; Chui, P C

    2008-03-21

    In this paper, investigations were undertaken to formulate the properties of fly ash-calcium sulfoaluminate (CSA) cement matrix by blending MSW fly ash with CSA cement. The compressive strength, pore structure, hydration phases, and leaching behavior of Zn and Pb doped MSW fly ash-CSA cement matrices were determined by XRD, MIP, DSC, FTIR, EDX, TCLP leaching test and other experiments. The results showed that the addition of MSW fly ash to form fly ash-CSA cement matrix reduced the compressive strengths of matrices and made the pore distribution of matrices coarser, compared to that of pure CSA cement matrix. However, fly ash-CSA cement matrix could effectively immobilize high concentration of heavy metal such as lead and zinc with much lesser leaching of TCLP. Besides ettringite AFt, Friedel phase was a new hydration phase formed in the matrix. The formation of these hydration phases was responsible for huge reservoir of heavy metal stabilization by chemical fixing. Therefore, it could be postulated that MSW fly ash-CSA cement matrix was a potential new constituent of S/S matrix for high concentration of heavy metals such as Zn and Pb ions. PMID:17728061

  11. Processing and characterisation of Calcium SulfoAluminate (CSA) eco-cements coated with a hybrid organo-inorganic material for photocatalytic applications

    OpenAIRE

    Morales-Cantero, Alejandro; Cabeza, Aurelio; De la Torre, Ángeles G.; Aranda, M. A. G.; Santacruz, Isabel

    2015-01-01

    On the one hand, Calcium SulfoAluminate (CSA) eco-cements are receiving increasing attention since their manufacture produces up to 40% less CO2 than ordinary Portland cement (OPC). In addition, they show interesting properties such as high early-age strengths, short setting times, impermeability, sulfate and chloride corrosion resistance and low alkalinity. On the other hand, water treatment is a key issue and it will become much more important in the decades ahead. We have developed a p...

  12. Trials to solidify a Zn-containing low level radioactive sludge with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    It is well-known that Zn2+ acts as a strong retarder or even an inhibitor for the setting and hardening reaction of Portland cement. Calcium sulfo-aluminate (CSA) cement was expected to be the best solution to solidify the Zn-containing sludge in this study, because it generates an Ettringite-phase during hydration in which the Zn2+ can be integrated. With a commercially available CSA cement it was possible to develop recipes with a sufficient percentage of wet waste volume and a passable range of consistency for all existent water contents. The compressive strength of these recipes varied between 20 and 40 MPa depending on how much waste was in the recipe and how much water the waste contained. With water and sulfate resistance conforming to the guideline B05, the compressive strength was above the required 10 MPa in all cases. Additionally the linear expansion incl. layers was always clearly lower than the limiting 2%. The disadvantage of the recipes was superficial disintegration of the samples during leaching. One effect is that one can easily scrape off material from the surface of the samples, another is that flakes of material from the leached samples can be found on the bottom of leach bottles. For these reasons the development of a recipe for the solidification of the Zn-sludge is still a work in progress. (author)

  13. Beneficial use of a cell coupling rheometry, conductimetry, and calorimetry to investigate the early age hydration of calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    A specific cell was designed to monitor simultaneously the evolution of the viscoelastic properties, electrical conductivity, and temperature of a cement paste with ongoing hydration. Hydration of calcium sulfo-aluminate cement by demineralized water or by a borated solution was then investigated as an example. Borate anions acted as set retarders but to a smaller extent than with ordinary Portland cement. The delay in cement hydration resulted from the precipitation of an amorphous or poorly crystallized calcium borate, which also caused a rapid stiffening (and thus a loss of workability) of the paste after mixing. The gypsum content of the CSA cement was shown to play a key role in the control of the cement reactivity. (authors)

  14. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: leaching behaviour of the solidified waste form, mechanisms of zinc retention.

    Science.gov (United States)

    Berger, Stéphane; Cau Dit Coumes, Céline; Champenois, Jean-Baptiste; Douillard, Thierry; Le Bescop, Patrick; Aouad, Georges; Damidot, Denis

    2011-10-30

    To assess the potential of calcium sulfoaluminate cement to solidify and stabilize wastes containing high amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration), a simulated cemented waste form was submitted to leaching by pure water at a fixed pH of 7 for three months, according to a test designed to understand the degradation processes of cement pastes. Leaching was controlled by diffusion. The zinc concentration in the leachates always remained below the detection limit (2 μmol/L), showing the excellent confining properties of the cement matrix. At the end of the experiment, the solid sample exhibited three zones which were accurately characterized: (i) a highly porous and friable surface layer, (ii) a less porous intermediate zone in which several precipitation and dissolution fronts occurred, and (iii) the sound core. Ettringite was a good tracer for degradation. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxide family) at early age (≤ 1 day), and to chemisorption onto aluminum hydroxide at later age. PMID:21889842

  15. Leaching of a simulated ZnCl2-rich radwaste stabilized with calcium sulfo-aluminate cement: experimental investigation and first attempt of modelling

    International Nuclear Information System (INIS)

    This paper reports the first leaching experiments performed on a simulated ZnCl2-rich waste stabilized with calcium sulfo-aluminate cement according to a standard test developed to understand and model the degradation processes of the cement paste. A simulated cemented waste form (cement paste prepared with a binder containing 20% gypsum and a 0.5 mol/L ZnCl2 mixing solution, and submitted to a thermal cycle at early age simulating the temperature rise and fall occurring in a 200 L drum of cemented waste) was submitted to leaching by pure water (fixed pH of 7) for 3 months. The cumulative quantities of Ca2+, OH-, Cl- and SO42- ions in the leachates increased linearly versus the square root of time, showing that leaching was controlled by diffusion. Zinc was never detected, showing the excellent confining properties of the cement matrix. Examination of the solid sample at the end of the experiment revealed three zones: (i) the highly porous and friable surface layer, composed of aluminum hydroxide, perovskite and probably C-(A)-S-H (thickness: 700 μm), (ii) a less porous intermediate zone in which several precipitation and dissolution fronts occurred (thickness: 1800 μm), and (iii) the sound core. The hydrated phase evolution along depth was qualitatively reproduced with a model coupling transport by diffusion and chemical reactions. (authors)

  16. Leaching of calcium sulfo-aluminate cement pastes by water at regulated pH and temperature: Experimental investigation and modeling

    International Nuclear Information System (INIS)

    Two cement pastes, prepared with a ye'elimite-rich calcium sulfo-aluminate binder containing 0% or 20% gypsum, were leached by water at regulated pH (7) and temperature (20 C) for three months with the aim of understanding and modeling the degradation processes. The cumulative quantities of Ca2+, OH- and SO42- ions in the leachates increased linearly versus the square root of time, showing that leaching was controlled by diffusion. The gypsum-free material exhibited the highest decalcification rate. Examination of the solid samples after three months revealed three zones: - the surface layer, highly porous and composed of AH3, perovskite and possibly C-(A)-S-H, - an intermediate zone, less porous, in which several precipitation and dissolution fronts occurred, and - the sound core. The hydrated phase evolution along depth was accurately determined and qualitatively reproduced with a model coupling transport by diffusion and chemical reactions. (authors)

  17. Obtaining a sulfoaluminate belite cement by industrial waste

    Directory of Open Access Journals (Sweden)

    Elkhadiri, L.

    2003-06-01

    Full Text Available Sulfoaluminate belite clinkers by burning raw at moderate temperatures near 1250 °C were synthesized. The used mixtures were made by calcium carbonate blended to two industrial wastes: low calcium fly ash and phosphogypsum. The clinkers were characterised by X-Ray Diffraction (XRD, Infrared Spectroscopy (FTIR and free lime. The hydraulic behaviour of the obtained cements, by adequate clinkers with 7% of added gypsum, was followed by XRD, scaning electronic microscopy (SEM, FTIR and NMR.

    Los clínkeres belíticos de sulfoaluminatos se obtienen por cocción de crudos a temperaturas moderadas, hacia 1.250 ºC. Esos crudos se componen de carbonato de calcio mezclados con dos subproductos industriales: cenizas volantes pobres en óxido de calcio y fosfoyeso. Los clínkeres obtenidos se caracterizaron a través de Difracción de Rayos X (DRX, Espectroscopia Infrarroja por Transformada de Fourier (FTIR y por la determinación de CaO libre. El comportamiento hidráulico de los cementos elaborados de los clínkeres con el 7% de yeso se estudió por DRX, Microscopía Electrónica de Barrido (SEM, FTIR y Resonancia Magnética Nuclear (RMN

  18. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase

    International Nuclear Information System (INIS)

    The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C4A3S) phase from different mixtures in the CaO-Al2O3-Fe2O3-SO3 system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amounts of reagent grade CaCO3, Al2O3, Fe2O3 and CaSO4.2H2O for the synthesis of Ca4Al(6-2x)Fe2xSO16, where x, comprised between 0 and 3, is the mole number of Al2O3 substituted by Fe2O3. With x increasing from 0 to 1.5, both the iron content of C4A3S phase and the amounts of side components such as C2F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 oC, melting phenomena were observed and, instead of the C4A3S solid solution, ferritic phases and anhydrite were formed.

  19. Effect of Aggregate Gradation with Fuller Distribution on Properties of Sulfoaluminate Cement Concrete

    OpenAIRE

    Gong, Chenchen; Jie ZHANG; Wang, Shoude; Zong, Wen; Lu, Lingchao

    2014-01-01

    Aggregate, the main ingredient of concrete, has a great effect on mechanical property and durability of concrete. Sulfoaluminate cement has lots of special properties such as high early-age compressive strength, fast hydration and setting rate, and hydration with slight swelling. But effect of aggregate gradation with Fuller distribution on properties of sulfoaluminate cement concrete was seldom studied. Hence, in this paper, experimental investigations on mechanical property and durability o...

  20. Solidification of spent radioactive organic solvent by sulfoaluminate and Portland cements

    International Nuclear Information System (INIS)

    The solidification of simulated spent radioactive organic solvent, tri-butyl phosphate/kerosene, was investigated by emulsification–solidification method using sulfoaluminate cement (SAC) and Portland cement (PC). Zeolite, calcium hydroxide and MR-1 type emulsifier were mixed into the cement blends for improving the performance of solidified waste forms (SWF). The properties of SWF were evaluated in terms of mechanical strength, leachability and mineral phase analyses. The hydration products of SWF were characterized by X-ray diffraction (XRD). The experimental results showed that the 28 d compressive strengths of SAC solidified waste forms (SACF) and PC solidified waste forms (PCF) were 14.23 and 19.07 MPa, respectively. Leaching sequence of three radionuclides in two kinds of SWF is Cs+ > Sr2+ > Co2+. Compared with PCF, SACF had better performance in preventing nuclides Co2+ and Cs+ from leaching to the environment. The XRD patterns suggested that simulated spent radioactive organic solvent and emulsifier in SWF did not obviously change the hydration products of the two cements (SAC and PC). (author)

  1. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, G. [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Buzzi, L.; Canonico, F. [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy); Gastaldi, D., E-mail: dgastaldi@buzziunicem.it [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy)

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  2. Contribution to the study of wastes stabilization by sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Calcium sulfo-aluminate cement is mainly composed of yeelimite known to be a precursor of ettringite formation. Ettringite is able to incorporate several heavy metals by isomorphous substitutions without altering its crystalline structure. The design of a binder required for immobilizing heavy metals was undertaken. The hydration study of clinker, and cement containing 4 amounts of gypsum has been carried out by means of XRD, DTA and IR spectrometry. It was pointed out that the addition of gypsum enhances hydration. Two binders were selected: 80/20 and 70/30. The immobilisation of 7 pollutants was very successful. Nevertheless, damages appeared with the binder 70/30 containing sodium chromate and dichromate: sodium caused activation of yeelimite reactivity and important dissolution of gypsum leading to important ettringite production. With a great amount of gypsum (30 %), dissolution led to secondary ettringite formation which damaged the hardened paste. Adding polyol enhances the retention of sodium chromate. On the other hand, the immobilisation of two types of weakly radioactive wastes supplied by CEA has been made. Results obtained in terms of setting time, compressive strength and leaching were excellent. (author)

  3. Effect of gypsum content on sulfoaluminate mortars stability

    OpenAIRE

    DESBOIS, Tiffany; Le Roy, Robert; PAVOINE, Alexandre; PLATRET, Gérard; FERAILLE-FRESNET, Adélaïde; ALAOUI, Amina

    2010-01-01

    Calcium sulfoaluminate clinker is one of the most promising cements that would lower the greenhouse gas effect accompanying cement production. This article examines the effect of gypsum content on the dimensional stability of sulfoaluminate mortars. Mechanical properties as chemical evolution are studied. Our results show that the mortar with the greatest gypsum content expands without a decrease of its mechanical properties when it is cured in water. Two hypotheses about the mortars hydratio...

  4. Hydration behavior of iron doped calcium sulfoaluminate phase at room temperature

    Directory of Open Access Journals (Sweden)

    Damidot D.

    2012-09-01

    Full Text Available Different samples of calcium sulfoaluminate phase doped with iron, (Ca4Al(6-2xFe2xSO16 with x = 0, 0.2 and 0.5, were synthesized at 1350°C. The hydration kinetics of the resulted phases was investigated by calorimetric and conductimetric techniques. The hydrated samples were analyzed by X-ray diffraction and scanning electron microscopy. The hydration of calcium sulfoaluminate was slightly modified by inclusion of iron in its structure. Dissolution rate of calcium sulfoaluminate phase doped with iron appeared to be slowed down such as the nucleation rate during the induction period while the percentage of reaction after 1 day was slightly increased. The analysis of hydrates indicated the formation of the same hydrates, ettringite and calcium monosulfoaluminate and the gibbsite, with or without iron replacement. Gibbsite played a major role in the kinetics of the induction period and thus the presence of iron may decrease its nucleation rate forming (A, FH3 instead of AH3.

  5. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    International Nuclear Information System (INIS)

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite

  6. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Telesca, Antonio [School of Engineering, University of Basilicata, Potenza (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States)

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  7. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.

    2013-12-12

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.

  8. Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration

    International Nuclear Information System (INIS)

    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO2 into the atmosphere when compared to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich BSA clinkers with nominal mineralogical compositions in the range C2S (50-60%), C4A3$ (20-30%), CA (10%) and C12A7 (10%). Using thermogravimetry, differential thermal analysis, high temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, we found that burning for 15 min at 1350 deg. C was the optimal procedure, in these experimental conditions, for obtaining the highest amount of C4A3$, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt.% of C4A3$, had 19.6, 27.1 and 27.7 wt.%, C4A3$ respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the β-C2S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C4A3$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution.

  9. SYNTHESIS AND CHARACTERIZATION OF HIGH BELITE SULFOALUMINATE CEMENT THROUGH RICH ALUMINA FLY ASH AND DESULFURIZATION GYPSUM

    Directory of Open Access Journals (Sweden)

    BING MA,

    2013-03-01

    Full Text Available The objective of this study was the preparation and characterization of high belite sulfoaluminate cement (HBSC from industrial residues. HBSC promises eco-friendly building materials with great mechanical performance at earlier ages than Ordinary Portland Cement (OPC. Preliminary results show the formation of main phase dicalcium silicate (C2S and ye’elimite (C4A3$ at 1250°C, as determined by X-ray diffraction (XRD, are promising. The formation of minerals in the clinker was analyzed by differential scanning calorimetry-thermogravimetry (DSC–TG. Likewise, Scanning electron microscope (SEM and XRD were used to carry out the analysis of the micro-structural and hydration products. The main HBSC hydration products, Ettringite and amorphous Al(OH3, were formed in the early stages; however, during the later stages, monosulfate and Strätlingite were formed. Isothermal conduction calorimetry measurements indicate that hydration properties of the cements are comparable to OPC; the total hydration heat after 3 days was 438 J/g. The optimum compressive strength values of the mortars after 1-, 3-, 7-, and 28-days were 24.9 MPa, 33.2 MPa, 35.6 MPa and 52.8 MPa which can meet the requirement of special structures.

  10. Carbonation on ternary cement systems

    OpenAIRE

    Martínez Ramírez, Sagrario; Fernández Carrasco, Lucía

    2012-01-01

    The main hydration reaction product in the ternary system fly ash, calcium sulphate and calcium aluminate cement (40/20/40) at 20°C is a hydrated calcium sulfoaluminate compound, an AFt phase slightly different from “traditional ettringite”. The carbonation of ettringite develops gypsum but in this case rapidcreekite is formed. For the first time it has been observed that carbonation of the mentioned calcium sulfoaluminate compound (AFt), an hydrated calcium sulphate carbonated phase (Ca2(SO4...

  11. Rietveld quantitative phase analysis of Yeelimite-containing cements

    OpenAIRE

    Álvarez-Pinazo, Gema; Cuesta, Ana; García-Maté, Marta; Santacruz, Isabel; Losilla, Enrique R.; De la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Yeelimite-containing cements are attracting attention for their tailored properties. Calcium sulfoaluminate, CSA, cements have high contents of Yeelimite and they are used for special applications. Belite calcium sulfoaluminate, BCSA or sulfobelite, cements have high contents of belite and intermediate contents of Yeelimite, and they may become an alternative to OPC. Here, we report Rietveld quantitative phase analyses for three commercially available CSA clinkers, one CSA cement,...

  12. Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite

    International Nuclear Information System (INIS)

    Highlights: ► Borate radioactive resins could be solidified using SAC blending with zeolite. ► Adding 5% zeolite reduced the leachability of Cs+ and Co2+. ► XRD results showed that B(OH)4− was incorporated into ettringite. - Abstract: The solidification of borate radioactive resins using sulfoaluminate cement (SAC) blending with zeolite was investigated, and the performance of SAC–zeolite matrix for immobilizing borate resin was evaluated based on the compressive strength, leachability and mineral phases of solidified waste forms. The experimental results showed that the 28 d compressive strength of resin SAC–zeolite waste forms was 18.8 MPa, the cemented waste forms meet the requirement of water, freezing, irradiation and impact resistance tests. The leaching processes of Cs+ and Co2+ were diffusion-limit step. The leachability of Cs+ was higher than Co2+ no matter what the matrix contained zeolite or not, but leachability of both cations was reduced by adding 5% zeolite. For SAC–zeolite matrix, the leaching rates of Cs+ and Co2+ were 6.40 × 10−5 cm/d and 1.62 × 10−7 cm/d, and the cumulative leaching fractions were 2.9 × 10−3 cm and 2.3 × 10−5 cm, respectively. The X-ray diffraction (XRD) analysis suggested that B(OH)4− was incorporated by substitution of SO4− in the crystalline structure of ettringite (3CaO·Al2O3·3CaSO4·32H2O).

  13. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  14. Premixed calcium silicate cement for endodontic applications

    OpenAIRE

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and am...

  15. Microstructural and performance-based approach of the durability of belite-ye’elimite-ferrite cements based concretes

    OpenAIRE

    Schmitt, Emmanuel

    2014-01-01

    Calcium sulfoaluminate (CSA) cements can be a solution to improve the environmental impact of concrete, thanks to the lower energy consumption and CO2 emission during their production. Their expansive, fast setting and rapid hardening properties contribute to the growing interest of engineers for concrete construction and prefabrication. However, the durability of sulfoaluminate concretes is not clearly assessed yet, especially in acidic and marine environments, as well as carbonation and chl...

  16. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  17. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  18. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration

    International Nuclear Information System (INIS)

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 0C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  19. Hydration and dimensional stability of calcium aluminate cement based systems

    OpenAIRE

    Bizzozero, Julien

    2014-01-01

    Calcium aluminate cements (CAC) are often used in combination with calcium sulfate and Portland cement for special applications where rapid setting, rapid drying and shrinkage compensation are required. A growing fraction of the clinker, which has the highest CO2 intensity, is being replaced by supplementary cementitious materials (SCM). These SCM are usually from industrial by-products such as slag, fly ashes or can simply be raw materials such as limestone. This project aims at replacing th...

  20. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    OpenAIRE

    Won-Chang Choi; Hyun-Do Yun

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composi...

  1. Evaluation of a porosity measurement method for wet calcium phosphate cements

    OpenAIRE

    Ajaxon, Ingrid; Maazouz, Yassine; Ginebra Molins, Maria Pau; Ohman, Caroline; Persson, Cecilia

    2015-01-01

    The porosity of a calcium phosphate cement is a key parameter as it affects several important properties of the cement. However, a successful, non-destructive porosity measurement method that does not include drying has not yet been reported for calcium phosphate cements. The aim of this study was to evaluate isopropanol solvent exchange as such a method. Two different types of calcium phosphate cements were used, one basic (hydroxyapatite) and one acidic (brushite). The cements were allowed ...

  2. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  3. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Science.gov (United States)

    Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.

    2016-01-01

    Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874

  4. Furcal perforation repair using calcium enriched mixture cement

    Directory of Open Access Journals (Sweden)

    Asgary Saeed

    2010-01-01

    Full Text Available This case describes a furcal perforation in a mandibular first molar accompanied by furcal lesion which has been managed after one month. Root canal treatment was performed; subsequently, the defect was repaired with calcium enriched mixture (CEM cement. The endodontically treated tooth was restored with amalgam. A 24-month recall showed no evidence of periodontal breakdown, no symptoms, in addition to completes healing of furcal lesion. According to physical and biological properties of the newly introduced CEM cement, this novel material may be suitable for sealing and repairing the perforations. The present case report supports this hypothesis.

  5. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    International Nuclear Information System (INIS)

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl- by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO2 gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl- analyses in the simulated pore solution

  6. On the development of an apatitic calcium phosphate bone cement

    Indian Academy of Sciences (India)

    Manoj Komath; H K Varma; R Sivakumar

    2000-04-01

    Development of an apatitic calcium phosphate bone cement is reported. 100 Particles of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) were mixed in equimolar ratio to form the cement powder. The wetting medium used was distilled water with Na2HPO4 as accelerator to manipulate the setting time. The cement powder, on wetting with the medium, formed a workable putty. The setting times of the putty were measured using a Vicat type apparatus and the compressive strength was determined with a Universal Testing Machine. The nature of the precipitated cement was analyzed through X-ray diffraction (XRD), fourier transform infrared spectrometry (FTIR) and energy dispersive electron microprobe (EDAX). The results showed the phase to be apatitic with a calcium–to–phosphorous ratio close to that of hydroxyapatite. The microstructure analysis using scanning electron microscopy (SEM) showed hydroxyapatite nanocrystallite growth over particulate matrix surface. The structure has an apparent porosity of ∼ 52%. There were no appreciable dimensional or thermal changes during setting. The cement passed the in vitro toxicological screening (cytotoxicity and haemolysis) tests. Optimization of the cement was done by manipulating the accelerator concentration so that the setting time, hardening time and the compressive strength had clinically relevant values.

  7. Cytotoxicity, calcium release, and pH changes generated by novel calcium phosphate cement formulations.

    Science.gov (United States)

    Khashaba, Rania M; Lockwood, Petra E; Lewis, Jill B; Messer, Regina L; Chutkan, Norman B; Borke, James L

    2010-05-01

    Few published studies describe the biological properties of calcium phosphate cements (CPCs) for dental applications. We measured several biologically relevant properties of 3 CPCs over an extended (8 wk) interval. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light-activated modified polyalkenoic acid, or 35% w/w polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs, respectively. Set cements were placed in direct contact with L929 fibroblasts for up to 8 weeks. Media Ca(+2) and pH were determined by atomic absorption spectroscopy and pH electrode respectively. Cell mitochondrial function was measured by MTT assay. Type I cements suppressed mitochondrial activity > 90% (vs. Teflon controls), but significantly (p 90% at all times. Type III cements elevated mitochondrial activity significantly after 7 wks. The pH profiles approached neutrality by 24 h, and all cements released calcium into the storage medium at all periods (24 h - 8 wk). We concluded that several types of cements had long-term biological profiles that show promise for dental applications. PMID:20235188

  8. Surgical Results of Lumbar Interbody Fusion Using Calcium Phosphate Cement

    OpenAIRE

    HIRASAWA, Motohiro; Mure, Hideo; Toi, Hiroyuki; Nagahiro, Shinji

    2014-01-01

    Clinical and radiological outcomes of lumbar interbody fusion using artificial fusion cages filled with calcium phosphate cements (CPCs) were retrospectively reviewed. Between 2002 and 2011, 25 patients underwent lumbar interbody fusion at Tokushima University Hospital, and 22 patients were enrolled in this study. Of these, 5 patients received autologous local bone grafts and 17 received CPC. Japan Orthopedic Association (JOA) score was used for clinical outcome assessments. Lumbar radiograph...

  9. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates

    OpenAIRE

    Atmeh, A.R.; Chong, E. Z.; Richard, G; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline c...

  10. Furcal perforation repair using calcium enriched mixture cement

    OpenAIRE

    Asgary Saeed

    2010-01-01

    This case describes a furcal perforation in a mandibular first molar accompanied by furcal lesion which has been managed after one month. Root canal treatment was performed; subsequently, the defect was repaired with calcium enriched mixture (CEM) cement. The endodontically treated tooth was restored with amalgam. A 24-month recall showed no evidence of periodontal breakdown, no symptoms, in addition to completes healing of furcal lesion. According to physical and biological properties of the...

  11. Calcium Aluminate based Cement as Dental Restorative Materials

    OpenAIRE

    Kraft, Lars

    2002-01-01

    This thesis presents the results from the development process of a ceramic dental filling material based on calcium aluminate cement. The main focus of the work concerns dimensional changes during setting, hardening and curing and the understanding of the factors controlling the dimensional stability of the system. A range of compositions for research purposes and the composition of Doxadent™ – a dental product launched on the Swedish market in October 2000 – were evaluated. Furthermore hardn...

  12. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  13. Prediction of the setting properties of calcium phosphate bone cement.

    Science.gov (United States)

    Rabiee, Seyed Mahmud; Baseri, Hamid

    2012-01-01

    Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs) for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties. PMID:22919372

  14. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C4A3S¯) in the presence of gypsum and varying amounts of calcium hydroxide

    International Nuclear Information System (INIS)

    Suspensions of synthetic ye'elimite (C4A3S¯) in a saturated gypsum (CS¯H2) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C4A3S¯, 15% CS¯H2, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO42−/OH−) AFm phases to form at early ages ( 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate

  15. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide

    KAUST Repository

    Hargis, Craig W.

    2013-06-01

    Suspensions of synthetic ye\\'elimite (C4A3S̄) in a saturated gypsum (CS̄H2) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C 4A3S̄, 15% CS̄H2, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO4 2 -/OH-) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate. © 2013 Elsevier Ltd.

  16. New developments in calcium phosphate bone cements: approaching spinal applications

    OpenAIRE

    Vlad, Maria Daniela

    2009-01-01

    La presente tesis doctoral (i.e., “New developments in calcium phosphate bone cements: approaching spinal applications”) aporta nuevos conocimientos en el campo de los cementos óseos de fosfato de calcio (CPBCs) en relación a su aplicación clínica en el campo de la cirugía vertebral mínimamente invasiva. La hipótesis central de esta investigación fue formulada en los siguientes términos: “Los cementos apatíticos pueden ser (si se optimizan) una alternativa mejor (debido a sus propiedades d...

  17. Reactions of fly ash with calcium aluminate cement and calcium sulphate

    OpenAIRE

    Fernández Carrasco, Lucía; Vázquez Ramonich, Enric

    2009-01-01

    The hydration processes in the ternary system fly ash/calcium aluminate cement/calcium sulphate (FA/CAC/C$) at 20 °C were investigated; six compositions from the ternary system FA/CAC/C$ were selected for this study. The nature of the reaction products in these pastes were analysed by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). At four days reaction time, the main hydration reaction product in these pastes was ettringite and the samples with major initial CAC presented minor ett...

  18. Another look at the deterioration of calcium aluminate cement concrete

    Directory of Open Access Journals (Sweden)

    Jambor, Jaromir

    1996-03-01

    Full Text Available Potential degradation of concrete structures made of calcium aluminate cement (CAC is well known and is caused by transformation (conversion of the thermodynamically metastable into stable calcium aluminate hydrate phases. This recrystallization is influenced by temperature and humidity; the structural degradation of the concrete itself thus its loss of strength, is strongly related to the pore structure of the hydrated cement paste, the critical parameters being the total volume of pores below 15-20 nm and the median micropore radius. This constitutes a novel procedure for evaluation of existing CAC concrete structure.

    La degradación potencial de estructuras de hormigón elaboradas con cemento aluminoso (CA es bien conocida. Este deterioro está causado por la recristalización (conversión de las fases del aluminato cálcico que son termodinámicamente metastables, en fases estables. En esta recristalización influye la temperatura y la humedad. Tanto la degradación del propio hormigón, como su pérdida de resistencias están relacionadas estrechamente con la estructura porosa de la pasta del cemento hidratado, siendo parámetros críticos el volumen total de los poros inferiores a 15-20 nm y el tamaño medio de los radios de los microporos. Esto constituye un nuevo procedimiento para evaluar las estructuras existentes de hormigón de cemento aluminoso (CA.

  19. Evaluation of a porosity measurement method for wet calcium phosphate cements.

    Science.gov (United States)

    Ajaxon, Ingrid; Maazouz, Yassine; Ginebra, Maria-Pau; Öhman, Caroline; Persson, Cecilia

    2015-11-01

    The porosity of a calcium phosphate cement is a key parameter as it affects several important properties of the cement. However, a successful, non-destructive porosity measurement method that does not include drying has not yet been reported for calcium phosphate cements. The aim of this study was to evaluate isopropanol solvent exchange as such a method. Two different types of calcium phosphate cements were used, one basic (hydroxyapatite) and one acidic (brushite). The cements were allowed to set in an aqueous environment and then immersed in isopropanol and stored under three different conditions: at room temperature, at room temperature under vacuum (300 mbar) or at 37℃. The specimen mass was monitored regularly. Solvent exchange took much longer time to reach steady state in hydroxyapatite cements compared to brushite cements, 350 and 18 h, respectively. Furthermore, the immersion affected the quasi-static compressive strength of the hydroxyapatite cements. However, the strength and phase composition of the brushite cements were not affected by isopropanol immersion, suggesting that isopropanol solvent exchange can be used for brushite calcium phosphate cements. The main advantages with this method are that it is non-destructive, fast, easy and the porosity can be evaluated while the cements remain wet, allowing for further analysis on the same specimen. PMID:26163278

  20. Development and characterisation of injectable calcium phosphate cements for use in vertebroplasty

    OpenAIRE

    Pittet, Christian; Lemaître, Jacques

    2007-01-01

    The global objective of this thesis was to understand how the starting components of brushite cements influence the cement properties relevant for its use in vertebroplasty. Therefore, this work focussed on the following cement properties : mechanical strength, X-ray opacity and heat release upon setting. To carry out the global objective, a test protocol was first developed to characterise the mechanical properties of calcium phosphate cements. The Mohr's circles representation allowed to un...

  1. Development and characterisation of injectable calcium phosphate cements for use in vertebroplasty

    OpenAIRE

    Pittet, Christian

    2002-01-01

    The global objective of this thesis was to understand how the starting components of brushite cements influence the cement properties relevant for its use in vertebroplasty. Therefore, this work focussed on the following cement properties : mechanical strength, X-ray opacity and heat release upon setting. To carry out the global objective, a test protocol was first developed to characterise the mechanical properties of calcium phosphate cements. The Mohr's circles representation allowed to un...

  2. Optimization of calcium chloride content on bioactivity and mechanical properties of white Portland cement

    International Nuclear Information System (INIS)

    This research investigates the optimization of calcium chloride content on the bioactivity and mechanical properties of white Portland cement. Calcium chloride was used as an addition of White Portland cement at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. Calcium chloride was dissolved in sterile distilled water and blended with White Portland cement using a water to cement ratio of 0.5. Analysis of the bioactivity and pH of white Portland cement pastes with calcium chloride added at various amounts was carried out in simulated body fluid. Setting time, density, compressive strength and volume of permeable voids were also investigated. The characteristics of cement pastes were examined by X-ray diffractometer and scanning electron microscope linked to an energy-dispersive X-ray analyzer. The result indicated that the addition of calcium chloride could accelerate the hydration of white Portland cement, resulting in a decrease in setting time and an increase in early strength of the pastes. The compressive strength of all cement pastes with added calcium chloride was higher than that of the pure cement paste, and the addition of calcium chloride at 8 wt.% led to achieving the highest strength. Furthermore, white Portland cement pastes both with and without calcium chloride showed well-established bioactivity with respect to the formation of a hydroxyapatite layer on the material within 7 days following immersion in simulated body fluid; white Portland cement paste with added 3%CaCl2 exhibited the best bioactivity. - Highlights: ► Optimization CaCl2 content on the bioactivity and mechanical properties. ► CaCl2 was used as an addition at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. ► CaCl2 resulted in a decrease in setting time and an increase in early strength. ► Addition of 3%CaCl2 exhibited the optimum formation of hydroxyapatite.

  3. Augmentation of Pedicle Screw Fixation with Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-hua; FU De-hao; LI Jin; XU Wei-hua; YANG Cao; YE Zhe-wei; ZUO Xiao-yan

    2004-01-01

    To determine whether a biodegradable calcium phosphate cement(CPC) provides significant augmentation of pedicle screw fixation or not,an in vitro biomechanical study was carried out to evaluate the biomechanical effect of CPC in the restoration and augmentation of pedicle screw fixation.Axial pullout test and cyclic bending resistance test were employed in the experiment,and polymethylmethacrylate (PMMA) was chosen as control.The results demonstrate that the pullout strengths following CPC restoration and augmentation are 74% greater on an average than those of the control group,but less than those of PMMA restoration group and augmentation group respectively (increased by 126% versus control).In cyclic bending resistance test,the CPC augmented screws are found to withstand a greater number of cycles or greater loading with less displacement before loosening,but the augmentation effect of PMMA is greater than that of CPC.

  4. The bactericidal and biocompatible characteristics of reinforced calcium phosphate cements

    International Nuclear Information System (INIS)

    Infection remains a serious medical problem in orthopaedic surgery. Antibiotic administration can be available either systemically via the blood stream or locally, directly into the infected bone. One of the main limitations of antibiotic administration is the development of multi-antibiotic-resistant bacterial strains. In this study, we developed bactericidal calcium phosphate cements (CPC) by incorporation of different molecular weight chitosan and hydroxypropyltrimethyl ammonium chloride chitosan (HACC). Two standard strains, S. epidermidis (ATCC35984) and S. aureus (ATCC25923), and one clinical isolate, methicillin-resistant S. epidermidis (MRSE), were selected to evaluate the antibacterial activity of these bone cements. Our data showed that the CPC loaded with low molecular weight chitosan and HACC significantly inhibited the bacterial adhesion and biofilm formation. In addition, HACC-containing CPC has no cytotoxic effects on both mouse pluripotent C3H10T1/2cell line and a murine L929 fibroblast cell line. We propose that HACC-containing CPC represents a promising polymer-based bactericidal bone scaffold in controlling orthopaedic surgery-related infection. (paper)

  5. Synthesis optimization of calcium aluminate cement phases for biomedical applications

    International Nuclear Information System (INIS)

    Calcium aluminate cement (CAC) has been studied as a potential material for applications in the areas of health such as, endodontics and bone reconstruction. These studies have been based on commercial products consisting of a mixture of phases. Improvements can be attained by investigating the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance for biomedical applications. Thus, the aim of this work was to study the CAC synthesis routes in the Al2O3-CaCO3 and Al2O3-CaO systems, as well as the phase characterization attained by means of X ray analysis. The Al2O3-CaO route enabled the production of the target phases (CA, CA2, C3A and C12A7) with a higher purity compared to the Al2O3-CaCO3 one. As a result the particular properties of these phases can be evaluated to define a more suitable composition that results in better properties for an endodontic cement and other applications. (author)

  6. 3D Computational Simulation of Calcium Leaching in Cement Matrices

    Directory of Open Access Journals (Sweden)

    Gaitero, J. J.

    2014-12-01

    Full Text Available Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.El lixiviado de calcio es un proceso de degradación consistente en la disolución progresiva de la pasta de cemento por la migración de los átomos de calcio a la disolución agresiva. Se trata por tanto de un fenómeno complejo que involucra simultáneamente diferentes fases y procesos de disolución y difusión. En este trabajo se desarrolló y probó una nueva herramienta computacional para la simulación del proceso de degradación en tres dimensiones. Para ello se simuló el lixiviado de calcio acelerado provocado por una disolución de nitrato amónico 6M en matrices de cemento. Como resultado se obtuvieron la representación tridimensional de la matriz y las propiedades físico-químicas sus fases a lo largo del tiempo. Esto permitió estudiar la evolución de dichas propiedades a lo largo del proceso de degradación así como en función de su posición dentro de la matriz. Los resultados obtenidos coinciden con los valores experimentales del módulo elástico tanto

  7. Investigating calcium polyphosphate addition to a conventional calcium phosphate cement for bone-interfacing applications

    Science.gov (United States)

    Krausher, Jennifer Lynn

    Calcium phosphate cements (CPCs) are of great interest in bone regeneration applications because of their biocompatibility and osteoconductivity, and as delivery vehicles for therapeutics; however, delivery applications have been limited by adverse interactions between therapeutics and the cement setting reaction. Amorphous calcium polyphosphate (CPP) yields a biodegradable material with a demonstrated drug delivery capacity following appropriate processing. The incorporation of drug-loaded CPP into a CPC is under consideration as a method of minimizing adverse interactions and extending drug release. This thesis represents the first investigation into the effects of CPP addition on the properties, setting and antibiotic release profile of a conventional apatitic calcium phosphate cement. As-made, gelled and vancomycin-loaded CPP particulate were added to the powder component of a conventional dicalcium phosphate/tetracalcium phosphate CPC. The setting behaviour, set properties and microstructure of the resulting CPP-CPCs were evaluated with setting time testing (Gilmore needle method), pH testing, mechanical testing, SEM imaging, XRD and FTIR analysis. In vitro degradation and elution behaviour were evaluated by monitoring calcium release (atomic absorbance spectroscopy), mechanical strength and vancomycin release (UV-visual spectrophotometry). CPP addition was found to increase the setting time, reduce the mechanical strength and inhibit the conversion of the CPC starting powders to the set apatitic phase. The most likely mechanism for the observed effect of CPP addition was the adsorption of polyphosphate chains on the particle surfaces, which would inhibit the dissolution of the starting powders and the conversion of apatite precursor phases to apatite, leading to reduced mechanical properties. The detrimental effects of CPP were reduced by limiting the CPP fraction to less than a few weight per cent and increasing the size of the CPP particulate. CPP

  8. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    Science.gov (United States)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  9. The use of calcium phosphate cement in vertebroplasty of the base of odontoid process.

    Science.gov (United States)

    Zapałowicz, Krzysztof; Wojdyn, Maciej; Zieliński, Krzysztof Włodzimierz; Snopkowska-Wiaderna, Dorota

    2013-01-01

    The authors describe the use of bone cement containing calcium phosphate for vertebroplasty of the cavity in the base of odontoid process. A 23-year-old female patient was operated on by incision in lateral cervical area (anterior open access). After a blunt dissection, the working cannula (Kyphon) was introduced under fluoroscopic guidance through the C2 vertebral body to the cavity in the base of the odontoid process. Intraoperatively, biopsy of the lesion was taken and histo-pathological examination excluded the presence of neoplasm. The cavity, presumably haemangioma, was successfully filled with calcium phosphate bone cement KyphOsTM FS (Ky-phon). The proper filling without paravertebral cement leak was confirmed by postoperative computed tomography (CT). The CT and magnetic resonance imaging performed 9 months after the procedure showed that cement was still present in the cavity. This is the first use of calcium phosphate cement to conduct the vertebroplasty of C2 vertebra. PMID:24375006

  10. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate

    International Nuclear Information System (INIS)

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author)

  11. Balloon vetebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures

    NARCIS (Netherlands)

    Verlaan, JJ; van Helden, WH; Oner, FC; Verbout, AJ; Dhert, WJA

    2002-01-01

    Study Design. A human cadaveric model was used to evaluate balloon vertebroplasty in traumatic vertebral fractures. Objectives. To assess the feasibility and safety of balloon vertebroplasty followed by calcium phosphate cement augmentation to prevent recurrent kyphosis. Summary of Background Data.

  12. Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly ash cement

    OpenAIRE

    Ioannou, Socrates; Paine, Kevin; Reig Cerdá, Lucía; Quillin, Keith

    2015-01-01

    This paper reports an assessment of the performance of concrete based on a calcium sulfoaluminate–anhydrite–fly ash cement combination. Concretes were prepared at three different w/c ratios and the properties were compared to those of Portland cement and blast-furnace cement concretes. The assessment involved determination of mechanical and durability properties. The results suggest that an advantageous synergistic effect between and ettringite and fly ash (Ioannou et al., 2014) was reflected...

  13. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  14. Multiple characterization study on porosity and pore structure of calcium phosphate cements

    OpenAIRE

    Pastorino Carraz, David; Canal Barnils, Cristina; Ginebra Molins, Maria Pau

    2015-01-01

    Characterization of the intricate pore structure of calcium phosphate cements is a key step to successfully link the structural properties of these synthetic bone grafts with their most relevant properties, such as in vitro or in vivo behaviour, drug loading and release properties, or degradation over time. This is a challenging task due to the wide range of pore sizes in calcium phosphate cements, compared to most other ceramic biomaterials. This work provides a critical assessment of three ...

  15. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    OpenAIRE

    Selen Küçükkaya; Mehmet Ömer Görduysus; Naciye Dilara Zeybek; Sevda Fatma Müftüoğlu

    2016-01-01

    The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM) cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After i...

  16. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Kamphuis, G.J.; Thune, P.C.; Oner, F.C.; Jansen, J.A.; Walboomers, X.F.

    2011-01-01

    Bone metastases are usually treated by surgical removal, fixation and chemotherapeutic treatment. Bone cement is used to fill the resection voids. The aim of this study was to develop a local drug delivery system using a calcium phosphate cement (CPC) as carrier for chemotherapeutic agents. CPC cons

  17. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    International Nuclear Information System (INIS)

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′H-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates

  18. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  19. Blended Calcium Aluminate-Calcium Sulfate Cement-Based Grout For P-Reactor Vessel In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH ≤ 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts (Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010). Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere (Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively). Radiolysis calculations are also provided in a separate document (Reyes-Jimenez, 2010).

  20. The effects of citric acid on the hydration of calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; YAN Yu-hua; WANG You-fa; LI Shi-pu

    2001-01-01

    @@ INTRODUCTION Calcium phosphate cements (CPC) overcome the practical disadvantages of blocks or granulesl can be handled as a paste and sit in situ. Their structure and composition close to that of HAP make them biocompatible materials. 2 The conventional calcium phosphate cement had some problems such as long setting time (30~60 min) and low compressive strength, etc. In our system, an α-TCP/TTCP powder mixture was mixed with water containing citric acid to control the setting time and compressive strength. In this paper, the effects of various concentration citric acid solutions on the properties of the cement are reported.

  1. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  2. In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement

    International Nuclear Information System (INIS)

    This study aims to investigate the interaction between calcium silicate/calcium phosphate cement (CS/CPC) and osteogenesis, in particular the in vitro osteoblast-like and endothelial cells' response to CS/CPC. The effect of CS/CPC on cell attachment, proliferation and differentiation of murine osteoblast-like cell MC3T3-E1, as well as the influence on the cell attachment and proliferation of human umbilical vein endothelial cell (HUVEC), was studied in detail. Our results indicated that CS/CPC exhibited excellent biocompatibility to the osteoblast-like cells. Moreover, the morphology and cytoskeleton organization of MC3T3-E1 cultured on the CS/CPC disks suggested that CS/CPC induced better cell adhesion and cell spreading. Simultaneously, cell proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 were significantly improved after 3 and 7 days of culture on CS/CPC disks in comparison with CPC disks. Additionally, on CS/CPC disks, HUVEC attached well on day 1 and cell proliferation was also greatly enhanced by day 7. Collectively, these results suggest that the introduction of calcium silicate may improve the cell response involved in the osteogenesis and thus may be beneficial to further modify CPC as a better bone repairing material.

  3. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol.

    Science.gov (United States)

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2016-08-01

    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. PMID:27157721

  4. Evaluation of Calcium Phosphate Cement As a Root Canal Sealer Filling Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Calcium phosphate cement for root end sealing was obtained by mixing α-tricalcium phosphate and additives with an aqueous solution of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatibility of this material was investigated primarily by subcutaneous implantation tests. Then calcium phosphate cement was used to fill three adult dogs' root canal, both calcium hydroxide paste and hydroxyapatite paste as control. The animals were killed at 4,12,20 weeks postoperatively respectively. The effects of different materials on the apical closure, restoration of periapical tissues and adaptability to the dentinal surface were examined by optical and electronic microscope. The observation at 20 weeks shows that the calcium phosphate cement has the potentialities of being a root canal sealer filling material available for pulpless teeth with open-apex and destructive periapical tissue.

  5. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.

    Science.gov (United States)

    Hesaraki, Saeed; Nezafati, Nader

    2014-08-01

    The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering. PMID:24399509

  6. Characterization of modified calcium-silicate cements exposed to acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  7. Characterization of modified calcium-silicate cements exposed to acidic environment

    International Nuclear Information System (INIS)

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: → An acidic environment affects modified fast setting calcium silicate-based cements. → No surface changes are observed in acidic environment. → An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. → A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  8. Effect of calcium triphosphate cement on proximal humeral fracture osteosynthesis: a finite element analysis.

    Science.gov (United States)

    Kennedy, Jim; Feerick, Emer; McGarry, Patrick; FitzPatrick, David; Mullett, Hannan

    2013-08-01

    PURPOSE. To measure the effect of void-filling calcium triphosphate cement on the loads at the implant-bone interface of a proximal humeral fracture osteosynthesis using a finite element analysis. METHODS. Finite element models of a 3-part proximal humeral fracture fixed with a plate with and without calcium triphosphate cement augmentation were generated from a quantitative computed tomography dataset of an intact proximal humerus. Material properties were assigned to bone fragments using published expressions relating Young's modulus to local Hounsfield number. Boundary conditions were then applied to the model to replicate the physiological loads. The effect of void-filling calcium triphosphate cement was analysed. RESULTS. When the void was filled with calcium triphosphate cement, the pressure gradient of the bone surrounding the screws in the medial fracture fragment decreased 97% from up to 21.41 to 0.66 MPa. Peak pressure of the fracture planes decreased 95% from 6.10 to 0.30 MPa and occurred along the medial aspect. The mean stress in the screw locking mechanisms decreased 78% from 71.23 to 15.92 MPa. The angled proximal metaphyseal screw had the highest stress. CONCLUSION. Augmentation with calcium triphosphate cement improves initial stability and reduces stress on the implant-bone interface. PMID:24014777

  9. Leaching of nuclear waste glass in cement pore water: effect of calcium in solution

    International Nuclear Information System (INIS)

    In the French geological repository concept, intermediate-level vitrified wastes could be disposed of in a cement medium. The glass dissolution mechanisms and kinetics, expected to depend strongly on the chemical composition and pH of the leaching water, were studied in various cement pore water compositions corresponding to different stages of cement aging. In this study, we focused on the effects induced by cement pore water at equilibrium with respect to Portlandite (pH[25 C] = 12.4). A decrease in the maximum glass dissolution rate due to the effect of calcium was clearly observed compared to the reference medium, i.e. at the same pH in KOH solution. At higher reaction progress, calcium in solution was almost totally consumed after a few days, probably due to the formation of Calcium Silicate Hydrate (C-S-H) phases with silicon leached from the glass. Two assumptions can be proposed to explain the effect of calcium on the initial regime: either the calcium from solution reacts with silicon released to form a C-S-H passivating layer at the glass/solution interface, or calcium compensates two non-bridging oxygen (Si-O-) in the altered layer, which could decrease the hydrolysis of silicon bonds. (authors)

  10. Calcium aluminate cements for nuclear wastes conditioning: literature review and new approaches

    International Nuclear Information System (INIS)

    Encapsulate the diverse wastes produced by nuclear activities in cementitious binders may be very complex due to the adverse cement-waste interactions. Consequences are for example: strong delay, poor mechanical strength or low resistance to leaching. In this case, pure or blended calcium aluminate cements (CACs) may be valuable alternatives. This paper summarises the properties of CAC and blended CAC system and gives some examples from literature where calcium aluminate cements are used for conventional wastes or nuclear wastes conditioning. Moreover, it proposes another approach: using CAC not only as a binder, but also as a chemical reactant. After dissolution calcium aluminates ions can combine with many chemical species (sulphates, nitrates, chlorides, alkali metals, heavy metals) to precipitate specific hydrates allowing chemical trapping of these species. An example is given for the purification of Ni and Zn nitrates solutions. (authors)

  11. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    OpenAIRE

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  12. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment

    OpenAIRE

    Ki Yong Ann; Chang-Geun Cho

    2014-01-01

    The present study concerns a development of calcium aluminate cement (CAC) concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC), ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concr...

  13. Device for continuous radiometric determination of the calcium and iron content in raw slurry for cement

    International Nuclear Information System (INIS)

    The characteristic iron and calcium-K series were excited using a Cd-109 isotope source. In order to determine the calcium and iron content in dry slurry, the Compton-effect scattered radiation of the Cd-109 source in the sample was used. A numerical process was worked out which allowed the elimination of the influence of changing contents of iron and water on the results of the calcium content determinations, and a device for continuous radiometric determination of calcium and iron in raw slurry was designed and constructed. The device was installed in the cement plant 'Przyjazn' under technical measuring conditions and its applicability was tested. (orig./LH)

  14. Characterisation of Ba(OH)(2)-Na2SO4-blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    OpenAIRE

    Mobasher, N.; Bernal, S. A.; Hussain, O.H.; Apperley, D.C.; Kinoshita, H.; Provis, J.L.

    2014-01-01

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH)2–Na2SO4–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO4 and BaCO3, along with Ba-substituted calcium sulfoaluminate hydrat...

  15. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  16. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D; Steenberg, M; Kirkegaard, L F; Skibsted, Jørgen; Yue, Y

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  17. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    International Nuclear Information System (INIS)

    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  18. Calcium Silicate-Based Cements Associated with Micro- and Nanoparticle Radiopacifiers: Physicochemical Properties and Bioactivity

    OpenAIRE

    BOSSO-MARTELO, Roberta; Juliane Maria GUERREIRO-TANOMARU; Viapiana, Raqueli; Berbert, Fábio Luis Camargo Vilella; Basso Bernardi, Maria Inês; Tanomaru-Filho, Mario

    2015-01-01

    Objective. The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the ch...

  19. Particle size of a new endodontic cement compared to Root MTA and calcium hydroxide

    OpenAIRE

    Soheilipour, Elham; Kheirieh, Sanam; Madani, Majid; Akbarzadeh Baghban, Alireza; Asgary, Saeed

    2009-01-01

    INTRODUCTION: Particle size and distribution can influence the properties of materials. This study analyzed and compared the particle size of Root MTA, calcium hydroxide (CH), and a new endodontic cement called calcium enriched material (CEM). MATERIALS AND METHODS: The particle size of each material was analyzed three times using 0.05 mg of test material with a particle size analyzer. The particle size distribution ranges, the cumulative percentage and the mean of particle sizes were calcula...

  20. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementscements for collagen synthesis. Summarizing (1) non-aged cements showed higher cell proliferation than aged cements, probably favoured by the presence of Si-OH gel and the early formation of apatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell

  1. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements

    International Nuclear Information System (INIS)

    A bone substitute material was developed consisting of a chitosan oligosaccharide (COS) solution in a liquid phase and gelatin (GLT) containing calcium phosphate powder in a solid phase. The physicochemical and biocompatible properties of the hybrid cements were evaluated. The addition of COS to cement did not affect the setting time or diametral tensile strength of the hybrid cements, whereas GLT significantly prolonged the setting time and decreased the strength slightly. The setting reaction was inhibited by the addition of GLT to the initial mixture, but not by COS. However, the presence of GLT appreciably improved the anti-washout properties of the hybrid cement compared with COS. COS may promote the cement's biocompatibility as an approximate twofold increase in cell proliferation for 10% COS-containing cements was observed on day 3 as compared with the controls. The combination of GLT and COS was chosen due to the benefits achieved from several synergistic effects and for their clinical applications. Cement with 5% GLT and 10% COS may be a better choice among cements in terms of anti-washout properties and biological activity.

  2. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    Science.gov (United States)

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement. PMID:27287094

  3. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles.

    NARCIS (Netherlands)

    Link, D.P.; Dolder, J. van den; Jurgens, W.J.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    In this study, the mechanical properties of an implanted calcium phosphate (CaP) cement incorporated with 20wt% poly (dl-lactic-co-glycolic acid) (PLGA) microparticles were investigated in a rat cranial defect. After 2, 4 and 8 weeks of implantation, implants were evaluated mechanically (push-out te

  4. Preparation and Compressive Strength of Calcium Phosphate Bone Cement Containing N, O-carboxymethyl Chitosan

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to produce a composite more similar in composition to human bone. The compressive strength of the new material was increased by 10 times compared with conventional CPC.

  5. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.

    Science.gov (United States)

    Miyazaki, Toshiki; Ohtsuki, Chikara; Kyomoto, Masayuki; Tanihara, Masao; Mori, Akiko; Kuramoto, Kou-ichi

    2003-12-15

    Bone cement consisting of polymethylmethacrylate (PMMA) powder and methylmethacrylate (MMA) liquid is used extensively for fixation of implants such as artificial hip joints with living bone. This type of cement, however, does not show direct bonding to the living body, and hence the fixation is liable to loosen over a long implantation period. Bioactive materials have received much attention because of their capability for bone-bonding, i.e., bioactivity, when implanted in bony defects. Osteoconduction of the bioactive materials is caused by formation of a bone-like apatite layer through a surface reaction between the material and surrounding body fluid. The apatite formation can be induced by a silanol (Sibond;OH) group formed on the materials as well as a dissolution of calcium ion (Ca(2+)) from the material. Incorporation of alkoxysilane and calcium chloride (CaCl(2)) may provide PMMA bone cement with bioactivity, because alkoxysilane gives Sibond;OH after hydrolysis, whereas CaCl(2) releases Ca(2+). In this study, we investigated the potential on bioactivity of the modified PMMA bone cement with alkoxysilane and calcium chloride. PMMA powder was mixed with various amounts of CaCl(2), and MMA liquid with various amounts of 3-methacryloxypropyltrimethoxysilane (MPS). The mixed paste was immersed in a simulated body fluid (Kokubo solution) that has a similar concentration in inorganic constituents to human blood plasma. After soaking for various periods, apatite formation on the cement was examined. Apatite formation was observed by the addition of CaCl(2) with contents of 16 mass % and more. Incorporation of MPS accelerates the apatite formation. Setting time of the cement was significantly elongated after the addition of MPS, whereas compressive strength significantly decreased with increasing the contents of CaCl(2) and MPS. The hardened cement containing 20 mass % of CaCl(2) in the powder and 20 mass % of MPS in the liquid showed a tendency to be more

  6. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement

    Science.gov (United States)

    Bhavana, Vankayala; Chaitanya, Krishna Popuri; Gandi, Padma; Patil, Jayaprakash; Dola, Binoy; Reddy, Rahul B.

    2015-01-01

    Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca3SiO2), compared to commercial glass ionomer cements (GICs) and mineral trioxide aggregate (MTA). Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA) test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P Biodentine created larger inhibition zones than MTA and GIC. PMID:25657526

  7. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine compared to MTA and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Vankayala Bhavana

    2015-01-01

    Full Text Available Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca 3 SiO 2 , compared to commercial glass ionomer cements (GICs and mineral trioxide aggregate (MTA. Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P < 0.05. Conclusion: All materials showed antimicrobial activity against the tested strains except for GIC on Candida. Largest inhibition zone was observed for Streptococcus group. Biodentine created larger inhibition zones than MTA and GIC.

  8. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.

    Science.gov (United States)

    Sopcak, T; Medvecky, L; Giretova, M; Kovalcikova, A; Stulajterova, R; Durisin, J

    2016-01-01

    Self-setting simple calcium silicate/brushite (B) biocements with various Ca/P ratios were prepared by mutual mixing of both monocalcium silicate hydrate (CSH) or β-wollastonite (woll) powders with B and the addition of 2 wt% NaH2PO4 solution as a hardening liquid. The phase composition of the final composites and the texture of the surface calcium phosphate/silica layer were controlled by the starting Ca/P ratio in composites and the pH during setting. It was verified that the presence of continuous bone-like calcium phosphate coating on the surface of the samples was not essential for in vitro osteoblast proliferation. The nanocrystalline calcium deficient hydroxyapatite and amorphous silica were found as the main setting products in composite mixtures with a Ca/P ratio close to the region of the formation of deficient hydroxyapatite-like calcium phosphates. No CSH phase with a lower Ca/Si ratio was identified after transformation. The results confirmed a small effect of the monocalcium silicate addition on the compressive strength (CS) of cements up to 30 wt% (around 20-25 MPa) and a significant rise of the value in 50 woll/B cement (65 MPa). The final setting times of the cement composites varied between 5 and 43 min depending on the P/L ratio and the type of monocalcium silicate phase in the cement mixture. 10CSH/B and 50 woll/B cements with different textures but free of both the needle-like and perpendicularly-oriented hydroxyapatite particles on the surface of the samples had low cytotoxicity. PMID:27509265

  9. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  10. Preparation and in vitro evaluation of strontium-doped calcium silicate/gypsum bioactive bone cement

    International Nuclear Information System (INIS)

    The combination of two or more bioactive components with different biodegradability could cooperatively improve the physicochemical and biological performances of the biomaterials. Here we explore the use of α-calcium sulfate hemihydrate (α-CSH) and calcium silicate with and without strontium doping (Sr-CSi, CSi) to fabricate new bioactive cements with appropriate biodegradability as bone implants. The cements were fabricated by adding different amounts (0–35 wt%) of Sr-CSi (or CSi) into the α-CSH-based pastes at a liquid-to-solid ratio of 0.4. The addition of Sr-CSi into α-CSH cements not only led to a pH rise in the immersion medium, but also changed the surface reactivity of cements, making them more bioactive and therefore promoting apatite mineralization in simulated body fluid (SBF). The impact of additives on long-term in vitro degradation was evaluated by soaking the cements in Tris buffer, SBF, and α-minimal essential medium (α-MEM) for a period of five weeks. An addition of 20% Sr-CSi to α-CSH cement retarded the weight loss of the samples to 36% (in Tris buffer), 43% (in SBF) and 54% (in α-MEM) as compared with the pure α-CSH cement. However, the addition of CSi resulted in a slightly faster degradation in comparison with Sr-CSi in these media. Finally, the in vitro cell-ion dissolution products interaction study using human fetal osteoblast cells demonstrated that the addition of Sr-CSi improved cell viability and proliferation. These results indicate that tailorable bioactivity and biodegradation behavior can be achieved in gypsum cement by adding Sr-CSi, and such biocements will be of benefit for enhancing bone defect repair. (paper)

  11. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-calcium Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    LI Dongxu; SONG Xuyan

    2008-01-01

    The mechanical properties of several kinds of coal gangue calcined with limestone were Researched so as to find the optimum way of calcinations with limestone. Mierostructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and method of mercury in trusion poremeasurement (MIP), etc. The experiment can approve those results: when proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristic such as hydration process, hydration product and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  12. The mechanical properties and hydration characteristics of cement pastes containing added-calcium coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Dongxu Li; Xuyan Song [Nanjing University of Technology, Nanjing (China). College of Material Science and Engineering

    2008-04-15

    The mechanical properties of several kinds of coal gangue calcined with limestone were researched so as to find the optimum way of calcinations with limestone. The microstructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and the method of mercury in trusion poremeasurement. When the proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, the activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristics such as hydration, hydration products and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  13. Development of a novel fluorapatite-forming calcium phosphate cement with calcium silicate: in vitro and in vivo characteristics.

    Science.gov (United States)

    Suzuki, Yusuke; Hayashi, Makoto; Yasukawa, Takuya; Kobayashi, Hiroshi; Makino, Kosuke; Hirano, Yoriyuki; Takagi, Shozo; Chow, Laurence C; Ogiso, Bunnai

    2015-01-01

    Aim of this study was to develop a novel fluorapatite-forming calcium phosphate cement (FA-CPC) with tricalcium silicate (TCS) for endodontic applications and to examine its in vitro and in vivo characteristics. The FA-CPC powder consisted of 62.8% CaHPO4, 30.8% CaCO3, and 6.4% NaF. One part of TCS was combined with 9 parts of FA-CPC powder (FA-CPC with TCS). A 1.5 M phosphate solution was used as cement liquid. Setting time (ST), diametral tensile strength (DTS), phase composition by X-ray diffraction (XRD), and cement alkalinity were analyzed. Cement biocompatibility was assessed using rat subcutaneous model. Cement ST was 10.3±0.6 min and DTS was 3.89±0.76 MPa. XRD patterns showed that highly crystalline apatitic material was the only significant phase present and pH value was approximate 11.0. FA-CPC with TCS demonstrated similar biocompatibility as that of mineral trioxide aggregate control. These results suggest that FA-CPC with TCS may be useful for endodontic applications. PMID:25740309

  14. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications

    Indian Academy of Sciences (India)

    Manoj Komath; H K Varma

    2003-06-01

    A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented. The paper describes its characteristic properties including results of bio- compatibility studies. A conventional two-component calcium phosphate cement formulation (having a powder part containing dry mixture of acidic and basic calcium phosphate particles and a liquid part containing phosphate solution) is modified with a biocompatible gelling agent, to induce flow properties and cohesion. The quantity of the gelling agent is optimized to get a viscous paste, which is smoothly injectable through an 18-gauge needle, with clinically relevant setting parameters. The new formulation has a setting time of 20 min and a compressive strength of 11 MPa. The X-ray diffraction, Fourier transform infrared spectrometry, and energy dispersive electron microprobe analyses showed the phase to be hydroxyapatite, the basic bone mineral. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The cement did not show any appreciable dimensional or thermal change during setting. The injectability is estimated by extruding through needle and the cohesive property is assessed by water contact method. The cement passed the in vitro biocompatibility screening (cytotoxicity and haemolysis) tests.

  15. An experimental approach to the study of the rheology behaviour of synthetic bone calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, J.; Fernandez, E.; Sarda, S.; Nilsson, M.; Ginebra, M.P.; Planell, J.A. [Universidad Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering; Martinez, S. [Barcelona Univ. (Spain). Mineralogia i Recursos Minerals

    2001-07-01

    Calcium phosphate cements were developed to fit surgical needs in biomedical fields such as odontology or traumatology. Nowadays, a broad field of new applications have been found for this kind of materials. Drug delivery systems, tissue-engineering scaffolds and osteoporotic bone filling applications are some of the new fields that are being benefited with these materials. Looking at both, commercial and new experimental calcium phosphate cements it is found that {alpha}-tricalcium phosphate is the main reactive powder responsible for the setting and the hardening of the cement. Thus, it is important to know how {alpha}-tricalcium phosphate affects injectability of these cements. The aim of this study was to investigate the rheological behaviour of {alpha}-tricalcium phosphate slurries in order to know how the cement injectability should be modified. Factors such as liquid to powder ratio, particle size of the main reactive powder and the addition of dispersants have been considered. The results showed that viscosity decreased when particle size of reactant was increased and when liquid to powder ratio was increased. It was also found that a minimum of viscosity exists at an optimum value of the weight percentage of dispersant. (orig.)

  16. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  17. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  18. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    Science.gov (United States)

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  19. Clogging and Cementation Caused by Calcium or Iron Biogrouts

    Science.gov (United States)

    Ivanov, V.; Chu, J.; Naeimi, M.

    2012-12-01

    Chemical grouts are often used to reduce the hydraulic conductivity of soil for seepage control purposes. However, chemical grouts can be expensive and environmentally unfriendly. Therefore, two new biogrouts were tested for their bioclogging and biocementation properties. The first was calcium-based biogrout, which contained urease-producing bacteria, calcium chloride and urea for the crystallization of calcite due to enzymatic hydrolysis of urea. The second was iron-based biogrout, which consisted of urease-producing bacteria, ferric chelate, and urea for the precipitation of ferric hydroxide and carbonate due to enzymatic hydrolysis of urea. The permeability of sand (P, 10^-5 m/s), treated with calcium-based biogrout, linearly decreased as a function of the content of precipitated calcium (C, % w/w) according to the following equation: P = 5.1 - 4.0 C. Meanwhile, the permeability of sand treated with iron-based biogrout dropped to 2.7x10^-6 m/s at content of precipitated iron (F, % w/w) about 0.35 % w/w , by the equation: P = 5.1 - 14.6 F , and then slowly decreased to 1.4x10^-7 m/s at content of precipitated iron 1.8% w/w by the following equation: P = 0.36 - 0.23F. Both biogrouts have approximately same efficiency in the reduction of permeability of sand to low values. However, the mechanisms of bioclogging are probably different because the reduction of permeability by calcium-based biogrout was described by linear function of precipitated calcium but the reduction of permeability by iron-based biogrout showed two steps of the clogging. Different functions and mechanisms were related probably to the different type of precipitates. The images of biogrouted sand samples show that calcium-based biogrout produced white amorphous or crystallised calcium carbonate, while iron-based biogrout produced gel-like brown precipitate without visible crystals. The unconfined compressive strengths of the sand treated with different biogrouts (Y, kPa) increased by power

  20. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Poulsen, S.L.; Herfort, D.;

    2012-01-01

    represents a potential alternative to traditional SCMs, used for reduction of the CO2 emission associated with cement production. It is found that the NCAS glass takes part in the hydration reactions after about two weeks of hydration and a degree of reaction of approx. 50 % is observed after 90 days of......This work investigates the hydration of blended Portland cement containing 30 wt.% Na2O-CaO-Al2O3-SiO2 (NCAS) glass particles either as the only supplementary cementitious material (SCM) or in combination with limestone, using 29Si MAS NMR, powder XRD, and thermal analyses. The NCAS glass...... hydration. The hydrated glass contributes to the formation of the calcium-silicate-hydrate (C-S-H) phase, consuming a part of the Portlandite (Ca(OH)2) formed during hydration of the Portland cement. Furthermore, the presence of the glass and limestone particles, alone or in combination, results in an...

  1. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    Science.gov (United States)

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. PMID:26807773

  2. Biomechanical evaluation of vertebroplasty using calcium sulfate cement for thoracolumbar burst fractures

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-tao; JIANG Xing-jie; ZHANG Shao-dong; YANG Hui-lin

    2007-01-01

    Objective: To evaluate the biomechanical performance of vertebroplasty using calcium sulfate cement for thoracolumbar burst fractures.Methods: Sixteen bovine thoracolumbar spines (T11-L1 ) were divided into 4 groups (A, B, C and D). After burst-fracture model was created, 12 vertebral bodies in Groups A, B and C were augmented with calcium sulfate cement (CSC), calcium phosphate cement (CPC) and polymethylmethacrylate ( PMMA ) bone cement,respectively. Each anterior vertebral body height was measured with a caliper at 4 time points: intact conditions(HInt), post-fracture (HFr), post-reduction (HRe) and post-vertebroplasty (HVP). The filling volume of 3 different bone cements was also measured. Each vertebral body was compressed at 0.5 mm/s using a hinged plating system on a materials testing machine to 50% of the postvertebroplasty height to determine strength and stiffness.Difference was checked using t test or One-way ANOVA.Results: The average strike energy was 66. 2 J.Vertebroplasty with different cements could sustain vertebral height. The average filling volume of bone cement in 3 groups was 4.35 ml (CSC), 3.72 ml (CPC) and 3.95 ml (PMMA), respectively, and there was no statistically significant difference among them ( P >0.05).Vertebroplasty with PMMA completely restored strength(116%) and stiffness (105%). CSC or CPC partly recovered vertebral strength and stiffness. However,greater strength restoration was got with CSC ( 1 659 N) as compared with CPC (1 011N, P<0.01 ). Regarding stiffness, differences between CSC (140 N/mm ±40 N/mm)and the other two bone cements ( CPC :148 N/mm ±33 N/mm,PMMA:236 N/mm ±97 N/mm) were not significant (P>0.05).Conclusions: For a burst-fracture of calf spine, useof CSC for vertebroplasty yields similar vertebral stiffnessas compared with PMMA or CPC. Although augmentationwith CSC partly obtains the normal strength, thistreatment still can be applied in thoracolumbar burstfractures with other instrumental devices in

  3. In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite

    International Nuclear Information System (INIS)

    In the present study, the in-situ transformation of calcium phosphate cement into hydroxyapatite (HAp) within the first hour is monitored with a synchrotron X-ray beam. A disodium hydrogen phosphate solution is used as cement liquid to activate the reaction between dicalcium phosphate anhydrous (DCPA) and calcium hydroxide (Ca(OH)2). The XRD analysis indicates that the amounts of DCPA and Ca(OH)2 first decrease within the first min of the reaction. Then, the intensity of DCPA's XRD peaks starts to increase instead in the period of 5 to 20 min. After 20 min, the DCPA particles are consumed slowly to form fine HAp particles. Large pores are evident upon the completion of reaction.

  4. Solid-state P-31 MR studies of bone mineral and calcium phosphate bone cements

    International Nuclear Information System (INIS)

    Calcium phosphate bone cements have recently been used to promote bone healing and remodeling, but little is known of their bioabsorption. The purpose of this paper to characterize and quantitate bone mineral and calcium phosphate bone cements with the use of solid-state P-31 NMR imaging to establish a model for bioabsorption studies. Pulverized cortical rabbit bone, octacalcium phosphate spherulites, and two synthetic apatite formulations (A and B, Norian, Mountain View, Calif) were evaluated in vitro. A 9.4-T Varian VXR-400S spectrometer operating at 161.9 MHz for P-31 was used to obtain NMR imaging spectra with the magic-angel spinning technique at a sample spin frequency of 6-7.5 kHz, utilizing an external 85% phosphoric acid reference. T1 was determined in a static 90 degrees τ 90 degrees experiment. Quantitation was attempted in mixed samples

  5. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    International Nuclear Information System (INIS)

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, β-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-166Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  6. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  7. Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste

    International Nuclear Information System (INIS)

    This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) and magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)

  8. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  9. The In-situ Reinforcement of Calcium Phosphate Cement and Its Micro-structural Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β- TCP/ TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs, the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.

  10. Indirect pulp therapy in a symptomatic mature molar using calcium enriched mixture cement

    OpenAIRE

    Hassan Torabzadeh; Saeed Asgary

    2013-01-01

    Dental pulp has the ability of repair/regeneration. Indirect pulp therapy (IPT) is recommended for pulp preservation in asymptomatic teeth with extremely deep caries as well as teeth with clinical symptoms of reversible pulpitis. In this case study, we performed IPT with calcium enriched mixture (CEM) cement on a symptomatic permanent molar. After clinical/radiographic examinations the tooth was diagnosed with irreversible pulpitis and associated apical periodontitis. IPT involved partial car...

  11. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano

    2013-07-01

    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  12. Push-out bond strength of CPP-ACP-modified calcium silicate-based cements.

    Science.gov (United States)

    Dawood, Alaa E; Manton, David J; Parashos, Peter; Wong, Rebecca H k; Palamara, Joseph E A; Reynolds, Eric C

    2015-01-01

    This study evaluated the push-out bond strength of 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs). The push-out bond strength of a trial MTA was also compared with two CSCs (Biodentine(™) and Angelus(®) MTA). Three hundred 1 mm thick horizontal root sections were prepared from 60 singlerooted human teeth. The canal space of each section was enlarged and filled with the cements. The sections were stored in a phosphate buffer solution. After incubation for 2 months, the push-out bond strength was measured and the data were analyzed using one way analysis of variance followed by Tukey's test. The addition of CPP-ACP to the test cements increased the push-out bond strength (p<0.05). The push-out bond strength of Biodentine(™) was higher than the other cements (p<0.05). There was no statistically significant difference between Angelus(®) MTA and the trial MTA with most of CPP-ACP concentrations. PMID:26235714

  13. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  14. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  15. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    OpenAIRE

    Li-na Niu; Devon Watson; Kyle Thames; Carolyn M. Primus; Bergeron, Brian E.; Kai Jiao; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Ji-hua Chen; PASHLEY David H.; Franklin R Tay

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA)...

  16. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R. [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain); Sanfélix, S.G. [Unidad Técnica de Investigación de Materiales, AIDICO, Avda. Benjamín Franklin, 17 Paterna, Valencia (Spain); Fauth, F. [CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); De la Torre, A.G., E-mail: mgd@uma.es [Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N., 29071 Málaga (Spain)

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  17. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    Science.gov (United States)

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  18. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Raphael Pilo

    2016-03-01

    Full Text Available The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC or Self Adhesive Resin Cement (SARC. Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa were significantly higher than those for SARC (2.28 ± 0.58 MPa. The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  19. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement.

    Science.gov (United States)

    Stankewich, C J; Swiontkowski, M F; Tencer, A F; Yetkinler, D N; Poser, R D

    1996-09-01

    The first goal of this study was to determine if augmentation with an injectable, in situ setting, calcium-phosphate cement that is capable of being remodeled and was designed to mimic bone mineral significantly improved the strength and stiffness of fixation in a cadaveric femoral neck fracture model. The second goal was to determine if greater increases in fixation strength were achieved as the bone density of the specimen decreased. Sixteen pairs of fresh cadaveric human femora with a mean age of 70.9 years (SD = 17.2 years) were utilized. The bone density of the femoral neck was measured with dual-energy x-ray absorptiometry. The femoral head was impacted vertically with the femoral shaft fixed in 12 degrees of adduction using a materials testing machine to create a fully displaced fracture. Following fracture, 30% inferior comminution was created in each specimen. One randomly chosen femur from each pair underwent anatomic reduction and fixation with three cannulated cancellous bone screws, 7 mm in diameter, in an inverted triangle configuration. The contralateral femur underwent the same fixation augmented with calcium-phosphate cement. Specimens were preconditioned followed by 1.000 cycles to one body weight (611.6 N) at 0.5 Hz to simulate single-limb stance loading. The stiffness in the first cycle was observed to be significantly greater in cement-augmented specimens compared with unaugmented controls (p bone mineral cement failed at a mean of 4,573 N (SD = 1,243 N); this was significantly greater (p bone density (p = 0.25, R2 = 0.09), was weakly correlated to the volume of cement injected (p = 0.07, R2 = 0.22), and was inversely related to the fixation failure load of the control specimen (p = 0.001, R2 = 0.54). There was a mean relative improvement in fixation strength of 169.6% (SD = 77.5). These findings suggest that calcium-phosphate cement provides initial beneficial augmentation to fixation of femoral neck fractures. PMID:8893773

  20. Calcium-enriched mixture cement as artificial apical barrier: A case series

    Directory of Open Access Journals (Sweden)

    Ali Nosrat

    2011-01-01

    Full Text Available In comparison to the conventional apexification using calcium hydroxide, artificial apical barrier technique is more valuable and less time consuming. This article describes successful use of calcium-enriched mixture (CEM cement as an artificial apical barrier in open apices. In this study, 13 single-rooted teeth with necrotic pulps and open apices were treated non-surgically. After copious irrigation of the root canals with NaOCl 5.25% and gentle filing, based on need for interappointment dressing, treatments were followed by CEM cement (BioniqueDent, Tehran, Iran apical plug insertion in the first or second appointment. All cases were then permanently restored. All subjects were followed until radiographic evidence of periradicular healing was seen (mean 14.5 months. Clinically, all cases were functional and asymptomatic and complete osseous healing was observed in all the teeth. Considering the biological properties of CEM cement, this new endodontic biomaterial might be appropriate to be used as artificial apical barrier in the open apex teeth.

  1. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C{sub 4}A{sub 3}S{sup ¯}) in the presence of gypsum and varying amounts of calcium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Kirchheim, Ana Paula [Department of Civil Engineering, Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Gartner, Ellis M. [Lafarge Centre de Recherche, St. Quentin Fallavier, Isere (France)

    2013-06-15

    Suspensions of synthetic ye'elimite (C{sub 4}A{sub 3}S{sup ¯}) in a saturated gypsum (CS{sup ¯}H{sub 2}) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C{sub 4}A{sub 3}S{sup ¯}, 15% CS{sup ¯}H{sub 2}, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO{sub 4}{sup 2−}/OH{sup −}) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate.

  2. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  3. The effect of supplementary pulverized fuel ash on calcium aluminate phosphate cement for intermediate-level waste encapsulation

    International Nuclear Information System (INIS)

    The objective of the current study was to evaluate the effects of supplementary pulverized fuel ash on phosphate-modified calcium aluminate cement. These systems are being established as part of a wider project to develop alternative cementing systems for the encapsulation of problematic low- and intermediate- level radioactive waste in the UK. The nuclear industry has established specific processing and property criteria, which must be fulfilled to ensure suitability for industrial application. In a series of studies, pulverized fuel ash was used as a partial replacement for calcium aluminate cement, to improve the fluidity of the system and increase the setting time. Properties such as slurry pH and fluidity, setting time, mechanical properties, and porosity were investigated using Vicat, Colflow, and compressive strength testing equipment and mercury intrusion porosimetry. The hardened cement pastes were also characterised using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. A formulation envelope was identified, which fulfilled the plant acceptance tests defined by industry to ensure suitability for industrial application. It was found that pH of calcium aluminate phosphate cements is lower than that of conventional cementing systems used to encapsulate radioactive waste in the UK. Hence, they have potential to be used as an alternative cementing system for the encapsulation of problematic radioactive metals. (authors)

  4. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br, E-mail: julianafernandes2@yahoo.com.br, E-mail: rsvieira.eng@gmail.com, E-mail: monicathurmer@yahoo.com.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (PPG/LABIOMAT/UFRGS), RS (Brazil)

    2012-07-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  5. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    International Nuclear Information System (INIS)

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  6. In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qinghui; Qian Jiangchao [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhou Huanjun; Yuan Yuan; Mao Yuhao; Liu Changsheng, E-mail: jiangchaoqian@ecust.edu.c, E-mail: csliu@sh163.ne [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2010-06-01

    This study aims to investigate the interaction between calcium silicate/calcium phosphate cement (CS/CPC) and osteogenesis, in particular the in vitro osteoblast-like and endothelial cells' response to CS/CPC. The effect of CS/CPC on cell attachment, proliferation and differentiation of murine osteoblast-like cell MC3T3-E1, as well as the influence on the cell attachment and proliferation of human umbilical vein endothelial cell (HUVEC), was studied in detail. Our results indicated that CS/CPC exhibited excellent biocompatibility to the osteoblast-like cells. Moreover, the morphology and cytoskeleton organization of MC3T3-E1 cultured on the CS/CPC disks suggested that CS/CPC induced better cell adhesion and cell spreading. Simultaneously, cell proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 were significantly improved after 3 and 7 days of culture on CS/CPC disks in comparison with CPC disks. Additionally, on CS/CPC disks, HUVEC attached well on day 1 and cell proliferation was also greatly enhanced by day 7. Collectively, these results suggest that the introduction of calcium silicate may improve the cell response involved in the osteogenesis and thus may be beneficial to further modify CPC as a better bone repairing material.

  7. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  8. The progress of early phase bone healing using porous granules produced from calcium phosphate cement

    Directory of Open Access Journals (Sweden)

    Jungbluth P

    2010-05-01

    Full Text Available Abstract Objective Bone grafting is a vital component in many surgical procedures to facilitate the repair of bone defects or fusions. Autologous bone has been the gold standard to date in spite of associated donor-site morbidity and the limited amount of available donor bone. The aim of this study was to investigate the progress of bone regeneration and material degradation of calcium phosphate granules (CPG produced from a calcium phosphate self-setting cement powder compared to the use of autologous bone grafting in the treatment of "critical size defects" on load-bearing long bones of minipigs. Methods A critical size defect in the tibial metaphysis of 16 mini-pigs was filled either with autologous cancellous graft or with micro- and macroporous carbonated, apatic calcium phosphate granules (CPG produced from a calcium phosphate self-setting cement powder. After 6 weeks, the specimens were assessed by X-ray and histological evaluation. The amount of new bone formation was analysed histomorphometrically. Results The semi-quantitative analysis of the radiological results showed a complete osseous bridging of the defect in three cases for the autograft group. In the same group five animals showed a beginning, but still incomplete bridging of the defect, whereas in the CPG group just two animals developed this. All other animals of the CPG group showed only a still discontinuous new bone formation. Altogether, radiologically a better osseous bridging was observed in the autograft group compared to the CPG group. Histomorphometrical analysis after six weeks of healing revealed that the area of new bone was significantly greater in the autograft group concerning the central area of the defect zone (p Conclusions Within the limits of the present study it could be demonstrated that autologous cancellous grafts lead to a significantly better bone regeneration compared to the application of calcium phosphate granules (CPG produced from a calcium

  9. The compressive modulus and strength of saturated calcium sulphate dihydrate cements: implications for testing standards.

    Science.gov (United States)

    Koh, Ilsoo; López, Alejandro; Helgason, Benedikt; Ferguson, Stephen J

    2014-06-01

    Calcium sulphate-based bone cement is a bone filler with proven biological advantages including biodegradability, biocompatibility and osteoconductivity. Mechanical properties of such brittle ceramic cements are frequently determined using the testing standard designed for ductile acrylic cements. The aims of the study were (1) to validate the suitability of this common testing protocol using saturated calcium sulphate dihydrate (CSD), and (2) to compare the strength and effective modulus of non-saturated and saturated CSD, in order to determine the changes in the mechanical behavior of CSD upon saturation. Unconfined compression tests to failure were performed on 190 cylindrical CSD samples. The samples were divided into four groups having different saturation levels (saturated, non-saturated) and end conditions (capped and non-capped). Two effective moduli were calculated per sample, based on the deformations measured using the machine platens and a sample-mounted extensometer. The effective moduli of non-saturated groups were found to be independent of the end conditions. The saturated and capped group showed no difference in the effective moduli derived from different measurement methods, while the saturated and non-capped group showed a significant difference between the machine platen- and extensometer-derived moduli. Strength and modulus values were significantly lower for saturated samples. It was assumed that the existence of water in saturated CSD alters the mechanical response of the material due to the changes in chemical and physical behaviors. These factors are considered to play important roles to decrease the shear strength of CSD. It was proposed that the reduction in CSD shear strength evokes local deformation at the platen-sample boundary, affecting the strength and effective moduli derived from the experiments. The results of this study highlighted the importance of appropriate and consistent testing methods when determining the mechanical

  10. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles

    OpenAIRE

    Link, Dennis P.; VAN DEN DOLDER, Juliette; Jurgens, J. F. M.; Wolke, Joop G.; Jansen, John A.

    2006-01-01

    In this study, the mechanical properties of an implanted calcium phosphate (CaP) cement incorporated with 20wt% poly (DL-lactic-coglycolic acid) (PLGA) microparticles were investigated in a rat cranial defect. After 2, 4 and 8 weeks of implantation, implants were evaluated mechanically (push-out test) and morphologically (Scanning Electron Microscopy (SEM) and histology). The results of the push-out test showed that after 2 weeks the shear strength of the implants was 0.4470.44MPa (a...

  11. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    International Nuclear Information System (INIS)

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  12. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  13. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.

    Science.gov (United States)

    Alge, Daniel L; Chu, Tien-Min Gabriel

    2010-08-01

    This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating a pre-set cement with a reactive polymer and then cross-linking the polymer in situ. This method can be used to reinforce 3D calcium phosphate cement scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as a model reinforcing polymer. The compressive strength of a 3D scaffold comprised of orthogonally intersecting beams was increased from 0.31 +/- 0.06 MPa to 1.65 +/- 0.13 MPa using PEGDA 600. In addition, the mechanical properties of reinforced cement were characterized using three PEGDA molecular weights (200, 400, and 600 Da) and three cement powder to liquid (P/L) ratios (0.8, 1.0, and 1.43). Higher molecular weight increased reinforcement efficacy, and P/L controlled cement porosity and determined the extent of polymer incorporation. Although increasing polymer incorporation resulted in a transition from brittle, cement-like behavior to ductile, polymer-like behavior, maximizing polymer incorporation was not advantageous. Polymerization shrinkage produced microcracks in the cement, which reduced the mechanical properties. The most effective reinforcement was achieved with P/L of 1.43 and PEGDA 600. In this group, flexural strength increased from 0.44 +/- 0.12 MPa to 7.04 +/- 0.51 MPa, maximum displacement from 0.05 +/- 0.01 mm to 1.44 +/- 0.17 mm, and work of fracture from 0.64 +/- 0.10 J/m(2) to 677.96 +/- 70.88 J/m(2) compared to non-reinforced controls. These results demonstrate the effectiveness of our novel reinforcement method, as well as its potential for fabricating reinforced 3D calcium phosphate cement scaffolds useful for bone tissue engineering. PMID:20186776

  14. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive.

    Science.gov (United States)

    Hesaraki, S; Moztarzadeh, F; Sharifi, D

    2007-10-01

    Calcium phosphate cements (CPCs) can be considered as good candidate for bone tissue engineering because they can be resorbed and take part in the bone remodeling process. Several efforts have been made into improve the resorption rate of the calcium phosphate cement by introducing macropores to the cement matrix. In this investigation a simple and effective method has been presented based on the addition of various amounts of an effervescent agent to the calcium phosphate cement components. The effervescent agent was a mixture of sodium hydrogen carbonate, NaHCO(3) (that was added to the powder phase), and citric acid monohydrate, C(6)H(8)O(7).H(2)O (that was dissolved in the liquid phase). The obtained macroporous samples were characterized by Fourier transform infrared spectrometer, X-ray diffraction, and scanning electron microscopy techniques at 4 h after setting and 3 days after soaking in a special simulated body fluid solution named Hank's balanced salt solution. Mercury intrusion porosimetry was also employed for characterizing the pore volume and pore size distribution in the cement structure. Results showed that the rate of conversion of staring reactant to the apatite phase and the apatite chemistry were significantly changed by using the additive in the cement components. Also both the pore volume and pore size were changed by varying both the amount of effervescent additive and the powder to liquid ratio. PMID:17380498

  15. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials.

    Science.gov (United States)

    Küçükkaya, Selen; Görduysus, Mehmet Ömer; Zeybek, Naciye Dilara; Müftüoğlu, Sevda Fatma

    2016-01-01

    The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM) cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P > 0.05). MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P Biodentine showed significantly less cell viability (73%) after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P Biodentine and CEM can be considered as alternative materials for root-end surgery procedures. PMID:26904364

  16. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo

    International Nuclear Information System (INIS)

    In this study, we investigated the resorption of in vivo methotrexate-loaded calcium phosphate cement (MTX-CPC) implants and their effect on osteogenesis. MTX-CPC implants containing 1% methotrexate (MTX) (weight/weight) were preset and implanted into the femoral condyle of rabbits. Calcium phosphate cement (CPC) without MTX was used as the control. The femurs were harvested at day 1 and at 1, 3 and 6 months after implantation and radiological examination were performed. Decalcified sections were examined by hematoxylin and eosin (HE) staining, alkaline phosphatase (ALPase) immunohistochemistry and tartrate-resistant acid phosphatase (TRAPase) enzyme histochemistry. Then, we performed histomorphometric analysis, including determination of the percentage of newly formed bone and osteoblast and osteoclast counts. The results indicated that MTX-CPC implants were biocompatible, biodegradable and osteoconducive. However, MTX release from the implantation site inhibited osteogenesis in the initial period; this inhibition weakened with time, and no difference was observed between CPC and MTX-CPC at 6 months after implantation. Hence, MTX-CPC is an excellent material for filling defects and can be used for preparing effective drug delivery systems to achieve local control of invasive bone tumors.

  17. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li Dong; Yang Zhiping; Li Xin; Li Zhenfeng; Li Jianmin [Department of Orthopedics, Qilu Hospital of Shandong University, Shandong (China); Yang Jingyan, E-mail: yangzhiping@medmail.com.c [Department of Pathology, 2nd Affiliated Hospital of Shandong University, Shandong (China)

    2010-04-15

    In this study, we investigated the resorption of in vivo methotrexate-loaded calcium phosphate cement (MTX-CPC) implants and their effect on osteogenesis. MTX-CPC implants containing 1% methotrexate (MTX) (weight/weight) were preset and implanted into the femoral condyle of rabbits. Calcium phosphate cement (CPC) without MTX was used as the control. The femurs were harvested at day 1 and at 1, 3 and 6 months after implantation and radiological examination were performed. Decalcified sections were examined by hematoxylin and eosin (HE) staining, alkaline phosphatase (ALPase) immunohistochemistry and tartrate-resistant acid phosphatase (TRAPase) enzyme histochemistry. Then, we performed histomorphometric analysis, including determination of the percentage of newly formed bone and osteoblast and osteoclast counts. The results indicated that MTX-CPC implants were biocompatible, biodegradable and osteoconducive. However, MTX release from the implantation site inhibited osteogenesis in the initial period; this inhibition weakened with time, and no difference was observed between CPC and MTX-CPC at 6 months after implantation. Hence, MTX-CPC is an excellent material for filling defects and can be used for preparing effective drug delivery systems to achieve local control of invasive bone tumors.

  18. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements

    International Nuclear Information System (INIS)

    This work attempts to investigate the modelling of radioisotopes (Cs+, Pb2+, Eu3+) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs+ is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm-2), which accounts for the CSH unsaturation in high [CS+]. A strong site is also identified. - Pb2+ immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu3+ fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu3+ thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  19. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangyong [Department of Orthopaedics, Taizhou Hospital of Zhejiang Province, Linhai Zhejiang, 317000 (China); Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Liu, Jianli [Trauma Center, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570206 (China); Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201 (China); Li, Fan; Pan, Zongyou; Ni, Xiao; Shen, Yue [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Xu, Huazi, E-mail: spinexu@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Huang, Qing, E-mail: huangqing@nimte.ac.cn [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201 (China)

    2014-02-01

    A novel calcium sulfate/magnesium phosphate cement (CSMPC) composite was prepared and studied in the present work. The physical properties including the phases, the microstructures, the setting properties and the compressive strengths of the CSMPCs were studied. The bio-performances of the CSMPCs were comprehensively evaluated using in vitro simulated body fluid (SBF) method and in vitro cell culture. The dependence of the physical and chemical properties of the CSMPC on its composition and microstructure was studied in detail. It is found that the CSMPC composites exhibited mediate setting times (6–12 min) compared to the calcium sulfate (CS) and the magnesium phosphate cement (MPC). They showed an encapsulation structure in which the unconverted hexagonal prism CSH particles were embedded in the xerogel-like MPC matrix. The phase compositions and the mechanical properties of the CSMPCs were closely related to the content of MPC and the hardening process. The CSMPCs exhibited excellent bioactivity and good biocompatibility to support the cells to attach and proliferate on the surface. The CSMPC composite has the potential to serve as bone grafts for the bone regeneration. - Highlights: • The mechanical strength and degradation rate of CSMPC composites are discussed. • The CSMPC composites exhibited good bioactivity to form bone-like apatite. • The CSMPC composites also show good biocompatibility.

  20. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications

    International Nuclear Information System (INIS)

    A novel calcium sulfate/magnesium phosphate cement (CSMPC) composite was prepared and studied in the present work. The physical properties including the phases, the microstructures, the setting properties and the compressive strengths of the CSMPCs were studied. The bio-performances of the CSMPCs were comprehensively evaluated using in vitro simulated body fluid (SBF) method and in vitro cell culture. The dependence of the physical and chemical properties of the CSMPC on its composition and microstructure was studied in detail. It is found that the CSMPC composites exhibited mediate setting times (6–12 min) compared to the calcium sulfate (CS) and the magnesium phosphate cement (MPC). They showed an encapsulation structure in which the unconverted hexagonal prism CSH particles were embedded in the xerogel-like MPC matrix. The phase compositions and the mechanical properties of the CSMPCs were closely related to the content of MPC and the hardening process. The CSMPCs exhibited excellent bioactivity and good biocompatibility to support the cells to attach and proliferate on the surface. The CSMPC composite has the potential to serve as bone grafts for the bone regeneration. - Highlights: • The mechanical strength and degradation rate of CSMPC composites are discussed. • The CSMPC composites exhibited good bioactivity to form bone-like apatite. • The CSMPC composites also show good biocompatibility

  1. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements

    International Nuclear Information System (INIS)

    Phase conversion phenomena are often observed in calcium aluminate cements (CACs), when the water-rich hydrates (e.g., CAH10, C2AH8) formed at early ages, at temperatures ≤ 30 °C, expel water in time to form more compact, less water-rich structures (C3AH6). The phase conversions follow a path regulated by the thermodynamic stabilities (solubilities) of phases. Based on this premise, it is proposed that conversion phenomena in CACs can be bypassed by provoking the precipitation of phases more preferred than those typically encountered along the conversion pathway. Therefore, X-AFm formation (where in this case, X = NO3−) triggered by the sequential addition of calcium nitrate (Ca(NO3)2 = CN) additives is identified as a new means of bypassing conversion. A multi-method approach comprising X-ray diffraction (XRD), thermal analytics, and evaluations of the compressive strength is applied to correlate phase balances and properties of CAC systems cured at 25 °C and 45 °C. The results highlight the absence of the C3AH6 phase across all systems and the curing conditions considered, with enhanced strengths being noted, when sufficient quantities of CN are added. The experimental outcomes are supported by insights gained from thermodynamic calculations which highlight thermodynamic selectivity as a means of regulating and controlling the evolutions of solid phase balances using inorganic salts in CACs, and more generally in cementing material systems

  2. Conservative Management of Class 4 Invasive Cervical Root Resorption Using Calcium-enriched Mixture Cement.

    Science.gov (United States)

    Asgary, Saeed; Nosrat, Ali

    2016-08-01

    Class 4 invasive cervical root resorption (ICRR) presents a treatment dilemma in endodontics. The widely accepted treatment options for a class 4 ICRR are to leave these teeth untreated for as long as they are asymptomatic or extraction. This report presents a conservative approach for the management of class 4 ICRR. A 28-year-old woman was referred for root canal treatment of tooth #26. The patient had a history of orthodontic treatment. Radiographic evaluation showed class 4 ICRR that had perforated the root canal space, a radiolucent crestal bony defect, and a periapical lesion. Clinically, a deep (6-mm) probing area was found on the mesial side of the tooth that bled on probing. The tooth was sensitive to percussion. After the treatment options were discussed with the patient, she chose to save the tooth. After complete chemomechanical preparation of the root canal, the entire canal space and perforation area were filled with calcium-enriched mixture cement. No attempt was made to mechanically remove the resorptive lacuna. Twenty four months after treatment, the tooth was functional and asymptomatic, and probing was within normal limits (canal space with calcium-enriched mixture cement may be a viable treatment option for an otherwise non-treatable tooth with class 4 invasive cervical root resorption. PMID:27316319

  3. A Comprehensive Study of Osteogenic Calcium Phosphate Silicate Cement: Material Characterization and In Vitro/In Vivo Testing.

    Science.gov (United States)

    Gong, Tianxing; Wang, Zhiqin; Zhang, Yixi; Zhang, Yubiao; Hou, Mingxiao; Liu, Xinwei; Wang, Yu; Zhao, Lejun; Ruse, N Dorin; Troczynski, Tom; Häfeli, Urs O

    2016-02-18

    Vertebral compression fractures can be successfully restored by injectable bone cements. Here the as-yet unexplored in vitro cytotoxicity, in vivo biodegradation, and osteoconductivity of a new calcium phosphate silicate cements (CPSC) are studied, where monocalcium phosphate (MCP; 5, 10, and 15 wt%) is added to calcium silicate cement (CSC). Setting rate and compressive strength of CPSC decrease with the addition of MCP. The crystallinity, microstructure, and porosity of hardened CPSC are evaluated by X-ray diffractometer, Fourier transform infrared spectroscopy, and microcomputed tomography (CT). It is found that MCP reacts with calcium hydroxide, one of CSC hydration products, to precipitate apatite. While the reaction accelerates the hydration of CSC, the formation of calcium silicate hydrate gel is disturbed and highly porous microstructures form, resulting in weaker compressive strength. In vitro studies demonstrate that CPSC is noncytotoxic to osteoblast cells and promotes their proliferation. In the rabbit tibia implantation model, clinical X-ray and CT scans demonstrate that CPSC biodegrades slower and osseointegrates better than clinically used calcium phosphate cement (CPC). Histological studies demonstrate that CPSC is osteoconductive and induces higher bone formation than CPC, a finding that might warrant future clinical studies. PMID:26677175

  4. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response.

    Science.gov (United States)

    Mestres, Gemma; Le Van, Clemence; Ginebra, Maria-Pau

    2012-03-01

    α-Tricalcium phosphate (α-TCP) is widely used as a reactant in calcium phosphate cements. This work aims at doping α-TCP with silicon with a twofold objective. On the one hand, to study the effect of Si addition on the stability and reactivity of this polymorph. On the other, to develop Si-doped cements and to evaluate the effect of Si on their in vitro cell response. For this purpose a calcium-deficient hydroxyapatite was sintered at 1250°C with different amounts of silicon oxide. The high temperature polymorph α-TCP was stabilized by the presence of silicon, which inhibited reversion of the β→α transformation, whereas in the Si-free sample α-TCP completely reverted to the β-polymorph. However, the β-α transformation temperature was not affected by the presence of Si. Si-α-TCP and its Si-free counterpart were used as reactants for a calcium phosphate cement. While Si-α-TCP showed faster hydrolysis to calcium-deficient hydroxyapatite, upon complete reaction the crystalline phases, morphology and mechanical properties of both cements were similar. An in vitro cell culture study, in which osteoblast-like cells were exposed to the ions released by both materials, showed a delay in cell proliferation in both cases and stimulation of cell differentiation, more marked for the Si-containing cement. These results can be attributed to strong modification of the ionic concentrations in the culture medium by both materials. Ca-depletion from the medium was observed for both cements, whereas continuous Si release was detected for the Si-containing cement. PMID:22154863

  5. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    Science.gov (United States)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  6. Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications.

    Science.gov (United States)

    Ghosh, Shreya; Wu, Victoria; Pernal, Sebastian; Uskoković, Vuk

    2016-03-30

    Osteomyelitis, an infectious disease predominantly tied to poor sanitary conditions in underdeveloped regions of the world, is in need of inexpensive, easily in situ synthesizable and administrable materials for its treatment. The results of this study stem from the attempt to create one such affordable and minimally invasive therapeutic platform in the form of a self-setting, injectable cement with a tunable drug release profile, composed of only nanoparticulate hydroxyapatite, the synthetic version of the bone mineral. Cements comprised two separately synthesized hydroxyapatite powders, one of which, HAP2, was precipitated abruptly, retaining the amorphous nature longer, and the other one of which, HAP1, was precipitated at a slower rate, more rapidly transitioning to the crystalline structure. Cements were made with four different weight ratios of the two hydroxyapatite components: 100/0, 85/15, 50/50, and 0/100 with respect to HAP1 and HAP2. Both the setting and the release rates measured on two different antibiotics, vancomycin and ciprofloxacin, were controlled using the weight ratio of the two hydroxyapatite components. Various inorganic powder properties were formerly used to control drug release, but here we demonstrate for the first time that the kinetics of the mechanism of formation of a solid compound can be controlled to produce tunable drug release profiles. Specifically, it was found that the longer the precursor calcium phosphate component of the cement retains the amorphous nature of the primary precipitate, the more active it was in terms of speeding up the diffusional release of the adsorbed drug. The setting rate was, in contrast, inversely proportional to the release rate and to the content of this active hydroxyapatite component, HAP2. The empirical release profiles were fitted to a set of equations that could be used to tune the release rate to the therapeutic occasion. All of the cements loaded with vancomycin or ciprofloxacin inhibited the

  7. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics

    International Nuclear Information System (INIS)

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement. (paper)

  8. Calcium phosphate cements properties with polymers addition; Propriedades do cimento de fosfato de calcio com adicao de polimeros

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Trajano, W.T.; Escobar, C.F.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil)

    2012-07-01

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers.

  9. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts

    Science.gov (United States)

    A. Saberi, Eshagh; Farhadmollashahi, Narges; Ghotbi, Faroogh; Karkeabadi, Hamed; Havaei, Roholla

    2016-01-01

    Background. This in vitro study compared the effects of mineral trioxide aggregate (MTA), calcium enriched mixture(CEM) cement, Biodentine (BD) and octacalcium phosphate (OCP) on the viability of human gingival fibroblasts (HGFs). Methods. After completion of the setting time of the materials under study, fibroblasts were placed in 24-well insert platesand 1 mg of each material was added to the respective wells. The plates were then incubated at 37°C. The inserts were removedat 24, 48 and 168 hours and 2,5-diphenyltetrazolium bromide was added to assess cytotoxicity via the MTT colorimetricassay. Data were analyzed at different time intervals using repeated-measures ANOVA, followed by the Bonferronitest at three levels of significance of P MTA (P MTA, CEM, Biodentine and OCP against HGFs was similar to that of the control group at 24and 48 hours. Over time, MTA and Biodentine exhibited less cytotoxicity than other materials. PMID:27429722

  10. Influence of portland cement replacement in high calcium fly ash geopolymer paste

    Directory of Open Access Journals (Sweden)

    Tanakorn Phoo-ngernkham

    2014-03-01

    Full Text Available This article presents the influence of ordinary Portland cement (OPC replacement in high calcium fly ash (FA geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3 and 10 molar sodium hydroxide (NaOH solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively.

  11. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Dan [Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050 (China); Dong, Limin [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Energy Science Building, Beijing 100084 (China); Wen, Ying [Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050 (China); Xie, Qiufei, E-mail: xieqiuf@163.com [Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081 (China)

    2015-02-01

    Calcium phosphate cements (CPCs) have been widely used as bone graft substitutes. However, the undesirable osteoinductivity and slow degradability of CPCs greatly hamper their clinical application. The aim of this study was to synthesize a type of injectable, bioactive cement. This was accomplished by incorporating chitosan microspheres into CPC. CPC containing chitosan microspheres was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD showed that the hardened chitosan microsphere/CPC with different proportions of microspheres contained diffraction peaks of hydroxyapatite and chitosan. Compressive strength and dissolution in simulated body fluid were measured. The chitosan microsphere/CPC containing 10% (w/w) chitosan microspheres had a compressive strength of 14.78 ± 0.67 MPa. Cavity defects were created in both femoral condylar regions of New Zealand White rabbits. Chitosan microsphere/CPC (composite group) and α-TCP/CPC (control group) were implanted separately into the bone defects of both femurs. X-ray analysis was performed to observe the filling of these bone defects 3 days after surgery. The extent of bone substitute degradation and new bone formation were evaluated by SEM and histological examination at 8, 16, and 24 weeks after implantation. These results showed far more new bone formation and degradation of the chitosan microsphere/CPC composite in the bone defects. These data indicate that a chitosan microsphere/CPC composite might be considered as a promising injectable material for the generation of new bone tissue. - Highlights: • We synthesized an injectable, bioactive chitosan microsphere/CPC for the first time. • 100–400 μm chitosan microspheres were incorporated into the cement solid phase. • XRD showed the construct contained diffraction peaks of hydroxyapatite and chitosan. • Compressive strength of the composite was about 15 MPa comparable to cancellous bone. • The new construct shows better bone

  12. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPCs) have been widely used as bone graft substitutes. However, the undesirable osteoinductivity and slow degradability of CPCs greatly hamper their clinical application. The aim of this study was to synthesize a type of injectable, bioactive cement. This was accomplished by incorporating chitosan microspheres into CPC. CPC containing chitosan microspheres was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD showed that the hardened chitosan microsphere/CPC with different proportions of microspheres contained diffraction peaks of hydroxyapatite and chitosan. Compressive strength and dissolution in simulated body fluid were measured. The chitosan microsphere/CPC containing 10% (w/w) chitosan microspheres had a compressive strength of 14.78 ± 0.67 MPa. Cavity defects were created in both femoral condylar regions of New Zealand White rabbits. Chitosan microsphere/CPC (composite group) and α-TCP/CPC (control group) were implanted separately into the bone defects of both femurs. X-ray analysis was performed to observe the filling of these bone defects 3 days after surgery. The extent of bone substitute degradation and new bone formation were evaluated by SEM and histological examination at 8, 16, and 24 weeks after implantation. These results showed far more new bone formation and degradation of the chitosan microsphere/CPC composite in the bone defects. These data indicate that a chitosan microsphere/CPC composite might be considered as a promising injectable material for the generation of new bone tissue. - Highlights: • We synthesized an injectable, bioactive chitosan microsphere/CPC for the first time. • 100–400 μm chitosan microspheres were incorporated into the cement solid phase. • XRD showed the construct contained diffraction peaks of hydroxyapatite and chitosan. • Compressive strength of the composite was about 15 MPa comparable to cancellous bone. • The new construct shows better bone

  13. Indirect pulp therapy in a symptomatic mature molar using calcium enriched mixture cement

    Directory of Open Access Journals (Sweden)

    Hassan Torabzadeh

    2013-01-01

    Full Text Available Dental pulp has the ability of repair/regeneration. Indirect pulp therapy (IPT is recommended for pulp preservation in asymptomatic teeth with extremely deep caries as well as teeth with clinical symptoms of reversible pulpitis. In this case study, we performed IPT with calcium enriched mixture (CEM cement on a symptomatic permanent molar. After clinical/radiographic examinations the tooth was diagnosed with irreversible pulpitis and associated apical periodontitis. IPT involved partial caries removal, the placement of CEM cement pulp cap and overlying adhesive permanent restoration. At the 1 week follow-up, patient′s spontaneous symptoms had resolved. One-year follow-up demonstrated pulp vitality, clinical function, as well as the absence of pain/tenderness to percussion/palpation/cold sensitivity tests; periapical radiograph showed a healing periradicular lesion with newly formed bone, that is normal pulp with normal periodontium. These favorable results indicate that IPT/CEM may be a good treatment option in comparison to endodontic treatment in young patients. IPT of deep-caries lesion is an easier, more practical and valuable treatment plan than complete caries removal.

  14. Effect of citric acid and the hemihydrate amount on the properties of a calcium sulphoaluminate cement

    Directory of Open Access Journals (Sweden)

    Velazco, G.

    2014-12-01

    Full Text Available The influence of citric acid on the hydration and strength development of a calcium sulphoaluminate cement was investigated. Cement pastes were prepared by mixing calcium sulphoaluminate (C4A3Ŝ with 15, 20 and 25wt% of hemihydrate (CŜH0.5. Citric acid was added as a retarder at 0 and 0.5wt%. The samples were cured at 20 °C for periods of time from 1 to 28 days to evaluate their compressive strength and to characterize the hydration products by scanning electron microscopy and X-ray diffraction. Calorimetric curves showed that the retarding agent considerably decreases the heat release rate and the quantity of total heat released. The main product after the curing was ettringite (C6AŜ3H32. The morphology of this phase consisted of long and thin needles growing radially on the cement grains. Samples with 15wt% of hemihydrate and 0.5wt% of citric acid developed the highest compressive strength (70 MPa at 28 days of curing.Se investigó el efecto del ácido cítrico sobre la hidratación y propiedades mecánicas de un cemento de sulfoaluminato de calcio. El C4A3Ŝ se mezcló con 15, 20 y 25% e.p. de hemihidrato (CŜH0.5. Se agregó ácido cítrico como retardante en 0 y 0.5% e.p. Las muestras fueron curadas a 20 °C por periodos de 1 a 28 días para realizar mediciones de resistencia a la compresión y caracterizar los productos de hidratación mediante microscopía electrónica de barrido y difracción de rayos X. Las curvas de calorimetría mostraron ue el ácido cítrico disminuye la velocidad de liberación de calor y la cantidad de calor liberado durante la hidratación. La resistencia a la compresión alcanzó un máximo de 70 MPa en muestras con 15% e.p. de hemihidrato y 0,5% e.p de ácido cítrico. Los resultados muestran a la etringita (C6AŜ3H32 como principal producto de hidratación. Se observa a esta fase con morfología acicular creciendo sobre las partículas de cemento.

  15. Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Guo H

    2012-07-01

    Full Text Available Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs into calcium phosphate cement (CPC. The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that

  16. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    Science.gov (United States)

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. PMID:26652353

  17. Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.

  18. Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes

    Directory of Open Access Journals (Sweden)

    Gallardo, M.

    2014-09-01

    Full Text Available Environmentally-friendly calcium sulphoaluminate clinkers were obtained from a mixture of aluminium dross, fluorgypsum, fly ash and CaCO₃ at temperatures within the range of 1100 to 1400 °C. After the heat treatments Ca₄Al₆O₁₂SO₄ was the main phase. Three different cements were prepared using the clinkers synthesized at 1250, 1350 and 1400 °C; the clinker powders were mixed with 20 wt% of hemihydrate. Cement pastes were prepared using a water/cement ratio (w/c, 0.4 followed by curing at 20 or 40 °C for periods of time ranging from 1 to 28 days. Most of the samples showed high compression strengths 40–47 MPa after 28 days, which were comparable to the strength of Portland cement. Ettringite was the main hydration product and its morphology consisted of acicular and hexagonal plates, which is typical of this phase.Se fabricaron clinkers de bajo impacto ambiental a base de sulfoaluminato de calcio calcinando mezclas de escoria de aluminio, fluoryeso, ceniza volante y CaCO₃ a diferentes temperaturas dentro de un rango de 1100 a 1400 °C. Se observó la formación de Ca₄Al₆O₁₂SO₄ como fase principal. Para obtener los cementos, los clinkers obtenidos a 1250, 1350 y 1400 °C se mezclaron con 20% en peso de hemihidrato. Se prepararon pastas usando una relación agua/cemento, de 0.4 y se curaron a 20 y 40 °C por diferentes periodos de tiempo desde 1 hasta 28 días. Los valores de resistencia a la compresión a los 28 días de curado de la mayoría de las muestras estuvieron entre 40–47 MPa, equiparables a los de referencia de pastas de cemento Portland. La etringita fue el principal producto de hidratación y su morfología consistió de placas hexagonales y aciculares, típicas de esta fase.

  19. Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases

    International Nuclear Information System (INIS)

    The U(VI) uptake in degraded cement pastes was undertaken in the laboratories of CEA/L3MR and SUBATECH in order to check the reproducibility of the study. Two well hydrated cement pastes, CEM I (ordinary portland cement, OPC) and CEM V (blast furnace slag (BFS) and fly ash added to OPC) were degraded using similar protocols. Equilibrium solutions and solid materials were characterised for three degradation states for each paste. All samples are free of portlandite and the pH of the equilibrated cement solutions vary in the range 9.8-12.2. Three calcium silicate hydrate phases (C-S-H) were synthesised in order to compare the sorption properties of degraded cement pastes and of hydrate phases in similar pH conditions. In order to avoid precipitation processes, the operational solubility limit was evaluated before batch experiments. These solubility values vary significantly in the pH range [9-13] with a 2.4 x 10-7 mol L-1 minimum at pH close to 10.5. In batch sorption experiments, the distribution ratio Rd values are high: 3 x 104 - 1.5 x 105 mL g-1. The uptake of U(VI) increases when comparing the least and the most degraded cement pastes whereas the initial composition of cement has relatively insensitive effect. Sorption isotherms, expressed as a log [U(VI)solid]/log[U(VI)solution] plots are linear. A slope of 1 is calculated indicating the predominance of sorption processes. As sorption and desorption values are close, the uptake mechanism seems reversible. The Rd values measured in C-S-H suspensions are in good agreement with Rd values of degraded cement pastes, and C-S-H materials could be one of the cementitious phases which control U(VI) uptake in cement pastes. (orig.)

  20. An inferred relationship between some uranium deposits and calcium carbonate cement in southern Black Hills, South Dakota

    Science.gov (United States)

    Gott, Garland B.

    1956-01-01

    Evidence resulting from geologic mapping in the southern Black Hills indicates that the areas marginal to some of the larger carbonate-cemented sandstones constitute favorable geochemical environments for the localization of uranium deposits. To determine whether these favorable environments are predictable a limited experimental core-drilling program was carried out. An extensive deposit was discovered in an area marginal to a sandstone well-cemented with calcium carbonate. The deposit has not yet been developed, but from the available data it appears that there is a significant quantity of mineralized rock present containing as much as 3.0 percent eU3O8.

  1. Effect of Additives on the Morphology of the Hydrated Product and Physical Properties of a Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    Xiupeng WANG; Jiandong YE; Yingjun WANG

    2008-01-01

    The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals .exhibited the poorest compressive strength.

  2. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement.

    Science.gov (United States)

    Borhan, Shokoufeh; Hesaraki, Saeed; Ahmadzadeh-Asl, Shaghayegh

    2010-12-01

    In the present study new calcium sulfate-based nanocomposite bone cement with improved physicochemical and biological properties was developed. The powder component of the cement consists of 60 wt% α-calcium sulfate hemihydrate and 40 wt% biomimetically synthesized apatite, while the liquid component consists of an aqueous colloidal silica suspension (20 wt%). In this study, the above mentioned powder phase was mixed with distilled water to prepare a calcium sulfate/nanoapatite composite without any additive. Structural properties, setting time, compressive strength, in vitro bioactivity and cellular properties of the cements were investigated by appropriate techniques. From X-ray diffractometer analysis, except gypsum and apatite, no further phases were found in both silica-containing and silica-free cements. The results showed that both setting time and compressive strength of the calcium sulfate/nanoapatite cement improved by using colloidal silica suspension as cement liquid. Meanwhile, the condensed phase produced from the polymerization process of colloidal silica filled the micropores of the microstructure and covered rodlike gypsum crystals and thus controlled cement disintegration in simulated body fluid. Additionally, formation of apatite layer was favored on the surfaces of the new cement while no apatite precipitation was observed for the cement prepared by distilled water. In this study, it was also revealed that the number of viable osteosarcoma cells cultured with extracts of both cements were comparable, while silica-containing cement increased alkaline phosphatase activity of the cells. These results suggest that the developed cement may be a suitable bone filling material after well passing of the corresponding in vivo tests. PMID:20972610

  3. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: Early fluorapatite formation in a phosphate-containing solution

    OpenAIRE

    Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; Ginebra Molins, Maria Pau; Prati, Claudio

    2011-01-01

    Gandolfi MG, Taddei P, Siboni F, Modena E, Ginebra MP, Prati C. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. International Endodontic Journal, 44, 938–949, 2011. Aim To test the chemical–physical properties and apatite-forming ability of experimental fluoride-doped calcium silicate cements designed to create novel bioactive materials for use in endodontics ...

  4. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    burden of proof because with few exceptions, much less is known about their ability chemically to immobilise waste species and their long- term durability relative to Portland cement in a range of natural environments. It is concluded that the most robust of these alternative formulations are based on calcium aluminate and sulfoaluminate cements, on magnesium phosphate and on geopolymers. (author)

  5. Preparation and characterization of a novel strontium-containing calcium phosphate cement with the two-step hydration process.

    Science.gov (United States)

    Yu, Tao; Ye, Jiandong; Wang, Yingjun

    2009-09-01

    A novel Sr-containing calcium phosphate cement (CPC) with excellent compressive strength, good radiopacity and suitable setting time was developed in this work. The two-step hydration reaction resulted in a high compressive strength, with a maximum of up to 74.9MPa. Sr was doped into the calcium-deficient hydroxyapatite as a hydrated product during the hydration reaction of the CPC. Because of the existence of Sr element and the compact microstructure after hydration, the Sr-containing CPC shows good radiopacity. It is expected to be used in orthopedic and maxillofacial surgery for bone defects repairing. PMID:19380262

  6. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Chen, C.-W.; Ducheyne, Paul [Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: liucs@ecust.edu.cn, E-mail: ducheyne@seas.upenn.edu

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 deg. C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO{sub 4} and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 {mu}m and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  7. Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study

    OpenAIRE

    Qian, Guang; Dong, Youhai; Yang, Wencheng; Wang, Minghai

    2012-01-01

    Polymethylmethacrylate (PMMA) is currently the most commonly-used material, but it may induce adjacent vertebral fracture due to low degradation and high strength. Our study evaluated the feasibility of injectable calcium phosphate cement (ICPC) and fibrin sealant (FS) as an injectable compound carrier of human bone morphogenetic protein-2 (rhBMP-2) in New Zealand rabbits for vertebroplasty. Results showed ICPC/FS/rhBMP-2 composites induced alkaline phosphatase most effectively at 2 and 4 wee...

  8. Influence of a dental ceramic and a calcium aluminate cement on dental biofilm formation and gingival inflammatory response

    OpenAIRE

    Konradsson, Katarina

    2007-01-01

    Dental restorative materials interact with their surrounding oral environment. Interaction factors can be release of toxic components and/or effects on biofilm formation and gingiva. In the end of the nineties, a calcium aluminate cement (CAC) was manufactured as a “bioceramic” alternative to resin composite. Dental ceramics are considered to be chemically stable and not to favour dental biofilm formation. Since the influence of aged, resin-bonded ceramic coverages is not fully investigated a...

  9. In Vitro Spectrophotometry of Tooth Discoloration Induced by Tooth-Colored Mineral Trioxide Aggregate and Calcium-Enriched Mixture Cement

    OpenAIRE

    Arman, Marjan; Khalilak, Zohreh; Rajabi, Moones; Esnaashari, Ehsan; Saati, Keyvan

    2015-01-01

    Introduction: There are numerous factors that can lead to tooth discoloration after endodontic treatment, such as penetration of endodontic materials into the dentinal tubules during root canal treatment. The aim of this in vitro study was to compare discoloration induced by tooth colored mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement in extracted human teeth. Methods and Materials: Thirty two dentin-enamel cuboid blocks (7×7×2 mm) were prepared from extracted maxi...

  10. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    OpenAIRE

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2014-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, a...

  11. Low-pressure plasma treatment of polylactide fibers for enhanced mechanical performance of fiber-reinforced calcium phosphate cements

    OpenAIRE

    Canal Barnils, Cristina; Gallinetti, Sara; Ginebra Molins, Maria Pau

    2014-01-01

    Calcium phosphate cements (CPCs) are extensively used as synthetic bone grafts, but their poor mechanical properties limit their applicability to non-stress-bearing applications. The aim of the present work is to evaluate the potential of plasma surface modification of polylactide (PLA) fibers for reinforcement of CPCs. Oxygen low-pressure plasma was employed at different treatment times and the surface properties of the untreated and plasma-treated PLA were evaluated. Plasma treatment on the...

  12. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    Energy Technology Data Exchange (ETDEWEB)

    White, Claire E., E-mail: whitece@princeton.edu [Department of Civil and Environmental Engineering, Princeton University, Princeton (United States); Andlinger Center for Energy and the Environment, Princeton University, Princeton (United States); Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos (United States); Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos (United States); Daemen, Luke L.; Hartl, Monika; Page, Katharine [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos (United States)

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  13. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    International Nuclear Information System (INIS)

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO2 alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C3S), blended C3S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C3S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements

  14. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro

    International Nuclear Information System (INIS)

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA–CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA–CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA–CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1 d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of C=O of PDA existed in the newly formed CaP on PDA–CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA–CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA–CPC. Thus, this provides the feasible route for surface modification on CPC. - Highlights: • Effect of polydopamine (PDA) on the in vitro mineralization of PDA-CPC was studied. • PDA promoted the rapid mineralization on PDA-CPC to form a nanoscale HA layer. • The precipitation of the nanoscale HA layer on PDA-CPC accompanied with PDA. • Polydopamine induced mineralization is feasible for surface modification of CaP

  15. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zongguang [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Qu, Shuxin, E-mail: qushuxin@swjtu.edu.cn [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zheng, Xiaotong; Xiong, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Fu, Rong; Tang, Kuangyun; Zhong, Zhendong [Department of Plastic Surgery, Academy of Medical Sciences and Sichuan Provincial People' s Hospital, Chengdu 610041 (China); Weng, Jie [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-11-01

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA–CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA–CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA–CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1 d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of C=O of PDA existed in the newly formed CaP on PDA–CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA–CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA–CPC. Thus, this provides the feasible route for surface modification on CPC. - Highlights: • Effect of polydopamine (PDA) on the in vitro mineralization of PDA-CPC was studied. • PDA promoted the rapid mineralization on PDA-CPC to form a nanoscale HA layer. • The precipitation of the nanoscale HA layer on PDA-CPC accompanied with PDA. • Polydopamine induced mineralization is feasible for surface modification of CaP.

  16. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement.

    Science.gov (United States)

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Champa Jayasuriya, A

    2015-09-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  17. Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae: in vivo biomechanical study.

    Science.gov (United States)

    Taniwaki, Yoshimichi; Takemasa, Ryuichi; Tani, Toshikazu; Mizobuchi, Hiroo; Yamamoto, Hiroshi

    2003-01-01

    We conducted an experimental study using female beagles with and without ovariectomy-induced osteoporosis to determine the effect of calcium phosphate cement (CPC) on the mechanical stability of inserted pedicle screws. A drill hole was created from the base of the transverse process to the vertebral body; CPC was injected into the hole, and then a screw was inserted into the same hole. In the presence of osteoporosis evidenced by dual X-ray absorptiometry, the stability of the inserted screw augmented by CPC against pull-out and cephalocaudal forces were significantly greater by 28% and 54% at 1 week after operation, 48% and 71% at 2 weeks, and 56% and 68% at 4 weeks compared with those without CPC. The pull-out strength increased progressively with time after surgery, probably reflecting new-bone growth from the surrounding cancellous bone, which was in direct contact with the CPC, as shown in the histologic study. At each time point the cephalocaudal rigidity was similar and the pull-out strength greater than that for the screws inserted without CPC in nonporotic dogs. These findings suggest that CPC augments the stability of the inserted pedicle screws and increases the stiffness of fixed osteoporotic motion segments using instrumentation. PMID:12768486

  18. Influence of artificially-induced porosity on the compressive strength of calcium phosphate bone cements.

    Science.gov (United States)

    Mouzakis, Dionysios; Zaoutsos, Stefanos Polymeros; Bouropoulos, Nikolaos; Rokidi, Stamatia; Papanicolaou, George

    2016-07-01

    The biological and mechanical nature of calcium phosphate cements (CPC's) matches well with that of bone tissues, thus they can be considered as an appropriate environment for bone repair as bone defect fillers. The current study focuses on the experimental characterization of the mechanical properties of CPCs that are favorably used in clinical applications. Aiming on evaluation of their mechanical performance, tests in compression loading were conducted in order to determine the mechanical properties of the material under study. In this context, experimental results occurring from the above mechanical tests on porous specimens that were fabricated from three different porous additives, namely albumin, gelatin and sodium alginate, are provided, while assessment of their mechanical properties in respect to the used porous media is performed. Additionally, samples reinforced with hydroxyapatite crystals were also tested in compression and the results are compared with those of the above tested porous CPCs. The knowledge obtained allows the improvement of their biomechanical properties by controlling their structure in a micro level, and finds a way to compromise between mechanical and biological response. PMID:26945808

  19. Solidification/stabilization of toxic metals in calcium aluminate cement matrices

    International Nuclear Information System (INIS)

    Highlights: • Reliable encapsulation and effective sorption of Pb, Zn and Cu on CAC was proved. • Cu and Pb were fully retained in the CAC mortar, while Zn was retained in 99.99%. •A maximum sorption capacity ca. 60 mg/g CAC was attained for Cu. • Three different PSD patterns were established as a function of XRD phase assemblage. • Some metal-loaded mortars achieved suitable mechanical strengths for landfilling. -- Abstract: The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests

  20. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  1. Combined Percutaneous Iliosacral Screw Fixation With Sacroplasty Using Resorbable Calcium Phosphate Cement for Osteoporotic Pelvic Fractures Requiring Surgery.

    Science.gov (United States)

    Collinge, Cory A; Crist, Brett D

    2016-06-01

    Osteoporotic sacral fractures, including acute and chronic insufficiency fractures, are increasing in frequency and present a number of management problem. Many of these patients are treated nonoperatively with relative immobility (eg, bedrest, wheelchair, or weight-bearing restrictions) and analgesics, which likely make the osteoporotic component worse. Surgery in this patient population may be desirable in some cases with the goals of improving mobility, relieving pain, and healing in an aligned position while minimizing deformity progression. However, internal fixation of the osteoporotic pelvis can be difficult. Large unicortical lag screws are the workhorse of posterior pelvic fixation, and yet fixation in cancellous bone corridors of an osteoporotic sacrum seems unlikely to achieve optimal fixation. As a result, the operative management and clinical results of these difficult injuries may not be uniformly successful. The authors present a technique for treating osteoporotic patients with a sacral fracture when operative treatment is indicated using percutaneous screw fixation combined with screw augmentation using a resorbable calcium phosphate bone substitute or "cement." The guide wire for a 7.3-mm or other large cannulated lag screw is fully inserted along the desired bony sacral corridor as is standard. The lag screw is then inserted over the wire to the depth where cement is desired. The guide wire is removed, and the aqueous calcium phosphate is injected through the screw's cannulation. For acute fractures, cement was applied to the areas distant to the fracture; whereas in insufficiency fractures, the cement was inserted along most of the screw path. The guide wire then can be reinserted and the lag screw fully inserted. The rationale for using these 2 modalities is their synergistic effect: the cannulated screw provides typical screw fixation and also a conduit for cement application. The cement augments the lag screw's purchase in osteoporotic bone

  2. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats

    International Nuclear Information System (INIS)

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery. (paper)

  3. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels.

    Science.gov (United States)

    Yu, Tao; Dong, Chao; Shen, Zhonghua; Chen, Yan; Yu, Bo; Shi, Haishan; Zhou, Changren; Ye, Jiandong

    2016-11-01

    Despite calcium phosphate cement (CPC) is promising for bone repair therapy, slow biodegradation and insufficient vascularization in constructs negatively impacts its clinical application. A self-setting CPC composited with gelatin fiber is investigated to test the utility of this tissue engineering strategy to support rapid and extensive vascularization process. The interconnected hollow channels in CPC are formed after dissolution of gelatin fibers in vivo. The CPC-gelatin samples exhibit relatively decent/enhanced mechanical property, compared to the control. When implanted in vivo, the pre-established vascular networks in material anastomose with host vessels and accelerate vascular infiltration throughout the whole tissue construct. Different channel sizes induce different vascularization behaviors in vivo. Results indicate that the channel with the size of 250μm increases the expression of the representative angiogenic factors HIF1α, PLGF and migration factor CXCR4, which benefit the formation of small vessels. On the other hand, the channel with the size of 500μm enhances VEGF-A expression, which benefit the development of large vessels. Notably, the intersection area of channels has high invasive, sprouting and vasculogenesis potential under hypoxic condition, because more HIF1α-positive cells are observed there. Observation of the CD31-positive lumen in the border of scaffold indicates the ingrowth of blood vessels from its host into material through channel, benefited from gradually increased HIF1α expression. This kind of material was suggested to promote the effective application of bone regeneration through the combination of in situ self-setting, plasticity, angiogenesis, and osteoconductivity. PMID:27524007

  4. The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPCs) including poly(D,L-lactic-co-glycolic) acid (PLGA) microparticles are promising candidates for bone regenerative applications. Previous studies with CPC/PLGA demonstrated that the material is non-toxic, biocompatible and osteoconductive. However, the outcome of these studies was based on healthy individuals and consequently does not provide information on bone substitute material performance in a compromised situation, such as osteoporosis. Therefore, this study comparatively evaluated the performance of injectable CPC/PLGA in healthy (SHAM) and osteoporotic rats (OVX) using a rat femoral condyle defect with implantation periods of 4 and 12 weeks. It was hypothesized that in OVX rats the degradation of CPC/PLGA would increase due to a higher osteoclastic activity present in osteoporotic animals and that the obtained space would be rapidly filled with newly formed bone. The results revealed an accelerated degradation of the used CPC/PLGA in osteoporotic animals, but bone formation was less compared to that in healthy animals at 4 and 12 weeks after implantation. In addition, after 4 weeks, the amount of newly formed bone under osteoporotic conditions was less in the femoral condyle defect compared to that present in a non-defect, osteoporotic control femoral condyle, but equal after 12 weeks. On the other hand, in healthy animals, the amount of newly formed bone in the femoral condyle defect was equal to that present in a non-defect control femoral condyle at 4 weeks, while higher after 12 weeks. This indicates that bone regeneration at a defect site under osteoporotic conditions is slower, but can reach native amounts after longer time periods. Consequently, bone regenerative treatments under osteoporotic conditions seem to require additional empowerment of bone substitute materials. (paper)

  5. Effect of pH and Lidocaine on the Compressive Strength of Calcium Enriched Mixture Cement

    Directory of Open Access Journals (Sweden)

    Sobhnamayan F

    2015-12-01

    Full Text Available Statement of Problem: The pH of the human abscess has been measured as low as 5.0. This low pH could potentially inhibit setting reactions, affect adhesion, or increase the solubility of root end filling materials hence affect the compressive strength. Moreover, root end filling materials might expose or even mix with lidocaine HCL during periapical surgery. Objectives: The aim of this in vitro study was to evaluate the effect of acidic pH and lidocaine on the compressive strength of calcium-enriched mixture (CEM. Materials and Methods: CEM was mixed according to the manufacturer’s instructions or with lidocaine (L, and condensed into 6 × 4 mm split moulds. The samples were exposed to phosphate buffered saline (PBS at pH 5 or 7.4 for 7 or 28 days. Cylindrical blocks of CEM (total number = 120 and 15 for each group were subjected to compressive strength test using a universal testing machine. Data were analysed using three-factor analysis of variance (ANOVA. Results: Regardless of pH and time, significant differences were not found between lidocaine groups and the groups that were mixed according to the manufacturer’s instruction (p = 0.083. For both mixing agents, regardless of time, there were no significant differences between the two pH levels (p = 0.157. Regardless of the material and pH, there was a significant increase in the compressive strength from days 7 to 28 (p < 0.001. Conclusions: Mixtures with lidocaine and exposure to an acidic environment had no adverse effects on the compressive strength of CEM Cement.

  6. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  7. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Science.gov (United States)

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  8. In vivo evaluation of the effects of hydraulic calcium silicate dental cements on plasma and liver aluminium levels in rats.

    Science.gov (United States)

    Demirkaya, Kadriye; Can Demirdöğen, Birsen; Öncel Torun, Zeynep; Erdem, Onur; Çetinkaya, Serdar; Akay, Cemal

    2016-02-01

    Our aim was to test whether the presence of three hydraulic calcium silicate dental cements--MTA Angelus, MTA Fillapex, and Theracal LC--in the dental extraction socket of an in vivo model, would affect the levels of aluminium (Al) in the plasma and liver. Following anesthesia, the right upper incisor of each male Wistar albino rat was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex, or Theracal LC were inserted into the depth of the extraction socket and gingival tissue was sutured. The rats were killed 7, 30, or 60 d after the operation. Blood and liver samples were obtained from the rats before they were killed, and the levels of Al were measured by atomic absorption spectrometry. Plasma Al levels were higher in the rats in which the mineral trioxide aggregate (MTA) cements were implanted, especially MTA Angelus and MTA Fillapex, compared with control rats. In liver samples, however, the differences in Al level were not statistically significant. Our results show that Al might have been released into the circulation from the three dental cements tested, especially MTA Angelus and MTA Fillapex. Further research should be carried out on the possible biological effects of Al liberated from dental cements. PMID:26706154

  9. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications.

    Science.gov (United States)

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-02-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  10. Sustainable Nanopozzolan Modified Cement: Characterizations and Morphology of Calcium Silicate Hydrate during Hydration

    Directory of Open Access Journals (Sweden)

    N. Mohamed Sutan

    2015-01-01

    Full Text Available There are environmental and sustainable benefits of partially replacing cement with industrial by-products or synthetic materials in cement based products. Since microstructural behaviours of cement based products are the crucial parameters that govern their sustainability and durability, this study investigates the microstructural comparison between two different types of cement replacements as nanopozzolan modified cement (NPMC in cement based product by focusing on the evidence of pozzolanic reactivity in corroboration with physical and mechanical properties. Characterization and morphology techniques using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, energy-dispersive X-ray spectroscopy (EDS, and scanning electron microscopy (SEM were carried out to assess the pozzolanic reactivity of cement paste modified with the combination of nano- and micro silica as NPMC in comparison to unmodified cement paste (UCP of 0.5 water to cement ratio (w/c. Results were then substantiated with compressive strength (CS results as mechanical property. Results of this study showed clear evidence of pozzolanicity for all samples with varying reactivity with NPMC being the most reactive.

  11. Calcium-aluminum-silicate-hydrate "cement" phases and rare Ca-zeolite association at Colle Fabbri, Central Italy

    Science.gov (United States)

    Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V.; Bortolozzi, G.

    2010-06-01

    Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — "cement" phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

  12. Healing of segmental ulnar defects in dog using bioresorbable calcium phosphate cement added with recombinant human bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Ohura, K.; Hamanishi, C. [Kinki Univ. School of Medicine, Osaka (Japan). Dept. of Orthopaedic Surgery; Irie, H. [Olympus Optical Co., Ltd., Tokyo (Japan)

    2001-07-01

    Bioresorbable calcium phosphate cement (BCPC) cylinders soaked with 100 {mu}g of rhBMP-2 were implanted into 21 mm segmental ulnar defects in dogs. New bone induced around cylinders united both bone segments in 3 weeks. As the cylinder dissolved, the induced bone was remodeled into the compact bone by 9 weeks. However, the cement cylinder implanted without BMP did not dissolve and that defect did not recover bone continuity in 9 weeks. Mechanical test at 9 weeks showed that the BMP group achieved 71% union and 63% of bone strength compared to normal ulna. However, other two groups, the implantation of the cylinder alone and no implantation, did not unite any case. The implantation of thin cylinders of BCPC soaked with small amount of rhBMP-2 repaired large bone defects of high mammal fast. Added with more BMP, it will be possible to apply this biocompatible composite even in clinical cases. (orig.)

  13. Different Angiogenic Abilities of Self-Setting Calcium Phosphate Cement Scaffolds Consisting of Different Proportions of Fibrin Glue

    OpenAIRE

    Jintao Xiu; Junjun Fan; Jie Li; Geng Cui; Wei Lei

    2014-01-01

    To investigate the different angiogenic abilities of the self-setting calcium phosphate cement (CPC) consisting of different proportions of fibrin glue (FG), the CPC powder and the FG solution were mixed at the powder/liquid (P/L) ratios of 1 : 0.5, 1 : 1, and 1 : 2 (g/mL), respectively, and pure CPC was used as a control. After being implanted into the lumbar dorsal fascia of the rabbit, the angiogenic process was evaluated by histological examination and CD31 immunohistochemistry to detect ...

  14. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  15. Local treatment of osteoporosis with alendronate-loaded calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    Zhao Jindong; Tang Hai; Wang Jiayang; Li Gang

    2014-01-01

    Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".The study was performed to investigate the effect of alendronate-loaded calcium phosphate cement (CPC) as a novel drug delivery system for local treatment of osteoorosis.Methods An in vitro study was performed using CPC fabricated with different concentrations of alendronate (ALE,0,2,5,10 weight percent (wt%)).The microstructure,setting time,infrared spectrum,biomechanics,drug release,and biocompatibility of the composite were measured in order to detect changes when mixing CPC with ALE.An in vivo study was also performed using 30 Sprague-Dawley rats randomly divided into six groups:normal,Sham (ovariectomized (OVX) + Sham),CPC with 2% ALE,5%ALE,and 10% ALE groups.At 4 months after the implantation of the composite,animals were sacrificed and the caudal vertebrae (levels 4-7) were harvested for micro-CT examination and biomechanical testing.Results The setting time and strength of CPC was significantly faster and greater than the other groups.The ALE release was sustained over 21 days,and the composite showed good biocompatibility.In micro-CT analysis,compared with the Sham group,there was a significant increase with regard to volumetric bone mineral density (BMD) and trabecular number (Tb.N) in the treated groups (P <0.05).Trabecular spacing (Tb.Sp) showed a significant increase in the Sham group compared to other groups (P <0.01).However,trabecular thickness (Tb.Th) showed no significant difference among the groups.In biomechanical testing,the maximum compression strength and stiffness of trabecular bone in the Sham group were lower than those in the experimental groups.Conclusions The ALE-loaded CPC displayed satisfactory properties in vitro,which can reverse the OVX rat vertebral trabecular bone microarchitecture and biomechanical

  16. Photocatalytic NOx abatement by calcium aluminate cements modified with TiO2: Improved NO2 conversion

    International Nuclear Information System (INIS)

    Photocatalytic activity of TiO2 was studied in two types of calcium aluminate cement (CAC) under two different curing regimes. The effect of the TiO2 addition on the setting time, consistency and mechanical properties of the CACs was evaluated. The abatement of gaseous pollutants (NOx) under UV irradiation was also assessed. These cementitious matrices were found to successfully retain NO2: more abundant presence of aluminates in white cement (w-CAC, iron-lean) helped to better adsorb NO2, thus improving the conversion performance of the catalyst resulting in a larger NOx removal under UV irradiation. As evidenced by XRD, SEM, EDAX and zeta potential analyses, the presence of ferrite in dark cement (d-CAC, iron-reach) induced a certain chemical interaction with TiO2. The experimental findings suggest the formation of new iron titanate phases, namely pseudobrookite. The reduced band-gap energy of these compounds compared with that of TiO2 accounts for the photocatalytic activity of these samples

  17. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement.

    Science.gov (United States)

    Silva, Emmanuel Jnl; Carvalho, Nancy Kudsi; Zanon, Mayara; Senna, Plínio Mendes; DE-Deus, Gustavo; Zuolo, Mário Luis; Zaia, Alexandre Augusto

    2016-06-14

    This study was designed to investigate the resistance to dislodgment provided by MTA HP, a new high-plasticity calcium silicate-based cement. Biodentine and White MTA Angelus were used as reference materials for comparison. Three discs 1 ± 0.1 mm thick were obtained from the middle third of the roots of 5 maxillary canines. Three 0.8-mm-wide holes were drilled on the axial surface of each root disc. Standardized irrigation was performed. Then the holes were dried with paper points and filled with one of the three tested cements. The filled dental slices were immersed in a phosphate-buffered saline (PBS) solution (pH 7.2) for 7 days before the push-out assessment. The Kruskal-Wallis test was applied to assess the effect of each endodontic cement on the push-out bond strength. Mann-Whitney with Bonferroni correction was used to isolate the differences. The alpha-type error was set at 0.05. All specimens had measurable push-out values and no premature failure occurred. There were significant differences among the materials (p <0.05). The Biodentine specimens had the highest push-out bond strength values (p < 0.05). MTA HP had significantly higher bond strength than White MTA (p < 0.05). MTA HP showed better push-out bond strength than its predecessor, White MTA; however, Biodentine had higher dislodgment resistance than both MTA formulations. PMID:27305515

  18. Influence of addition of calcium oxide on physicochemical properties of Portland cement with zirconium or niobium oxide

    Directory of Open Access Journals (Sweden)

    Mario Tanomaru-Filho

    2015-01-01

    Full Text Available Context: Calcium oxide (CaO may be added to mineral trioxide aggregate (MTA or Portland cement (PC to improve physicochemical and biological properties. Aims: To evaluate the physicochemical properties of PC associated with radiopacifiers and CaO. Materials and Methods: MTA Angelus, PC + 30% zirconium oxide (Zr, or 30% niobium oxide (Nb associated with 10 or 20% of CaO were evaluated. Gilmore needles were used to evaluate initial and final setting time. Compressive strength was evaluated after the periods of 24 hours and 21 days. pH was analyzed after 3, 12, 24 hours, 7, 14, 21 days. Solubility and flow tests were performed based on the ISO 6876. The data obtained were submitted to analysis of variance and Tukey tests (P ≤ 0.05. Results: The associations with 10% CaO showed greater strength that the associations with 20% CaO. The shortest initial setting time was observed for the association PC + Zr + 20% CaO and MTA. All the cements presented alkaline pH. The flow of all cements was similar. The highest solubility was found in the associations with 20% CaO. Conclusion: The addition of CaO to PC favored the alkaline property and the PC + Zr + 20% CaO presented setting time similar to MTA.

  19. Production and characterization of setting hydraulic cements based on calcium phosphate; Obtencao e caracterizacao de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul G. [Universidad de La Habana, Habana (Cuba). Centro de Biomateriales

    1997-12-31

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden `in situ`, providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, {beta}-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author) 6 figs., 4 tabs.

  20. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays

    International Nuclear Information System (INIS)

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  1. In situ powder diffraction study of belite sulfoaluminate clinkering.

    Science.gov (United States)

    De la Torre, Angeles G; Cuberos, Antonio J M; Alvarez-Pinazo, Gema; Cuesta, Ana; Aranda, Miguel A G

    2011-05-01

    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO(2) into the atmosphere when compared with ordinary Portland cement fabrication. However, their formation mechanism has not been studied in detail so far. Here, an in situ high-temperature high-resolution synchrotron X-ray powder diffraction study is reported. Two types of BSA clinkers have been characterized, both containing 50-60 wt% C(2)S and 20-30 wt% C(4)A(3)\\underline{\\rm S} as main phases. One type is iron-rich and a second type (with different phase assemblage) is aluminium-rich. Furthermore, the C(2)S phase reacts slowly with water, thus activation of this compound is desirable in order to enhance the mechanical strength development of the resulting cements. To do so, iron-rich BSA clinkers have been doped with minor amounts of B(2)O(3) and Na(2)O to promote stabilization of α-forms of C(2)S, which are more reactive with water. The decarbonated raw materials were loaded into Pt tubes and heated to between 973 K and 1673 K, and patterns were collected using a high-energy synchrotron beam of wavelength λ = 0.30 Å. The thermal stability of Klein's salt in these clinkers has been clarified. Several reactions have been followed: formation and decomposition of Klein's salt, melting of aluminates and ferrite, and polymorphic transformations of dicalcium silicate: alpha'H-C2S → α-C(2)S. Changes in mineralogical phase assemblages at a given temperature owing to the addition of minor amounts of selected elements have also been determined. PMID:21525661

  2. Effect of curing conditions on the dimensional and thermal stability of calcium phosphate cement for elevated temperature applications

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPCs) are attractive materials for elevated temperature applications, like moulds to process thermoplastics up to 300 °C. The CPC resulting from the reaction of wollastonite with phosphoric acid cured at room temperature however contains hydrated phases like brushite, and is thus not stable when exposed to temperatures above 200 °C. A non-contact method based on digital image correlation demonstrated that isothermal curing at 60 °C reduces the thermal shrinkage up to 300 °C by 25%. This curing method results in the direct formation of the more stable monetite in a shorter curing time. The correlated results of TGA, pH of the filtration water, and DSC analysis on partially cured material indicate this. XRD diffractograms and SEM images in combination with EDX show the evolution of the transformation of wollastonite into monetite, and the structure and morphology of the formed material

  3. Effect of curing conditions on the dimensional and thermal stability of calcium phosphate cement for elevated temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Johan [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium); Rahier, Hubert [Vrije Universiteit Brussel, Research Group of Physical Chemistry and Polymer Sciences, Pleinlaan 2, Brussels 1050 (Belgium); Wastiels, Jan, E-mail: Jan.Wastiels@vub.ac.be [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium)

    2014-12-15

    Calcium phosphate cements (CPCs) are attractive materials for elevated temperature applications, like moulds to process thermoplastics up to 300 °C. The CPC resulting from the reaction of wollastonite with phosphoric acid cured at room temperature however contains hydrated phases like brushite, and is thus not stable when exposed to temperatures above 200 °C. A non-contact method based on digital image correlation demonstrated that isothermal curing at 60 °C reduces the thermal shrinkage up to 300 °C by 25%. This curing method results in the direct formation of the more stable monetite in a shorter curing time. The correlated results of TGA, pH of the filtration water, and DSC analysis on partially cured material indicate this. XRD diffractograms and SEM images in combination with EDX show the evolution of the transformation of wollastonite into monetite, and the structure and morphology of the formed material.

  4. Processing and characterisation of calcium sulphoaluminate (CSA) eco-cements with tailored performances

    OpenAIRE

    García-Maté, Marta

    2014-01-01

    Climate change mitigation usually involves the reduction of greenhouse gases emissions, such as carbon dioxide (CO2). Every tonne of Ordinary Portland Cement (OPC) produces about one tonne of CO2. Consequently, OPC accounts for 5-6% of anthropogenic CO2 emissions and for 4% of total global warming. Due to these environmental problems the industry of building materials is under increasing pressure to reduce the energy used in the production of OPC and the greenhouse gas emissions. Hence, t...

  5. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2013-01-01

    Full Text Available High-performance fiber-reinforced cement composites (HPFRCCs are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J, each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1 and 8% CSA-J (Type 2 considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs.

  6. Effect of expansive admixtures on the shrinkage and mechanical properties of high-performance fiber-reinforced cement composites.

    Science.gov (United States)

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  7. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    Science.gov (United States)

    GUERREIRO-TANOMARU, Juliane Maria; VÁZQUEZ-GARCÍA, Fernando Antonio; BOSSO-MARTELO, Roberta; BERNARDI, Maria Inês Basso; FARIA, Gisele; TANOMARU, Mario

    2016-01-01

    ABSTRACT Objective Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). Material and Methods White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time

  8. Effect of calcium hydroxide on the bond strength of two bioactive cements and SEM evaluation of failure patterns.

    Science.gov (United States)

    Centenaro, Carolina Fabiana; Santini, Manuela Favarin; da Rosa, Ricardo Abreu; Nascimento, Angela Longo do; Kuga, Milton Carlos; Pereira, Jefferson Ricardo; Só, Marcus Vinícius Reis

    2016-05-01

    The aim of this study was to assess the effect of calcium hydroxide on bond strength of two bioactive cements. One-mm thick longitudinal slabs of root dentin were obtained from freshly extracted human monorradicular teeth (n = 60). Simulated root perforations (1 mm in diameter) were prepared in radicular dentin. Thereafter, the specimens were randomly divided into two groups (n = 30), according to the repair material: MTA (n = 30) and Biodentine (BD) (n = 30). Next, the specimens in each group were further randomly divided into 4 equal subgroups (n = 15) according to the prior use of Ca(OH)2: MTA/Ca(OH)2 and BD/Ca(OH)2 groups: perforations were filled with calcium hydroxide [Ca(OH)2] and after 7 days, it was removed, and MTA and BD groups: calcium hydroxide dressing were not used. Push-out test was performed at a crosshead speed of 1 mm/min. Bond strength values were compared statistically using Kruskal-Wallis test and Dunn's post-test at a significance level of 5%. The failure analysis was performed using a stereoscopic and classified as adhesive, cohesive and mixed. The push-out bond strength of MTA and BD was not affected by the prior use of Ca(OH)2 (p > 0.05). BD yielded higher push-out bond strength values compared with those of MTA, regardless of the use of Ca(OH)2 (p groups. Ca(OH)2 placement for perforations sealing does not alter the bond strength of MTA and BD to the root dentin. BD presented higher bond strength values than MTA. SCANNING 38:240-244, 2016. © 2015 Wiley Periodicals, Inc. PMID:26331376

  9. ToF-SIMS images and spectra of biomimetic calcium silicate-based cements after storage in solutions simulating the effects of human biological fluids

    Science.gov (United States)

    Torrisi, A.; Torrisi, V.; Tuccitto, N.; Gandolfi, M. G.; Prati, C.; Licciardello, A.

    2010-01-01

    ToF-SIMS images were obtained from a section of a tooth, obturated by means of a new calcium-silicate based cement (wTCF) after storage for 1 month in a saline solutions (DPBS), in order to simulate the body fluid effects on the obturation. Afterwards, ToF-SIMS spectra were obtained from model samples, prepared by using the same cement paste, after storage for 1 month and 8 months in two different saline solutions (DPBS and HBSS). ToF-SIMS spectra were also obtained from fluorine-free cement (wTC) samples after storage in HBSS for 1 month and 8 months and used for comparison. It was found that the composition of both the saline solution and the cement influenced the composition of the surface of disks and that longer is the storage greater are the differences. Segregation phenomena occur both on the cement obturation of the tooth and on the surface of the disks prepared by using the same cement. Indirect evidences of formation of new crystalline phases are supplied.

  10. Silicate anion structural change in calcium silicate hydrate gel on dissolution of hydrated cement

    International Nuclear Information System (INIS)

    High pH conditions of aqueous solutions in a radioactive waste repository can be brought about by dissolution of cementitious materials. In order to clarify the mechanisms involved in maintaining this high pH for long time, we investigated the dissolution phenomena of OPC hydrate. In the present research, leaching tests on powdered cement hydrates were conducted by changing the ratio of mass of leaching water to mass of OPC hydrate (liquid/solid ratio) from 10 - 2,000 (wt/wt). Ordinary Portland Cement hydrate was contacted with deionized water and placed in a sealed bottle. After a predetermined period, the solid was separated from the solution. From the results of XRD analysis on the solid phase and the Ca concentration in the aqueous phase, it was confirmed that Ca(OH)2 was preferentially dissolved when the liquid/solid ratio was 10 or 100 (wt/wt), and that C-S-H gel as well as Ca(OH)2 were dissolved when the liquid/solid ratio was 500 (wt/wt) or larger. 29Si-NMR results showed that the silicate anion chain of the C-S-H gel became longer when the liquid/solid ratio was 500 (wt/wt) or greater. This indicates that leaching of OPC hydrate results in a structural change of C-S-H gel. (author)

  11. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  12. Effect of Combined Calcium Hydroxide and Accelerated Portland Cement on Bone Formation and Soft Tissue Healing in Dog Bone Lesions

    Directory of Open Access Journals (Sweden)

    Khorshidi H

    2015-09-01

    Full Text Available Statement of Problem: Recent literatures show that accelerated Portland cement (APC and calcium hydroxide Ca (OH2 may have the potential to promote the bone regeneration. However, certain clinical studies reveal consistency of Ca (OH2, as one of the practical drawbacks of the material when used alone. To overcome such inconvenience, the combination of the Ca (OH2 with a bone replacement material could offer a convenient solution. Objectives: To evaluate the soft tissue healing and bone regeneration in the periodontal intrabony osseous defects using accelerated Portland cement (APC in combination with calcium hydroxide Ca (OH2, as a filling material. Materials and Methods: Five healthy adult mongrel dogs aged 2-3 years old (approximately 20 kg in weight with intact dentition and healthy periodontium were selected for this study. Two one-wall defects in both mesial and distal aspects of the 3rd premolars of both sides of the mandible were created. Therefore, four defects were prepared in each dog. Three defects in each dog were randomly filled with one of the following materials: APC alone, APC mixed with Ca (OH2, and Ca (OH2 alone. The fourth defect was left empty (control. Upon clinical examination of the sutured sites, the amount of dehiscence from the adjacent tooth was measured after two and eight weeks, using a periodontal probe mesiodistally. For histometric analysis, the degree of new bone formation was estimated at the end of the eighth postoperative week, by a differential point-counting method. The percentage of the defect volume occupied by new osteoid or trabecular bone was recorded. Results: Measurement of wound dehiscence during the second week revealed that all five APCs had an exposure of 1-2 mm and at the end of the study all samples showed 3-4 mm exposure across the surface of the graft material, whereas the Ca (OH2, control, and APC + Ca (OH2 groups did not show any exposure at the end of the eighth week of the study. The most

  13. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  14. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China)

    2014-10-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  15. Ceramic joining through reactive wetting of alumina with calcium aluminate refractory cements

    Indian Academy of Sciences (India)

    K Geetha; A M Umarji; T R N Kutty

    2000-08-01

    Compositions in CaO–Al2O3 system have been prepared by gel–to–crystallite conversion method. Reactive powders of 1 : 2, 1 : 1, 2 : 1 and 3 : 1 of CaO and Al2O3 compositions were obtained by calcining the product at 800–1200°C. Fine grained powders were used as refractory cement for joining alumina ceramics. An optimum temperature of 1450°C for 4 h produced joints of satisfactory strength. The microstructure and X-ray phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances the joining of alumina substrates and can be attributed to the formation of Ca12Al14O33 liquid phase. The results are explained by using CaO–Al2O3 phase diagram.

  16. EFFECT OF MgO ON THE COMPOSITION AND PROPERTIES OF BELITE-BARIUM CALCIUM SULPHOALUMINATE CEMENT IN THE PRESENCE OF Na2O AND K2O

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2015-06-01

    Full Text Available The purpose of this study is to explore the effect of MgO (1 - 9 wt. % on the composition and properties of belite-barium calcium sulphoaluminate cement with additions of Na2O and K2O. The results show that 1 - 5 wt. % content of MgO can stabilize crystal types of M3-C3S, R-C3S and β-C2S. Moreover, MgO can promote the formation of C3S and C4AF, but has little effect on the formation of C2.75B1.25A3$ and C3A. The C3A/C4AF ratio is reduced by 22 % at 5 wt. % MgO, which indicates that appropriate MgO can decrease the liquid viscosity. In the presence of Na2O and K2O, the highest limit of incorporated amount of MgO is about 3 wt. %, which is higher than that in Portland cement clinker of 2 wt. %. Besides, MgO favors the formation of small C3S crystals in size of 4 - 20 μm. MgO enhances the hydration rate and mechanical property of cement at an optimal dosage (1 - 5 wt. %, beyond which an adverse effect could be resulted. At a MgO dosage of 5 wt. %, the compressive strengths of the cement at 1, 3, 7 and 28 days are 15.8, 39.3, 68.6 and 97.3 MPa, which increases by 116 %, 17 %, 10 % and 6 % respectively compared to the cement without MgO dopant. This study could lead to the effective use of magnesia-rich limestone in industrial production of belite-barium calcium sulphoaluminate cement.

  17. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    OpenAIRE

    Watson, Timothy F; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set i...

  18. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    OpenAIRE

    Alexandre Cestari; Lilian Rodrigues Avila; Evelisy Cristina de Oliveira Nassor; Paula Fabiana dos Santos Pereira; Paulo Sergio Calefi; Katia Jorge Ciuffi; Shirley Nakagaki; Antonio Carlos Pereira Gomes; Eduardo Jose Nassar

    2009-01-01

    Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic ...

  19. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells.

    Science.gov (United States)

    Chung, Chooryung J; Kim, Euiseong; Song, Minju; Park, Jeong-Won; Shin, Su-Jung

    2016-05-01

    Mineral trioxide aggregate (MTA) is considered a pulp-capping agent of choice, but has the drawback of a long setting time. This study aimed to assess two different types of calcium-silicate cements as pulp-capping agents, by investigating their in vitro cytotoxicity and angiogenic effects in human pulp cells. ProRoot MTA, Endocem Zr, and Retro MTA were prepared as set or freshly mixed pellets. Human pulp-derived cells were grown in direct contact with these three cements, Dycal, or no cement, for 7 days. Initial cell attachment, viability, calcium release, and the levels of vascular endothelial growth factor (VEGF), angiogenin, and basic fibroblast growth factor (FGF-2) were evaluated statistically using a linear mixed model (P calcium concentration compared with the control group (P  0.05). We demonstrate that Retro MTA, which has a short setting time, has similar biocompatibility and angiogenic effects on human pulp cells, and can therefore potentially be as effective in pulp capping as ProRoot MTA. Endocem Zr showed intermittent cytotoxicity and elicited lower levels of VEGF and angiogenin expression. PMID:25596932

  20. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  1. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    Science.gov (United States)

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  2. Calcium enriched mixture cement for primary molars exhibiting root perforations and extensive root resorption: report of three cases.

    Science.gov (United States)

    Tavassoli-Hojjati, Sara; Kameli, Somayeh; Rahimian-Emam, Sara; Ahmadyar, Maryam; Asgary, Saeed

    2014-01-01

    In primary molars with root perforations of endodontic origin, tooth extraction and space maintainer are recommended. Calcium-enriched mixture (CEM) cement is a new biomaterial demonstrating favorable sealability/biocompatibility. This report presents a novel treatment modality for cases of primary molar teeth with root perforations associated with a periodontal lesion due to extensive inflammatory root resorption, whereby CEM was used as a perforation repair/pulpotomy biomaterial. Three cases of primary molar root perforations due to inflammatory resorption were selected; all cases were associated with furcal lesions of endodontic origin. Pulp chambers were accessed/irrigated with NaOCl; the root canal orifices were filled with CEM and restored with stainless steel crowns. Clinical/radiographic examinations up to 17 months revealed that all teeth were functional and free of signs/symptoms of infection and all had complete bone healing. Further trials are suggested to confirm CEM use for management of root perforations in primary molars exhibiting root perforation. PMID:24717704

  3. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties.

    Science.gov (United States)

    Xu, H H; Quinn, J B

    2001-11-01

    Calcium phosphate cement (CPC) sets to form microporous solid hydroxyapatite with excellent osteoconductivity, but its brittleness and low strength prohibit use in stress-bearing locations. The aim of this study was to incorporate prehardened CPC particles and ceramic whiskers in a resin matrix to improve the strength and fracture resistance, and to investigate the effects of key microstructural variables on composite mechanical properties. Two types of whiskers were used: silicon nitride, and silicon carbide. The whiskers were surface-treated by fusing with silica and by silanization. The CPC particle fillers were either silanized or not silanized. Seven mass ratios of whisker-silica/CPC were mixed: 0:1 (no whisker-silica), 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0 (no CPC). Each powder was blended with a bisphenol-a-glycidyl methacrylate-based resin to harden in 2 x 2 x 25 mm molds by two-part chemical curing. The specimens were tested in three-point flexure to measure strength, work-of-fracture (toughness), and elastic modulus. Two-way analysis of variance was used to analyze the data, and scanning electron microscopy was used to examine specimen fracture surfaces. The whisker-silica/CPC ratio had significant effects on composite properties (p particles without whiskers. The composite properties were determined by whisker-to-CPC ratio and filler surface treatments. PMID:11484178

  4. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture.

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J

    2009-09-15

    The development of highly efficient CaO-based pellet sorbents, using inexpensive raw materials (limestones) or the spent sorbent from CO2 capture cycles, and commercially available calcium aluminate cements (CA-14, CA-25, Secar 51, and Secar 80), is described here. The pellets were prepared using untreated powdered limestones or their corresponding hydrated limes and were tested for their CO2 capture carrying capacities for 30 carbonation/calcination cycles in a thermogravimetric analyzer (TGA). Their morphology was also investigated by scanning electron microscopy (SEM) and their compositions before and after carbonation/calcination cycleswere determined by X-ray diffraction (XRD). Pellets prepared in this manner showed superior behavior during CO2 capture cycles compared to natural sorbents, with the highest conversions being > 50% after 30 cycles. This improved performance was attributed to the resulting substructure of the sorbent particles, i.e., a porous structure with nanoparticles incorporated. During carbonation/calcination cycles mayenite (Ca12Al14O33) was formed, which is believed to be responsible for the favorable performance of synthetic CaO-based sorbents doped with alumina compounds. An added advantage of the pellets produced here is their superior strength, offering the possibility of using them in fluidized bed combustion (FBC) systems with minimal sorbent loss due to attrition. PMID:19806751

  5. Different Angiogenic Abilities of Self-Setting Calcium Phosphate Cement Scaffolds Consisting of Different Proportions of Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Jintao Xiu

    2014-01-01

    Full Text Available To investigate the different angiogenic abilities of the self-setting calcium phosphate cement (CPC consisting of different proportions of fibrin glue (FG, the CPC powder and the FG solution were mixed at the powder/liquid (P/L ratios of 1 : 0.5, 1 : 1, and 1 : 2 (g/mL, respectively, and pure CPC was used as a control. After being implanted into the lumbar dorsal fascia of the rabbit, the angiogenic process was evaluated by histological examination and CD31 immunohistochemistry to detect the new blood vessels. The result of the new blood vessel showed that the P/L ratio of 1 : 1 group indicated the largest quantity of new blood vessel at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. The histological evaluation also showed the best vascular morphology in the 1 : 1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. Our study indicated that the CPC-FG composite scaffold at the P/L ratio of 1 : 1  (g/mL stimulated angiopoiesis better than any other P/L ratios and has significant potential as the bioactive material for the treatment of bone defects.

  6. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    International Nuclear Information System (INIS)

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration

  7. In vitro study of using calcium phosphate cement as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas.

    Science.gov (United States)

    Kai-Chiang, Yang; Ching-Yao, Yang; Chang-Chin, Wu; Tzong-Fu, Kuo; Feng-Huei, Lin

    2007-12-15

    In this study, the feasibility of using calcium phosphate cement (CPC) as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas was evaluated. We fabricated a chamber by CPC and utilized X-ray diffraction, Scanning electron microscope and Mercury intrusion porosimetry to identify the characters of the CPC chamber. The nominal molecular weight cut-off and cytotoxicity of CPC chamber were also evaluated. An insulinoma cell line (RIN-m5F) was chosen as insulin source and encapsulated in agarose microspheres and then enclosed in preformed CPC chamber. Insulin secretion was analyzed by Enzyme-linked immunosorbant assay to evaluate the function of insulinoma enclosed in CPC chamber. Results showed that the CPC chamber was non-cytotoxicity to insulinoma and can block the penetration of molecules which molecular weight larger than 12.4 kDa. Insulinoma inside the CPC chamber can secrete insulin in stable level for 30 days. This study indicated that we may use CPC as immunoisolative material to enclose insulinoma/agarose microspheres as bioartificial pancreas. PMID:17514757

  8. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  9. Calcium aluminate cement concrete: durablllty and conversión. A fresh look at an old subject

    Directory of Open Access Journals (Sweden)

    George, C. M.

    1992-12-01

    Full Text Available This paper re-examines the relationship between durability and conversion of calcium aluminate cement concretes, CACC. Conversion is a natural and inevitable process whereby these materials reach a stable mature condition. Numerous structures built more than half a century ago remain serviceable and in service today. Some of these are illustrated. They are the best testament to the durability of converted concrete having survived far longer in the converted than the unconverted condition. The unique rapid hardening characteristics of CACC offer a valuable selfheating capability. Conversión is immediate and this leads to better long term strengths because more cement is hydrated. Moreover, recent work has shown that the thermodynamically stable hydrates of converted CAC are intrinsically more resistant to attack from such aggressive agents as sulphuric acid. This provides an explanation of the excellent long term performance of Fondu concretes, for example in many saewer applications. Our knowledge and understanding today of the durability of calcium alumínate bonded materials has been built on close to 100 years of accumulated experience and laboratory studies. We know how to use these materials and we know what to expect from them. We can be confident that they will serve us well in the century ahead.

    Este trabajo examina de nuevo la relación entre durabilidad y conversión de hormigones de cemento aluminoso, HAC (High Alumina Cement. La conversión es un proceso natural e inevitable a través del cual este material consigue una condición definitiva y estable. Numerosas estructuras que se edificaron hace más de medio siglo siguen utilizables y utilizadas hoy en día. Algunas de estas estructuras vienen ilustradas en este trabajo. Ellas sirven como mejor ejemplo de la durabilidad del hormigón convertido, ya que han sobrevivido mucho más tiempo en el estado convertido que en el no convertido. Las singulares caracter

  10. Effect of the strontium aluminate and hemihydrate contents on the properties of a calcium sulphoaluminate based cement

    Directory of Open Access Journals (Sweden)

    Velazco, G.

    2014-09-01

    Full Text Available The effect of strontium aluminate (SrAl2O4 on the hydration process of a calcium sulphoaluminate (C4A3Ŝ cement was investigated. Cement pastes were prepared by mixing C4A3Ŝ , hemihydrate (CaSO4· ½H2O, CŜH0.5 and 0, 10 or 20wt% of SrAl2O4 (SrA. The amount of CŜH0.5 was 15, 20 or 25wt% based on the C4A3Ŝ quantity. The cement pastes were hydrated using water to cement ratios (w/c of 0.4 and 0.5. Samples were cured from 1 to 28 d. The compressive strength and setting time were evaluated and the hydration products were characterized. It was found that the setting time was delayed up to 42 min for the samples containing SrAl2O4 compared to samples without addition. The samples with 25wt% hemihydrate containing 20wt% SrAl2O4 developed the highest compressive strength (60 MPa after 28 d of curing. The main product after hydration was ettringite (C6AŜ3H32. The morphology of this phase consisted of thin needle-shaped crystals.Se investigó el efecto de la adición de aluminato de estroncio (SrAl2O4 sobre las propiedades de un cemento de sulfoaluminato de calcio (C4A3Ŝ. Se prepararon muestras mezclando C4A3Ŝ, hemihidrato (CaSO4· ½H2O, CŜH0.5 y 0, 10 o 20% e.p de SrAl2O4 (SrA. La cantidad de CŜH0.5 fue de 15, 20 o 25% e.p. basado en la cantidad de C4A3Ŝ. Las relaciones agua/cemento utilizadas fueron 0.4 y 0.5. Las muestras fueron curadas hasta 28 d. Se evaluó el tiempo de fraguado y la resistencia a la compresión. Los productos de hidratación se caracterizaron mediante DRX y MEB. El tiempo de fraguado se retardó hasta 42 minutos con la adición del SrAl2O4 comparado con las muestras sin adiciones. Las muestras con 25% e.p. de yeso y 20% e.p. de SrAl2O4 desarrollaron la mayor resistencia a la compresión alcanzando 60 MPa a 28 d de curado. Los análisis por MEB y DRX muestran como principal producto de hidratación a la etringita (C6AŜ3H32, cuya morfología se observa como cristales aciculares.

  11. Preparation, characterization and investigation of in vitro and in vivo biological properties of strontium-modified calcium phosphate cement for bone defect repair

    Directory of Open Access Journals (Sweden)

    Reza Masaeli

    2015-12-01

    Full Text Available Background and Aims: The aim of this study was to evaluate the invitro and invivo performance of a 3 wt% of strontium additive hydroxyapatite calcium phosphate cements (CPC. Materials and Methods: The prepared calcium phosphate cement was characterized with XRD, FTIR, setting time, STA and in vitro and in vivo biological analyses. The MTT assay ALP activities as in vitro study and radiological and histological examinations as in vivo study between the three groups of 3 wt% Sr-HA/CPC, CPC and control were performed and compared. Data were analyzed using T-test and One-way ANOVA. Results: XRD analysis demonstrated that by increasing the ratio of Powder/Liquid (P/L, the crystallinity of the prepared cement increased. The substitution of strontium instead of calcium in CPC could also alter the crystal structure, including some structural disorder. However, in the CPC with no strontium hydroxyapatite (Sr-HA, no significant increase in the crystallinity was observed. SEM observations revealed CPC with increasing P/L ratio, the formation of hydroxyapatite crystals arising from the interaction of solid and liquid phase of cement was decreased. Also, the addition of Sr within Ca site culminated in a dramatic increase in crystallinity of hydroxyapatite. In vitro biological properties ascertained that addition of 3 wt. % Sr-HA into CPC enhanced MTT assay and ALP activity, which could be due to the presence of strontium ions. The histological study showed that greater remodeling was seen at 4 weeks after implantation when the 3 wt% Sr-HA/CPC was used. Conclusion: The obtained results cleared that CPC can be a potential candidate as a carrier with strontium additives for bone remodeling and regeneration.

  12. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shanchuan Zhang

    2015-01-01

    Full Text Available Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property p<0.05. Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking p<0.05. Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs p<0.05. Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level p<0.05. Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering.

  13. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity.

    Science.gov (United States)

    Acarturk, Oguz; Lehmicke, Michael; Aberman, Harold; Toms, Derek; Hollinger, Jeffrey O; Fulmer, Mark

    2008-07-01

    The aim of this study was to determine the impact of barium sulfate on remodeling and regeneration in standard tibial defects in rabbits treated with the Norian skeletal repair system (SRS). Two formulations of SRS (with and without barium sulfate) were injected into the medullary canal of the tibia of New Zealand white rabbits. Animals were sacrificed at 6 weeks, 6 months, 1 year, and 2 years. Over the 2-year duration of the study, standard SRS and SRS with barium sulfate appeared to be biocompatible and osteoconductive with no evidence of either inflammation or fibrous tissue around the implant materials or at the bone-material interfaces. This outcome underscores the osteophilic property of the SRS. A difference we observed between the standard SRS and the SRS with barium sulfate was the appearance of acellular material contiguous to the SRS with barium sulfate. Energy dispersive X-ray spectroscopy (EDX) analysis was conducted and confirmed that the acellular material was barium sulfate. Pathological examination of additional tissues including regional lymph nodes revealed neither dissemination of calcium phosphate nor barium sulfate. We concluded that the residual barium sulfate detected by EDX was localized to the intramedullary canal of the tibia. PMID:18098201

  14. Human tooth germ stem cell response to calcium-silicate based endodontic cements

    Directory of Open Access Journals (Sweden)

    Esra Pamukcu Guven

    2013-07-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs. MTA Fillapex, a mineral trioxide aggregate (MTA-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS: To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl-5-(3-carboxy-methoxy-phenyl-2-(4-sulfo-phenyl-2H-tetrazolium. The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS: On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC group (p0.05. After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008. In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS: Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs.

  15. Chemical alteration of cement materials in a radioactive waste repository environment. 3. Development of reactive transport computational code combined with incongruent dissolution model of calcium silicate hydrates

    International Nuclear Information System (INIS)

    For long-term performance assessment of a cementitious disposal system for TRU waste, a so-called reactive transport computational code, being a numerical simulation code coupled a geochemical model suited to the system includes cement hydrate and a solute transport model, so-called reactive transport computational code, has been developed. The thermodynamic model previously developed in our institute for incongruent dissolution of calcium silicate hydrate (C-S-H) gel, which is a principal product of hydrated cement phase, was incorporated into a geochemical code, Harphrq, to evaluate chemical equilibrium conditions containing cement hydrates. This modification of the code enables a user to evaluate adequately the chemical equilibrium of a system including cement hydrate, such as a dissolution/precipitation of C-S-H gel and/or a change of Ca/Si ratio in C-S-H gel. The modified geochemical code was coupled onto a simplified solute transport code using a compartment model. The coupled code could simulate the processes where various chemical species in aqueous phase migrate through the homogeneous porous materials while locally maintaining chemical equilibrium. The developed reactive transport computational code was verified by comparison with experimental results on batch-type dissolution tests and column-type alteration tests under flow-through conditions of ordinary Portland cement hydrate. Predictive calculation results by the developed code were reasonably accordant with the experimental results, e.g. the distribution of constituent minerals and the composition of pore water in altered ordinary Portland cement hydrate. The validity of the developed code was therefore verified. Analysis on the results by the calculation could indicates special features such as a distribution of Ca/Si ratio in C-S-H gel along the water-flow in the column, and a re-precipitation of C-S-H gel in the downstream side of the dissolution front of C-S-H gel. (author)

  16. 13C/12C and 18O/16O in calcium carbonate-cemented beach sands ('beach rocks')

    International Nuclear Information System (INIS)

    A study of the stable isotope composition (C13/C12 and O18/O16) of the cement and the local groundwater in Itaparica Island (Salvador-Brazil) is carried out to determine the origin of the carbonate cement. For area A, the cement has Δ13C = 9% showing that CO2 in groundwater charged by decay of organic material is the source of carbonate in the cement. Probably comentation occurs during loss of excess CO2 from groundwater as comes into an environment where loss of CO2 is possible . In area B, where the cements contain, on the average Δ18O v=1,3%, the cement is formed from carbonate typical of sea water or a mixture of sea water and fresh water. (Autor)

  17. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1.

    OpenAIRE

    W. Zhang; Walboomers, X.F.; Jansen, J. A.

    2008-01-01

    The aim of the current study was to evaluate the effect of a calcium phosphate material equipped with poly (lactic-co-glycolic acid) microspheres for pulp capping, and to measure the dentin bridge formation, when using various concentrations of transforming growth factor (TGF) beta1. Preset samples were made (2 mm diameter; 2 mm height), containing 0 (controls), 20, or 400 ng TGF-beta1. These were placed in goat incisors. Incisors capped with glass-ionomer cement only were used as negative co...

  18. Photocatalytic NO{sub x} abatement by calcium aluminate cements modified with TiO{sub 2}: Improved NO{sub 2} conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Nicolás, M. [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain); Balbuena, J.; Cruz-Yusta, M.; Sánchez, L. [Department of Inorganic Chemistry, School of Sciences, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, 14071 Córdoba (Spain); Navarro-Blasco, I.; Fernández, J.M. [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain); Alvarez, J.I., E-mail: jalvarez@unav.es [MIMED Research Group, Department of Chemistry and Soil Sciences, School of Sciences, University of Navarra, c/Irunlarrea, 1, 31008 Pamplona (Spain)

    2015-04-15

    Photocatalytic activity of TiO{sub 2} was studied in two types of calcium aluminate cement (CAC) under two different curing regimes. The effect of the TiO{sub 2} addition on the setting time, consistency and mechanical properties of the CACs was evaluated. The abatement of gaseous pollutants (NO{sub x}) under UV irradiation was also assessed. These cementitious matrices were found to successfully retain NO{sub 2}: more abundant presence of aluminates in white cement (w-CAC, iron-lean) helped to better adsorb NO{sub 2}, thus improving the conversion performance of the catalyst resulting in a larger NO{sub x} removal under UV irradiation. As evidenced by XRD, SEM, EDAX and zeta potential analyses, the presence of ferrite in dark cement (d-CAC, iron-reach) induced a certain chemical interaction with TiO{sub 2}. The experimental findings suggest the formation of new iron titanate phases, namely pseudobrookite. The reduced band-gap energy of these compounds compared with that of TiO{sub 2} accounts for the photocatalytic activity of these samples.

  19. Comparison of push-out bond strength of mineral trioxide aggregate and calcium enriched mixture cement as root end filling materials

    Directory of Open Access Journals (Sweden)

    Alireza Adl

    2014-01-01

    Full Text Available Background: The purpose of this study was to compare the push-out bond strength of mineral trioxide aggregate (MTA and calcium enriched mixture (CEM as root end filling materials. Materials and Methods: A total of 40 root dentin slices (1 ± 0.2 mm were prepared from freshly extracted human maxillary central teeth and their lumens were enlarged to 1.3 mm. The slices were randomly divided into two groups (n = 20. MTA and CEM cement were mixed according to manufacturer′s instruction and introduced into the lumens. The specimens were wrapped in pieces of wet gauze soaked in distilled water and incubated at 37°C for 3 days. The push-out bond strength was measured using a universal testing machine. The slices were then examined under a light microscope at ×10 magnification to determine the nature of bond failure. The data were analyzed using Mann-Whitney test (P < 0.001. Results: The mean push-out bond strength for CEM cement and MTA were 1.68 ± 0.9 and 5.94 ± 3.99 respectively. The difference was statistically significant (P < 0.001. The bond failure was predominantly of adhesive type in MTA group and cohesive type in CEM group. Conclusion: CEM cement showed significantly lower bond strength to the dentinal wall compared to MTA.

  20. Formulation of calcium dialuminate (CaO·2Al2O3 refractory cement from local bauxite

    Directory of Open Access Journals (Sweden)

    A.B. Tchamba

    2015-06-01

    Full Text Available Three types of bauxites containing aluminum hydroxide of 58.1% gibbsite and 19.3% boehmite for BX3, 95.5% of gibbsite for BX55 and 84.5% of gibbsite for BX8 were used with lime at 95% of CaO through solid state sintering in one stage to prepare a refractory clinker at 1550 °C. The powder obtained after grinding the clinker showed in the XRD curves the presence of CaO·2Al2O3 and CaO·TiO2 phases in the cement samples. The density of cement powder varied between 2.95 and 3.17 g/cm3 and the specific area of powder obtained after grinding was between 0.72 and 0.85 m2/g. The properties of hydrated cement, W/C = 0.33, after stabilization of cement components for 48 h at 105 °C were showed by XRD, DTA, DTG and SEM (C3AH6, AH3, CA2 and CaO·TiO2. The Young's modulus of the cement made varied between 35.5 and 39.4 GPa, and these Young's moduli were compared to conventional CA14M cement.

  1. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate; Efeito da adicao de polieletrolitos sobre as propriedades de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis A. dos; Oliveira, Luci C. de; Rigo, Eliana C.S.; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul Gracia [Universidad de La Habana, Habana, (Cuba). Centro de Biomateriales

    1997-12-31

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author) 10 refs., 2 figs., 4 tabs.

  2. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    Science.gov (United States)

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  3. Dealkalization of calcium silicate slag and study of using it as cement admixture%硅钙渣脱碱处理及作水泥混合材的研究

    Institute of Scientific and Technical Information of China (English)

    刘江; 张建波; 孙俊民; 王宏霞; 叶家元; 史迪

    2012-01-01

    Orthogonal experiment method is applied to research on dealkalization of calcium silicate slag, and properties of non-dealkalizated and dealkalizated calcium slag cement have been analyzed. Effects of temperature, holding time, content of lime milk and washing times were discussed, the results show that the optimum dealkalization combination of the four factors is as follows:content of lime milk is 10%,temperature 85 X. and holding time 3 hours,washing twice,then an alkali content of 0.83% will be acquired; compressive strength of non梔ealkalizated calcium slag cement is higher than dealkalizated calcium slag cement during the early hydration, the advantages of dealkalizated calcium slag cement will gradually appear as time goes and will be more significantly as calcium slag content increase; Microscopic analysis shows that non-dealkalizated calcium slag cement generates large amount of C-S-H gel during early hydration and its hydration products are more compact than dealkalizated calcium slag cement, little difference of the compactness has been found between them when the hydration time is 28 days.%采用正交试验法对硅钙渣进行脱碱处理,对脱碱前后的硅钙渣水泥性能进行了研究.通过调整温度、保温时间、石灰乳掺量和水洗次数,得出最佳脱碱组合为:石灰乳掺量10%,温度85℃,保温时间3h,水洗2次,处理后碱含量为0.83%:强度试验结果表明,水化早期未脱碱硅钙渣水泥抗压强度要高于脱碱硅钙渣水泥,但随着龄期逐渐增长,脱碱硅钙渣水泥优势逐渐显现,掺量越大优势越明显;微观形貌分析表明,未脱碱硅钙渣水泥水化早期生成大量C-S-H凝胶,水化产物较脱碱硅钙渣水泥更致密,水化28d时两者水化产物的致密性相当.

  4. Study of the ultrasonic waves action on the preparation of calcium aluminates cements; Estudo da acao das ondas ultrasonicas na sintese de cimentos de aluminatos de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, R.R.; Exposito, C.C.D.; Rodrigues, J.A., E-mail: josear@ufscar.b [Universidade Federal de Sao Carlos (DEMa/GEMM/UFScar), SP (Brazil). Dept. de Engenharia de Materiais. Grupo de Engenharia de Microestrutura de Materiais

    2009-07-01

    Calcium aluminates cements were prepared through a route that uses the sonochemical process. In this process, calcia and alumina in an aqueous suspension are put under an ultrasonic bath during some time. After that, the water is evaporated and the material is heat treated. In this work, the action of ultrasonic waves were studied on initials molar compositions calcia:alumina of 1:1. It was also verified the influence of the water on the reactivity of initial solids. SEM and X-ray diffraction were used to characterize the obtained materials. In addition, mechanical strength of the products was evaluated through splitting tensile tests. The X-ray diffractograms showed that the presence of the water was enough to form hydrated compounds. However the material subjected to the sonochemical process presented the highest mechanical strength, indicating the potential of this route of synthesis. (author)

  5. Synthesis optimization of calcium aluminate cement phases for biomedical applications; Avaliacao da sintese das fases de cimento de aluminato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, T.L.; Santos, G.L.; Oliveira, I.R. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil); Pandolfelli, V.C. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    Calcium aluminate cement (CAC) has been studied as a potential material for applications in the areas of health such as, endodontics and bone reconstruction. These studies have been based on commercial products consisting of a mixture of phases. Improvements can be attained by investigating the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance for biomedical applications. Thus, the aim of this work was to study the CAC synthesis routes in the Al{sub 2}O{sub 3}-CaCO{sub 3} and Al{sub 2}O{sub 3}-CaO systems, as well as the phase characterization attained by means of X ray analysis. The Al{sub 2}O{sub 3}-CaO route enabled the production of the target phases (CA, CA{sub 2}, C{sub 3}A and C{sub 12}A{sub 7}) with a higher purity compared to the Al2O3-CaCO3 one. As a result the particular properties of these phases can be evaluated to define a more suitable composition that results in better properties for an endodontic cement and other applications. (author)

  6. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: thh@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)

    2014-04-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  7. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  8. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements; Etude mecanistique et modelisation de la retention de radionucleides par les silicates de calcium hydrates (CSH) des ciments

    Energy Technology Data Exchange (ETDEWEB)

    Pointeau, I

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs{sup +}, Pb{sup 2+}, Eu{sup 3+}) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs{sup +} is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm{sup -2}), which accounts for the CSH unsaturation in high [CS{sup +}]. A strong site is also identified. - Pb{sup 2+} immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu{sup 3+} fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu{sup 3+} thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  9. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro

    Directory of Open Access Journals (Sweden)

    S Prathibha Rani

    2011-01-01

    Full Text Available One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I, 30 days (phase II, 90 days (phase III, and 180 days (Phase IV. At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC (Group II, Flowable Compomer (Group III, and Flowable Composite (Group IV, respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  10. Activity diagrams for calcium/hydrogen, sodium/hydrogen, and potassium/hydrogen, and H4SiO4 and their relation to reactions in systems containing radioactive waste forms, cement, and rock in the presence of water

    International Nuclear Information System (INIS)

    In order to identify reactions which can occur in systems containing nuclear waste forms, cement, and repository rock in the presence of water, activity diagrams were calculated from free energies for aluminosilicates and calcium silicates. Groundwater compositions from candidate repository sites in the Palo Duro Basin of Texas, the Delaware Basin of New Mexico, and the Nevada Test Site were plotted on these diagrams. Essentially all of these are shown to be in the calcium zeolite field as shown on the diagram for calcium in the absence of other cations. Chlorite is shown to be stable in this region at the Mg and pH level of the Ogallala if the chlorite is high in iron, and at the Mg and pH level of the Wolfcamp low- or high-Fe chlorites are stable. Potassium and sodium mineral relationships fall in two categories, dilute waters and saline waters. Boreholes at Yucca Flat and Mercury Valley at the Nevada Test Site, and shallow ground water from the Rolling Plains north and east of the Palo Duro Basin are in equilibrium with kaolinite. The brines from the Salado and Rustler formations are in equilibrium with kaolinite and possibly also with sodium-potassium zeolite and illite. Leachates of cement and water, and cement, waste, and water were plotted on the calcium silicate activity diagram. These solutions are in equilibrium with calcium silicate hydrate hydrolysis reactions, with grossular and possibly with Ca-zeolites. Among the calcium silicates, calcium-silicate-hydrate gel (C-S-H gel) and tobermorite are the most likely candidates, but the thermodynamic data are not adequate to distinguish all the possibilities. 37 references, 4 figures, 3 tables

  11. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  12. 发泡水泥用硬脂酸钙乳液的制备工艺研究%Preparation of Calcium Stearate Emulsion for Foam Cement

    Institute of Scientific and Technical Information of China (English)

    孙强强

    2015-01-01

    Two different calcium stearate emulsions were synthesized respectively by stearic acid saponification with freshly formed calsium hydroxide, and by direct emulsification with calcium stearate for improving the foam stability in the foaming process of foam cement. Then, the process of synthesis and saponification was disussed.The results indicated that calcium stearate emulsion with excellent stability and second-order dispersion was prepared at 90℃ for 100 min by saponification method.After the direct emulsification, calcium stearate emulsion with good stability and third-order dispersion was obtained with the CMC dosage of 3.5 wt%, total volume fraction of 1.5% and the proportion of 1:1 of composite emulsifier. Calcium stearate emulsion obtained by saponification for synthesis was the better foam stabilizer for foam cement,which had the longer foam stabilizing time increased for 22-23 min, compared with the direction emulsifying method for14-15 min.%为了改善发泡水泥发泡过程中泡沫的稳定性,以硬脂酸、新制氢氧化钙及轻质硬脂酸钙为原料,采用皂化合成法和直接乳化法分别制得了发泡水泥用硬脂酸钙乳液,并对合成和乳化工艺进行研究。结果表明:在反应温度为90℃,乳化时间为100 min的条件下,通过皂化合成制得了分散等级为二级,稳定性优良的硬脂酸钙乳液。在乳化温度为90℃,稳定剂羧甲基纤维素钠(CMC)用量3.5 wt%,复配乳化剂A、B总体积用量1.5%,比例为1:1时,通过直接乳化法制得了分散等级为三级,稳定性较好的硬脂酸钙乳液。对比发现,直接乳化法制得的硬脂酸钙乳液可有效增加稳泡时间14-15 min,而皂化合成法制得的硬脂酸钙乳液可有效增加稳泡时间22-23 min,更适宜用作发泡水泥的泡沫稳定剂。

  13. Chemical alteration of cement materials in a radioactive waste repository environment. 1. Thermodynamic modelling for the dissolution and precipitation of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Cementitious material, a potential waste packaging and backfilling material for the disposal of radioactive waste, is expected to provide both physical and chemical containment. In particular the ability to provide high-pH conditions, which depends on the solubility of the constituent hydrated minerals in cement matrices, is a very important parameter when considering the release of radionuclides from radio active wastes. For long-term safety assessment, it is necessary to develop a series of predictive calculation models. Several models have been proposed for the incongruent dissolution of calcium silicate hydrate (C-S-H) gel, which is the principal product of hydrated cement phases. In the repository, the re-precipitation of minerals would follow their dissolution when an equilibrated solution moves to the other regions and equilibrates with the constituent minerals there. However, previous models have not yet adequately quantitatively evaluated the re-precipitation or interaction of other minerals with the dissolution of C-S-H gel. In this study, therefore, a thermodynamic dissolution and precipitation model of C-S-H gel is proposed assuming a binary non-ideal solid solution of Ca(OH)2 and Si02. Dissolution and precipitation experiments on C-S-H gel were performed. C-S-H precipitates were prepared using two techniques. One was based on hydrolysis in a mixture of Ca and Si solutions and produced homogeneous gels. With the other technique, precipitates were prepared by contacting Ca(OH)2 solution with C-S-H gel with low Ca/Si ratios (0.47, 0.65, 0.9). The results were well predicted by the proposed model. Dissolution experiments on C-S-H gel coexisting with ettringite were also carried out. At Ca/Si>l.2 in C-S-H gel, the equilibrated pH and Ca and Si concentrations are nearly the same as those for C-S-H gel alone. At lower Ca/Si, interaction between ettringite and C-S-H dissolution was observed more clearly. The measured pH and Ca and Si concentrations were

  14. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    OpenAIRE

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J.G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein mole...

  15. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    Science.gov (United States)

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. PMID:26644396

  16. Could percutaneous femoral head arthroplasty using calcium phosphate cement be a novel therapeutic method for late-stage Legg-Calvé-Perthes disease?

    Directory of Open Access Journals (Sweden)

    Jun Wan

    2009-05-01

    Full Text Available "nLegg-Calvé-Perthes disease (LCPD belongs to the category of aseptic osteochondroses of childhood which is characterized by idiopathic avascular osteonecrosis of the femoral head which can cause severe deformity of hip joint such as coxa plana and ‘flattening femoral head'. As the harmonious structural relation of hip joint was broken, osteoarthritis of hip joint could be always observed in patients about 50 years old which finally needs to be treated with total hip replacement. In present most methods yield markedly to achieve good clinical results when dealing with late-stage of LCPD mainly because of inability of reconstruction of spherical shape of femoral head. So the direct urgent thing should be to find one way out to completely reconstruct the spherical shape of femoral head. By the enlightenment of percutaneous vertebroplasty (PKP and biological properties of calcium phosphate cement (CPC, we hypothesize that percutaneous femoral head arthroplasty using CPC can solve the problem of reconstruction of spherical framework of femoral head in late-stage LCPD and pave a brand-new way to achieve excellent clinical results in patients of late-stage LCPD.  

  17. INFLUENCE OF CURING TEMPERATURE ON THE PHYSICO-MECHANICAL, CHARACTERISTICS OF CALCIUM ALUMINATE CEMENT WITH AIR-COOLED SLAG OR WATER-COOLED SLAG

    Directory of Open Access Journals (Sweden)

    M. Heikal

    2004-12-01

    Full Text Available The nature, sequence, crystallinity and microstructure of hydrated phases were analyzed using differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. The results showed that the formation of different hydrated phases was temperature dependence. The physico-mechanical and microstructural characteristics were investigated after curing at 20, 40 and 60° C. The results indicated that for the substitution of calcium aluminate cement (CAC by air-cooled slag (AS or water-cooled slag (WS at 20° C, the compressive strength increases with slag content up to 10 wt.%, then followed by a decrease with further slag substitution up to 25 wt.%; but the values are still higher than those of the neat CAC pastes at different curing ages up to 60 days. After 28 days of hydration at 40-60° C, the compressive strength increases with the slag content. This is attributed to the prevention of the conversion reaction, which was confirmed by XRD, DSC and SEM techniques, and the preferential formation of stratlingite (gehleinte-like phase. The SEM micrographs showed a close texture of hydrated CAC/slag blends made with AS or WS at 40°C due to the formation of C2ASH8 and C-S-H phases.

  18. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun-Hee [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Yoo, Jun-Sang [Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Kim, Bo-Hye; Choi, Sung-Woo [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Hong, Seong-Hyeon, E-mail: shhong@snu.ac.kr [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.

  19. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  20. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  1. Preparation of a Novel Calcium Phosphate Cement Using N-methylene Phosphonic Chitosan as a Gelling Agent

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A modified chitosan ( N-methylene phosphonic Chitosan, NMPC ) was synthesized to improve solubility and ability to bind calcium ion. The properties of the raw material chitosan and its derivative NMPC were characterized using FTIR, 1 H-NMR. The aim of this study was to enhance the compressive CPC by reinforcing with NMPC. A formulation consisting of CPC powder, buffer solution and gelling agent was used for preparation of the CPC. CPC powder consisted of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous ( DCPA ). NMPC which acted as the gelling agent was dissolved iuto KH2 PO4 -Na2 HPO4 buffer solution. Each specimen in the mold was sandwiched between two fritted glass sides and kept for 24 hours. Compressive strengths were determined, the setting product was identified using X-ray diffraction and scanning electron microscopy was used to investigate the hydroxyapatite particles size and porosity. The experimental results showed that the dominating influence on the compressive strengths of CPC-NMPC was the HA particle size, its uniformity and appropriate porosity.

  2. The synergistic effects of CO2 laser treatment with calcium silicate cement of antibacterial, osteogenesis and cementogenesis efficacy

    Science.gov (United States)

    Hsu, T.-T.; Kao, C.-T.; Chen, Y.-W.; Huang, T.-H.; Yang, J.-J.; Shie, M.-Y.

    2015-05-01

    Calcium silicate-based material (CS) has been successfully used in dental clinical applications. Some researches show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm, due to a photo-thermal mechanism. The purpose of this study was to confirm the effects of CO2 laser irradiation on CS, with regard to both material characterization and human periodontal ligament cell (hPDLs) viability. CS was irradiated with a dental CO2 laser using directly mounted fiber optics in wound healing mode with a spot area of 0.25 cm2, and then stored in an incubator at 100% relative humidity and 37 °C for 1 d to set. The hPDLs cultured on CS were analyzed, along with their proliferation and odontogenic differentiation behaviors. The results indicate that the CO2 laser irradiation increased the amount of Ca and Si ions released from the CS, and regulated cell behavior. CO2 laser-irradiated CS promoted cementogenic differentiation of hPDLs, with the increased formation of mineralized nodules on the substrate’s surface. It also up-regulated the protein expression of multiple markers of cementogenic and the expression of cementum attachment protein. The current study provides new and important data about the effects of CO2 laser irradiation on CS. Taking cell functions into account, the Si concentration released from CS with laser irradiated may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue.

  3. Enhanced dentin-like mineralized tissue formation by AdShh-transfected human dental pulp cells and porous calcium phosphate cement.

    Directory of Open Access Journals (Sweden)

    Lunguo Xia

    Full Text Available The aim of the present study was to investigate the effect of Sonic hedgehog (Shh on human dental pulp cells (hDPCs and the potential of complexes with Shh gene modified hDPCs and porous calcium phosphate cement (CPC for mineralized tissue formation. hDPCs were cultured and transfected with adenoviral mediated human Shh gene (AdShh. Overexpression of Shh and cell proliferation was tested by real-time PCR analysis, western blotting analysis, and MTT analysis, respectively. The odontoblastic differentiation was assessed by alkaline phosphatase (ALP activity and real-time PCR analysis on markers of Patched-1 (Ptc-1, Smoothened (Smo, Gli 1, Gli 2, Gli 3, osteocalcin (OCN, dentin matrix protein-1 (DMP-1, and dentin sialophosphoprotein (DSPP. Finally, AdShh-transfected hDPCs were combined with porous CPC and placed subcutaneously in nude mice for 8 and 12 weeks, while AdEGFP-transfected and untransfected hDPCs were treated as control groups. Results indicated that Shh could promote proliferation and odontoblastic differentiation of hDPCs, while Shh/Gli 1 signaling pathway played a key role in this process. Importantly, more mineralized tissue formation was observed in combination with AdShh transfected hDPCs and porous CPC, moreover, the mineralized tissue exhibited dentin-like features such as structures similar to dentin-pulp complex and the positive staining for DSPP protein similar to the tooth tissue. These results suggested that the constructs with AdShh-transfected hDPCs and porous CPC might be a better alternative for dental tissue regeneration.

  4. Structural study and crystallography of the major compound of anhydrous cement: tri-calcium silicate; Etude structurale et cristallographie du compose majoritaire du ciment anhydre: le silicate tricalcique

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, M.N. de

    2000-01-01

    Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)

  5. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  6. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.

    Science.gov (United States)

    Ogunbileje, J O; Sadagoparamanujam, V-M; Anetor, J I; Farombi, E O; Akinosun, O M; Okorodudu, A O

    2013-03-01

    This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (pcement dust compared with Nigeria cement dust or clinker (pcement dust and clinker (pMercury was more in both Nigeria cement dust and clinker (pcement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers. PMID:23261125

  7. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  8. Sealing ability of mineral trioxide aggregate, calcium phosphate and polymethylmethacrylate bone cements on root ends prepared using an Erbium: Yttriumaluminium garnet laser and ultrasonics evaluated by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    C Sabari Girish

    2013-01-01

    Full Text Available Background: Surgical endodontic therapy comprises of exposure of the involved root apex, resection of the apical end of the root, preparation of a class I cavity, and insertion of a root end filling material. Mineral trioxide aggregate (MTA is now the gold standard among all root end filling materials. MTA is however difficult to handle, expensive and has a very slow setting reaction. Aim: (1 To compare the sealing ability of MTA, polymethylmethacrylate (PMMA bone cement and CHITRA Calcium phosphate cement (CPC when used as root end filling material using Rhodamine B dye evaluated under a confocal laser scanning microscope. (2 To compare the seal of root ends prepared using an ultrasonic retroprep tip and an Er: YAG laser using three different root end filling materials. Statistical Analysis: Statistical analysis was performed using a one-way ANOVA and a two-way ANOVA, independent samples t-test and Scheffe′s post hoc test using SPSS Version 16 for Windows. Results: All the three materials, namely MTA, PMMA BONE CEMENT and CHITRA CPC, showed microleakage. Comparison of microleakage showed maximum peak value of 0.86 mm for MTA, 0.24 mm for PMMA bone cement and 1.37 mm for CHITRA CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er: YAG laser when compared with ultrasonics, but the difference was found to be not statistically significant. Conclusion: PMMA bone cement is a better material as root end filling material to prevent apical microleakage. MTA still continues to be a gold standard root end filling material showing minimum microleakage. Er: YAG laser is a better alternative to ultrasonics for root end preparations.

  9. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications

  10. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alit...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  11. Calcium phosphate bone cement containing ABK and PLLA. Sustained release of ABK, the BMD of the femur in rats, and histological examination

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, T.; Tanaka, A.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ., Tokyo (Japan). Dept. of Orhtopaedic Surgery

    2001-07-01

    Bone cement was prepared by mixing CPC95 (Mitsubishi Material Co., Ltd.), ABK, and PLLA at a ratio of 14 : 1 : 2. In vitro, Antibiotic sustained release tests were performed by the total amount exchange method. In animal experiments, the bone cement was infused into the right femur of 18-month-old female SD rats. After 1, 2, 4, or 6 months, the BMD was determined by DXA in the bilateral femoral bones. In addition, hard tissue specimens were prepared, and the state of bone formation was observed. The release of the antibiotic was 1.73 {mu}g/ml until 18 days after administration, maintaining a concentration over the MIC80 for MRSA. In the animal experiments, the BMD significantly increased after 2 - 4 months. In the hard tissue specimens, direct binding on the bone-cement interface and bone formation in the cement were observed after 1 month. (orig.)

  12. Influence of Dopamine on Physicochemical Properties of Calcium Phosphate Cement%多巴胺对磷酸钙骨水泥性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    刘宗光; 屈树新; 赵军胜; 刘宇; 翁杰

    2013-01-01

    The aim of this study is to investigate effects of dopamine (DA) on physiochemical properties of calcium phosphate cement (CPC) and in vitro degradation of DA from CPC. DA was dissolved in Tris (Hydroxymethyl) aminomethane-hydrochloric acid buffer solution and mixed the solution with CPC powders after oxidized for 2 d in air. Orthogonal test was used to optimize the preparation of CPC with respect to the DA concentration, ratio of liquid to solid and pH values. Compressive tests, Gilmore needle tests, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) were used to characterize the physiochemical properties of CPC. Scanning electron microscope (SEM) and UV-Vis spectrophotometry were used to observe the micro-morphology of CPC and ire vitro degradation of DA from CPC, respectively. Compressive test and orthogonal analysis indicated that the optimal combination CPC was DA concentration 40 rng·mL-1, ratio of liquid to solid 0.3 mL·g-1 and pH value 8.5, which had the highest compressive strength with significant difference (p<0.01) compared with that of CPC-Blank. Setting time of the optimal combination CPC decreased slight but no significant difference compared to that of CPC-Blank, which could satisfied with the clinical demands. XRD and FTIR demonstrated that the addition of DA promoted the conversion of dicalcium phosphate dehydrate (DCPD).SEM found that there were more platy structure, lots of nubbly crystals and less porosity in optimal combination CPC compared with CPC-Blank. Cumulative release of DA from CPC was 29.7% and the pH values of immersion solution were safe for human body during in vitro degradation.%本论文研究含儿茶酚的多巴胺对磷酸钙骨水泥(calcium phosphate cement,CPC)的理化性能和体外降解的影响.将多巴胺溶于Tris-HCl缓冲液于空气中氧化2d,作为液相与固相粉末混合成型.选取多巴胺浓度、液固比、pH值三因素,通过正交试验选取最

  13. 可注射磷酸钙骨水泥的流变性能研究%Study on the Rheological Properties of Injectable Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    陈芳萍; 刘昌胜

    2012-01-01

    The influence of additives on the theological properties of injectable calcium phosphate cement (ICPC) was investigated with an advanced expansion system rheometer. During the measurement of steady rheological properties, the viscosity, shear stress, and thixotropy were detected. During dynamic oscillation testing, the viscoelastic response of the ICPC under forced oscillation and the internal structure were unvailled. The results indicated that the ICPC showed both plastic and thixotropic behavior with little effect by additives. The introduction of these water-soluble polymers improved the viscosity and thixotropy of the ICPC, which are conducive to the stability of the whole system. These additives improve the recoverability and stability of the ICPC network after being sheared, in which xanthan gum and chitosan were the most obvious. On this basis, the time to form a gel was assessed to be in the range of 2 563 ~ 2 600 s for xanthan gum-ICPC system. In addition, with the increasing of xanthan gum contents, the thixotropic loop area of ICPC enlarged, but the for- mation of network structure was not stable under high shear condition.%采用高级流变扩展系统研究了添加剂种类及其含量对可注射磷酸钙骨水泥(ICPC)流变特性的影响。采用稳态流动实验表征浆体的静态粘度,用触变环面积、应力降低率和屈服应力表征ICPC浆体的触变性,并进行动态频率扫描和动态时间扫描实验动态监测ICPC的粘、弹、塑性变化规律以及水化反应过程流变参数的依时性。结果表明:添加剂并不改变ICPC的粘弹性。水溶性高分子化合物的加入提高了ICPC的粘度和触变性,利于整个体系的稳定;添加剂不同程度上提高了ICPC剪切后的网络结构恢复能力和稳定性,尤其以黄原胶和几丁糖最为明显。在此基础上,评估了加入黄原胶后ICPC形成凝胶的时间,约为2563~2600s。此外,随着黄原胶含量的增加

  14. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an...... overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  15. A new surface-modified technology of cement mortar using calcium carbonate biodeposition%一种基于微生物沉积的水泥砂浆表面改性技术

    Institute of Scientific and Technical Information of China (English)

    朱飞龙; 李庚英; 杜虹; 崔鹏飞; 吴亚庆; 刘海峰

    2013-01-01

    The paper presents a new surface modification of cement mortar using biodeposition involving a method employing sporosarcina pasteurii (bacillus pasteurii) bacteria and using cement mortar power as covering layer. It was possible to obtain reduction in water absorption of cement mortars. The effect was more visible in case of using nutrient medium containing urea, and the coefficient of capillary suction of the treated cement mortar was reduced by 58%. Presence of spherical and columnar vaterite and calcite calcium carbonate crystals filling-voids in cement mortar was confirmed by observations under SEM and XRD. The total porosity reduced by 40% was demonstrated by using mercury intrusion porosimetry (MIP).%某些微生物能诱导沉积出具有胶凝和矿化作用的碳酸钙,可以用来修复和密实水泥基材料.但是目前微生物沉积技术工艺复杂,成本高,不利于推广和工程应用.尝试采用水泥砂浆粉作为覆膜载体,利用巴斯德芽孢杆菌对水泥砂浆进行表面处理.研究结果表明,采用该方法能使巴斯德芽孢杆菌在水泥试块表面诱导沉积出碳酸钙,有效减少水泥砂浆的吸水性能.当微生物采用含有尿素的培养基培养时,表面改性后的水泥砂浆吸水系数降低了58%.采用压汞测试仪(MIP)分析了处理前后水泥试块表层的孔隙率以及孔结构特征.发现采用巴斯德芽孢杆菌处理后,样品孔隙率显著降低,大孔的含量显著减少,当微生物采用含有尿素的培养基培养时,总孔隙率降低了40%.X射线衍射仪(XRD)和场发射扫描电镜(SEM)分析表明,经微生物技术处理后水泥试块内部的孔洞和裂缝被球霰石和方解石填充.

  16. Effect of distribution pattern of calcium polyphosphate fiber on mechanical properties of calcium phosphate cement%聚磷酸钙纤维分布形态对磷酸盐骨水泥力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    史雪婷; 徐立新; 杨云龙

    2013-01-01

    制备CPP/(α-TCP/n-HAP)骨水泥复合材料,观察并分析乱向及准单向分布的CPP纤维长度和含量对骨水泥凝固时间及力学性能的影响.结果显示:长度为3 mm、质量分数为10%的CPP纤维准单向分布时骨水泥试样抗压强度和抗弯强度分别比CPP纤维乱向分布时提高18.7%和34.5%;扫描电镜显示,CPP在CPC骨水泥基体中分布均匀,结合性能好.准单向分布的CPP纤维对CPC骨水泥有更好的增强、增韧效果.%CPP/(α-TCP/n-HAP) bone cement composites were prepared and the effect of the length and content of CPP fiber distributed quasi-unidirectionally and randomly in bone cement on its hardening time and mechanical properties were observed and analysed. The result showed that compressive and bending strength of bone cement with CPP fiber distributed quasi-unidirectionally in it would be enhanced by 18. 7% and 34. 5% more than those with random distribution of the fiber when CPP fiber length was 3 mm and content was 10%. Scanning electron microscope showed that CPP fibers were distributed uniformly in CPC bone cement base and exhibited good combining performance. CPP fiber distributed quasi-unidirectionally in bone cement exhibited stronger enhanced strength and toughness than CPC bone cement.

  17. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  18. Ni2+ treatment causes cement gland formation in ectoderm explants of Xenopus laevis embryo

    Institute of Scientific and Technical Information of China (English)

    HUANGYONG; XIAOYANDING

    1999-01-01

    We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants.Nother T-typer specific calcium channel blocker Amiloride can also induce the formation of cement gland,while L-type specific calcium channel blocker Nifedipine as no inductive effect.These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluar calcium concentration.

  19. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    Directory of Open Access Journals (Sweden)

    Surbhi Sawhney

    2015-10-01

    Conclusions: Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies.

  20. Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts: a review of four cases.

    Science.gov (United States)

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided. PMID:19223954

  1. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays; Interaction des silicates de calcium hydrates, principaux constituants du ciment, avec les chlorures d'alcalins. Analogie avec les argiles

    Energy Technology Data Exchange (ETDEWEB)

    Viallis-Terrisse, H

    2000-10-06

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  2. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  3. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  4. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH)2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U6+ and iodine (I-, IO3-) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO2 in groundwaters as dissolution media for cements are reported. (author)

  5. Mortar and concrete based on calcium sulphate binders

    OpenAIRE

    Bakker, J.J.F.; Brouwers, H. J. H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For the calcinations of Portland cement, temperatures up to 1480 oC are needed, while the calcination of for instance hemihydrate requires a temperature of 170 oC

  6. Carbonation of ternary building cementing materials

    OpenAIRE

    Fernández Carrasco, Lucía; Torrens Martín, David; Martínez Ramírez, Sagrario

    2012-01-01

    The carbonation processes of ettringite and calcium aluminate hydrates phases developed by hydration of calcium aluminate cement, fly ash and calcium sulphate ternary mixtures have been studied. The hydrated samples were submitted to 4% of CO2 in a carbonation chamber, and were analysed, previous carbonation and after 14 and 90 days of carbonation time, by infrared spectroscopy and X-ray diffraction; the developed morphology was performed with the 14 days carbonated samples. The results evide...

  7. The clinical effects of osteoporosis of lumbar degenerative disease by injectable calcium sulfate bone cement to strengthen pedicle screw internal fixation%骨质疏松腰椎退行性疾病的手术治疗分析

    Institute of Scientific and Technical Information of China (English)

    孔祥瑞; 刘德政; 刘海峰; 杨计策; 赵志超

    2015-01-01

    ObjectiveTo explore the clinical effects of osteoporosis of lumbar degenerative disease by injectable calcium sulfate bone cement to strengthen pedicle screw internal fixation. Methods 82 cases of patients with lumbar degenerative dis-ease of osteoporosis word randomly divided into experiment group(41 cases) and control group(41 cases). The control group were treated by transpedicle screws fixation, the experiment group were treated by injectable calcium sulfate bone cement to strengthen pedicle screw internal fixation. The time of operation, mean bleeding volum, the scores of VAS, ODI, JOA were com-pared for the two groups. ResultsThe time of operation, mean bleeding volum for the experiment group were better than the control group; There was no significant difference on the scores of VAS, ODI, JOA; The scores of VAS, ODI for the experiment group were lower than the control group postoperation for 1 week, 2 months, 12 months; The scores of JOA for the experiment group were higher than the control group postoperation for 1 week, 2 months, 12 months. ConclusionIt can improve the scores of VAS, ODI, JOA for the patients with osteoporosis of lumbar degenerative disease by injectable calcium sulfate bone cement to strengthen pedicle screw internal fixation. It is worthy of clinical promotion.%目的:探讨可注射硫酸钙骨水泥强化椎弓根钉内固定治疗骨质疏松腰椎退行性疾病的临床疗效。方法:按照随机数字表法将我院收治的82例骨质疏松腰椎退行性疾病患者均分为实验组和对照组,对照组给予单纯椎弓根内固定治疗,实验组给予可注射硫酸钙骨水泥强化椎弓根钉内固定治疗。比较两组患者手术时间、术中出血量以及治疗前后疼痛视觉模拟评分(VAS)、Oswestry 功能障碍指数(ODI)、JOA 腰椎病疗效评分变化情况。结果:实验组患者手术时间和术中出血量显著高于对照组;两组患者术前 VAS 评分、ODI 评分、JOA

  8. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  9. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration

    OpenAIRE

    Cizer, Özlem; Campforts, J; Balen, Koenraad Van; Elsen, Jan; Gemert, Dionys van

    2006-01-01

    Hardening of calcium hydroxide and calcium silicate binders composed of cement, rice husk ash (RHA) and lime in different compositions were studied with mechanical strength, mercury intrusion porosimetry, thermal analysis and SEM. When cement is partially replaced with RHA and lime, hardening occurs as a result of combined hydration, pozzolanic reaction and carbonation reaction. While hydration of cement contributes to the early strength development of the mortars, carbonation is much more pr...

  10. 经皮穿刺椎体后凸成形术中骨水泥与硫酸钙应用的对比%Calcium sulfate cement versus polymethylmethacrylate in percutaneous kyphoplasty

    Institute of Scientific and Technical Information of China (English)

    白明; 银和平

    2011-01-01

    BACKGROUND: Osteoporosis caused by the vertebral fractures in orthopedic clinical disease is very common; due to pain,kyphosis affects the quality of life of older persons. In recent years using balloon kyphoplasty (PKP) treatment of the disease to obtain good clinical, but its use of traditional bone cement filler has many shortcomings, and injectable calcium sulfate is a biocompatible, safe and effective bone substitute material, as the method of filling enhanced to make up for the lack of bone cement.OBJECTIVE: By analyzing and summarizing bone cement and injectable calcium sulfate in the kyphoplasty in applied research since 1975, to look for ideal filling materials for kyphoplasty.METHODS: By using "osteoporosis, percutaueous kyphoplasty (PKP), calcium sulfate cement (CSC), polymethylmethacrylate (PMMA)" as keywords, we retrieved articles published 1975-01/2009-12 included in Wanfang database and PubMed database.Irrelevant and the repetitive contents were excluded. Twenty-five documents retained for further analysis.RESULTS AND CONCLUSION: Ideal effective implants may be injection shall be of good, can precisely infuse fracture sites,and may reduce the injection pressure; they can rapidly be solidified, have enough mechanical strength, stable, immediately recover vertebral body load capacity; Solidification low temperature, can reduce heat damage to nearby tissue; A good imaging capabilities, can develop during the operation, which precisely control the location and depth of the filler; can be slowly biodegradable; Material origin is widespread, and cheaper prices. At present there is no a filling materials can completely have the above advantages. Therefore, the research to develop a kind of ideal filling materials for clinical use is an important task in the future.%背景:近几年采用球囊扩张椎体后凸成形术治疗老年骨质疏松性椎体压缩骨折获得很好临床疗效,其使用的传统填充物骨水泥有诸多缺点,可注射硫酸

  11. Study on silicate-calcium phosphate composite bone cement modified by sodium carbonate solution%碳酸钠液相改性硅-磷酸钙复合骨水泥研究

    Institute of Scientific and Technical Information of China (English)

    李青林; 杨帮成

    2014-01-01

    以质量分数70%的硅酸三钙(Ca3 SiO5,C3 S)和30%磷酸氢钙(CaHPO4·2H2 O,DCPD)复合得到的 DCP30粉体材料为固相,以不同浓度碳酸钠溶液为液相,得到碳酸钠改性骨水泥材料。使用 X 射线衍射(XRD)、扫描电镜(SEM)、万能材料试验机等手段对不同浓度改性材料进行表征。结果显示:添加碳酸钠液相,骨水泥初、终凝时间分别缩短至16和55 min;调控碳酸钠液相浓度,可以实现短期抗压强度优化;使用碳酸钠后,固化自发生成羟基磷灰石(HA)。浸泡模拟体液(SBF)7天,材料表面覆盖 HA 沉积层,生物活性优越。碳酸钠液相改性硅-磷酸钙复合骨水泥体系的水化性能、短期力学性能以及生物活性均优于Ca3 SiO5水泥和未改性硅-磷酸钙复合骨水泥,是一种良好的生物活性骨修复材料。%Sodium carbonate solution modified bone cement materials have been prepared using sodium carbonate solution with dif-ferent concentration as liquid phase and DCP30 powder material obtained by 70% mass fraction tricalcium silicate (Ca3 SiO5 ,C3 S) and 30% dicalcium phosphate (CaHPO4 ·2H2 O,DCPD)as the solid phase.The materials were characterized by the means of X-ray diffraction (XRD),scanning electron microscope (SEM)and mechanical test.The results show that the initial and final set-ting time of bone cement is reduced to 16 and 55 min by the addition of sodium carbonate solution.The short-term mechanical strength can be optimized by controlling the concentration of sodium carbonate solution.Hydroxyapatite (HA)can spontaneously form after the use of sodium carbonate solution.HA forms on the surface of bone-cement after immersion in SBF for 7 days,indi-cating its good bioactivity.The modified system shows better hydraulic property,bioactivity and mechanical strength than Ca3 SiO5 cement and unmodifiled silicate-calcium phosphate composite bone cement,suggesting the new system is a

  12. Cimento aluminoso e seus efeitos em concretos refratários magnesianos espinelizados in situ Calcium aluminate cement and its effects on in-situ spinel containing magnesia refractory castables

    Directory of Open Access Journals (Sweden)

    D. H Milanez

    2010-03-01

    Full Text Available O uso de concretos refratários alumina-magnésia ligados por cimento aluminoso (CAC apresenta vantagens decorrentes da presença de espinélio e de CA6 (CaO.6Al2O3, ambas formadas in-situ e acompanhadas de expansão. Estas fases possuem alta resistência a escórias básicas e ao choque térmico, propriedades estas imprescindíveis para aplicação em panelas siderúrgicas. Estudos anteriores mostraram que o teor de CAC utilizado em concretos alumina-magnésia influencia a expansão do material, principalmente devido à formação de CA6. Este trabalho visa estudar a influência do teor de cimento no sistema magnésia-alumina, utilizando-se a mesma matriz de um concreto alumina-magnésia tradicional. Os resultados indicaram que o CAC influencia na estabilidade volumétrica do sistema MgO-espinélio: quanto menor o teor de CAC, menor a retração das amostras. Isso refletiu na sinterização dos concretos e, assim, nas propriedades mecânicas após queima em temperaturas elevadas.Calcium aluminate cement (CAC bonded alumina-magnesia refractory castables present great advantages for steel ladle applications as a result of in-situ expansive formation of spinel and CA<6, which leads to high basic slag and thermal shock resistance. The CAC content in those castables strongly influences its expansive behavior mainly due to CA6 formation. In the present work, the effects of the CAC content in magnesia-alumina castables were analyzed. The results showed that calcium aluminate cement affects the volumetric stability of MgO-spinel system: the lower the CAC content, the lower the shrinkage. These effects on the sintering and in the mechanical properties after sintering at high temperatures are also presented and discussed.

  13. Evaluation of long-term interaction between cement and bentonite for geological disposal (2) XAFS analysis of calcium silicate hydrate precipitates at cementitious and bentonite material interface

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Numerical analyses of the long-term alteration of the engineered barriers used for the disposal of TRU waste predicted precipitation of C-S-H minerals at the interface between the cementitious materials and the bentonite-based buffer. When the C-S-H precipitates at this interface, the diffusion coefficient in the engineered barriers will decrease, resulting in reduced mass transport, which feeds back to reduce the rate of subsequent alteration. The C-S-H predicted to form at the cement-bentonite interface could not be identified directly using conventional analytical tools, including XRD, due to its low crystallinity. The authors propose that XAFS analysis, which provides spectra sensitive to the valency and coordination of the element of interest regardless of its crystallinity, would be capable of characterizing the C-S-H. The presence of the C-S-H precipitated as a secondary mineral has already been confirmed by applying chemical and XAFS analyses to bentonite specimens collected from the compacted bentonite-cement interface. However, because of the limitations on the width of specimens that can be collected by cutting from block samples, i.e. approximately 1 mm, detailed concentration profiles could not be obtained for this secondary C-S-H. In this study, XAFS spectra of thin specimens were measured using an X-ray detector in order to obtain detailed concentration profiles for the C-S-H formed at the interface between the cementitious material and the bentonite-based buffer. The X-ray detector used in the XAFS analysis consists of 1024 photodiodes arranged in line with a 0.025 mm pitch (photodiode array; PDA). Ca-K-edge XAFS measurements were conducted at the Photon Factory of the KEK. The synchrotron was operated in top-up mode with 450 mA during the measurements. Specimens were taken from a contact sample of compacted bentonite (Kunigel V1; dry density of 1.6 g/cm3) and hardened OPC (w/c = 0.6) immersed in

  14. Treating of cement curing with supercritical fluid carbon dioxide

    International Nuclear Information System (INIS)

    The main curing reactions of a portland cement are the formation of portlandite, Ca(OH)2, and calcium silicate hydrates, CSH. In nature, the cement extracts CO2 from air and convert the calcium hydroxide and CSH to calcium carbonate(CaCO3), calcite. By this process, chemically stable and mechanically enhanced cement is formed. By exposing an OPC to supercritical CO2 (SCCO2), the carbonate reaction was greatly accelerated. XRD analysis of experimental sample showed the acceleration of carbonate reaction and the test of compressive strength showed the mechanical enhancement

  15. Raloxifene combined with calcium phosphate cement for repair of rabbit mandibular defects%磷酸钙人工骨联合雷洛昔芬修复兔下颌骨缺损

    Institute of Scientific and Technical Information of China (English)

    关键; 徐峰

    2014-01-01

    背景:雷洛昔芬是第3代选择性雌激素受体调节剂,可减少骨量的丢失,增加骨组织中的矿物质含量,降低骨折风险。目的:观察雷洛昔芬结合自固化磷酸钙人工骨修复兔下颌骨缺损的效果。方法:在36只新西兰大白兔左侧下颌骨制作8 mm×4 mm×3 mm的缺损模型,随机分组,实验组12只植入自固化磷酸钙人工骨,并给予雷洛昔芬7.5 mg/(kg•d);药物组12只给予雷洛昔芬7.5 mg/(kg•d);人工骨组12只植入自固化磷酸钙人工骨。分别于治疗4,8,12周取下颌骨标本,免疫组织化学法观察骨形态发生蛋白2的表达,激光共聚焦显微镜观察转化生长因子β的表达。结果与结论:实验组治疗后4,8周时的骨形态发生蛋白2免疫组织化学染色阳性细胞数明显高于药物组与人工骨组,治疗后12周时实验组骨改建基本完成,骨形态发生蛋白2免疫组织化学染色阳性细胞数目低于其他两组。实验组转化生长因子β免疫荧光染色表达为逐步升高,到第8周时达到峰值,而药物组和人工骨组的转化生长因子β免疫荧光表达从4-12周一直呈上升状态,趋近于最高峰。说明雷洛昔芬能够促进自固化磷酸钙人工骨在骨缺损过程中骨形态发生蛋白的早期表达及早期骨痂的形成,加快骨缺损修复。%BACKGROUND:Raloxifene is the third generation of selective estrogen receptor modulators, which can decrease bone loss, increase bone mineral content, and reduce fracture risk. OBJECTIVE: To study the effects of raloxifene combined with self-setting calcium phosphate cement on the repair of rabbit mandibular defects. METHODS:Totaly 36 New Zealand white rabbits were selected to prepare 8 mm×4 mm×3 mm mandibular defect models, and then randomized equaly into experimental group (raloxifene, 7.5 mg/kg per day, combined with self-setting calcium phosphate cement), drug group (raloxifene, 7.5 mg/kg per

  16. Effect of Strength Enhancement of Soil Treated with Environment-Friendly Calcium Carbonate Powder

    OpenAIRE

    Kyungho Park; Sangju Jun; Daehyeon Kim

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 day...

  17. Neutron Scattering Studies of Cement

    Science.gov (United States)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  18. THE INFLUENCE OF ORTHOPHOSPHATES ON THE PROPERTIES OF PORTLAND CEMENT

    OpenAIRE

    Antanas Kaziliunas

    2014-01-01

    The article continues the research of input reduction of phosphogypsum preparation for the production of building materials. Desiccated apatite (2.18 % P2O5 in gypsum) makes the least changes in the properties of Portland cement: it prolongs the cement setting times and reduces the compressive strength about 10 %. The apatite formation in the pastes of soluble orthophosphate-cement occurs during the formation of X-ray amorphous colloidal calcium orthophosphate hydrate, which prolo...

  19. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  20. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  1. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  2. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  3. Enamel fluoride levels after orthodontic band cementation with glass ionomer cement.

    Science.gov (United States)

    Akkaya, S; Uner, O; Alaçam, A; Değim, T

    1996-02-01

    The aim of this investigation was to examine the fluoride uptake by enamel after application of glass ionomer cement for orthodontic band cementation compared with zinc phosphate cement. The study was conducted on 21 children whose mean age was 14 years. All the children were reared in the Middle Anatolian cities where the water fluoride concentration was below the level of 0.50 ppm. The subjects were randomly divided into three groups. The first experimental group, had seven subjects whose teeth were topically fluoridated with 2 per cent NaF solution, before orthodontic band cementation with zinc phosphate cement. The second experimental group also had seven subjects whose orthodontic bands were cemented with glass ionomer cement. The third group, consisted of seven control subjects and no dental procedures were performed in this group. All the participants were followed for 3 months and at the end of this period maxillary first premolars, which were in the ninth developmental stage according to Nolla (1960), were extracted for orthodontic purposes. The enamel fluoride concentrations were determined on the left maxillary first premolars at three successive etch depths by means of a fluor ion electrode, whereas the calcium concentrations were determined with an atomic absorption spectrophotometer. The results of this investigation showed that in both cementation groups enamel fluoride concentrations at three successive etch depths were highly increased compared with the control group. However, the difference between the cementation groups was not statistically significant. PMID:8746180

  4. Characterization of cement pastes by inverse gas chromatography

    OpenAIRE

    BENZARTI, K; V. Oliva; CHEHIMI, MM; BAETA NEVES, MI

    2002-01-01

    Two cement pastes, commonly used in concrete formulations, were characterized by IGC at 35-80°C before and after coating with an epoxy resin and a hardener. The cements are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxyde Ca(OH)2. Apolar and polar probes were used to determine the cements dispersive and acid-base characteristics. The materials appear as high surface energy materials as judged from the dispersive contribution to...

  5. Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration

    OpenAIRE

    Bonavetti, V. L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E. F.

    2014-01-01

    This paper analyses the influence of portland cement replacement by silica fume (up to 10%) and/or granulated blast furnace slag (up to 70%) on the hydration cement (XRD, heat of hydration, non evaporable water content and calcium hydroxide content) curing under sealed conditions and their effect on the mechanical strength. The obtained results indicate that binary cements containing silica fume and ternary cements there was a significant increase of hydration rate at early age. At later a...

  6. In vitro bioactivity of a tricalcium silicate cement

    International Nuclear Information System (INIS)

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca3SiO5, obtained by sol-gel process, and a Na2HPO4 solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca3SiO5 would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  7. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  8. Low pH Cements

    International Nuclear Information System (INIS)

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  9. Calcium sulfate cement augments transient stability of pedicle screw in osteoporotic vertebral body%硫酸钙骨水泥增强椎弓根螺钉置入骨质疏松椎体的瞬时稳定性

    Institute of Scientific and Technical Information of China (English)

    朱爱国; 张烽; 葛勇; 曹涌; 张弛; 陈云

    2014-01-01

    BACKGROUND:Poor implant anchorage in osteoporotic bone impacts its stability and requires the new solutions for the treatment. The augmentation technique with bone cements or bone substitutes is one strategy for the solutions. OBJECTIVE:To evaluate the transient stability of pedicle screw augmented using calcium sulfate cement in osteoporotic vertebral body. METHODS:Fresh calf lumbar vertebrae were selected to measure bone density, and then classified into four groups:the group by pedicle screw in normal vertebral body;the group by pedicle screw augmented using calcium sulfate cement in normal vertebral body;the group by pedicle screw in osteoporotic vertebral body;the group by pedicle screw augmented using calcium sulfate cement in osteoporotic vertebral body. Pedicle screw of equal specification was twisted into the tested pedicle of vertebral arch. The maximum axial screw pul-out strength and the maximum energy required to failure were recorded so as to assess the transient stability of pedicle screw augmented using calcium sulfate cement. RESULTS AND CONCLUSION:The maximum screw pul-out strength and the maximum energy required to failure were significantly less in osteoporotic vertebral body compared with normal vertebral body (P<0.05). The maximum screw pul-out strength and the maximum energy required to failure after augmentation using calcium sulfate cement were significantly increased (P<0.05). The maximum screw pul-out strength and the maximum energy required to failure after augmentation using calcium sulfate cement were identical between normal group and osteoporosis group. These results suggested that calcium sulfate cement could effectively increase the transient stability of pedicle screw. Calcium sulfate cement is effective in augmenting fixation in osteoporotic bone, and has potential in clinical application.%背景:由于内固定在骨质疏松骨上锚着力较差影响了其稳定性,因此需要新的固定方法,使用骨水泥或骨

  10. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  11. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  12. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  13. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  14. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  15. 硫酸钙骨水泥增强骨质疏松股骨粗隆间骨折内固定的有限元分析%Finite-Element Analysis of Injectable Calcium Sulfate Bone Cement Augmentation with Dynamic Hip Screw System for the Treatment of Osteoporotic Intertrochanteric Fractures

    Institute of Scientific and Technical Information of China (English)

    于晓巍; 王楠; 汤亭亭

    2009-01-01

    通过有限元分析,研究硫酸钙对稳定型骨质疏松股骨粗隆间骨折内固定增强的影响.建立骨质疏松股骨稳定型粗隆阅骨折有限元模型,模拟动力髋螺钉(DHS)固定及硫酸钙增强的DHS固定,分析硫酸钙对DHS固定的增强效果.有限元分析显示,硫酸钙增强后,股骨头部的松质骨最大应力减少了35%,提示螺钉切割出股骨头的可能性减小;而股骨骨折面最大应力从3.7 MPa减少到1.8 MPa,提示硫酸钙增强提高了DHS固定的稳定性.研究结果表明,硫酸钙骨水泥能有效增强骨质疏松性骨折内固定的稳定性,具有较好的临床应用前景.%The mechanical performance of the dynamic hip screw (DHS) system augmented with calcium sulfate bone cement (CSC) for the fixation of stable osteoporotic intertrochanteric fracture was evaluated by means of finite element analysis (FEA). Finite element model was used to simulate the stable osteoporotic intertrochanteric fracture with DHS fixation or DHS fixation plus CSC augmentation and the stress distribution was analyzed. With cement augmentation, 35% reduction of the maximum stress was found in the femur head, suggesting reduced possibility of screw cut-outs. Maximum stress at the fracture plane was also decreased from 3.7 MPa to 1.8 MPa, which indicates improved fixation after CSC augmentation. These results indicate that calcium sulfate cement is effective in augmenting fixation in osteoporotic bone. Calcium sulfate cement has potential application in the treatment of osteoporotic fractures.

  16. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    International Nuclear Information System (INIS)

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction

  17. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Swift, Paul; Utton, Claire [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Carro-Mateo, Beatriz [The Public University of Navarra, C/Esquíroz, 30 trasera, Pamplona 31007 (Spain); Marchand, Geraldine [The National Institute of Applied Sciences (INSA) Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cedex (France); Collier, Nick [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Milestone, Neil [Industrial Research Ltd., 69 Gracefield Road, Lower Hutt, 5040 (New Zealand)

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  18. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  19. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  20. 磷酸钙骨水泥对股骨颈骨折内固定辅强作用的组织学评价%Histological evaluation of calcium phosphate cement in augmentation of femoral neck fracture fixation

    Institute of Scientific and Technical Information of China (English)

    张伟; 赵军; 胡春明; 李玉林; 森川圭造; 杉本友宏; 佐藤啓二; 丹羽滋郎; 徐莘香

    2006-01-01

    宿主骨的改变.主要观察指标:术后不同时间各组骨水泥周围新骨形成情况及宿主骨的变化.结果:实验选用45只成熟中国绵羊,全部进入结果分析.术后不同时间各组骨水泥周围新骨形成情况及宿主骨的变化:①非辅强组:术后3周在螺钉周围产生少量纤维组织,且宿主骨骨床有显微破坏,但显微破坏在术后6及12周时可见修复.②磷酸钙骨水泥辅强组:术后3,6,12周磷酸钙骨水泥充满于螺钉和宿主骨之间,而且磷酸钙骨水泥表面有新骨形成,在新骨和磷酸钙骨水泥之间没有纤维组织介入.在术后12周可见大量新骨形成,且见许多骨小管.③聚甲基丙烯酸甲酯辅强组:术后3周在骨床与聚甲基丙烯酸甲酯之间产生大量纤维组织,可见明显骨吸收,术后6及12周尤为明显.结论:由于磷酸钙骨水泥具有良好的组织相容性、骨传导性及自身改建能力,因此对股骨颈骨折提供了长期有益的辅强作用.%BACKGROUND: Structural characteristics of calcium phosphate cement (CPC) offer substantial mechanical integrity for fracture stabilization and fixation during the healing process, with particular applications in mechanically compromised osteoporotic bone.OBJECTIVE: To investigate the mechanism of the augmentation to fixation with CPC, comparing with screw fixation augmented by polymenthymethacrylate (PMMA) bone cement or with unaugmented screw fixation for femoral neck fractures in sheep by histological evaluation.DESIGN: Randomized controlled, duplicated observation and opening study.SETTING: Departments of Orthopeadics and General Surgery, the First Hospital of Jilin University; Department of Pathology, Basic Medical College of Jilin University; Department of Plastic Surgery, Aichi Medical University of Japan.MATERIALS: The experiment was completed in the Taonan Municipal Hospital of Jilin, Jilin University and Aichi Medical University of Japan from January 1999 to January 2004. A

  1. Possibilities of special cements in ceramic applications

    International Nuclear Information System (INIS)

    About 25 years ago, the only way to have confinement material for high temperature applications was to prepare a ceramic by sintering or fusion at high temperature. A new technology came, with the production of Low Cement Castables. This new product was obtained by a careful choice of the granulometry of the aggregates, an optimization of the defloculation of fine particles, including the cement (Calcium Aluminate Cement) and the addition of silica fume. Silica fume brought two improvements: a) a fluidifying effect, due partly to the low sensitivity of viscosity to pH, and partly to the geometric effect of the nicely spherical particle, b) a chemical effect, brought by the reaction of silica and Calcium Aluminate Cement to give a coherent zeolithic structure, through which water could escape during the first firing. From a ceramist point of view, it is interesting to understand how this components, nearly colloidal system mixed in water can be heated up to ceramization without any noticeable change in mechanical characteristics and shrinkage. From a more practical point of view, it is also interesting to realize that some characteristics, usually attributed only to ceramics, also apply with low cement castables technology: high compressive strength, flexural strength, corrosion resistance, abrasion resistance, impact resistance. (orig.)

  2. Mesoscale texture of cement hydrates.

    Science.gov (United States)

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  3. Quantitative Evaluation by Glucose Diffusion of Microleakage in Aged Calcium Silicate-Based Open-Sandwich Restorations

    OpenAIRE

    Camps, J.; Tassery, H.; Koubi, G.; Elmerini, H.; Koubi, S.

    2012-01-01

    This study compared the in vitro marginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups ( = 1 0 ) to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxh...

  4. Injectable citrate-modified Portland cement for use in vertebroplasty.

    Science.gov (United States)

    Wynn-Jones, Gareth; Shelton, Richard M; Hofmann, Michael P

    2014-11-01

    The injectability of Portland cement (PC) with several citrate additives was investigated for use in clinical applications such as vertebroplasty (stabilization of a fractured vertebra with bone cement) using a syringe. A 2-wt % addition of sodium or potassium citrate with PC significantly improved cement injectability, decreased cement setting times from over 2 h to below 25 min, while increasing the compressive strength to a maximum of 125 MPa. Zeta-potential measurements indicated that the citrate anion was binding to one or more of the positively charged species causing charged repulsion between cement particles which dispersed aggregates and caused the liquefying effect of the anion. Analysis of the hydrating phases of PC indicated that the early strength producing PC phase (ettringite) developed within the first 2 h of setting following addition of the citrate anion, while this did not occur in the control cement (PC only). Within 24 h ettringite developed in PC as well as calcium-silicate-hydrate (C-S-H), the major setting phase of PC, whereas cements containing citrate did not develop this phase. The evidence suggested that in the presence of citrate the cements limited water supply appeared to be utilized for ettringite formation, producing the early strength of the citrate cements. The present study has demonstrated that it is possible to modify PC with citrate to both improve the injectability and crucially reduce the setting times of PC while improving the strength of the cement. PMID:24711245

  5. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    Science.gov (United States)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of

  6. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  7. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  8. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  9. Reinforcement of osteosynthesis screws with brushite cement.

    Science.gov (United States)

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw

  10. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH2) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na2SO4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  11. Calcium Oscillations

    OpenAIRE

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlyin...

  12. Increased antibiotic release and equivalent biomechanics of a spacer cement without hard radio contrast agents.

    Science.gov (United States)

    Bitsch, R G; Kretzer, J P; Vogt, S; Büchner, H; Thomsen, M N; Lehner, B

    2015-10-01

    We compared a novel calcium carbonate spacer cement (Copal® spacem) to well-established bone cements. Electron microscopic structure and elution properties of the antibiotics ofloxacin, vancomycin, clindamycin, and gentamicin were examined. A knee wear simulator model for articulating cement spacers was established. Mechanical tests for bending strength, flexural modulus, and compressive and fatigue strength were performed. The electron microscopic analysis showed a microporous structure of the spacer cement, and this promoted a significantly higher and longer antibiotic elution. All spacer cement specimens released the antibiotics for a period of up to 50days with the exception of the vancomycin loading. The spacer cement showed significantly less wear scars and fulfilled the ISO 5833 requirements. The newly developed spacer cement is a hydrophilic antibiotic carrier with an increased release. Cement without hard radio contrast agents can improve tribological behaviour of spacers, and this may reduce reactive wear particles and abrasive bone defects. PMID:26219491

  13. R7T7 glass alteration in the presence of mortar: effect of the cement grade

    International Nuclear Information System (INIS)

    R7T7 glass alteration was investigated in the presence of four mortars prepared from four different cement grades: 'CPA' Portland cement (mortar M1), CPA with pozzolana additive (M2), CPA with amorphous silica additive (M3) and 'CLK' blast furnace slag cement (M4). Glass specimens were also altered in Volvic mineral water and in a cement effluent. Glass corrosion in the cement media was greater than in Volvic water, but well below what could be expected from the high pH (approx 12.5). The relatively low alteration was probably related to the protective action of the calcium-enriched gel layer that formed at the glass surface. The glass corrosion rate was 2 to 3 times lower with cement containing pozzolana or silica gel additives or with CLK cement than with CPA cement alone. 8 refs., 8 figs

  14. Development of Production Technologies for Universal Hydraulic Cement (UHC)

    OpenAIRE

    Syal, Dr. S K

    2013-01-01

    It is based on our recent approaches of Modern construction materials utilizing existing wastes such as fly ashes slags and to save energies by technological developments.The article is essential in the direction of new materials called Durable Integral polymer-pigmented cement concretes. UHC is calcium aluminate cements with natural properties of durable earth materials. It is a step towards Research for Innovation in Indian Industries

  15. Notes on hydrated cement fractals investigated by SANS

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, T [Faculty of Civil Engineering, Physics Department, Technical University, Zizkova 17, CZ-602 00 Brno (Czech Republic); Len, A [Budapest Neutron Centre, Konkoly Thege 29-33, H-1525 Budapest (Hungary); Nemec, P [Faculty of Civil Engineering, Physics Department, Technical University, Zizkova 17, CZ-602 00 Brno (Czech Republic)

    2007-07-07

    Hydrated cement pastes with different water-to-cement ratios have been investigated by the small-angle scattering neutron technique. Special attention has been paid to the fractal nanostructure of the calcium silicate hydrate (C-S-H solid gel) and its basic building particles, i.e. nanometric globules. The inner stability of these particles has been tested and shown to be sufficiently persistent to withstand all spatial regroupings of the overall nanostructure caused by variations of w/c ratios.

  16. Biomechanics study of interal fixation with hollow compression screw and composite calcium phosphate cement of osteoporotic femoral neck%复合磷酸钙骨水泥强化骨质疏松股骨颈加压空心螺钉的生物力学研究

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the biomechanics of hollow compression screw in the osteoporotic femoral neck with composite calcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups: augmentation group and non augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow compression screw,the initial mobile force and the maximal axial pull out strength for augmentation group,non augmentation group increased from (192.7± 14.0)N and (202.8± 14.0)N to(328.5± 34.7)N and( 347.8± 31.2)N.There was significant difference of two groups(P< 0.01).Conclusion CCPC can enhance hollow compression screw fixation in osteoporotic femoral neck.

  17. 磷酸钙骨水泥对颈椎前路螺钉置入体强化作用的生物力学分析%Biomechanical analysis of calcium phosphate cement in augmentation of anterior cervical screw

    Institute of Scientific and Technical Information of China (English)

    陈跃平; 朱勇; 张超

    2008-01-01

    BACKGROUND: Calcium phosphate cement (CPC) can strengthen the immediate and early fixation of screws by improving the quality of bone and the surface of screws. OBJECTIVE: To evaluate the biomechanical efficacy of CPC in augmentation of anterior cervical unicortical screw fixation. DESIGN: A study of controlled observation. SETTING: Department of Orthopaedics of First Xiangya Hospital of Xiangya Medical College of Central South University. MATERIALS: Experiments were performed at the Room of Electromechanical Tensile Property of College of Material Science and Engineering of Central South University from September 2003 to January 2004. Anterior cervical unicortical screw (pure titanium) was produced by Zhangjiagang Xinda Medical Equipment Co., Ltd. Injectable calcium phosphate cement was produced by Shanghai Ruibang Biomaterial Co., Ltd. Axial pull-out sleeve was produced by Machine Manufacture Center of Central South University. METHODS: ①Sixteen cervical vertebrae (C3-6) of four fresh young man cadavers with fine results in bone mineral density (BMD) test and sixteen cervical vertebrae (C3-6) of 4 fresh old man cadavers with poor results in BMD test were selected. Specimens were provided by Department of Anatomy of Xiangya Medical College of Central South University. Mortal remains of the deceased were donated according to the will of the dead. Informed consents were obtained from their family members. Twelve vertebrae were selected in each group for three tests. Six vertebrae were selected in pull-out test, and six vertebrae in cyclic bending test and shearing test. Screw holes, which were 8 mm apart from the midline and 5°inclined centrally, were made on both sides in the front part of the vertebra. Cortical bone was not penetrated. ②A screw was randomly inserted into one side hole, which was considered to be a control group. Pull-out test was performed on material testing machine at 5 mm/min. The screw hole was filled with CPC (0.10-0.15 mL) to repair the

  18. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 500C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  19. Physical and chemical aspects of the nucleation of cement-based materials

    Czech Academy of Sciences Publication Activity Database

    Demo, Pavel; Sveshnikov, Alexey; Hošková, Š.; Ladman, D.; Tichá, P.

    2012-01-01

    Roč. 52, č. 6 (2012), s. 15-21. ISSN 1210-2709 Institutional research plan: CEZ:AV0Z10100521 Keywords : cement paste * induction period * calcium concentration * nucleation rate * time lag Subject RIV: BJ - Thermodynamics

  20. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements

    International Nuclear Information System (INIS)

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (C-S-H) with low Ca/Si ratios or aluminosilicate gel at room temperature; C-S-H, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)2 and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement

  1. NMR study of hydrated calcium silicates

    International Nuclear Information System (INIS)

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.)

  2. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  3. Antagonist effects of calcium on borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  4. Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties

    OpenAIRE

    Basel A. Khader; Declan J. Curran; Sean Peel; Mark R. Towler

    2016-01-01

    Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO2), calcium (CaO), zinc (ZnO) and sodium (Na2O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applicat...

  5. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    OpenAIRE

    Lucas C. Rodriguez; Jonathan Chari; Shant Aghyarian; Gindri, Izabelle M.; Victor Kosmopoulos; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cem...

  6. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng; Wang, Jen-Chyan [Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan (China)

    2014-06-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30 MPa after 24 h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. - Highlights: • Bone cement precursor with nanocrystals is characterized. • DCP-rich CPCs with nanocrystals exhibited biphasic product phases. • Nanocrystals in cement significantly affected the interlocking ability. • Nanocrystals in cement exhibited higher strength and anti-dispersion. • DCP-rich CPCs increase the potential of bioresorption after reaction.

  7. Physical evaluation of a new pulp capping material developed from portland cement

    Science.gov (United States)

    Negm, Ahmed; Hassanien, Ehab; Abu-Seida, Ashraf

    2016-01-01

    Background This study examined the effects of addition of 10% and 25% by weight calcium hydroxide on the physicochemical properties of Portland cement associated with 20% bismuth oxide in order to develop a new pulp capping material. Material and Methods The solubility, pH value, setting time, compressive strength, and push out bond strength of modified Portland were evaluated and compared to those of mineral trioxide aggregate (MTA) and Portland cement containing 20% bismuth oxide. Results The statistical analysis was performed with ANOVA and Duncan’s post-hoc test. The results show that the strength properties and push out bond strength of Portland cement were adversely affected by addition of calcium hydroxide especially with a ratio of 25 wt%, however, the setting time and pH were not affected. MTA showed a statistically significant lower setting time than other cements (P≤0.001). Portland cement with bismuth oxide and Port Cal I showed a statistically significant higher Push out Bond strength than MTA and Port Cal II (P=0.001). Conclusions Taking the setting time, push out bond strength and pH value into account, addition of 10 wt% calcium hydroxide to Portland cement associated with 20% bismuth oxide produces a new pulp capping material with acceptable physical and adhesive properties. Further studies are recommended to test this cement biologically as a new pulp capping material. Key words:Calcium hydroxide, MTA, Portland cement, setting time, solubility, strength. PMID:27398178

  8. Development of Portland cement for orthopedic applications, establishing injectability and decreasing setting times.

    Science.gov (United States)

    Wynn-Jones, Gareth; Shelton, Richard M; Hofmann, Michael P

    2012-11-01

    The injectability of Portland cement (PC) with calcium chloride and calcium nitrate additives was investigated using a syringe with a 2 mm aperture for potential clinical applications such as vertebroplasty. Addition of either additive at 10 wt % increased the quantity of cement extruded through the syringe from approximately 25 wt % for the PC standard, to over 95 wt %. 10 wt % additions of either additive also decreased setting times from over 2 h to below 25 min. The compressive strength of the modified cements was all greater than the compressive strength of a human vertebral body. Decreasing either additive to 5 wt % generated compressive strengths after 24 h setting equal to polymethylmethacrylate, the cement used for the majority of vertebroplasty procedures. An initial early exotherm in the chloride cements was coupled with an X-ray diffraction (XRD) peak that indicated the early formation of the ettringite cement phase. In contrast, Fourier transform infrared (FTIR) spectroscopy and XRD data indicated that calcium nitrate may have stimulated early calcium silicate hydrate (C-S-H) production (the main strength producing phase of PC). Combining the two additives produced a synergistic effect with cements having increased injectabilities and compressive strengths compared with either addition used individually. This study has demonstrated that by modifying PC with nonproprietary chemicals it was possible to significantly increase cement injectability and reduce setting times whilst maintaining compressive strengths, making PC suitable for potential orthopedic applications. PMID:22887643

  9. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility

    International Nuclear Information System (INIS)

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30 MPa after 24 h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. - Highlights: • Bone cement precursor with nanocrystals is characterized. • DCP-rich CPCs with nanocrystals exhibited biphasic product phases. • Nanocrystals in cement significantly affected the interlocking ability. • Nanocrystals in cement exhibited higher strength and anti-dispersion. • DCP-rich CPCs increase the potential of bioresorption after reaction

  10. The study on improving masonry cement for the solidification of borate wastes

    International Nuclear Information System (INIS)

    Masonry cement has been used widely as an inorganic solidification agent for the concentrated borate chemical slurry at pressurized water reactor nuclear power plants. Although masonry cement is better than Portland cement, the compressive strength does not satisfy the desired criterion of greater than 150 kg/cm2. In order to improve the conventional solidification process using masonry cement, the authors conducted research on the effects of calcium chloride and of calcium hydroxide, basically in terms of the ratio of calcium hydroxide to Portland cement. The leachability index and cumulative fractional release are also discussed. From the results, the authors have found that masonry cement is not the best binding agent unless the ratio of calcium hydroxide to cement is changed from the conventional value of 1 to a value less than 0.3. The strength of solid can then be raised from 10 kg/cm2 to a value greater than 150 kg/cm2. Calcium chloride has a negative effect on the strength of solid which was identified by both extrapolation and experiment, but has a positive effect on the leachability. 8 refs.; 3 figs.; 3 tabs

  11. 以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥在椎体成形术中的应用%APPLICATION OF USE OF PMMA AS MATRIX ADDED WITH CALCIUM PHOSPHATE CEMENT IN VERTEBROPLASTY

    Institute of Scientific and Technical Information of China (English)

    刘世军; 李俊霞; 程金生

    2011-01-01

    [目的]观察以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥在椎体成形术中的应用价值,预防术后形成"空心椎"、"蛋壳椎"引起的椎体塌陷、后凸畸形.[方法]选取2007年7月~2009年8月住院椎体爆裂性骨折病人共15例患者,所有患者均行后路短阶段椎弓根内固定伤椎体成型术,以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥填塞,随访10~15月.[结果]所有患者术中均没有发生脊髓损伤加重,无骨水泥外漏,伤椎恢复高度无明显丢失,无椎间隙塌陷.无内固定断裂或弯曲、松动.治疗前后两组相比差异有统计学意义(P<0.05).[结论]在短节段椎弓根复位固定后,应用聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥可即可恢复伤椎的强度和刚度,减少了后路内固定的应力,可早期下地活动,减少并发症,预防术后形成"空心椎"、"蛋壳椎"引起的椎体塌陷、后凸畸形.%[ Objective] To observe the value of PMMA matrix added with calcium phosphate cement in vertehroplasty,to prevent the vertebral collapse and kyphosis due to postoperative formation of "hollow venebrae" , "eggshell veflebral*.[Methods] From July 2007 to August 2009, 15 patients with burst fracture of vertebral body in our hospital underwent a short phase of posterior pedicle screw fixation injury vertebroplasty, in which polymethyl Methyl acrylate added with calcium phosphate cement as matrix was used to fill, then patients were followed up for 10 to 15 months. [Results] All patients were not found aggravating spinal cord injury dunng surgery, bone cement (t)eakage, obvious vertebral recovery height, disc space collapse, intemal fixation fracture or bending and loose. Compared two grroups before and after the treatment, there was statistically significant difference (P< 0.05). [Conclusion] In the short segment pedicle fixation, the application of PMMA added with calcium phosphate bone cement as matrix can restore

  12. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project

  13. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites

    Directory of Open Access Journals (Sweden)

    Fakhim Babak

    2014-01-01

    Full Text Available We investigate the performance of graphene oxide (GO in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H gels in GO cement mortar compared with the normal cement mortar.

  14. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Zhiwei He

    2015-01-01

    Full Text Available Osteoporotic vertebral compression fractures (OVCFs have gradually evolved into a serious health care problem globally. In order to reduce the morbidity of OVCF patients and improve their life quality, two minimally invasive surgery procedures, vertebroplasty (VP and balloon kyphoplasty (BKP, have been developed. Both VP and BKP require the injection of bone cement into the vertebrae of patients to stabilize fractured vertebra. As such, bone cement as the filling material plays an essential role in the effectiveness of these treatments. In this review article, we summarize the bone cements that are currently available in the market and those still under development. Two major categories of bone cements, nondegradable acrylic bone cements (ABCs and degradable calcium phosphate cements (CPCs, are introduced in detail. We also provide our perspectives on the future development of bone cements for VP and BKP.

  15. 兔股骨节段缺损模型研究磷酸钙骨水泥骨愈合性能%Bone Healing Capacity of Calcium Phosphate Cement Cylinder in a Rabbit Femur Segmental Defect Model

    Institute of Scientific and Technical Information of China (English)

    王大伟; 潘朝晖; 赵玉祥; 栾兆新

    2015-01-01

    Objective:To investigate the bone healing capacity of calcium phosphate cement ( CPC) cylinder in a rabbit femur seg-mental defect model by comparing the influence of muscle or periosteum as wrapping material.Methods: Pre-hardened CPC cylinder was prepared.Three specimens were analyzed by scanning electron microscopy and X-ray diffraction to characterize its microstructure and chemical composition.Sixty adult rabbits were randomly assigned to four groups,then received a defect size of 15 mm osteotomy within the femurs.The 8-hole plate was fixed with three screws in the proximal and distal part of the defect, respectively.In group A, the fem-oral defects were left alone;in group B, the defects with retained periosteum; in group C, the defects were grafted with CPC cylinder wrapped by muscle;and in group D, the defects were grafted with CPC cylinder wrapped by periosteum.Five rabbits from each group were sacrificed at 4, 8 and 12 weeks postoperatively.The samples were evaluated with radiological, biomechanical and histological meth-ods.Results:Irregular particles were seen on the surface of specimens, the pore size was approximately 10 μm.The peak locations for the hydroxyapatite were seen in the X-ray diffraction patterns of the specimens.Group A showed a few radiographic evidence of new bone formation within the boundary of the defect at 4 weeks.Three bone defects bridged at 8 weeks and 4 bone defects bridged at 12 weeks. Group B showed radiographic evidence of new bone formation at 4 weeks.Four bone defects bridged at 8 weeks and 5 bone defects bridged at 12 weeks.Group C showed discernable interface between the CPC cylinder and both femoral cut ends at 4 weeks, which became invisi-ble at 8 weeks.Defects bridged by continuous callus beside the CPC cylinder in 4 rabbits and completely surrounded in 1 rabbit at 12 weeks.Group D showed better quality of new bone formation, the CPC cylinders were surrounded by new bone at 12 weeks.However, all CPCs retained their

  16. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na2SiO3- and Na2CO3-activated slag cements. • Phase diagrams for NaOH-activated and Na2SiO3-activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na2SiO3-activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na2SiO3-activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na2CO3-activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  17. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO2. (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  18. Evaluation of the slag attack resistance of high alumina refractory free cement castable

    International Nuclear Information System (INIS)

    The slag attack resistance is a very important property when the life time of refractory castable needs to be improved. The substitution of calcium aluminate cement by a free calcium hydraulic blinder has show a viable way to enhance the thermomechanical performance presented by these materials. At the present very few information is found regarding the slag attack of these free cement castable. In this study the slag attack resistance of high alumina castable with and without cement was evaluated by static test. The corroded region was analyzed by SEM and EDS. (author)

  19. Study of glass alteration mechanisms in cement waters

    International Nuclear Information System (INIS)

    In the French deep geological repository concept, intermediate-level vitrified waste packages could be disposed of concrete medium. Chemical composition and pH of the interstitial leaching water are expected to influence the chemical durability of glass. Investigations have thus been carried out to study glass dissolution mechanisms and kinetics in contact with cement waters. Three cement pore waters were studied: the first two correspond to two stages of the Portland cement aging and the third corresponds to equilibrium with a low pH concrete. The S/V ratio (glass-surface-area-to-solution-volume ratio) and the chemistry of cement waters are the two main parameters that control glass alteration mechanisms. If the leaching flow from the glass allows a degree of supersaturation to be reached and maintained which leads to nucleation of secondary phases, then precipitation of these phases drives glass dissolution. At a very low S/V ratio, the calcium uptake into the alteration layer increases its passivating properties. Conversely, at a high S/V ratio, the calcium precipitates as cementitious phases consuming elements which form the alteration layer. The glass dissolution is maintained at a high rate. This study contributes to highlighting the beneficial role of low pH cement in glass alteration, and is a first step towards understanding the mechanisms between the glass and the cement medium. (author)

  20. Pollution and Prevention of Pb during Cement Calcination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Emission pollution and prevention measures of Pb during cement calcination were discussed. The content of Pb and the variation of composition were explored by means of atomic absorption spectroscopy (AAS) and X-ray diffraction. The results show that a number of Pb emits during cement calcination, F and C1 promote the emission of Pb, and Pb is enriched in kiln dust. The smaller the particle of kiln dust, the higher the content of Pb. When utilizing the raw materials with a high content of Pb, a more efficient dust collector should be used and the kiln dust should be used as the addition of cement. Pb in clinker is enriched in the intermediate phase. The reduction of silica modulus is useful to increase the solidification content of Pb in clinker. The solidification content of Pb in calcium sulphoaluminate mineral is higher than that in calcium aluminate mineral.

  1. Biomechanical characteristics of calcium phosphate cement in the reinforcement of vertebral pedicle screw fixation%磷酸钙骨水泥强化椎弓根螺钉固定的生物力学特性

    Institute of Scientific and Technical Information of China (English)

    黎逢峰; 张庆宏; 黄野; 王云华

    2006-01-01

    组椎骨,用磷酸钙骨水泥重新固定12 h后拔松的椎弓根螺钉,测定其两侧的最大轴向拔出力.主要观察指标:①磷酸钙骨水泥最终凝固时强化椎弓根螺钉固定的生物力学测试结果.②磷酸钙骨水泥初步凝固时强化椎弓根螺钉固定的生物力学测试结果.③磷酸钙骨水泥强化松动椎弓根螺钉固定的生物力学测试结果.结果:①50岁组对照侧和强化侧的椎弓根螺钉最大轴向拔出力中位数分别为620 N和1 136 N,强化侧较对照侧增加83%(P<0.01).强化骨-螺钉界面的抗剪切应力中位数从1.16 N/mm2增加到2.13 N/mm2.②52岁组对照侧和强化侧的椎弓根螺钉最大轴向拔出力中位数分别为554.5 N和859.5 N,强化侧较对照侧增加55%(P<0.01).强化骨-螺钉界面的抗剪切应力中位数从1.039 N/mm2增加到1.61 N/mm2.③50岁组椎骨对照侧和强化侧重新固定12 h后最大轴向拔出力中位数分别为517 N和876 N,和同侧松动后轴向拔出力中位数比较,分别增加了63.6%和54.2%(P均<0.01).结论:磷酸钙骨水泥初步凝固和最终凝固时能强化椎弓根螺钉的固定,并且椎弓根螺钉松动后使用磷酸骨水泥能使螺钉重新获得固定.椎体强化侧的椎弓根螺钉均从骨-螺界面剥离开来,不伴周边骨质和椎弓根的严重损害,有利于螺钉松动、拔出后的二次置入.%BACKGROUND: Polymethylmethacrylate (PMMA) can ameliorate the condition between vertebral pedicle screws and peripheral bone-matrix interfaces and notably enhance the strength of screw fixation. However, there are several disadvantages during and after operation such as polymerized thermal damaging effect, toxicity and unabsorbable etc. Calcium phosphate cement (CPC) is biocompatible and biodegradable with good biosafty and produce no heat of polymerization, which is a perfect substitute for PMMA.OBJECTIVE: To evaluate the reinforcing effect of CPC on vertebral pedicle screw fixation at

  2. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    Science.gov (United States)

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  3. Posterior Pedicle Fcrew Fixation Combined with Calcium Sulfate Cement of Vertebral Plasty in the Treatment of Thoracolumbar Compression Fractures%后路椎弓根钉固定结合硫酸钙骨水泥椎体成形术治疗新鲜胸腰椎压缩性骨折疗效分析

    Institute of Scientific and Technical Information of China (English)

    吐尔洪江·阿不拉; 陈新富

    2016-01-01

    目的:研究后路椎弓根钉固定术结合硫酸钙骨水泥椎体成形术治疗胸腰椎压缩性骨折的临床效果。方法整群选取2010年4月—2015年5月收治的68例胸腰椎压缩性骨折患者,随机分为A组和B组。 B组患者采用后路椎弓根钉固定术治疗,A组在B组基础上联合硫酸钙骨水泥椎体成形术治疗。于术前﹑术后3个月记录Cobb角﹑椎体前缘高度压缩率﹑椎体后缘高度压缩率,比较组间差异。结果所有患者经治疗后,其胸腰部功能指标较术前均有明显恢复。术前患者Cobb角为20°左右,术后患者降至1~6°;术前椎体前缘高度压缩率为40%左右,术后降至2%~10%之间;术前椎体后缘高度压缩率为10%左右,术后降至1%~5%之间。组间比较,术后A组Cobb角﹑椎体前缘高度压缩率﹑椎体后缘高度压缩率明显低于B组,P<0.05差异有统计学意义。结论后路椎弓根钉固定术结合硫酸钙骨水泥椎体成形术治疗胸腰椎压缩性骨折疗效良好,值得临床推广应用。%Objective To study the clinical effect of posterior pedicle screw fixation combined with calcium sulfate cement of vertebral plasty in the treatment of thoracolumbar vertebral compression fractures. Methods Group selection 68 cases collected from April in 2010 to May in 2015 of thoracolumbar fracture were randomly divided into A group and B group.B patients were treated in posterior pedicle screw fixation.Patients in the A group were treated with calcium sulfate and verte-bral bone cement angioplasty on the basis of B group.To evaluate lumbar function with the Cobb angle, anterior vertebral height compression ratio and the posterior margin of the vertebral body before treatment and after 3 months, and the differ-ence was compared between the two groups. Results All the patients chest waist function index recovered after the treat-ment. Preoperativ Cobb angle of patients is about 20, while dropped to 1 to 6 degrees after operation

  4. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity.

    Science.gov (United States)

    Hesaraki, Saeed; Sharifi, Davood

    2007-01-01

    Calcium phosphate cements (CPCs) are biocompatible and osteoconductive materials used in dental, craniofacial and orthopaedic applications. One of the most important advantages of these materials is their replacement with bone followed by resorption. Already several attempts have been made to improve the resorption behaviour of calcium phosphate cements by increasing the porosity of the material. In this investigation a mixture of NaHCO(3) and citric acid monohydrate was added to the apatite cement component as an effervescent additive for producing interconnected macropores into the cement matrix. Mercury intrusion porosimetry was employed to determine pore volume and pore size distribution in the calcium phosphate cement (CPC) samples. Results showed that addition of only 10 wt % of the effervescent additive (based on the cement powder) to the CPC components lead to producing about 20 V % macropores (with the size of 10 to 1000 mum) into the cement structure. The setting time was measured in an incubator at 37 degrees C and decreased from 40 min for additive-free CPC to about 14 min for CPC containing effervescent additive. Other properties of the CPCs such as compressive strength, phase composition, microstructure morphology and dissolution behavior were evaluated after immersing them in a simulated body fluid solution. The results showed that the rate of formation of poor crystalline apatite phase have been improved by production of macroporosity into the cement matrix. PMID:17264385

  5. Immobilization and leaching mechanisms of radwaste in cement-based matrices

    International Nuclear Information System (INIS)

    The effect of potential sorbers including silicas, titania, calcined kaolin, zirconium phosphate and two crystalline calcium silicates, tobermorite and xonotlite, have been used to improve the Cs-retention capacity of cement-based systems. The analysis of the pore fluid compositions of equilibrated cement-radwaste composites provides evidence concerning the leach mechanisms whereby Cs is removed. The reactions occurring between cement and clinoptilolite are elucidated and results of kinetic studies presented. Simulate Magnox waste is shown to react with cement, leading to a carbonate exchange. (author)

  6. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  7. Strength Development and Microstructure of Hardened Cement Paste Blended with Red Mud

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; ZHANG Yanna; XU Zhongzi

    2009-01-01

    Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃. Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.

  8. Advanced cementation concepts

    International Nuclear Information System (INIS)

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  9. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  10. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate Bone Cement

    Directory of Open Access Journals (Sweden)

    Lucas C. Rodriguez

    2014-09-01

    Full Text Available Powder-liquid poly (methyl methacrylate (PMMA bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best

  11. EVALUATION OF CHEMICALS INCORPORATED WOOD FIBRE CEMENT MATRIX PROPERTIES

    Directory of Open Access Journals (Sweden)

    MST. SADIA MAHZABIN

    2013-08-01

    Full Text Available Wood fibre cement (WFC boards are well established commercially and widely used in many developed countries. The combination of the properties of two important materials, i.e., cement, and previously treated fibrous materials like wood or agricultural residues; which made up the board, contributed in the performance of the board as building material. In this work, the WFC matrix (WFCM samples are produced to determine the physical properties of WFCM such as the density and water absorption. The wood fibres are incorporated/treated with three different chemical additives; calcium formate (Ca(HCOO2, sodium silicate (Na2.SiO3 and magnesium chloride (MgCl2 prior to mixing with cement. The mechanical properties of the WFCM, with or without chemicals treatment of fibres, such as the compressive strength and flexural strength are evaluated. Three wood/cement ratios (50:50, 40:60, 30:70 are used and the percentages of water and accelerator were 80% and 3% based on the cement weight, respectively. Three moisture-conditioned samples; accelerated aging, dry and wet conditions are used for flexural test. The results reveal that the wood/cement ratio, chemical additives and moisture content had a marked influence on the physical and mechanical properties of the matrix. Finally, it has been shown that the 40:60 wood/cement ratio samples with prior chemicals treatment of the fibres that undergo accelerated aging conditioning achieve higher strength then dry and wet-conditioned boards.

  12. The effect of microsilica and refractory cement content on the properties of andalusite based Low Cement Castables used in aluminum casthouse O efeito do teor de microsílica e de cimento refratário nas propriedades de LCCs usados em moldagem de alumínio

    OpenAIRE

    E. A. Firoozjaei; Saidi, A; A. Monshi; Koshy, P.

    2010-01-01

    The bonding system in low cement castables is achieved by the use of calcium aluminate cement, microsilica and reactive alumina. The lime/silica ratio critically impacts the liquid phase formation at high temperatures and subsequently the corrosion resistance and the mechanical and physical properties of the refractory. In the current study, the effects of microsilica and cement contents on the corrosion resistance and the physical and mechanical properties of Andalusite Low Cement Castables ...

  13. Influence of Magnetic Field on Properties of Cement Compound on the Base of Boron-Containing LRW

    Energy Technology Data Exchange (ETDEWEB)

    Varlakov, A. P.; Gorbunova, O. A.; Barinov, A. S.; Dmitriev, S. A.; Fedora, O. V.

    2003-02-25

    At present boron-containing LRW cementation is an actual objective. At traditional cementing the grout on the base of boron containing LRW does not only harden, but also even does not stiffen. To obtain a cement compound with satisfactory regulated properties, a number of additives, for example, alkali (to correct pH), hydroxide or calcium salts, alkali metal hydrosilicates are applied, which complicates technology and requires LRW chemical continuous composition control.

  14. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  15. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete. PMID:19819713

  16. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the {gamma}-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring {gamma}-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  17. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a...... > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  18. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  19. Preparation and characterization of an injectable bone cement

    International Nuclear Information System (INIS)

    Self-setting calcium phosphate bone cements (CPBC) are attractive materials for bone defect reconstruction in non-stress-bearing areas because they can be molded into shape during implantation beside their excellent osteoconductivity and bone-replacement capability. The objective of this study is to locally produce and characterize bone cement made of tricalcium phosphate, dicalcium phosphate dihydrate, hydroxyapatite and calcium carbonate. An aqueous medium containing 3% disodium hydrogen phosphate solution was provided as the accelerator to make it a self-setting. The liquid to powder ratio was 0.35 ml/g. The paste was kneaded with the aid of a spatula between each addition to produce a paste of workable consistency. After a total mixing time of two minutes, the paste was firmly loaded into syringe. Injection was performed by a 10 ml syringe with 1.5 mm needle diameter into a mold to form cylindrical specimens of 6 mm radius and 12 mm height. Samples were soaked in simulated body fluid (SBF) for bioactivity study. X-ray diffraction (XRD) is used to analyze the phase of the precipitated cement. Mechanical properties were characterized by compressive test. The results showed that the bone cement successfully produced in-situ. Scanning electron micrograph showed that the cement was porous with size around 50 mm and the pores were almost interconnected. Studies on the setting characteristics and the compressive strength indicated that the properties were within the range of interest. (Author)

  20. Reaction kinetics of dual setting α-tricalcium phosphate cements.

    Science.gov (United States)

    Hurle, Katrin; Christel, Theresa; Gbureck, Uwe; Moseke, Claus; Neubauer, Juergen; Goetz-Neunhoeffer, Friedlinde

    2016-01-01

    Addition of ductile polymers to calcium-deficient hydroxyapatite (CDHA)-forming bone cements based on α-tricalcium phosphate (α-TCP) is a promising approach to improve the mechanical performance of α-TCP cements and extend their application to load-bearing defects, which is else impeded by the brittleness of the hardened cement. One suitable polymer is poly-(2-hydroxyethylmethacrylate) (p-HEMA), which forms during cement setting by radical polymerisation of the monomer. In this study the hydration kinetics and the mechanical performance of α-TCP cements modified with addition of different HEMA concentrations (0-50 wt% in the cement liquid) was investigated by quantitative in situ XRD and four-point bending tests. Morphology of CDHA crystals was monitored by scanning electron microscopy. The hydration of α-TCP to CDHA was increasingly impeded and the visible crystal size of CDHA increasingly reduced with increasing HEMA concentration. Modification of the cements by adding 50 wt% HEMA to the cement liquid changed the brittle performance of the hardened cement to a pseudoplastic behaviour, reduced the flexural modulus and increased the work of fracture, while lower HEMA concentrations had no significant effect on these parameters. In such a composite, the extent of CDHA formation was considerably reduced (34.0 ± 1.8 wt% CDHA with 50 % HEMA compared to 54.1 ± 2.4 wt% CDHA in the reference formed after 48 h), while the general reaction kinetics were not changed. In conclusion, while the extent of CDHA formation was decreased, the mechanical properties were noticeably improved by addition of HEMA. Hence, α-TCP/HEMA composites might be suitable for application in some load-bearing defects and have adequate properties for mechanical treatment after implantation, like insertion of screws. PMID:26610924

  1. Asphalt cement poisoning

    Science.gov (United States)

    Asphalt; Pavement ... The substances in asphalt that can be harmful are: Hydrocarbons Industrial glues Industrial solvents Tar ... Asphalt is found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for ...

  2. Laboratory Test on Long-Term Deterioration of Cement Soil in Seawater Environment

    Institute of Scientific and Technical Information of China (English)

    杨俊杰; 闫楠; 刘强; 张玥宸

    2016-01-01

    Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration ex-tended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentra-tion of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.

  3. On the hydration of water-entrained cement-silica systems: Combined SEM, XRD and thermal analysis in cement pastes

    International Nuclear Information System (INIS)

    is not able to fully convert the calcium hydroxide into calcium silicate hydrate during the first month of hydration in sealed conditions. Additionally, in systems with water-entrainment by means of superabsorbent polymers, it is possible to observe the internal curing activity being promoted by this addition, which is translated by enhanced hydration of cement reactants. A model has been constructed from the empirical knowledge developed on the previous framework, which may be used in further research activities to study different formulations of SF-modified cement systems and also water-entrained cement-based systems.

  4. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)

    Energy Technology Data Exchange (ETDEWEB)

    Schroefl, Ch.; Gruber, M.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs still exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica.

  5. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  6. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  7. Solubility of a new calcium silicate-based root-end filling material

    OpenAIRE

    Shishir Singh; Rajesh Podar; Shifali Dadu; Gaurav Kulkarni; Rucheet Purba

    2015-01-01

    Introduction: The purpose of this study was to compare solubility of a new calcium silicate-based cement, Biodentine with three commonly used root-end filling materials viz. glass-ionomer cement (GIC), intermediate restorative material (IRM), and mineral trioxide aggregate (MTA). Materials and Methods: Twenty stainless steel ring molds were filled with cements corresponding to four groups (n = 5). The weight of 20 dried glass bottles was recorded. Samples were transferred to bottles conta...

  8. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money. PMID:26630247

  9. Minimally Invasive Pedicle Screw Fixation Combined with Vertebroplasty with Calcium Phosphate Bone Cement in the Treatment of Thoracolumbar Burst Fracture%微创椎弓根钉内固定联合磷酸钙骨水泥椎体成形术治疗胸腰椎爆裂性骨折

    Institute of Scientific and Technical Information of China (English)

    顾宇彤; 梁朝革; 张亮; 林红; 周健

    2015-01-01

    目的:评估微创椎弓根钉内固定(微小切口非空心椎弓根钉技术)联合磷酸钙骨水泥经皮穿刺椎体成形术(percutaneous vertebroplasty ,PVP)治疗胸腰椎爆裂性骨折的疗性和安全性。方法:采用微创椎弓根钉内固定联合磷酸钙骨水泥 PVP术治疗23例单节段胸腰椎新鲜爆裂性骨折且无神经症状的患者,伤椎位于 T11~L2,均属A3型骨折。记录手术时间、术中出血量、骨水泥注射量和住院天数。记录术前及术后即刻、1个月、2个月、3个月、6个月、1年、2年的腰背痛评分,计算并比较各时点的椎体高度压缩率、恢复率、椎体后凸角、椎体后凸矫正率。结果:磷酸钙骨水泥平均注射量为4.9(3.8~6.4)mL,平均手术时间92(75~120) min ,平均出血量52(40~75) mL ,平均住院5.6(4~7) d ,术后平均随访26(24~29)个月。VAS评分由术前的(8.8±1.2)分下降至术后即刻的(1.8±0.6)分及术后2年的(0.4±0.5)分,差异均有显著统计学意义(P<0.001)。高度压缩率由术前的(50.4±7.2)%显著下降至术后即刻的(6.2±1.5)%及术后2年的(6.9±1.4)%,差异均有显著统计学意义(P<0.001)。后凸角由术前的(22.6±1.8)°下降至术后即刻的(3.2±1.7)°及术后2年的(5.1±1.5)°,差异均有显著统计学意义( P<0.001)。随访过程中术后高度恢复率、后凸矫正率无明显减小;未出现螺钉松动、断钉或断棒。结论:微创椎弓根钉内固定联合磷酸钙骨水泥PV P术是治疗胸腰椎爆裂性骨折的安全、有效的方法。%Objective:To evaluate the efficacy and safety of minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty(PVP) with calcium phosphate bone cement in the treatment of acute thoracolumbar burst fracture . Methods:Twenty‐three patients

  10. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca2+ (1.1 Angstrom) compared to Mg2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  11. Dissolution kinetics of tuff rock and mechanism of chemical bond formation at the interface with cement grout

    International Nuclear Information System (INIS)

    The interaction of tuff rock and cement was studied to evaluate the effectiveness of sealing of tuff boreholes with cementitious grouts. Previous studies indicated chemical bond formation between tuff and cement. Dissolution studies were carried out on Topopah Spring member tuff and on tuff with cement. The results indicate the formation of calcium silicate and calcium aluminosilicate hydrates; phase identification is confirmed by XRD studies. The significance of the results obtained and their implications on properties of the interfacial region are included. 7 refs., 6 figs

  12. Do cement nanoparticles exist in space ?

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2014-01-01

    The calcium-silicate-hydrate is used to model properties of cement on Earth. We study cementitious nanoparticles and propose these structures as components of cosmic dust grains. Quantum density functional theory methods are applied for the calculation of infrared spectra of Ca4Si4O14H4, Ca6Si3O13H2, and Ca12Si6O26H4 clusters. We find bands distributed over the near, mid and far-infrared region. A specific calcium-silicate-hydrate spectral feature at 14 microns, together with the bands at 10 and 18 microns which exist for other silicates as well, could be used for a detection of cosmic cement. We compare calculated bands with the 14 microns features in the spectra of HD 45677, HD 44179, and IRC+10420 which were observed by Infrared Space Observatory and classified as remaining. High abundance of oxygen atoms in cementitious nanoparticles could partially explain observed depletion of this element from the interstellar medium into dust grains.

  13. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  14. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or...

  15. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  16. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  17. Influence of liquid phase on physical properties of the new triphasic bone cement

    OpenAIRE

    A. Ślósarczyk; N. Osypanka; J. Czechowska; Z. Paszkiewicz; A. Zima

    2012-01-01

    Purpose: The aim of this work was to develop a new bone cement based on hydroxyapatite (HAp), βTCP and calcium sulfate hemihydrate (CSH) and to determine the influence of a liquid phase, used for cement pastes preparation, on physical properties of the final implant material.Design/methodology/approach: The powder phase consisting of CSH (60 wt.%) and HAp+ βTCP (40 wt.%) was applied. Composite samples were prepared using distilled water, chitosan and methylcellulose solutions as the liquid ph...

  18. Repair of an Extensive Furcation Perforation with CEM Cement: A Case Study

    OpenAIRE

    Eghbal, Mohammad Jafar; Fazlyab, Mahta; Asgary, Saeed

    2013-01-01

    Iatrogenic perforation of the furcation area in multi-rooted molars during preparation of the access cavity can potentially lead to tooth extraction. The present case report describes the nonsurgical endodontic management of an extensive pulp chamber floor perforation in a first mandibular molar with calcium enriched mixture (CEM) cement. The perforation was chemically cleaned and then physically sealed with CEM cement. Root canal therapy was completed and the tooth was then restored with ama...

  19. Processo de hidratação e os mecanismos de atuação dos aditivos aceleradores e retardadores de pega do cimento de aluminato de cálcio Hidration process and the mechanisms of retarding and accelerating the setting time of calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    J. R. Garcia

    2007-03-01

    Full Text Available Um dos aspectos principais para o desenvolvimento de concretos refratários está no aprimoramento dos conhecimentos sobre o cimento de alta alumina ou cimento de aluminato de cálcio (CAC, já que esse ligante é o mais utilizado nesta classe de produtos. O objetivo desse trabalho foi o de analisar as informações disponíveis na literatura para se obter um conhecimento mais aprofundado dos mecanismos de ação dos aditivos retardadores e aceleradores da pega deste cimento. Da análise dos dados compilados pode-se concluir que os aditivos retardadores agem geralmente de duas maneiras: 1 dificultando o processo de dissolução do cimento, por meio da formação de barreiras insolúveis ao redor das suas partículas e 2 favorecendo a formação de hidratos mais solúveis, o que aumenta o tempo necessário para que se inicie a precipitação. Por outro lado, os aditivos aceleradores de pega podem atuar favorecendo a formação de hidratos menos solúveis, diminuindo assim o tempo necessário para a precipitação ou ainda pela formação de núcleos iniciadores do processo de crescimento dos cristais dos hidratos. A análise destas informações leva a constatação de que a ação de alguns aditivos retardadores e aceleradores ocorre em estágios distintos no processo de hidratação do CAC. Portanto, pode-se imaginar uma situação onde a combinação desses dois aditivos poderia conferir um tempo de trabalhabilidade adequado e seguro, aliado a um curto tempo de desmoldagem.One of the main aspects for the development of refractories castables is to master the knowledge regarding calcium aluminate cement (CAC, as this binder is the most applied in these products. The objective of this work was to analyze the available information in the literature in order to explain the understanding regarding the actions of retarder and accelerator additives in the setting mechanisms of CACs. The analysis of the compiled information pointed out that the

  20. Pulpal response of dogs primary teeth to an adhesive system or to a calcium hydroxide cement Resposta pulpar de dentes decíduos de cães a um sistema adesivo ou ao cimento de hidróxido de cálcio

    Directory of Open Access Journals (Sweden)

    Rosângela Almeida RIBEIRO

    2000-03-01

    Full Text Available The aim of this study was to evaluate the pulpal response of dogs primary teeth to an adhesive system or to a calcium hidroxide cement after mechanic exposure of the pulp. Three mongrel dogs were used and ten class V cavities were prepared on their teeth. A mechanic pulp exposure was produced with a sterile exploratory probe in the central portion of each cavity and bleeding was controlled with dry sterile cotton pellets. Enamel, dentin and the site of the pulp exposure of five teeth were etched with 35% phosphoric acid followed by the application of an adhesive system (Scotchbond Multi-Purpose - 3M. In the other five teeth, calcium hydroxide cement (Hydro C - Dentsply was applied on the site of the pulp exposition before application of the adhesive system (Scotchbond Multi-Purpose - 3M. All teeth were restored with a resin composite (Z-100 - 3M. After 7, 30 or 45 days the dogs were anesthetized and perfused with saline followed by a solution of neutral buffered formalin. Maxilla and mandible were sectioned into three parts and placed in a solution for demineralization. Following bone demineralization, all teeth were cut, trimmed, embedded in paraffin and longitudinally cut. Then, the teeth were stained with hematoxilin and eosin and observed under a light microscope. The results obtained with the treatments proposed in this study showed the presence and persistence of an inflammatory response of different intensities at the three experimental periods. There was no variation in the inflammatory response regarding the different treatments performed.O objetivo deste estudo foi de avaliar a resposta pulpar de dentes decíduos de cães à um sistema adesivo ou a um cimento de hidróxido de cálcio após exposição mecânica da polpa. Foram utilizados três cães sem raça definida, e nestes foram realizados dez preparos cavitários classe V. Uma exposição pulpar mecânica foi produzida com uma sonda exploradora esterilizada, na porção central

  1. Subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement and gelatin sponge as the carrier of recombinant bone morphogenetic protein-2 in rats:A comparative study%两种材料复合rhBMP-2诱导大鼠皮下异位成骨的比较研究

    Institute of Scientific and Technical Information of China (English)

    李想; 董纪元; 彭江; 汪爱媛; 睢翔; 赵斌; 刘道宏

    2011-01-01

    Objective To analyze the difference in subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement (CPC) and gelatin sponge as a carrier of recombinant bone morphogenetic protein-2 (rhBMP-2). Methods Thirty Sprague Dawley rats with an average body weight of 200g were divided into groups A-D. CPC+rhBMP-2, CPC, gelatin sponge+rhBMP-2, and gelatin sponge were implanted into the rats after anesthesia. Ten rats were killed 2, 4 and 8 weeks after they were fed under sterile environment. Bone tissue samples were collected from the implantation sites. Tissue mineral density (TMD) and trabecular thickness were detected with micro-CT scanner and analyzed with SPSS 1 OX) statistical software. Bone tissue was fixed in 4% paraformaldehyde for 2 days, embedded in paraffin, and cut into sections. The sections were stained with H&E to observe their histological change. Results The tissue mineral density and trabecular thickness of the samples with rhBMP-2 were higher in two experimental groups 2,4 and 8 weeks after implantation, which increased with the prolongation of time (P<0.05). Conclusion Porous CPC can be used as a carrier of rhBMP-2 for osteogenesis.%目的 分析多孔自固化磷酸钙骨水泥(Calcium Phosphate Cement,CPC)和明胶海绵复合重组人骨形态发生蛋白(Recombinantion Humen Bone Morphogenetic Protein-2,rhBMP-2)诱导大鼠皮下异位成骨的区别.方法 平均质量200g SD大鼠30只,麻醉后分别植入A:多孔CPC复合rhBMP-2(2μg);B:多孔CPC;C:明胶海绵复合rhBMP-2(2μg);D:空白明胶海绵,无菌喂养后分别于2、4、8周各处死10只.对植入部位组织取材,分别进行micro-CT扫描,并使用Micview V2.1三维重建处理软件扫及ABA骨形态分析软件检测,记录组织骨密度(Tissue Mineral Density,TMD)及骨小梁厚度(Trabecular Thickness,Tb.Th).运用SPSS10.0统计软件进行统计学分析.后行甲醛固定2周,石蜡包埋切片,HE染色进行组织学观察.结果 在2、4、8

  2. SETTING AND HARDENING OF AGRO/CEMENT COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amal Hanafy Abdel-Kader

    2010-02-01

    Full Text Available In this study, the use of bagasse fiber (BF and unbleached bagasse pulp (BP in a cement matrix, as a raw material, to produce lightweight construction materials is reported. The bagasse was used as partial replacement of cement at different levels: 0% (control cement, 1%, 2% 3%, and 4% by weight. The average size of bagasse fibers was less than 2 mm. Although a reduction in the physical and mechanical strength was observed, the incorporation of either fiber or pulp increased the water of consistency and setting time. A composite containing 4% of bagasse fibers can be used for lightweight concrete. FT-IR spectra showed that the BF or BP adversely affect the rate of calcium silicate hydrate (CSH formation by decreasing its promotion.

  3. Cesium and lead uptake by CSH phases of hydrated cement

    International Nuclear Information System (INIS)

    As Kd from radwaste elements in concrete systems show a wide range of values, a modelling of cesium and lead immobilization in Calcium Silicate Hydrate (CSH, xCaO.SiO2.H2O, with 0.7 (aged cements)SiOH) and precipitation equilibria. Values of Kd from cesium and lead in CSH matrix can thus be calculated with Ca/Si evolution and ionic strength effect. Predictive calculations have been carried out with success with different Ca/Si ratios, ionic strengths and liquid/solid ratios, and results are well superimposed with experimental isotherm data. If the CSH really allow accounting for the radwaste behavior in hydrated cement matrices, this model can be used in safety assessment calculations, with varying pH and [Ca2+] as cement degradation state parameters. Copyright (2001) Material Research Society

  4. Characterization of cement pastes by inverse gas chromatography

    OpenAIRE

    BENZARTI, K; V. Oliva; CHEHIMI, MM

    2001-01-01

    This contribution reports on the IGC characterization of two cement pastes which are commonly used in concrete formulations. These are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxide Ca (OH)2. The materials were characterized at 60 and 80 °C using n-alkanes, 2,2,3-trimethylbutane (TMB), 1-alkenes, benzene, CCI4, chloroform (CHCl3), acetonitrile, diethyl ether, methyl acetate, methyethyl ketone and THF. The materials appear as ...

  5. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  6. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  7. Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Liquid manure, stored in silos often made of concrete, contains volatile fatty acids (VFAs) that are chemically very aggressive for the cementitious matrix. Among common cements, blast-furnace slag cements are classically resistant to aggressive environments and particularly to acidic media. However, some standards impose the use of low C3A content cements when constructing the liquid manure silos. Previous studies showed the poor performance of low-C3A ordinary Portland cement (OPC). This article aims at clarifying this ambiguity by analyzing mechanisms of organic acid attack on cementitious materials and identifying the cement composition parameters influencing the durability of agricultural concrete. This study concentrated on three types of hardened cement pastes made with OPC, low-C3A OPC and slag cement, which were immersed in a mixture of several organic acids simulating liquid manure. The chemical and mineralogical modifications were analyzed by electronic microprobe, XRD and BSE mode SEM observations. The attack by the organic acids on liquid manure may be compared with that of strong acids. The alteration translates into a lixiviation, and the organic acid anions have no specific effect since the calcium salts produced are soluble in water. The results show the better durability of slag cement paste and the necessity to limit the amount of CaO, to increase the amount of SiO2 (i.e., reduction of the Ca/Si ratio of C-S-H is not sufficient) and to favor the presence of secondary elements in cement

  8. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  9. Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29Si MAS NMR

    Directory of Open Access Journals (Sweden)

    Jiho Moon

    2016-02-01

    Full Text Available The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. In this study, Ordinary Portland Cement (OPC was mixed with 1% and 3% nanosilica by weight to produce cement pastes with water to binder ratio (w/b of 0.45. The specimens were cured for 7 days. 29Si nuclear magnetic resonance (NMR experiments are conducted and conversion fraction of nanosilica is extracted. The results are compared with a solid-state kinetic model. It seems that pozzolanic reaction of nanosilica depends on the concentration of calcium hydroxide.

  10. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  11. Influence of nano-dispersive modified additive on cement activity

    Science.gov (United States)

    Sazonova, Natalya; Badenikov, Artem; Skripnikova, Nelli; Ivanova, Elizaveta

    2016-01-01

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4-6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C3S and β-C2S.

  12. Influence of nano-dispersive modified additive on cement activity

    Energy Technology Data Exchange (ETDEWEB)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  13. Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride

    Indian Academy of Sciences (India)

    Sayed Mahmood Rabiee

    2013-02-01

    The purpose of this work was to study the preparation and characterization of drug–hydroxyapatite cement. The hydroxyapatite (HA) cement has been synthesized by using tricalcium phosphate, calcium carbonate and dicalcium phosphate anhydrous with sodium hydrogen phosphate as liquid phase. The effect of added tetracycline hydrochloride (TCH) as drug on final phases, microstructure, setting behaviour and compressive strength has been studied. The drug release rate was first order within the first day and then was zero order. No obvious difference could be detected in XRD patterns of the TCH–HA cement with various amounts of drug. By increasing the drug concentration, mechanical strength of cement was decreased and its setting time was increased. The results of this study demonstrate the potential of using HA cement as a carrier for drug delivery.

  14. Use of rice husk ash in concrete as partial cement replacement material

    International Nuclear Information System (INIS)

    The rice husk, locally available at low cost contains a high content of silica and hence can be used as a partial cement replacement material in the form of ash. The rice husk ash upon grinding into possible fine size passing through sieve No. 200 produce a cementicious calcium silicate hydrate. After burning the rice husk up to 725 degree C, the ash formed is ground finely. The resultant product is used as cement replacement (by weight) with different proportions .i.e. 25%, 30%, 40% and 50% cement replacement by RHA. The rice husk ash cement concrete was checked for compressive strength, flexural strength, and resistance to chemical attack. The research reveals that the strength of concrete containing 25 percent of RHA is not affected appreciably but the cost is reduced considerably. It is also found that the resistance to chemical attack of RHAC concrete is much better than ordinary Portland cement concrete. (author)

  15. Energy recovery from wastes : experience with solid alternative fuels combustion in a precalciner cement kiln

    OpenAIRE

    Tokheim, Lars-André; Gautestad, Tor; Axelsen, Ernst Petter; Bjerketvedt, Dag

    2001-01-01

    Today virtually all cement clinker burning processes take place in rotary kilns. A mixture of calcareous and argilaceous materials is heated to a temperature of about 1450 °C. In this process decarbonation followed by partial fusion occurs, and nodules of so-called clinker are formed. The cooled clinker is mixed with a few percent of gypsum, and ground into a fine meal – cement. The most modern cement kilns are equipped with a precalciner, in which most of the calcium carbonate...

  16. Calcium pyrophosphate arthritis

    Science.gov (United States)

    Calcium pyrophosphate dihydrate deposition disease; CPPD disease; Acute CPPD arthritis; Pseudogout ... Calcium pyrophosphate arthritis is caused by the collection of salt called calcium pyrophosphate dihydrate (CPPD). The buildup ...

  17. Produktie van cement

    NARCIS (Netherlands)

    Smit JRK; Coenen PWHG; Matthijsen AJCM; LAE; TAUW

    1995-01-01

    This document on cement production has been published within the SPIN project. In this project information has been collected on industrial plants or industrial processes to afford support to governmental policy on emission reduction. This document contains information on the processes, emission sou

  18. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  19. Formation of ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, AFt, and monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Hanson, Jonathan C.

    2004-06-01

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca 3Al 2O 6, Ca 12Al 14O 33 and CaSO 4·2H 2O, the reaction products can be ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, or the calcium aluminum oxide hydrate, Ca 4Al 2O 7·19H 2O. Ettringite is formed if sufficient CaSO 4·2H 2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO 4·2H 2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170°C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection.

  20. Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide--calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    International Nuclear Information System (INIS)

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca3Al2O6, Ca12Al14O33 and CaSO4·2H2O, the reaction products can be ettringite, Ca6Al2(SO4)3(OH)12·26H2O, monosulfate, Ca4Al2O6(SO4)·14H2O, or the calcium aluminum oxide hydrate, Ca4Al2O7·19H2O. Ettringite is formed if sufficient CaSO4·2H2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO4·2H2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170 degree sign C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection

  1. A new type of cementation flushing fluid for efficiently removing wellbore filter cake

    Directory of Open Access Journals (Sweden)

    Erding Chen

    2015-11-01

    Full Text Available For effectively removing the water-based drilling fluid filter cake and improving interfacial cementing strength and cementing quality, a new type of cementation flushing fluid (WD-C was developed based on the strong flushing principle of water soluble fiber and the oxygenolysis principle of filter cake. It is composed of 0.5% WF-H fiber, 2.2% WF-O oxidant, 0.35% FeSO4, 1.8% KCl, 3.0% swollen powder perlite and water with its density of 1.03 g/cm3. This cementation flushing fluid was systematically tested and evaluated in terms of its washing efficiency on the filter cake of water-based drilling fluid and its capacity to improve the bonding strength of cementation interface. In addition, an analysis was performed of its effect on the physical-chemical characteristics and the micro-structures of interfacial cements by means of infrared spectrum (IR, scanning electron microscope (SEM and energy dispersive X-ray detector (EDS. It is shown that the new cementation flushing fluid presents excellent washing effect on water-based drilling fluid filter cake (with washing time within 10 min. The cement particles at the cemented interface can be hydrated normally, and hydrated calcium silicate gel, Ca(OH2 and rod-shaped ettringite (AFt crystal are generated and interwoven with each other. In this way, dense network structures are formed, so the bonding strength of the second cementing interface rises significantly, and then cementing quality is improved. Based on the research results, one more technology is set up for removing the water-based drilling fluid filter cake efficiently and improving the bonding strength of the second cementing interface.

  2. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  3. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  4. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  5. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  6. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  7. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    Science.gov (United States)

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  8. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  9. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  10. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  11. Physicochemical changes of cements by ground water corrosion in radioactive waste storage; Evolucion fisicoquimica de los cementos por corrosion de aguas subterraneas en un almacen de desechos radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Nava E, N. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)], e-mail: aida.contreras@inin.gob.mx

    2009-10-15

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  12. Tympanoplasty with ionomeric cement.

    Science.gov (United States)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  13. Hydration studies of ye’elimite by using Ptychographic X-ray nano-tomography

    OpenAIRE

    Cuesta, Ana; da Silva, Julio C; Diaz, Ana; Holler, Mirko; De la Torre, Ángeles G.; García Aranda, Miguel Ángel

    2015-01-01

    CSA (Calcium SulfoAluminate) cements may have variable compositions but all of them contain ye’elimite(Ca4Al6O12SO4). The manufacture of CSA cements is more environmentally friendly than that of ordinary Portland cements as their production releases up to 40% less CO2. The hydration of ye’elimite leads to crystalline ettringite (AFt) and amorphous aluminum hydroxide (AH3•nH2O). Ptychographic X-ray computed nanotomography (PXCT) has been used here to study the hydration of ye’elimite-contai...

  14. Sealing of cracks in cement using microencapsulated sodium silicate

    Science.gov (United States)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  15. Valorization of phosphogypsum as hydraulic binder.

    Science.gov (United States)

    Kuryatnyk, T; Angulski da Luz, C; Ambroise, J; Pera, J

    2008-12-30

    Phosphogypsum (calcium sulfate) is a naturally occurring part of the process of creating phosphoric acid (H(3)PO(4)), an essential component of many modern fertilizers. For every tonne of phosphoric acid made, from the reaction of phosphate rock with acid, commonly sulfuric acid, about 3t of phosphogypsum are created. There are three options for managing phosphogypsum: (i) disposal or dumping, (ii) stacking, (iii) use-in, for example, agriculture, construction, or landfill. This paper presents the valorization of two Tunisian phosphogypsums (referred as G and S) in calcium sulfoaluminate cement in the following proportions: 70% phosphogypsum-30% calcium sulfoaluminate clinker. The use of sample G leads to the production of a hydraulic binder which means that it is not destroyed when immersed in water. The binder including sample S performs very well when cured in air but is not resistant in water. Formation of massive ettringite in a rigid body leads to cracking and strength loss. PMID:18433998

  16. Adição de cimento de aluminato de cálcio e seus efeitos na hidratação do óxido de magnésio Effects of calcium aluminate cement addition on magnesia hydration

    Directory of Open Access Journals (Sweden)

    R Salomão

    2010-06-01

    Full Text Available Cimento de aluminato de cálcio (CAC e óxido de magnésio (MgO são duas importantes matérias primas para a indústria de concretos refratários e apresentam grande tendência à hidratação. Os efeitos dessa reação em cada caso isolado são distintos e bem conhecidos: enquanto o CAC hidratado atua como ligante e garante a resistência mecânica do material antes da sinterização, a hidratação do MgO pode causar sua total desintegração em alguns casos. Devido ao interesse tecnológico nesses materiais, é importante investigar as peculiaridades desses processos e as potenciais interações entre eles. Neste trabalho, os efeitos da adição de diferentes teores de CAC na hidratação do MgO foram investigados em suspensões aquosas usando medidas de expansão volumétrica aparente, pH das suspensões e difração de raios X. Foi observado que os efeitos danosos da hidratação do MgO podem ser significativamente reduzidos com um controle adequado do teor de CAC nas formulações.Calcium aluminate cement (CAC and magnesium oxide (MgO are two of the most important raw materials for refractory castables industry and both present a high driving force for hydration. The effects of this reaction for each compound are well known: whereas the hydrated CAC behaves as a binder, hardening the castable, MgO hydration can cause the total disintegration of the material. Due to the technological interests involved, it is important to study the peculiarities in these processes and their potential interactions. In the present work, the effects of the addition of different CAC contents on MgO hydration were investigated in aqueous suspensions by means of apparent volumetric expansion, pH measurements and qualitative X-ray diffraction. It was found out that the deleterious effects of MgO hydration can be significantly reduced with a proper control of the CAC content for the formulations.

  17. Analysis of structural-phase state of monoaluminate calcium

    OpenAIRE

    Yu.A. Abzaev; Yu.S. Sarkisov; Kuznetsova, T. V.; S.V. Samchenko; A.A. Klopotov; V.D. Klopotov; D.S. Afanasyev

    2014-01-01

    Calcium aluminates have a decisive influence on the hydraulic activity of cement, in this regard, detailed study of them is an urgent task. The aim of this study is to determine the phase composition and detailed analysis of the structural-phase state of monoaluminate calcium by X-ray analysis. To research monoaluminate calcium powder diffractometer DRON4-07 was used, it has been modified to a digital signal processing. Shooting was performed on the copper radiation (Kα) scheme Bragg – Br...

  18. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  19. Specific Examples of Hybrid Alkaline Cement

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez Ana

    2014-04-01

    Full Text Available Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days different alkaline activators were used (liquid and solid. The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A-S-H and (N,C-A-S-H, and that their relative proportions were strongly influenced by the calcium content in the initial binder

  20. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  1. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  2. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  3. In-Situ interaction between cement and clay: implications for geological disposal

    International Nuclear Information System (INIS)

    The extent and the consequences of interactions between cementitious materials used in radioactive waste management and clay host rock are described. In-situ tests were performed on seven cement formulations representing materials applied in repository construction, for backfilling or for solidification of radioactive waste. Samples were exposed to realistic repository conditions of the Boom Clay Formation in the HADES underground laboratory. Chemical, physical and mineralogical changes across the cement-clay interface were identified by combined observations from Electron Probe Microanalysis, Infrared microscopy and X-Ray powder diffraction. Significant interactions in both the cement and the clay part were found in a zone extending up to several hundreds of microns. The most prominent features are (1) leaching of cement with loss of calcium and/or silicon; (2) development of a calcium-rich zone in Boom Clay close to or at contact; (3) the formation of a contact zone marked by the precipitation of a (hydrated) magnesium aluminate phase; (4) reduction in apparent porosity of initially porous/permeable materials and (5) precipitation of calcite within the cement. This elemental exchange tends to diminish pH and reduce the buffering capacity of the cement. Although hydroxide will diffuse into the clay, the development of an extensive alkaline halo in the surrounding clay is unlikely owing to the buffering capacity of the Boom Clay pore water. Copyright (2001) Material Research Society

  4. Strength of Limestone-based Non-calcined Cement and its Properties

    Institute of Scientific and Technical Information of China (English)

    LIN Zongshou; ZHAO Qian

    2009-01-01

    A new type of cement was prepared with ground limestone powder,blastfurnace slag,steel slag and gypsum without calcination.The fraction of ground limestone powder in the cement was as high as 40 wt%-60 wt%without Portland clinker.All of its physical properties can meet the requirements of masonry cement standards.The impact of limestone content on physical properties of the cement and determined its impact on law was investigated.The steel slag can excit the aquation activity of this cement effectively,and the influence of its quantity on the strength of the materials was studied,which shows that the optimum quantity of mixing is 10%.By way of changing the different content of the lime stone by quartzy sample,the law of the compression strength and the PH value was determined,confirming that the lime stone can promote the early aquation of the slag and improve the early strength.The main hydration product of this cement is calcium aluminate hydrate, ettringite and calcium silicate hydrate,as indicated by XRD and SEM analysis.

  5. Leaching of asbestos-cement cooling-tower fill. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.N.; Stone, R.W.

    1981-04-01

    Cooling-tower fill is sometimes made of asbestos cement. Asbestos-cement fill has frequently been damaged by leaching and mechanical problems. This leaching was investigated. Previous studies of asbestos-cement water pipe and cooling-tower fill are summarized. Five plants were visited, and 43 others were contacted by telephone. Water and fill samples were collected and analyzed. About half of the cooling towers with asbestos-cement fill have experienced significant deterioration. To control leaching, water should not be undersaturated with respect to calcium carbonate. The Langelier saturation index is a useful tool for controlling blowdown rates and chemical feed. However, because this index does not allow for all of the relevant factors, it is not possible to recommend values that are suitable for all plants. If no scale inhibitors are used, the index should be kept as high as possible without causing calcium carbonate scale. If scale inhibitors are used, overdosing should be avoided. Asbestos-cement fill should be used only if the cooling-water chemistry can be well controlled. Specifications for asbestos-cement fill can be improved. Other design features, operating practices, and research are suggested.

  6. Influence of the degraded surface layer on the long-term behavior of cement pastes

    International Nuclear Information System (INIS)

    Leaching of a cement paste by a demineralized solution results in the progressive dissolution of the zone in contact with the aggressive solution. In the long term, this dissolution will determine the kinetics of degradation of the material. These kinetics will depend principally on the solubility of calcium in the zone in contact with the aggressive solution

  7. DC current-induced curing and ageing phenomena in cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper investigates DC current-induced “curing” and ageing phenomena in cement-based materials. Two current densities were used in a DC current regime i.e. mortar cubes were subjected to DC current flow of 1 A/m2 and 100 mA/m2; tap water and calcium hydroxide were external environment. Condition

  8. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  9. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  10. Respiratory Health among Cement Workers in Ethiopia

    OpenAIRE

    Zeleke, Zeyede K.

    2011-01-01

    Background: Little is known on dust exposure and respiratory health among cement cleaners. There are only a few follow-up studies on respiratory health among cement factory workers and also studies on acute effects of cement dust exposure are limited in numbers. Objective: This study aimed at assessing cement dust exposure and adverse respiratory health effects among Ethiopian cement production workers, with particular focus on cement cleaners. Method: The first paper was...

  11. Antimicrobial activity of bone cements embedded with organic nanoparticles

    Directory of Open Access Journals (Sweden)

    Perni S

    2015-10-01

    activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite than in acrylic (PMMA bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin.Keywords: paraben, antimicrobial, bone cement, PMMA, brushite, hydroxyapatite

  12. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  13. Anterior spinal column augmentation with injectable bone cements.

    Science.gov (United States)

    Verlaan, Jorrit-Jan; Oner, F Cumhur; Dhert, Wouter J A

    2006-01-01

    A vertebral fracture, whether originating from osteoporosis or trauma, can be the cause of pain, disability, deformation and neurological deficit. The treatment of vertebral compression fractures has, for many years until the advent of vertebroplasty, consisted of bedrest and analgesics. Vertebroplasty is a percutaneous technique during which bone cement is injected in a vertebral body to provide immediate pain relief by stabilization. Inflatable bone tamps can, prior to the injection of cement, be used to create a void in the vertebral body, in which case the technique is known as balloon vertebroplasty (or kyphoplasty). The chance of extracorporal cement leakage is smaller for balloon vertebroplasty than for vertebroplasty. Some authors also claim to have gained some correction in vertebral body height or angulation. Both interventions can be used for several indications, including osteoporotic compression fractures and osteolytic lesions of the vertebral body such as myeloma, hemangioma or metastasis, and also for traumatic burst fractures in combination with pedicle screw instrumentation. Polymethyl methacrylate cement is the bone void filler that is used most frequently, although the application of calcium phosphate cements has been studied widely in vitro, in vivo and also in small-scale clinical series. The clinical results of (balloon-) vertebroplasty are favorable with 85-95% of all patients experiencing immediate and long-lasting relief of pain. Serious complications are relatively rare but include neurological deficit and pulmonary embolism. In this paper, both vertebroplasty and balloon vertebroplasty and their respective indications, techniques and results are described in relation with the application and limitations of permanent and resorbable injectable bone cements. PMID:16102818

  14. Uptake and retardation of Cl during cement carbonation

    International Nuclear Information System (INIS)

    The presence of 36Cl in low- and intermediate-level radioactive waste (L/ILW) is of concern in repository performance assessment. Its mobility and its relatively long half-life (302,000 years) could potentially lead to early release from the waste and its return to the biosphere within the 106 timescale. Experiments have been undertaken to examine the impact of carbonation on the mineralogical and physical properties of NRVB cement in relation to the degradation of organic material in the L/ILW, and with oil well Type-G cement in relation to borehole sealing for carbon capture and storage. These show that the cements can uptake a significant amount of Cl through the formation of transient secondary calcium chloroaluminate and Cl-rich calcium silicate hydrate phases. The formation of the Cl-rich phases is enhanced by carbonation reactions and also by low temperatures (20 deg. C). The process may be important in retarding the migration of 36Cl from a repository for L/ILW. (authors)

  15. Determination of calcium in cements, by atomic absorption

    Directory of Open Access Journals (Sweden)

    Triviño, Fernando

    1975-03-01

    Full Text Available Not availableEl elemento más difícil de analizar por absorción atómica en el cemento portland es el calcio. Los resultados se obtienen por repetición de un gran número de análisis de la misma muestra y suelen diferir entre ellos. La repetición necesaria para obtener una seguridad estadística exige un aumento en el tiempo del análisis. Sin embargo el análisis del calcio, exacto, preciso y rápido, es una necesidad en la industria del cemento. El análisis del calcio exige una gran dilución del problema con el fin de que los resultados cumplan la ley de Beer y eliminar las interferencias ocasionadas por el silicio y el aluminio, para lo cual se añade lantano a la disolución problema.

  16. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  17. Assessment of pozzolanic activity using methods based on the measurement of electrical conductivity of suspensions of portlnad cement and pozzolan

    OpenAIRE

    Sergio Velázquez; JOSÉ M. MONZÓ; María V. Borrachero; Jordi Payá

    2014-01-01

    The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized...

  18. Treatment of a Vertical Root Fracture Using Dual-Curing Resin Cement: A Case Report

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2012-01-01

    Full Text Available Introduction. Vertical root fracture (VRF is one of the most frustrating complications of root canal treatment. The prognosis of the root with VRF is poor therefore tooth extraction and root amputation are usually the only treatment options. However, bonding of the fracture line with adhesive resin cement during the intentional replantation procedure was recently suggested as an alternative to tooth extraction. Methods. A vertically fractured left maxillary incisor was carefully extracted, fracture line was treated with adhesive resin cement, a retrograde cavity was produced and filled with calcium-enriched mixture (CEM cement, and tooth was replanted. Results. After 12 months the tooth was asymptomatic. The size of periapical radiolucency was noticeably reduced and there was no clinical sign of ankylosis. Conclusion. Using adhesive resin cement to bond the fracture lines extraorally in roots with VRF and intentional replantation of the reconstructed teeth could be considered as an alternative to tooth extraction, especially for anterior teeth.

  19. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Harris E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DuFrane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, Susan A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  20. Health hazards of cement dust

    International Nuclear Information System (INIS)

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)