Sample records for calcium silicate

  1. 21 CFR 172.410 - Calcium silicate. (United States)


    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking... agent in food in an amount not in excess of that reasonably required to produce its intended effect. (b... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food...

  2. Stability of calcium silicate in basic solution

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 李小斌; 彭志宏; 周秋生


    Mixture of CaO and SiO2 was sintered at 1 200 or 1 400 ℃ according to the mole ratio of CaO/SiO2 of 1 or 2, and then calcium silicate was leached in pure caustic or soda solution. The results indicated that calcium silicate exists much more stably in caustic solution than that in soda solution, and CaO*SiO2 is more stable than β-2CaO*SiO2 whether in caustic solution or in soda solution. The increase of sintering temperature favored the stability of calcium silicate in the leaching process. When β-2CaO*SiO2 was leached in soda solution, the increase of leaching temperature and time resulted in decomposing of more calcium silicate. And when β-2CaO*SiO2 was leached in caustic solution at high temperature, much 2CaO*SiO2*H2O but little CaO*SiO2*H2O appeared in slag.

  3. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.


    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  4. Behavior of calcium silicate hydrate in aluminate solution

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; ZHAO Zhuo; LIU Gui-hua; ZHOU Qiu-sheng; PENG Zhi-hong


    Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO · SiO2 · H2O and 2CaO · SiO2 · 1.17H2O, were hydro-thermally synthesized at 120 ℃. The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO · SiO2 · H2O is more stable than 2CaO · SiO2 · 1.17H2 O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO · Al2 O3 · xSiO2 · (6-2x) H2 O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro-garnet and Na2O · Al2O3 · 2SiO2 · nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.

  5. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. (United States)

    Elmore, Amy R


    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingredient Review (CIR. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  7. In vitro studies of calcium phosphate silicate bone cements. (United States)

    Zhou, Shuxin; Ma, Jingzhi; Shen, Ya; Haapasalo, Markus; Ruse, N Dorin; Yang, Quanzu; Troczynski, Tom


    A novel calcium phosphate silicate bone cement (CPSC) was synthesized in a process, in which nanocomposite forms in situ between calcium silicate hydrate (C-S-H) gel and hydroxyapatite (HAP). The cement powder consists of tricalcium silicate (C(3)S) and calcium phosphate monobasic (CPM). During cement setting, C(3)S hydrates to produce C-S-H and calcium hydroxide (CH); CPM reacts with the CH to precipitate HAP in situ within C-S-H. This process, largely removing CH from the set cement, enhances its biocompatibility and bioactivity. The testing results of cell culture confirmed that the biocompatibility of CPSC was improved as compared to pure C(3)S. The results of XRD and SEM characterizations showed that CPSC paste induced formation of HAP layer after immersion in simulated body fluid for 7 days, suggesting that CPSC was bioactive in vitro. CPSC cement, which has good biocompatibility and low/no cytotoxicity, could be a promising candidate as biomedical cement.

  8. Nanoindentation investigation of creep properties of calcium silicate hydrates


    Vandamme, Matthieu; ULM, Franz Josef


    The creep properties of calcium silicate hydrates (C-S-H) are assessed by means of nanoindentation creep experiments on a wide range of substoichiometric cement pastes. We observe that, after a few seconds, the measured creep compliance of C-S-H is very well captured by a logarithmic time function. The rate of the logarithmic creep is found to scale in a unique manner with indentation modulus, indentation hardness, and packing density, independent of processing, mix proportions, indenter geom...

  9. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates


    Atmeh, A.R.; Chong, E.Z.; Richard, G; Festy, F.; Watson, T.F.


    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline c...

  10. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates. (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei


    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  11. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis

    Directory of Open Access Journals (Sweden)

    Rajan Choudhary


    Full Text Available The present study focused on the synthesis of calcium magnesium silicate (akermanite, Ca2MgSi2O7 using eggshell biowaste (as calcium source, magnesium nitrate and tetraethyl orthosilicate (TEOS as starting materials. Sol–gel combustion method was adopted to obtain calcium magnesium silicate. Citric acid was used as a fuel (reducing agent and nitrate ions present in the metal nitrates acts as an oxidizing agent during combustion process. The characterization of synthesized calcium magnesium silicate was carried out by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR and scanning electron microscopy (SEM techniques. Calcium magnesium silicate crystallite size was observed in nano regime which can effectively mimic natural bone apatite composition. In-vitro bioactivity was investigated by immersing calcium magnesium silicate pellet in simulated body fluid (SBF for three weeks. Results show effective deposition of crystallized hydroxyapatite (HAP layer on its surface and predicting its possibilities for applications in hard tissue regeneration.

  12. Synthesis and reaction behavior of calcium silicate hydrate in basic system

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 贺强; 李小斌; 彭志宏; 周秋生


    At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of calcium silicate hydrate with perfect structure. When calcium silicate hydrate reacts with caustic solution, the decomposition rate of calcium silicate hydrate increases with the increasing caustic concentration and decreases with the raising synthesis temperature and the prolongation of reaction time. The decomposition rate is all less than 1.2 % in caustic solution, and XRD pattern of the residue after reaction with caustic solution is found as the same as that of original calcium silicate hydrate, which indicates the stable existence of calcium silicate hydrate in caustic solution.When reacted with soda solution, the decomposition rate increases with the increasing soda concentration and reaction time, while decreases with the synthesis temperature. The decomposition rate is more than 2% because CaO · SiO2 · H2O(CSH( Ⅰ )), except Ca5 (OH)2Si6O16 · 4H2O and Ca6Si6O17 (OH)2, is decomposed. So the synthesis temperature and soda concentration should be controlled in the process of transformation of sodium aluminosilicate hydrate into calcium silicate hydrate.

  13. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure (United States)


    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  14. Photostable Solid Dispersion of Nifedipine by Porous Calcium Silicate. (United States)

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi


    Nifedipine (NIF) is a typical light-sensitive drug requiring protection from light during manufacture, storage, and handling of its dosage forms. The purpose of this study was to evaluate the utility of porous calcium silicate (PCS) for maintaining the photostability of NIF in a solid dispersion formulation. Adsorption solid dispersion (ASD) prepared using NIF and PCS as an amorphous formulation was more stable to light irradiation than a physical mixture of NIF and microcrystalline cellulose (a control physical mixture) as a crystalline formulation. In addition, PCS in physical mixtures with NIF adequately protected NIF from photodegradation, suggesting that this protective effect could be because of some screening effect by the porous structure of PCS blocking the passage of light reaching NIF in pores of PCS. These findings suggest that PCS is useful for improving the solubility and photostability of NIF in solid dispersion formulation.

  15. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz


    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  16. Apatite bone cement reinforced with calcium silicate fibers. (United States)

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A


    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  17. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)


    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  18. Preparation of calcium silicate absorbent from iron blast furnace slag. (United States)

    Brodnax, L F; Rochelle, G T


    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  19. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag. (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming


    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  20. Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics. (United States)

    Fei, Lisha; Wang, Chen; Xue, Yang; Lin, Kaili; Chang, Jiang; Sun, Jiao


    In this study, calcium silicate (CS) and CS/β-tricalcium phosphate (CS/β-TCP) composites were investigated on their mechanism of osteogenic proliferation and differentiation through regulating osteogenic-related gene and proteins. Osteoblast-like cells were cultured in the extracts of these CS-based bioceramics and pure β-TCP, respectively. The main ionic content in extracts was analyzed by inductively coupled plasma-atomic emission spectroscopy. The cell viability, mineralization, and differentiation were evaluated by MTT assay, Alizarin Red-S staining and alkaline phosphatase (ALP) activity assay. The expressions of BMP-2, transforming growth factor-β (TGF-β), Runx2, ALP, and osteocalcin (OCN) at both gene and protein level were detected by real-time polymerase chain reaction analysis and Western blot. The result showed that the extracts of CS-based bioceramics promoted cells proliferation, differentiation, and mineralization when compared with pure β-TCP. Accordingly, pure CS and CS/β-TCP composites stimulated osteoblast-like cells to express BMP-2/TGF-β gene and proteins, and further regulate the expression of Runx2 gene and protein, and ultimately affect the ALP activity and OCN deposition. This study suggested that the CS-based bioceramics could not only promote the expression of osteogenic-related genes but also enhance the genes to encode the corresponding proteins, which could finally control osteoblast-like cells proliferation and differentiation.

  1. Calcium silicate and organic mineral fertilizer applications reduce phytophagy by Thrips palmi Karny (Thysanoptera: Thripidae) on eggplants (Solanum melongena L.)


    De Almeida, Gustavo Dia; Pratissoli, Dirceu; Zanuncio, José Cola; Vicentini,Victor Bernardo; Holtz,Anderson Mathias; Serrão,José Eduardo


    Thrips palmi Karny (Thysanoptera: Thripidae) is a phytophagous insect associated with the reduction of eggplant productivity. The aim of this study was to evaluate the effect of calcium silicate and/or an organic mineral fertilizer, together or separately, in increasing the resistance of eggplants to T. palmi. The treatments were calcium silicate, organic mineral fertilizer, calcium silicate associated with this fertilizer and the control. Mortality and number of lesions caused by nymphs of t...

  2. Synthesis of Calcium Silicate Hydrate based on Steel Slag with Various Alkalinities

    Institute of Scientific and Technical Information of China (English)

    WANG Shuping; PENG Xiaoqin; GENG Jianqiang; LI Bin; WANG Kaiyu


    This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The influence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with flocculent or fibrous pattern with a BET specific surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.

  3. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates. (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav


    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  4. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses. (United States)

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi


    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with (29)Si and (31)P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca(2+) concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca(2+) and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.

  5. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr


    silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic......Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...

  6. Thermal conductivity measurements on xonotlite-type calcium silicate by the transient hot-strip method

    Institute of Scientific and Technical Information of China (English)


    The experimental results of the thermal conductivities of xonotlite-type calcium silicate insulation materials were presented at different temperatures and pressures.Two appropriative surroundings, elevated temperature surrounding from ambient temperature to 1450 K and a vacuum surrounding from atmosphere pressure to 10-3 Pa,were designed for the transient hot-strip (THS) method.The thermal conduetivities of xonotlite-type calcium silicate with four densities from ambient temperature to 1000 K and 0.045 Pa to atmospheric pressure were measured.The results show that the thermal conductivity of xunotlite-type calcium silicate decreases apparently with the fall of density,and decreases apparently with the drop of pressure,and reaches the least value at about 100 Pa.The thermal conductivity of xonotlite-type calcium silicate increases almost linearly with T3,and increases more abundantly with low density than with high density.The thermal conductivity measurement uncertainty is estimated to be approximately 3% at ambient temperature,and 6% at 800 K.

  7. Porosity distribution in root canals filled with gutta percha and calcium silicate cement

    NARCIS (Netherlands)

    Moinzadeh, A.T.; Zerbst, W.; Boutsioukis, C.; Shemesh, H.; Zaslansky, P.


    Objective Gutta percha is commonly used in conjunction with a sealer to produce a fluid-tight seal within the root canal fillings. One of the most commonly used filling methods is lateral compaction of gutta percha coupled with a sealer such as calcium silicate cement. However, this technique may re

  8. Effect of Barium Oxide on the Formation and Coexistence of Tricalcium Silicate and Calcium Sulphoaluminate

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; SHEN Xiaodong; MA Suhua; HUANG Yeping; ZHONG Baiqian


    Formation and coexistence of tricalcium silicate(C_3S)and calcium sulphoaluminate (C_4 A 3(S))minerals in Portland cement clinker containing calcium sulphoaluminate were investigated. The f-CaO content,mineral composite and formation of mineral in the clinker were analyzed respectively by chemical analysis,differential scanning calorimetry(DSC)and X-ray diffraction.The results show that,adding a suitable amount of BaO can improve the burnability of raw meal and promote the f-CaO absorption.Tricalcium silicate and calcium sulphoaluminate minerals can form and coexist in clinkers at 1 234-1 317 ℃by the addition of BaO to the raw meal.A suitable amount of BaO expanded the coexistence temperature of two minerals by 58℃.

  9. Santaclaraite, a new calcium-manganese silicate hydrate from California. (United States)

    Erd, Richard C.; Ohashi, Y.


    Santaclaraite, ideally CaMn4(Si5O14(OH))(OH).H2O, occurs as pink and tan veins and masses in Franciscan chert in the Diablo Range, Santa Clara and Stanislaus counties, California. It is associated with four unidentified Mn silicates, Mn-howieite, quartz, braunite, calcite, rhodochrosite, kutnahorite, baryte, harmotome, chalcopyrite and native copper. Santaclaraite is triclinic, space group B1, a 15.633(1), b 7.603(1) , c 12.003(1) A, alpha 109.71(1)o, beta 88.61(1)o, gamma 99.95(1) o, V 1322.0(3) A3; Z = 4. The strongest lines of the X-ray pattern are 7.04(100), 3.003(84), 3.152(80), 7.69(63), 3.847(57) A. Crystals are lamellar to prismatic (flattened on (100)), with good cleavage on (100) and (010); H. 61/2 Dcalc. 3.398 g/cm3, Dmeas. 3.31 (+ or -0.01); optically biaxial negative, alpha 1.681, beta 1.696, gamma 1.708 (all + or - 0.002), 2Valpha 83 (+ or -1)o. Although chemically a hydrated rhodonite, santaclaraite dehydrates to Mn-bustamite at approx 550oC (in air) . Santaclaraite is a five-tetrahedral-repeat single-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite and inesite.-J.A.Z.

  10. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments (United States)

    Miladinovich, Daniel S.; Zhu, Dongming


    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  11. Synthesis of pure zeolite P2 from calcium silicate hydrate; tobermorite

    Directory of Open Access Journals (Sweden)

    Nasser Y. Mostafa


    Full Text Available Calcium silicate hydrate phases offer the possibility to become potential zeolites precursors due to its high silica contents. Pure calcium silicate hydrate phase; tobermorite (Ca5Si6O16(OH2·4H2O, was prepared by hydrothermal method at 175°C. Tobermorite was sucssefully converted to Zeolite P2 for the first time via refluxing in 3 M NaOH solution and in the presence of Al source. Sodium hydroxide removed calcium ions from the interlayers of calcium silicate phase and form mesoporous zeolite. The pure zeolite was obtained after extraction of Ca(OH2 with sugar solution. The zeolite products were characterized by using X-ray diffraction spectroscopy (XRD and Scanning Electron Microscopy (SEM with microanalysis (EDX. The Si/Al molar ratio of zeolite P can be controlled by vering the initinal Si/Al molar ratio. The cation-exchange capacity (CEC of the produced zeolite P was higher than those produced from fly ash.

  12. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites. (United States)

    Sopcak, T; Medvecky, L; Giretova, M; Kovalcikova, A; Stulajterova, R; Durisin, J


    Self-setting simple calcium silicate/brushite (B) biocements with various Ca/P ratios were prepared by mutual mixing of both monocalcium silicate hydrate (CSH) or β-wollastonite (woll) powders with B and the addition of 2 wt% NaH2PO4 solution as a hardening liquid. The phase composition of the final composites and the texture of the surface calcium phosphate/silica layer were controlled by the starting Ca/P ratio in composites and the pH during setting. It was verified that the presence of continuous bone-like calcium phosphate coating on the surface of the samples was not essential for in vitro osteoblast proliferation. The nanocrystalline calcium deficient hydroxyapatite and amorphous silica were found as the main setting products in composite mixtures with a Ca/P ratio close to the region of the formation of deficient hydroxyapatite-like calcium phosphates. No CSH phase with a lower Ca/Si ratio was identified after transformation. The results confirmed a small effect of the monocalcium silicate addition on the compressive strength (CS) of cements up to 30 wt% (around 20-25 MPa) and a significant rise of the value in 50 woll/B cement (65 MPa). The final setting times of the cement composites varied between 5 and 43 min depending on the P/L ratio and the type of monocalcium silicate phase in the cement mixture. 10CSH/B and 50 woll/B cements with different textures but free of both the needle-like and perpendicularly-oriented hydroxyapatite particles on the surface of the samples had low cytotoxicity.

  13. Nanoscale Charge Balancing Mechanism in Alkali Substituted Calcium-Silicate-Hydrate Gels

    CERN Document Server

    Özçelik, V Ongun


    Alkali-activated materials and related alternative cementitious systems are sustainable material technologies that have the potential to substantially lower CO$_2$ emissions associated with the construction industry. However, the impact of augmenting the chemical composition of the material on the main binder phase, calcium-silicate-hydrate gel, is far from understood, particularly since this binder phase is disordered at the nanoscale. Here, we reveal the presence of a charge balancing mechanism at the molecular level, which leads to stable structures when alkalis (i.e., Na or K) are incorporated into a calcium-silicate-hydrate gel, as modeled using crystalline 14{\\AA} tobermorite. These alkali containing charge balanced structures possess superior mechanical properties compared to their charge unbalanced counterparts. Our results, which are based on first-principles simulations using density functional theory, include the impact of charge balancing on the optimized geometries of the new model phases, format...

  14. A Novel Synthesis Method of Porous Calcium Silicate Hydrate Based on the Calcium Oxide/Polyethylene Glycol Composites

    Directory of Open Access Journals (Sweden)

    Wei Guan


    Full Text Available This paper proposed a novel method to prepare porous calcium silicate hydrate (CSH based on the calcium oxide/polyethylene glycol (CaO/PEG2000 composites as the calcium materials. The porosity formation mechanism was revealed via X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, Brunauer-Emmett-Teller (BET, and Fourier transformed infrared spectroscopy (FT-IR. The reactivity of silica materials (SiO2 enhanced by increasing pH value. Ca2+ could not sustain release from CaO/PEG2000 and reacted with caused by silica to form CSH until the hydrothermal temperature reached to 170°C, avoiding the hardly dissolved intermediates formation efficiently. The as-prepared CSH, due to the large specific surface areas, exhibited excellent release capability of Ca2+ and OH−. This porous CSH has potential application in reducing the negative environmental effects of continual natural phosphate resource depletion.

  15. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano


    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  16. Effects of Calcium Lignosulfonate and Silicic Acid on Ammonium Nitrate Degradation

    Directory of Open Access Journals (Sweden)

    Ahmet Ozan Gezerman


    Full Text Available Ammonium nitrate salts are the most commonly used nitrogenous fertilizers in industry. However, storage of ammonium nitrate is problematic, since its initial properties can decline because of environmental factors, leading to large economic losses. In this study, in order to prevent the caking and degradation of ammonium nitrate, an alternative composition with additional calcium lignosulfonate and silicic acid was studied. The resulting fertilizer was analyzed by screening analysis, ion chromatography, and electron microscopy methods.

  17. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)



    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  18. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids (United States)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna


    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  19. Hydrothermal Synthesis of Xonotlite-type Calcium Silicate Insulation Material Using Industrial Zirconium Waste Residue

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinguo; CUI Chong; LIU Jinqiang; LIAO Wenli


    Xonotlite-type insulation material was prepared by hydrothermal synthesis technology using industrial zirconium waste residue in this paper, and the phase analysis together with the observation of micro-morphology were also carried out by XRD, SEM and TEM. The density and thermal conductivity were measured finally. The results indicate, chlorine ion impurity contained in zirconium waste residue can be removed effectively via water washed process, and the reactive activity of silicon dioxide is almost not affected,which make it be a good substitution of silicon material for the preparation of calcium silicate insulation material by hydrothermal synthesis technique. The density and thermal conductivity of xonotlite-type calcium silicate insulation material obtained by hydrothermal synthesis technique can reach 159 kg/m3, 0.049 W/(m·°C), respectively, meeting with National Standard well, when synthesis conditions are selected as follows: Ca/Si molar ratio equal to 1, synthesis temperature at 210 ℃ and kept for 8 hrs. It provides a new approach to realize lightweight and low thermal conductivity of calcium silicate insulation material.

  20. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer (United States)

    Kramer, Henry


    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  1. Experimental study and modelling of sulfate sorption on calcium silicate hydrates; Etude experimentale et modelisation de l'adsorption de sulfates sur des silicates de calcium hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Barbarulo, R.; Peycelon, H. [CEA Saclay, Dept. de Physico-Chimie DPC/SCCME/LECBA, 91 - Gif sur Yvette (France); Prene, St. [Electricite de France, Dept. MMC, 77 - Moret sur Loing (France)


    A detailed study of the interactions between Calcium Silicate Hydrates (C-S-H) and sulfate is reported in this paper. C-S-H of Ca/Si ratio w 0.7-1.6 were synthesized from CaO and SiO{sub 2} in suspension, and Na{sub 2}SO{sub 4} was added to the system, kept at 20 or 85 deg C. The results of sulfate sorption show that the capacity of C-S-H to bind sulfate increases with the Ca/Si ratio of the C-S-H, and that temperature seems to have little influence for a given Ca/Si ratio. From these results, a modeling of sulfate binding on C-S-H is proposed. (authors)

  2. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications. (United States)

    Shirazi, F S; Mehrali, M; Oshkour, A A; Metselaar, H S C; Kadri, N A; Abu Osman, N A


    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process.

  3. Biocompatibility of a new nanomaterial based on calcium silicate implanted in subcutaneous connective tissue of rats

    Directory of Open Access Journals (Sweden)

    Petrović Violeta


    Full Text Available The aim of the study was to investigate rat connective tissue response to a new calcium silicate system 7, 15, 30 and 60 days after implantation. Twenty Wistar albino male rats received two tubes half-filled with a new calcium silicate system (NCSS or MTA in subcutaneous tissue. The empty half of the tubes served as controls. Five animals were sacrificed after 7, 15, 30 and 60 days and samples of the subcutaneous tissue around implanted material were submitted to histological analysis. The intensity of inflammation was evaluated based on the number of inflammatory cells present. Statistical analysis was performed using one way ANOVA and Holm Sidak's multiple comparison tests. Mild to moderate inflammatory reaction was observed after 7, 15 and 30 days around a NCSS while mild inflammatory reaction was detected after 60 days of implantation. In the MTA group, mild to moderate inflammatory reaction was found after 7 and 15 days while mild inflammatory reaction was present after 30 and 60 days. There was no statistically significant difference in the intensity of inflammatory reactions between the tested materials and control groups in any experimental period (ANOVA p>0.05. Regarding the intensity of inflammatory reactions at different experimental periods, a statistically significant difference was observed between 7 and 30 days, 7 and 60 days and 15 to 60 days for both materials. For the controls, a statistically significant difference was found between 7 and 60 days and 15 and 60 days of the experiment (Holm Sidak < p 0.001. Subcutaneous tissue of rats showed good tolerance to a new calcium silicate system. Inflammatory reaction was similar to that caused by MTA. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  4. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

    Directory of Open Access Journals (Sweden)

    Leticia Boldrin MESTIERI


    Full Text Available Mineral Trioxide Aggregate (MTA is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs.Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP; MTA Fillapex (MTAF and FillCanal (FC. Biocompatibility was evaluated with MTT and Neutral Red (NR assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4. Unexposed cells were the positive control (CT. Bioactivity was assessed by alkaline phosphatase (ALP enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution. All data were analyzed by ANOVA and Tukey post-test (p≤0.05%.Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%. Cells exposed to MTAF and FC (1:2 and 1:4 dilutions showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

  5. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pei [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Wei, Pingpin [Cancer Research Institute, Central South University, Changsha 410078 (China); Li, Pengjian; Gao, Chengde [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Shuai, Cijun, E-mail: [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425 (United States); Peng, Shuping, E-mail: [Cancer Research Institute, Central South University, Changsha 410078 (China)


    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  6. Calcium-phosphorus interactions at a nano-structured silicate surface. (United States)

    Southam, Daniel C; Lewis, Trevor W; McFarlane, Andrew J; Borrmann, T; Johnston, Jim H


    Nano-structured calcium silicate (NCS), a highly porous material synthesized by controlled precipitation from geothermal fluids or sodium silicate solution, was developed as filler for use in paper manufacture. NCS has been shown to chemisorb orthophosphate from an aqueous solution probably obeying a Freundlich isotherm with high selectivity compared to other common environmental anions. Microanalysis of the products of chemisorption indicated there was significant change from the porous and nano-structured morphology of pristine NCS to fibrous and crystalline morphologies and non-porous detritus. X-ray diffraction analysis of the crystalline products showed it to be brushite, CaHPO42H2O, while the largely X-ray amorphous component was a mixture of calcium phosphates. A two-step mechanism was proposed for the chemisorption of phosphate from an aqueous solution by NCS. The first step, which was highly dependent on pH, was thought to be desorption of hydroxide ions from the NCS surface. This was kinetically favoured at lower initial pH, where the predominant form of phosphate present was H2PO(-)4, and led to decreased phosphorus uptake with increasing pH. The second step was thought to be a continuing chemisorption process after stabilization of the pH-value. The formation of brushite as the primary chemisorption product was found to be consistent with the proposed mechanism.

  7. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting. (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao


    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO3) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO3 composites can be a potential biomedical metallic materials in the medical field.

  8. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. (United States)

    De Souza, Erika Thuanne Gonçalves; Nunes Tameirão, Michele Dias; Roter, Juliana Marins; De Assis, Joaquim Teixeira; De Almeida Neves, Aline; De-Deus, Gustavo André


    The aim of the this study was to quantitatively evaluate in three-dimensional (3D), the porosity degree of three improved silicate-based endodontic repair cements (iRoot BP Plus®, Biodentine®, and Ceramicrete) compared to a gold-standard calcium silicate bioactive cement (Pro Root® MTA). From each tested cement, four samples were prepared by a single operator following the manufacturer's instructions in terms of proportion, time, and mixing method, using cylindrical plastic split-ring moulds. The moulds were lubricated and the mixed cements were inserted with the aid of a cement spatula. The samples were scanned using a compact micro-CT device (Skyscan 1174, Bruker micro-CT, Kontich, Belgium) and the projection images were reconstructed into cross-sectional slices (NRecon v.1.6.9, Bruker micro-CT). From the stack of images, 3D models were rendered and the porosity parameters of each tested material were obtained after threshold definition by comparison with standard porosity values of Biodentine®. No statistically significant differences in the porosity parameters among the different materials were seen. Regarding total porosity, iRoot BP Plus® showed a higher percentage of total porosity (9.58%), followed by Biodentine® (7.09%), Pro Root® MTA (6.63%), and Ceramicrete (5.91%). Regarding closed porosity, Biodentine® presented a slight increase in these numbers compared to the other sealers. No significant difference in porosity between iRoot BP Plus®, Biodentine®, and Ceramicrete were seen. In addition, no significant difference in porosity between the new calcium silicate-containing repair cements and the gold-standard MTA were found.

  9. Cytotoxicity and Osteogenic Potential of Silicate Calcium Cements as Potential Protective Materials for Pulpal Revascularization (United States)

    Bortoluzzi, Eduardo A.; Niu, Li-na; Palani, Chithra D.; El-Awady, Ahmed R.; Hammond, Barry D.; Pei, Dan-dan; Tian, Fu-cong; Cutler, Christopher W.; Pashley, David H.; Tay, Franklin R.


    Objectives In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchynal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently-introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. Methods Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogeic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with α=0.05. Results The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracelluar mineralization better than the positive control (zinc oxide-eugenol–based cement). Significance A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularizaiton. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs. PMID:26494267

  10. Observation directe de la croissance d'hydrosilicate de calcium sur des surfaces d'alité et de silice par microscopie à force atomique (United States)

    Gauffinet, Sandrine; Finot, Éric; Lesniewska, Eric; Nonat, André


    Direct observation of the growth of calcium silicate hydrates, the tricalcium silicate hydration products, at the solid-solution interface were performed by atomic force microscopy. The covering of the surface of alite or silica by a three-dimensional oriented aggregation of nano particles of calcium silicate hydrate is always observed whatever the sample. All observations and quantifications made on calcium silicate growth at the submicronic level are in agreement with the data deduced from the study of the system evolution at the macroscopic level.

  11. New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report, 1993--August 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, M.C.; Chiang, R.K.; Fillgrove, K.L. [Case Western Reserve Univ., Cleveland, OH (United States)


    A search is being carried out for new calcium-based S0{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives for the current year include the study of sorbents made from Ca(OH){sub 2}, from mixtures of Ca(OH){sub 2} and SiO{sub 2}, and from portland cement. They also include the study of sorbents made from model compounds. During this year, sorbents prepared from Ca(OH){sub 2} and from mixtures of Ca(OH){sub 2} and fumed SiO{sub 2} were investigated. The results show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents in which the Si-to-Ca reactant ratio is low can be prepared from Ca(OH){sub 2} and fumed SiO{sub 2}. Sorbents prepared from Ca(OH){sub 2} and natural SiO{sub 2} or natural SiO{sub 2} sources were also studied. The results obtained show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents and calcium silicate hydrate sorbents, C-S-H sorbents, can be prepared from Ca(OH){sub 2} and diatomite, pumice or perlite, minerals that are readily available. In addition. sorbents prepared from Ca{sub 3}SiO{sub 5} and {beta}-Ca{sub 2}SiO{sub 4} and from mixtures of these compounds and SiO{sub 2} were studied. The results secured demonstrate that very good C-S-H rich sorbents can be prepared from these compounds and from mixtures of them with SiO{sub 2}. They also provide information useful for interpreting the cement sorbent results. Sorbents prepared from cement and from mixtures of cement and natural SiO{sub 2} or SiO{sub 2} sources were investigated as well. The results secured show that cement and mixtures of it with diatomite, pumice or perlite rapidly yield excellent sorbents with the proper reaction conditions.

  12. [Endodontics in motion: new concepts, materials and techniques 1. Hydraulic Calcium Silicate Cements]. (United States)

    Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J


    Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.

  13. A chemical activity evaluation of two dental calcium silicate-based materials

    Directory of Open Access Journals (Sweden)

    Chalas Renata


    Full Text Available Calcium silicate-based materials are interesting products widely used in dentistry. The study was designed to compare the chemical reaction between analyzed two preparates and dentin during cavity lining. In our work, dentinal discs were prepared from human extracted teeth filled with Biodentine and MTA+. The samples were then analyzed by way of SEM, EDS and Raman spectroscopy. The obtained results revealed differences in elemental composition between both materials. Biodentine showed higher activity in contact with dentine. Moreover, the interfacial layer in the tooth filled by Biodentine was wider than that in the tooth filled with MTA+. The applied methods of analysis confirmed that both materials have a bioactive potential which is a promising ability.

  14. Optical properties and Judd–Ofelt analysis of Eu{sup 3+} activated calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Barve, R.A., E-mail:; Suriyamurthy, N.; Panigrahi, B.S.; Venkatraman, B.


    Eu{sup 3+} activated calcium silicate was synthesized in stoichiometric ratio using the co-precipitation technique. The phosphors were characterized using X-ray diffraction and photoluminescence technique. Based on Judd–Ofelt (J–O) analysis, the intensity parameters Ω{sub 2} and Ω{sub 4} were calculated from the emission spectra for various Europium concentrations. The determined values indicate higher hypersensitive behavior of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of Eu{sup 3+} ions in the host matrix and a stronger covalency. Different radiative properties have been discussed as the function of Eu{sup 3+} concentration. The lifetime decay pattern recorded for these samples indicated single exponential behavior. The quantum efficiency has been calculated to be 62% from the emission spectrum and the fluorescence lifetime was found to be 2.9 ms.

  15. Influence of Hydrothermal Temperature on Phosphorus Recovery Efficiency of Porous Calcium Silicate Hydrate

    Directory of Open Access Journals (Sweden)

    Wei Guan


    Full Text Available Porous calcium silicate hydrate (PCSH was synthesized by carbide residue and white carbon black. The influence of hydrothermal temperature on phosphorus recovery efficiency was investigated by Field Emission Scanning Electron Microscopy (FESEM, Brunauer-Emmett-Teller (BET, and X-Ray Diffraction (XRD. Hydrothermal temperature exerted significant influence on phosphorus recovery performance of PCSH. Hydrothermal temperature 170°C for PCSH was more proper to recover phosphorus. PCSH could recover phosphorus with content of 18.51%. The law of Ca2+ and OH− release was the key of phosphorus recovery efficiency, and this law depended upon the microstructure of PCSH. When the temperature of synthesis reached to 170°C, the reactions between CaO and amorphous SiO2 were more efficient. Solubility of SiO2 was a limiting factor.

  16. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate - an X-ray spectromicroscopy study (United States)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong


    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h

  17. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements. (United States)

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph


    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement.

  18. Sorption mechanisms of zinc to calcium silicate hydrate: X-ray absorption fine structure (XAFS) investigation. (United States)

    Ziegler, F; Scheidegger, A M; Johnson, C A; Dähn, R; Wieland, E


    In this study, X-ray absorption fine structure (XAFS) spectroscopy has been used to further elucidate the binding mechanisms of Zn(II) to calcium silicate hydrate (C-S-H), the quantitatively most important cement mineral. Such knowledge is essential for the assessment of the longterm behavior of cement-stabilized waste materials. XAFS spectra of the Zn(II) equilibrated with C-S-H(I) for up to 28 days are best modeled by tetrahedral coordination of Zn(II) by four O atoms in the first atomic shell. Beyond the first coordination shell, data analysis of more highly concentrated samples suggests the presence of two distinct Zn distances and possibly the presence of an Si shell. On the basis of the comparison with a set of reference compounds, this coordination environment can be reasonably related to the structure of hemimorphite, a naturally occurring zinc silicate, and/or the presence of gamma-Zn(OH)2. At the lowest Zn uptake, the above fitting approach failed and data could be described best with a Zn-Si and a Zn-Ca shell. Previous work has been able to show that Zn(II) diffuses into the C-S-H(I) particles and does not form discrete precipitates, so the findings appear to confirm the incorporation of Zn(II) in the interlayer of C-S-H(I).

  19. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiu-lan; Saigusa Masaihiko


    Previous studies have shown that porous hydrated calcium silicate(PS)is very effective in decreasing cadmium(Cd)content in brown rice.However,it is unclear whether me PS influences cadmium transformation in soil.The present study examined the effect of PS on pH,cadmium transformation and cadmium solubility in Andosol and Alluvial soil,and also compared its effects with CaCO3,acidic porous hydrated calcium silicate(APS)and silica gel.Soil cadmium was operationally fractionationed into exchangeable(Exch),bound to carbonates(Carb).bound to iron and manganese oxides(FeMnOx),bound to organic matters(OM)and residual(Res)fraction.ApplicatiOn of PS and CaCO3 at hig rates enhanced soil pH,while APS and silica gel did not obviously change soil pH.PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil,thus reducing the Exch-Cd in me tested soils.However,PS was less effecfive than CaCO3 at the same application rate.Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel.There were no obvious differences in the solubility of cadmium in soils treated with PS,APS,silica gel and CaCO3 except Andosol treated 2.0%CaCO3 at the same pH of soil-CaCl2 suspensions.These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.

  20. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yinfu; Huang, Yanlin; Qi, Shuyun [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Chen, Cuili [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)


    A novel calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were also measured, which indicate that the biomaterials based on Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si–OH) and B–OH groups can be easily induced on the surface of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics soaked in SBF solutions. - Highlights: • Calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were developed as a new biomaterial. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} shows a superior in vitro bioactivity by inducing bone-like apatite. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} has good mechanical properties as potential candidate biomaterials. • The structure with SiO{sub 4} and BO{sub 3} groups is favorable for hydroxyapatite formation.

  1. A Comprehensive Study of Osteogenic Calcium Phosphate Silicate Cement: Material Characterization and In Vitro/In Vivo Testing. (United States)

    Gong, Tianxing; Wang, Zhiqin; Zhang, Yixi; Zhang, Yubiao; Hou, Mingxiao; Liu, Xinwei; Wang, Yu; Zhao, Lejun; Ruse, N Dorin; Troczynski, Tom; Häfeli, Urs O


    Vertebral compression fractures can be successfully restored by injectable bone cements. Here the as-yet unexplored in vitro cytotoxicity, in vivo biodegradation, and osteoconductivity of a new calcium phosphate silicate cements (CPSC) are studied, where monocalcium phosphate (MCP; 5, 10, and 15 wt%) is added to calcium silicate cement (CSC). Setting rate and compressive strength of CPSC decrease with the addition of MCP. The crystallinity, microstructure, and porosity of hardened CPSC are evaluated by X-ray diffractometer, Fourier transform infrared spectroscopy, and microcomputed tomography (CT). It is found that MCP reacts with calcium hydroxide, one of CSC hydration products, to precipitate apatite. While the reaction accelerates the hydration of CSC, the formation of calcium silicate hydrate gel is disturbed and highly porous microstructures form, resulting in weaker compressive strength. In vitro studies demonstrate that CPSC is noncytotoxic to osteoblast cells and promotes their proliferation. In the rabbit tibia implantation model, clinical X-ray and CT scans demonstrate that CPSC biodegrades slower and osseointegrates better than clinically used calcium phosphate cement (CPC). Histological studies demonstrate that CPSC is osteoconductive and induces higher bone formation than CPC, a finding that might warrant future clinical studies.

  2. Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. (United States)

    Qomi, Mohammad Javad Abdolhosseini; Bauchy, Mathieu; Ulm, Franz-Josef; Pellenq, Roland J-M


    With shear interest in nanoporous materials, the ultraconfining interlayer spacing of calcium-silicate-hydrate (C-S-H) provides an excellent medium to study reactivity, structure, and dynamic properties of water. In this paper, we present how substrate composition affects chemo-physical properties of water in ultraconfined hydrophilic media. This is achieved by performing molecular dynamics simulation on a set of 150 realistic models with different compositions of calcium and silicon contents. It is demonstrated that the substrate chemistry directly affects the structural properties of water molecules. The motion of confined water shows a multi-stage dynamics which is characteristic of supercooled liquids and glassy phases. Inhomogeneity in that dynamics is used to differentiate between mobile and immobile water molecules. Furthermore, it is shown that the mobility of water molecules is composition-dependent. Similar to the pressure-driven self-diffusivity anomaly observed in bulk water, we report the first study on composition-driven diffusion anomaly, the self diffusivity increases with increasing confined water density in C-S-H. Such anomalous behavior is explained by the decrease in the typical activation energy required for a water molecule to escape its dynamical cage.

  3. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    Directory of Open Access Journals (Sweden)

    Selen Küçükkaya


    Full Text Available The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P>0.05. MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P<0.05. Biodentine showed significantly less cell viability (73% after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P<0.05. Despite the significant changes in cell viability over time, materials presented similar cytotoxicity profile. Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  4. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials. (United States)

    Küçükkaya, Selen; Görduysus, Mehmet Ömer; Zeybek, Naciye Dilara; Müftüoğlu, Sevda Fatma


    The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM) cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P > 0.05). MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P Biodentine showed significantly less cell viability (73%) after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  5. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol. (United States)

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You


    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic.

  6. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties. (United States)

    Silva, Guilherme F; Bosso, Roberta; Ferino, Rafael V; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S


    The physicochemical and biological properties of calcium silicate-based cement (CS) associated to microparticulated (micro) or nanoparticulated (nano) zirconium oxide (ZrO2 ) were compared with CS and bismuth oxide (BO) with CS. The pH, release of calcium ions, radiopacity, setting time, and compression strength of the materials were evaluated. The tissue reaction promoted by these materials in the subcutaneous was also investigated by morphological, immunohistochemical, and quantitative analyses. For this purpose, polyethylene tubes filled with materials were implanted into rat subcutaneous. After 7, 15, 30, and 60 days, the tubes surrounded by capsules were fixed and embedded in paraffin. In the H&E-stained sections, the number of inflammatory cells (ICs) in the capsule was obtained. Moreover, detection of interleukin-6 (IL-6) by immunohistochemistry and number of IL-6 immunolabeled cells were carried out. von Kossa method was also performed. The differences among the groups were subjected to Tukey test (p ≤ 0.05). The solutions containing the materials presented an alkaline pH and released calcium ions. The addition of radiopacifiers increased setting time and radiopacity of CS. A higher compressive strength in the CS + ZrO2 (micro and nano) was found compared with CS + BO. The number of IC and IL-6 positive cells in the materials with ZrO2 was significantly reduced in comparison with CS + BO. von Kossa-positive structures were observed adjacent to implanted materials. The ZrO2 associated to the CS provides satisfactory physicochemical properties and better biological response than BO. Thus, ZrO2 may be a good alternative for use as radiopacifying agent in substitution to BO.

  7. Graphene-reinforced calcium silicate coatings for load-bearing implants. (United States)

    Xie, Youtao; Li, Hongqing; Zhang, Chi; Gu, Xin; Zheng, Xuebin; Huang, Liping


    Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of ceramics. In the present study, various ratios of graphene (0.5 wt%, 1.5 wt% and 4 wt%) were reinforced into calcium silicate (CS) coatings for load-bearing implant surface modification. Surface characteristics of the graphene/calcium silicate (GC) composite coatings were characterized by scanning electron microscopy. Results show that the graphene plates (less than 4 wt% in the coatings) were embedded in the CS matrix homogeneously. The surfaces of the coatings showed a hierarchical hybrid nano-/microstructure, which is believed to be beneficial to the behaviors of the cell and early bone fixation of the implants. Wear resistance measured by a pin-on-disc model exhibited an obvious enhancement with the adoption of graphene plates. The weight losses of the GC coatings decreased with the increase of graphene content. However, too high graphene content (4 wt% or more) made the composite coatings porous and the wear resistance decreased dramatically. The weight loss was only 1.3 ± 0.2 mg for the GC coating containing 1.5 wt% graphene (denoted as GC1.5) with a load of 10 N and sliding distance of 500 m, while that of the pure CS coating reached up to 28.6 ± 0.5 mg. In vitro cytocompatibility of the GC1.5 coating was evaluated using a human marrow stem cell (hMSC) culture system. The proliferation and alkaline phosphatase, osteopontin and osteocalcin (OC) osteogenesis-related gene expression of the cells on the GC1.5 coating did not deteriorate with the adoption of graphene. Conversely, even better adhesion of the hMSCs was observed on the GC1.5 coating than on the pure CS coating. All of the results indicate that the GC1.5 coating is a good candidate for load-bearing implants.

  8. Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo

    Directory of Open Access Journals (Sweden)

    Ma R


    Full Text Available Rui Ma,1,2 Zhifeng Yu,1 Songchao Tang,3 Yongkang Pan,3 Jie Wei,3 Tingting Tang1 1Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: Polyetheretherketone (PEEK exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity. In this study, nanohydroxyapatite (n-HA and nano-calcium silicate (n-CS were separately incorporated into PEEK to prepare n-HA/PEEK and n-CS/PEEK biocomposites, respectively, using a compounding and injection-molding technique, and the in vitro degradation characteristics were evaluated. Discs with a diameter of 8 mm were inserted in 8 mm full-thickness cranial defects in rabbits for 4 and 8 weeks, and implantation of pure PEEK was used as the control. Three-dimensional microcomputed tomography, histological analysis, fluorescence microscopy of new bone formation, and scanning electron microscopy were used to evaluate the osseointegration performance at the bone/implant interface. The results of the in vitro degradation study demonstrated that degradation of n-CS on the surface of n-CS/PEEK could release Ca and Si ions and form a porous structure. In vivo tests revealed that both n-CS/PEEK and n-HA/PEEK promoted osseointegration at the bone/implant interface compared to PEEK

  9. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ming-Hsien [Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan (China); Shen, Yu-Fang; Hsu, Tuan-Ti [3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan (China); Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: [3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan (China)


    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0–10 mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. - Highlights: • The hinokitiol-modified CS up-regulation of odontogenic of hDPCs. • Promoted proliferation of hDPCs on hinokitiol-modified CS. • The hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility. • The hinokitiol-modified CS up-regulation of odontogenic of hPDLs.

  10. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate--an X-ray spectromicroscopy study. (United States)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong


    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.

  11. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. (United States)

    Lu, Huanping; Li, Zhian; Wu, Jingtao; Shen, Yong; Li, Yingwen; Zou, Bi; Tang, Yetao; Zhuang, Ping


    A pot experiment was conducted to investigate the effects of calcium silicate (CS) on the subcellular distribution and chemical forms of cadmium (Cd) in grain amaranths (Amaranthus hypochondriacus L. Cv. ‘K112’) grown in a Cd contaminated soil. Results showed that the dry weight and the photosynthetic pigments contents in grain amaranths increased significantly with the increasing doses of CS treatments, with the highest value found for the treatment of CS3 (1.65 g/kg). Compared with the control, application of CS4 (3.31 g/kg) significantly reduced Cd concentrations in the roots, stems and leaves of grain amaranths by 68%, 87% and 89%, respectively. At subcellular level, CS treatment resulted in redistribution of Cd, higher percentages of Cd in the chloroplast and soluble fractions in leaves of grain amaranths were found, while lower proportions of Cd were located at the cell wall of the leaves. The application of CS enhanced the proportions of pectate and protein integrated forms of Cd and decreased the percentages of water soluble Cd potentially associated with toxicity in grain amaranths. Changes of free Cd ions into inactive forms sequestered in subcellular compartments may indicate an important mechanism of CS for alleviating Cd toxicity and accumulation in plants.

  12. Solubility of a new calcium silicate-based root-end filling material

    Directory of Open Access Journals (Sweden)

    Shishir Singh


    Full Text Available Introduction: The purpose of this study was to compare solubility of a new calcium silicate-based cement, Biodentine with three commonly used root-end filling materials viz. glass-ionomer cement (GIC, intermediate restorative material (IRM, and mineral trioxide aggregate (MTA. Materials and Methods: Twenty stainless steel ring molds were filled with cements corresponding to four groups (n = 5. The weight of 20 dried glass bottles was recorded. Samples were transferred to bottles containing 5 ml of distilled water and stored for 24 h. The bottles were dried at 105΀C and weighed. This procedure was repeated for 3, 10, 30, and 60 days. Data was analyzed with one-way analysis of variance (ANOVA test (P < 0.05. Results: Biodentine demonstrated significantly higher solubility than MTA for 30- and 60-day immersion periods. Statistical difference was noted between the solubility values of Biodentine samples amongst each of the five time intervals. Conclusions: Biodentine exhibited higher solubility in comparison with all other cements.

  13. Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects (United States)

    Zhang, Jing; Wang, Huiming; Shi, Jue; Wang, Ying; Lai, Kaichen; Yang, Xianyan; Chen, Xiaoyi; Yang, Guoli


    The present study was performed to determine whether simvastatin improves bone regeneration when combined with calcium silicate/gypsum and gelatin (CS-GEL). The surface morphology was determined using field-emission scanning electron microscopy (FSEM). Degradation in vitro was evaluated by monitoring the weight change of the composites soaked in phosphate buffered saline (PBS). Drug release was evaluated using high-performance liquid chromatography (HPLC). Cytotoxicity testing was performed to assess the biocompatibility of composites. Four 5 mm-diameter bone defects were created in rabbit calvaria. Three sites were filled with CS-GEL, 0.5 mg simvastatin-loaded CS-GEL (SIM-0.5) and 1.0 mg simvastatin-loaded CS-GEL (SIM-1.0), respectively, and the fourth was left empty as the control group. Micro-computed tomography (micro-CT) and histological analysis were carried out at 4 and 12 weeks postoperatively. The composites all exhibited three-dimensional structures and showed the residue with nearly 80% after 4 weeks of immersion. Drug release was explosive on the first day and then the release rate remained stable. The composites did not induce any cytotoxicity. The results in vivo demonstrated that the new bone formation and the expressions of BMP-2, OC and type I collagen were improved in the simvastatin-loaded CS-GEL group. It was concluded that the simvastatin-loaded CS-GEL may improve bone regeneration.

  14. Controlled release calcium silicate based floating granular delivery system of ranitidine hydrochloride. (United States)

    Jain, Ashish K; Jain, Sunil K; Yadav, Awesh; Agrawal, Govind P


    The objective of the present investigation was to prepare and evaluate floating granular delivery system consisting of (i) calcium silicate (CS) as porous carrier; (ii) ranitidine hydrochloride (RH), an anti-ulcer agent; and (iii) hydroxypropyl methylcellulose K4M (HPMC) and ethylcellulose (EC) as matrix forming polymers. The effect of various formulation and process variables on the particle morphology, particle size, micromeritic properties, percent drug content, in vitro floating behavior, and in vitro drug release from the floating granules was studied. The scanning electron microscopy (SEM) of granules revealed that that more pores of CS in secondary coated granules (SCG) were covered by the polymer film than those in primary coated granules (PCG). The formulation demonstrated favorable in vitro floating and drug release characteristics. The in vivo evaluation for the determination of pharmacokinetic parameters was performed in albino rats. Higher plasma concentration was maintained throughout the study period from the floating granules of RH. The enhanced bioavailability and elimination half-life observed in the present study may be due to the floating nature of the dosage form. The results suggested that CS is a useful carrier for the development of floating and sustained release preparations.

  15. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability. (United States)

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso


    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pzirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  16. Odontogenic effects of a fast-setting calcium-silicate cement containing zirconium oxide. (United States)

    Kim, Kyoung-A; Yang, Yeon-Mi; Kwon, Young-Sun; Hwang, Yun-Chan; Yu, Mi-Kyung; Min, Kyung-San


    A fast-setting calcium-silicate cement (Endocem) was introduced in the field of dentistry for use in vital pulp therapy. Similar to mineral trioxide aggregate (MTA), it contains bismuth oxide to provide radiopacity. Recently, another product, EndocemZr, which contains zirconium oxide (ZrO2) as a radiopacifier, was developed by the same company. In this study, the biological/odontogenic effects of EndocemZr were investigated in human primary dental pulp cells (hpDPCs) in vitro and on capped rat teeth in vivo. The biocompatibility of EndocemZr was similar to that of ProRoot and Endocem on the basis of cell viability tests and cell morphological analysis. The mineralization nodule formation, expression of odontogenic-related markers, and reparative dentin formation of EndocemZr group was similar to those of other material groups. Our results suggest that EndocemZr has the potential to be used as an effective material for vital pulp therapy, similar to ProRoot and Endocem.

  17. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks. (United States)

    Bräu, Michael; Ma-Hock, Lan; Hesse, Christoph; Nicoleau, Luc; Strauss, Volker; Treumann, Silke; Wiench, Karin; Landsiedel, Robert; Wohlleben, Wendel


    Nanotechnology creates new possibilities to control and improve material properties for civil infrastructure. Special focus in this area is put on Portland cement and gypsum. Together their annual production is by far larger than for any other material worldwide. Nanomodification of these materials can be done during the few hours between dissolution and hardening, especially by nucleation of the re-crystallization with suitable colloids. Here we report first results in homogeneous seeding of the precipitation of calcium silicate hydrates within a real Portland cement composition. The occupational safety during the production phase and during mixing of concrete paste is addressed in detail by in vivo testing. We perform 5-day inhalation with 21-day recovery in rats and analyze organ-specific toxicity and 71 endpoints from bronchoalveolar lavage (BALF) and blood. In BALF parameters, no test-related changes were observed, indicating the generally low toxicity of the test material. Some mild lesions were observed in larynx level. In the lungs, all animals of the 50 mg/m³ concentration group revealed a minimal to mild increase in alveolar macrophages, which recovered back to control level.

  18. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.


    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  19. Preliminary study of raw material for calcium silicate/PVA coating on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Farah ' Atiqah bt Abdul; Shamsudin, Roslinda, E-mail: [School of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)


    Calcium silicate bioceramic was prepared from the rice husk and limestone resources using the sol gel method. The preparations of CaSiO{sub 3} formulation were differ from the previous study due CaO/SiO{sub 2} amount with 45:55 ratio. X-Ray Fluorescence analysis was carried out to clarify the amount of SiO{sub 2} and CaO content in the limestone and rice husk ash. The high amount of CaO was found in the limestone with the percentages of 97.22%, whereby 89% of SiO{sub 2} content of the rice husk ash. Several milling time were studied to obtain the optimized milling ti me and speed in progress to obtain nano size particle. The particle size analysis result confirms that increase in milling time does not certainly reduce the size of particle. The addition of 0.05% polyvinyl alcohol as a binder did not change the phases or composition of calcium silicates after examined by X-Ray diffraction analysis which make it suitable to be used as a binder for calcium silicate coating without changing the chemical structure.

  20. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes

    Institute of Scientific and Technical Information of China (English)

    Zhao Cao; Yong-dan Cao; Jin-shan Zhang; Chun-bao Sun; Xian-long Li


    To realize the comprehensive utilization of coal-fired industrial solid wastes, a novel high-strength board was prepared from cal-cium silicate slag, fly ash, and flue gas desulfurization (FGD) gypsum. The changes in mineral phases, chemical structure, and morphology during hydration were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron mi-croscopy (SEM). A traditional board made from quartz and lime was prepared as a reference. The novel board not only consumes a lot of solid wastes, but also meets the strength requirement of the class-five calcium silicate board according to the Chinese Standard JC/T 564.2—2008. Microanalysis showed that hydrated calcium silicate gel (C−S−H(I)), ettringite, tobermorite, and xonotlite were successivelygenerated in the novel board by synergistic hydration of the mixed solid wastes. The board strength was improved by the formation of tobermorite and xonotlite but decreased by unhydrated quartz. It was demonstrated that quartz was not completely hydrated in the traditional board. As a re-sult, the flexural strength of the traditional board was much lower than that of the novel board.

  1. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. (United States)

    Cameron, Kate; Travers, Paul; Chander, Chaman; Buckland, Tom; Campion, Charlie; Noble, Brendon


    Insufficient, underactive, or inappropriate osteoblast function results in serious clinical conditions such as osteoporosis, osteogenesis imperfecta and fracture nonunion and therefore the control of osteogenesis is a medical priority. In vitro mesenchymal stem cells (MSCs) can be directed to form osteoblasts through the addition of soluble factors such as β-glycerophosphate, ascorbic acid, and dexamethasone; however this is unlikely to be practical in the clinical setting. An alternative approach would be to use a scaffold or matrix engineered to provide cues for differentiation without the need for soluble factors. Here we describe studies using Silicate-substituted calcium phosphate (Si-CaP) and unmodified hydroxyapatite (HA) to test whether these materials are capable of promoting osteogenic differentiation of MSCs in the absence of soluble factors. Si-CaP supported attachment and proliferation of MSCs and induced osteogenesis to a greater extent than HA, as evidenced through upregulation of the osteoblast-related genes: Runx2 (1.2 fold), Col1a1 (2 fold), Pth1r (1.5 fold), and Bglap (1.7 fold) Dmp1 (1.1 fold), respectively. Osteogenic-associated proteins, alkaline phosphatase (1.4 fold), RUNX2, COL1A1, and BGLAP, were also upregulated and there was an increased production of mineralized bone matrix (1.75 fold), as detected by the Von Kossa Assay. These data indicate that inorganic substrates are capable of directing the differentiation programme of stem cells in the absence of known chemical drivers and therefore may provide the basis for bone repair in the clinical setting.

  2. Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kuo-Yang Tsai


    Full Text Available In this study, we manufacture and analyze bioactive magnesium–calcium silicate/poly-ε-caprolactone (Mg–CS/PCL 3D scaffolds for bone tissue engineering. Mg–CS powder was incorporated into PCL, and we fabricated the 3D scaffolds using laser sintering technology. These scaffolds had high porosity and interconnected-design macropores and structures. As compared to pure PCL scaffolds without an Mg–CS powder, the hydrophilic properties and degradation rate are also improved. For scaffolds with more than 20% Mg–CS content, the specimens become completely covered by a dense bone-like apatite layer after soaking in simulated body fluid for 1 day. In vitro analyses were directed using human mesenchymal stem cells (hMSCs on all scaffolds that were shown to be biocompatible and supported cell adhesion and proliferation. Increased focal adhesion kinase and promoted cell adhesion behavior were observed after an increase in Mg–CS content. In addition, the results indicate that the Mg–CS quantity in the composite is higher than 10%, and the quantity of cells and osteogenesis-related protein of hMSCs is stimulated by the Si ions released from the Mg–CS/PCL scaffolds when compared to PCL scaffolds. Our results proved that 3D Mg–CS/PCL scaffolds with such a specific ionic release and good degradability possessed the ability to promote osteogenetic differentiation of hMSCs, indicating that they might be promising biomaterials with potential for next-generation bone tissue engineering scaffolds.

  3. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Cheng [School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 402, Taiwan (China); Wang, Chien-Wen [Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Hsueh, Nai-Shuo [Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan (China); Ding, Shinn-Jyh, E-mail: [School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 402, Taiwan (China); Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan (China)


    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  4. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. (United States)

    Mehrali, Mehdi; Moghaddam, Ehsan; Shirazi, Seyed Farid Seyed; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu


    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.

  5. Clinical and Radiographic Assessment of the Efficacy of Calcium Silicate Indirect Pulp Capping (United States)

    Hashem, D.; Mannocci, F.; Patel, S.; Manoharan, A.; Brown, J.E.; Watson, T.F.


    The aims of this study were to assess the effectiveness of calcium silicate cement (Biodentine) versus glass ionomer cement (GIC; control group) as indirect pulp capping materials in patients with reversible pulpitis and to compare the effectiveness of cone beam computed tomography (CBCT) versus periapical (PA) radiographs in detecting PA changes at baseline (T0) and at 12 mo (T12) postoperatively. Seventy-two restorations (36 Biodentine, 36 Fuji IX) were placed randomly in 53 patients. CBCT/PA radiographs were taken at T0 and T12. Two calibrated examiners assessed the presence/absence and increase/decrease in the size of existing PA radiolucencies under standardized conditions. The Kappa coefficient evaluated statistically the effectiveness of CBCT versus PA radiographs in detecting PA changes. Chi-square/Mann-Whitney tests were used to evaluate the association between PA changes in CBCT with various clinical measures. Significance was predetermined at α = 0.05. Clinical success rates for Biodentine and Fuji IX GIC were 83.3%. CBCT was significantly more effective in detecting PA radiolucencies compared with radiographs (P = 0.0069). Of the teeth, 65.4% and 90.4% were deemed healthy using CBCT and PA radiographs, respectively, at T12. Healing/healed rates were 17.3%/0%, while new/progressed radiolucency were 30.8%/9.6% with CBCT/PA radiographs, respectively. Seventy-one percent of healed lesions had received Biodentine; 88% of new/progressed lesions received Fuji IX GIC. Teeth presenting with an initial CBCT PA lesion had a failure rate of 63%, whereas teeth with no initial lesion had a failure rate of 16%. Although no statistically significant difference was detected in the clinical efficacy of Biodentine/Fuji IX when used as indirect pulp capping materials in patients with reversible pulpitis, CBCT showed a significant difference in that most healed CBCT lesions had received Biodentine while most that did not heal received Fuji IX. Longer-term follow-up is

  6. Re-establishing apical patency after obturation with Gutta-percha and two novel calcium silicate-based sealers


    Agrafioti, Anastasia; Koursoumis, Anastasios D.; Kontakiotis,Evangelos G.


    Objective: Aim of the present study was to evaluate the retreatability and reestablishment of apical patency of two calcium silicate-based sealers, TotalFill BC Sealer (BCS) and mineral trioxide aggregate Fillapex (MTA F), versus AH Plus, when used in combination with Gutta-percha (GP). Materials and Methods: The canals of 54 single-rooted anterior teeth were instrumented and filled with GP/AH Plus (Group A), GP/MTA F (Group B), or GP/BCS (Group C) using continuous wave obturation technique. ...

  7. Structural study and crystallography of the major compound of anhydrous cement: tri-calcium silicate; Etude structurale et cristallographie du compose majoritaire du ciment anhydre: le silicate tricalcique

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, M.N. de


    Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)

  8. Effect of the smear layer on apical seals produced by two calcium silicate-based endodontic sealers. (United States)

    Bidar, Maryam; Sadeghalhoseini, Niloufar; Forghani, Maryam; Attaran, Negin


    We compared the apical seals of two new calcium silicate-based sealers (iRoot SP and MTA Fillapex) in the presence and absence of a smear layer. Eighty-two human premolars were prepared and randomly divided into four groups. In groups 1 and 3, the smear layer was retained. In groups 2 and 4, the root canals were irrigated with EDTA to remove the smear layer. Canals were filled using gutta-percha/iRoot SP (in groups 1 and 2) or obturated with gutta-percha/MTA Fillapex (in groups 3 and 4). Fluid filtration was used to evaluate apical microleakage. The presence of the smear layer had no significant effect on the sealing properties of the filling materials, except for iRoot SP at 2 weeks (P = 0.007). There was significantly less microleakage with iRoot SP than with MTA Fillapex (P = 0.025 at 2 weeks; P removal of the smear layer had no adverse effect on the sealing properties of calcium silicate-based sealers. In addition, the sealing ability of iRoot SP was superior to that of MTA Fillapex.

  9. Preparation of MnO2and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties

    Institute of Scientific and Technical Information of China (English)

    李昌新; 钟宏; 王帅; 薛建荣; 武芳芳; 张振宇


    Electrolytic manganese residue (EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate (EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions (pH 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals (Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.

  10. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(L-lactide)

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiajin [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Dong, Xieping, E-mail: [Department of Orthopaedic Surgery, Jiangxi People' s Hospital, Nanchang 330006 (China); Ma, Xuhui [Polymer Science (Shenzhen) New Materials Co., Ltd., Shenzhen 518101 (China); Tang, Songchao, E-mail: [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Wu, Zhaoying; Xia, Ji; Wang, Quanxiang; Wang, Yutao; Wei, Jie [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China)


    Highlights: • Mesoporous calcium-magnesium silicate and poly(L-lactide) composite was fabricated. • The composite has good hydrophilicity, in vitro degradation and bioactivity. • The composite could support cell attachment, proliferation and differentiation. - Abstract: Polylactide (PLA) and its copolymers have been widely used for bone tissue regeneration. In this study, a bioactive composite of ordered mesoporous calcium–magnesium silicate (m-CMS) and poly(L-lactide) (PLLA) was fabricated by melt blending method. The results indicated that the m-CMS particles were entrapped by polymer phase, and crystallinity of PLLA significantly decreased while the thermal stability of the m-CMS/PLLA composites was not obviously affected by addition of the m-CMS into PLLA. In addition, compared to PLLA, incorporation of the m-CMS into PLLA significantly improved the hydrophilicity, in vitro degradability and bioactivity (apatite-formation ability) of the m-CMS/PLLA composite, which were m-CMS content dependent. Moreover, it was found that incorporation of the m-CMS into PLLA could neutralize the acidic degradation by-products and thus compensated for the decrease of pH value. In cell culture experiments, the results showed that the composite enhanced attachment, proliferation and alkaline phosphatase activity (ALP) of MC3T3-E1 cells, which were m-CMS content dependent. The results indicated that the addition of bioactive materials to PLLA could result in a composite with improved properties of hydrophilicity, degradability, bioactivity and cytocompatibility.

  11. Effects of surface application of calcium-magnesium silicate and gypsum on soil fertility and sugarcane yield

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol


    Full Text Available Lime application recommendations for amendment of soil acidity in sugarcane were developed with a burnt cane harvesting system in mind. Sugarcane is now harvested in most areas without burning, and lime application for amendment of soil acidity in this system in which the sugarcane crop residue remains on the ground has been carried out without a scientific basis. The aim of this study was to evaluate the changes in soil acidity and stalk and sugar yield with different rates of surface application of calcium, magnesium silicate, and gypsum in ratoon cane. The experiment was performed after the 3rd harvest of the variety SP 81-3250 in a commercial green sugarcane plantation of the São Luiz Sugar Mill (47º 25' 33" W; 21º 59' 46" S, located in Pirassununga, São Paulo, in southeast Brazil. A factorial arrangement of four Ca-Mg silicate rates (0, 850, 1700, and 3400 kg ha-1 and two gypsum rates (0 and 1700 kg ha-1 was used in the experiment. After 12 months, the experiment was harvested and technological measurements of stalk and sugar yield were made. After harvest, soil samples were taken at the depths of 0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m in all plots, and the following determinations were made: soil pH in CaCl2, organic matter, P, S, K, Ca, Mg, H+Al, Al, Si, and base saturation. The results show that the application of gypsum reduced the exchangeable Al3+ content and Al saturation below 0.05 m, and increased the Ca2+ concentration in the whole profile, the Mg2+ content below 0.10 m, K+ below 0.4 m, and base saturation below 0.20 m. This contributed to the effect of surface application of silicate on amendment of soil acidity reaching deeper layers. From the results of this study, it may be concluded that the silicate rate recommended may be too low, since the greater rates used in this experiment showed greater reduction in soil acidity, higher levels of nutrients at greater depths and an increase in stalk and sugar

  12. Silicato de cálcio como amenizante da toxidez de metais pesados em mudas de eucalipto Calcium silicate to reduce heavy metal toxicity in eucalyptus seedlings

    Directory of Open Access Journals (Sweden)

    Adriana Maria de Aguiar Accioly


    Full Text Available O objetivo deste trabalho foi avaliar o efeito do silicato de cálcio na redução da toxidez de metais pesados no solo para Eucalyptus camaldulensis. Foram utilizadas cinco doses de silicato de cálcio (0, 1,6, 3,2, 4,8 e 6,4 g kg-1, em solos com diferentes graus de contaminação. O experimento foi conduzido em vasos com 1,5 kg de solo, com uma muda por vaso, em esquema fatorial 4x5 (quatro graus de contaminação x cinco doses de silicato. O silicato de cálcio reduziu a toxidez de metais pesados em E.camaldulensis, retardou o aparecimento dos sintomas de toxidez e diminuiu os teores de zinco e cádmio na parte aérea das plantas. Entretanto, não evitou totalmente a depressão no crescimento, nos solos com contaminação elevada. O efeito amenizante do silicato foi crescente com o aumento das doses e mais evidente nos solos com contaminação elevada. O efeito benéfico do silicato de cálcio está relacionado à redução da transferência do zinco para a parte aérea do eucalipto.The objective of this study was to evaluate the effect of calcium silicate to reduce heavy metal toxicity in Eucalyptus camaldulensis seedlings. Five doses of calcium silicate (0, 1.6, 3.2, 4.8, and 6.4 g kg-1 were used in soils with increasing levels of contamination. The experiment was carried out in pots with 1.5 kg of soil, with one plant each, in a 4x5 factorial array (four levels of contamination x five silicate doses. Calcium silicate minimized heavy metal toxicity to E.camaldulensis, delayed the onset of toxicity symptoms, and decreased zinc and cadmium shoot concentrations. However, calcium silicate did not completely overcome the depressive effect upon plant growth in soils with high metal concentrations. Calcium silicate effects increased with increasing doses and were more evident in highly contaminated soils. The beneficial effects of calcium silicate on metal toxicity were highly related to the decrease in zinc translocation to the eucalyptus shoots.

  13. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements; Etude mecanistique et modelisation de la retention de radionucleides par les silicates de calcium hydrates (CSH) des ciments

    Energy Technology Data Exchange (ETDEWEB)

    Pointeau, I


    This work attempts to investigate the modelling of radioisotopes (Cs{sup +}, Pb{sup 2+}, Eu{sup 3+}) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs{sup +} is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm{sup -2}), which accounts for the CSH unsaturation in high [CS{sup +}]. A strong site is also identified. - Pb{sup 2+} immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu{sup 3+} fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu{sup 3+} thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  14. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao-Hsin [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Hung, Chi-Jr; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China)


    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP.

  15. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. (United States)

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You


    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (pFGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation.

  16. Re-establishing apical patency after obturation with Gutta-percha and two novel calcium silicate-based sealers (United States)

    Agrafioti, Anastasia; Koursoumis, Anastasios D.; Kontakiotis, Evangelos G.


    Objective: Aim of the present study was to evaluate the retreatability and reestablishment of apical patency of two calcium silicate-based sealers, TotalFill BC Sealer (BCS) and mineral trioxide aggregate Fillapex (MTA F), versus AH Plus, when used in combination with Gutta-percha (GP). Materials and Methods: The canals of 54 single-rooted anterior teeth were instrumented and filled with GP/AH Plus (Group A), GP/MTA F (Group B), or GP/BCS (Group C) using continuous wave obturation technique. The groups were subdivided into subgroups with the master-GP cone placed to the working length (WL) or intentionally 2 mm short. The retreatment procedures were performed using ultrasonics, chloroform, rotary, and hand files. The ability to establish the patency and reach WL was determined as well as the time taken to reach WL was calculated in minutes. Furthermore, the samples were observed under a dental, optical microscope, after vertically splitting them. Results: The WL and patency were reestablished in 100% of specimens in all groups. The Mann–Whitney U-test indicated that there was a significant difference in the amount of time required to reach WL between the groups (P sealers are negotiable under simple root canal anatomy. However, the conventional retreatment techniques are not able to fully remove them. PMID:26929681

  17. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites. (United States)

    Shie, Ming-You; Chiang, Wei-Hung; Chen, I-Wen Peter; Liu, Wen-Yi; Chen, Yi-Wen


    Recent exciting findings of the biological interactions of graphene materials have shed light on potential biomedical applications of graphene-containing composites. Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of biocomposites. In the present study, various ratios of graphene (0.25wt%, 0.5wt% and 1.0wt%) were reinforced into calcium silicate (CS) for bone graft application. Results show that the graphene was embedded in the composites homogeneously. Adding 1wt% graphene into CS increased the young's modulus by ~47.1%. The formation of bone-like apatite on a range of composites with graphene weight percentages ranging from 0 to 1 has been investigated in simulated body fluid. The presence of a bone-like apatite layer on the composites surface after immersion in simulated body fluid was considered by scanning electron microscopy. In vitro cytocompatibility of the graphene-contained CS composites was evaluated using human marrow stem cells (hMSCs). The proliferation and alkaline phosphatase, osteopontin and osteocalcin osteogenesis-related protein expression of the hMSCs on the 1wt% graphene-contained specimens showed better results than on the pure CS. In addition, the angiogenesis-related protein (vWF and ang-1) secretion of cells was significantly stimulated when the graphene concentration in the composites was increased. These results suggest that graphene-contained CS bone graft are promising materials for bone tissue engineering applications.

  18. Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration. (United States)

    Wei, Jie; Heo, S J; Liu, Changsheng; Kim, D H; Kim, S E; Hyun, Y T; Shin, Ji-Wang; Shin, Jung-Woog


    A novel biocomposite of nanosized calcium silicate (n-CS) and poly(epsilon-caprolactone) (PCL) was successfully fabricated directly using n-CS slurry, not dried n-CS powder, in a solvent-casting method. The in vitro bioactivity of the composite was evaluated by investigating the apatite-forming ability in simulated body fluid. A proliferation assay with mouse L929 fibroblasts was used to test the in vitro biocompatibility. The composition, hydrophilicity, and mechanical properties were also evaluated. Results suggest that the incorporation of n-CS could significantly improve the hydrophilicity, compressive strength, and elastic modulus of n-CS/PCL composites, with the enhancements mainly dependent on n-CS content. The n-CS/PCL composites exhibit excellent in vitro bioactivity, with surface apatite formation for 40% (w/w) n-CS (C40) exceeding that of 20% (w/w) n-CS (C20) at 7 and 14 days. The Ca/P ratios of apatite formed on C20 and C40 surfaces were 1.58 and 1.61, respectively, indicating nonstoichiometric apatite with defective structure. Composites demonstrated significantly better cell attachment and proliferation than that of PCL alone, with C40 demonstrating the best bioactivity. The apatite layers that formed on the composite surfaces facilitated cell attachment (4 h) and proliferation during the early stages (1 and 4 days). Collectively, these results suggest that the incorporation of n-CS produces biocomposites with enhanced bioactivity and biocompatibility.

  19. Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent

    Directory of Open Access Journals (Sweden)

    Ling Pei


    Full Text Available The primary objective of this paper was to synthesize a porous calcium silicate hydrate (CSH with enhanced phosphate recovery property using polyethyleneglycol (PEG as pore-generation agent. The formation mechanism of porous CSH was proposed. PEG molecules were inserted into the void region of oxygen–silicon tetrahedron chains and the layers of CSH. A steric hindrance layer was generated to prevent the aggregation of solid particles. A porous structure was formed due to the residual space caused by the removal of PEG through incineration. This porous CSH exhibited highly enhanced solubility of Ca2+ and OH− due to the decreased particle size, declined crystalline, and increased specific surface area (SBET and pore volume. Supersaturation was increased in the wastewater with the enhanced solubility, which was beneficial to the formation of hydroxyapatite (HAP crystallization. Thus, phosphate can be recovered from wastewater by producing HAP using porous CSH as crystal seed. In addition, the regenerated phosphate-containing products (HAP can be reused to achieve sustainable utilization of phosphate. The present research could provide an effective approach for the synthesis of porous CSH and the enhancement of phosphate recovery properties for environmental applications.

  20. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. (United States)

    Silva, Emmanuel Jnl; Carvalho, Nancy Kudsi; Zanon, Mayara; Senna, Plínio Mendes; DE-Deus, Gustavo; Zuolo, Mário Luis; Zaia, Alexandre Augusto


    This study was designed to investigate the resistance to dislodgment provided by MTA HP, a new high-plasticity calcium silicate-based cement. Biodentine and White MTA Angelus were used as reference materials for comparison. Three discs 1 ± 0.1 mm thick were obtained from the middle third of the roots of 5 maxillary canines. Three 0.8-mm-wide holes were drilled on the axial surface of each root disc. Standardized irrigation was performed. Then the holes were dried with paper points and filled with one of the three tested cements. The filled dental slices were immersed in a phosphate-buffered saline (PBS) solution (pH 7.2) for 7 days before the push-out assessment. The Kruskal-Wallis test was applied to assess the effect of each endodontic cement on the push-out bond strength. Mann-Whitney with Bonferroni correction was used to isolate the differences. The alpha-type error was set at 0.05. All specimens had measurable push-out values and no premature failure occurred. There were significant differences among the materials (p MTA HP had significantly higher bond strength than White MTA (p MTA HP showed better push-out bond strength than its predecessor, White MTA; however, Biodentine had higher dislodgment resistance than both MTA formulations.

  1. Vital Pulp Therapy with Calcium-Silicate Cements: Report of Two Cases (United States)

    Ashraf, Hengameh; Rahmati, Afsaneh; Amini, Neda


    This article describes successful use of calcium-enriched mixture (CEM) cement and Biodentine in apexogenesis treatment in two 8-year-old patients, one with immature permanent molar diagnosed primarily with irreversible pulpitis and the other with partially vital maxillary central incisor. After access cavity preparation, partial pulpotomy in molar and full pulpotomy in central was performed, and the remaining pulps was capped with either Biodentine or CEM cement, in each tooth. The crowns were restored with composite filling material at the following visit. The post-operative radiographic and clinical examinations (approx. average of 16 months) showed that both treated teeth remained functional, with complete root development and apex formation. A calcified bridge was produced underneath the capping material. No further endodontic intervention was necessary. Considering the healing potential of immature vital pulps, the use of CEM cement and Biodentine for apexogenesis might be an applicable choice. These new endodontic biomaterials might be appropriate for vital pulp therapies in an immature tooth. However, further clinical studies with longer follow-up periods are recommended. PMID:28179936

  2. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation. (United States)

    Aparicio, Julia Lucas; Rueda, Carmen; Manchón, Ángel; Ewald, Andrea; Gbureck, Uwe; Alkhraisat, Mohammad Hamdan; Jerez, Luis Blanco; Cabarcos, Enrique López


    A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering.

  3. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China)


    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  4. The synergistic effects of CO2 laser treatment with calcium silicate cement of antibacterial, osteogenesis and cementogenesis efficacy (United States)

    Hsu, T.-T.; Kao, C.-T.; Chen, Y.-W.; Huang, T.-H.; Yang, J.-J.; Shie, M.-Y.


    Calcium silicate-based material (CS) has been successfully used in dental clinical applications. Some researches show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm, due to a photo-thermal mechanism. The purpose of this study was to confirm the effects of CO2 laser irradiation on CS, with regard to both material characterization and human periodontal ligament cell (hPDLs) viability. CS was irradiated with a dental CO2 laser using directly mounted fiber optics in wound healing mode with a spot area of 0.25 cm2, and then stored in an incubator at 100% relative humidity and 37 °C for 1 d to set. The hPDLs cultured on CS were analyzed, along with their proliferation and odontogenic differentiation behaviors. The results indicate that the CO2 laser irradiation increased the amount of Ca and Si ions released from the CS, and regulated cell behavior. CO2 laser-irradiated CS promoted cementogenic differentiation of hPDLs, with the increased formation of mineralized nodules on the substrate’s surface. It also up-regulated the protein expression of multiple markers of cementogenic and the expression of cementum attachment protein. The current study provides new and important data about the effects of CO2 laser irradiation on CS. Taking cell functions into account, the Si concentration released from CS with laser irradiated may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue.

  5. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis (United States)

    Zhang, Ning; Shahsavari, Rouzbeh


    As the most widely used manufactured material on Earth, concrete poses serious societal and environmental concerns which call for innovative strategies to develop greener concrete with improved strength and toughness, properties that are exclusive in man-made materials. Herein, we focus on calcium silicate hydrate (C-S-H), the major binding phase of all Portland cement concretes, and study how engineering its nanovoids and portlandite particle inclusions can impart a balance of strength, toughness and stiffness. By performing an extensive +600 molecular dynamics simulations coupled with statistical analysis tools, our results provide new evidence of ductile fracture mechanisms in C-S-H - reminiscent of crystalline alloys and ductile metals - decoding the interplay between the crack growth, nanovoid/particle inclusions, and stoichiometry, which dictates the crystalline versus amorphous nature of the underlying matrix. We found that introduction of voids and portlandite particles can significantly increase toughness and ductility, specially in C-S-H with more amorphous matrices, mainly owing to competing mechanisms of crack deflection, voids coalescence, internal necking, accommodation, and geometry alteration of individual voids/particles, which together regulate toughness versus strength. Furthermore, utilizing a comprehensive global sensitivity analysis on random configuration-property relations, we show that the mean diameter of voids/particles is the most critical statistical parameter influencing the mechanical properties of C-S-H, irrespective of stoichiometry or crystalline or amorphous nature of the matrix. This study provides new fundamental insights, design guidelines, and de novo strategies to turn the brittle C-S-H into a ductile material, impacting modern engineering of strong and tough concrete infrastructures and potentially other complex brittle materials.

  6. Preparation and Evaluation of Solid Dispersion Tablets by a Simple and Manufacturable Wet Granulation Method Using Porous Calcium Silicate. (United States)

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi


    The aim of this study was to prepare and evaluate solid dispersion tablets containing a poorly water-soluble drug using porous calcium silicate (PCS) by a wet granulation method. Nifedipine (NIF) was used as the model poorly water-soluble drug. Solid dispersion tablets were prepared with the wet granulation method using ethanol and water by a high-speed mixer granulator. The binder and disintegrant were selected from 7 and 4 candidates, respectively. The dissolution test was conducted using the JP 16 paddle method. The oral absorption of NIF was studied in fasted rats. Xylitol and crospovidone were selected as the binder and disintegrant, respectively. The dissolution rates of NIF from solid dispersion formulations were markedly enhanced compared with NIF powder and physical mixtures. Powder X-ray diffraction (PXRD) confirmed the reduced crystallinity of NIF in the solid dispersion formulations. Fourier transform infrared (FT-IR) showed the physical interaction between NIF and PCS in the solid dispersion formulations. NIF is present in an amorphous state in granules prepared by the wet granulation method using water. The area under the plasma concentration-time curve (AUC) and peak concentration (C(max)) values of NIF after dosing rats with the solid dispersion granules were significantly greater than those after dosing with NIF powder. The solid dispersion formulations of NIF prepared with PCS using the wet granulation method exhibited accelerated dissolution rates and superior oral bioavailability. This method is very simple, and may be applicable to the development of other poorly water-soluble drugs.

  7. Europium doped di-calcium magnesium di-silicate orange–red emitting phosphor by solid state reaction method

    Directory of Open Access Journals (Sweden)

    Ishwar Prasad Sahu


    Full Text Available A new orange–red europium doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Eu3+ phosphor was prepared by the traditional high temperature solid state reaction method. The prepared Ca2MgSi2O7:Eu3+ phosphor was characterized by X-ray diffractometer (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM with energy dispersive x-ray spectroscopy (EDX, fourier transform infrared spectra (FTIR, photoluminescence (PL and decay characteristics. The phase structure of sintered phosphor was akermanite type structure which belongs to the tetragonal crystallography with space group P4¯21m, this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca2MgSi2O7:Eu3+ phosphor was confirmed by EDX spectra. The PL spectra indicate that Ca2MgSi2O7:Eu3+ can be excited effectively by near ultraviolet (NUV light and exhibit bright orange–red emission with excellent color stability. The fluorescence lifetime of Ca2MgSi2O7:Eu3+ phosphor was found to be 28.47 ms. CIE color coordinates of Ca2MgSi2O7:Eu3+ phosphor is suitable as orange-red light emitting phosphor with a CIE value of (X = 0.5554, Y = 0.4397. Therefore, it is considered to be a new promising orange–red emitting phosphor for white light emitting diode (LED application.

  8. X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. (United States)

    Grangeon, Sylvain; Claret, Francis; Linard, Yannick; Chiaberge, Christophe


    X-ray diffraction (XRD) patterns were calculated and compared to literature data with the aim of investigating the crystal structure of nanocrystalline calcium silicate hydrates (C-S-H), the main binding phase in hydrated Portland cement pastes. Published XRD patterns from C-S-H of Ca/Si ratios ranging from ~ 0.6 to ~ 1.7 are fully compatible with nanocrystalline and turbostratic tobermorite. Even at a ratio close or slightly higher than that of jennite (Ca/Si = 1.5) this latter mineral, which is required in some models to describe the structure of C-S-H, is not detected in the experimental XRD patterns. The 001 basal reflection from C-S-H, positioned at ~ 13.5 Å when the C-S-H structural Ca/Si ratio is low (< 0.9), shifts towards smaller d values and sharpens with increasing Ca/Si ratio, to reach ~ 11.2 Å when the Ca/Si ratio is higher than 1.5. Calculations indicate that the sharpening of the 001 reflection may be related to a crystallite size along c* (i.e. a mean number of stacked layers) increasing with the C-S-H Ca/Si ratio. Such an increase would contribute to the observed shift of the 001 reflection, but fails to quantitatively explain it. It is proposed that the observed shift could result from interstratification of at least two tobermorite-like layers, one having a high and the other a low Ca/Si ratio with a basal spacing of 11.3 and 14 Å, respectively.

  9. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)


    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  10. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements (United States)

    GUERREIRO-TANOMARU, Juliane Maria; VÁZQUEZ-GARCÍA, Fernando Antonio; BOSSO-MARTELO, Roberta; BERNARDI, Maria Inês Basso; FARIA, Gisele; TANOMARU, Mario


    ABSTRACT Objective Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). Material and Methods White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time

  11. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    Directory of Open Access Journals (Sweden)


    Full Text Available ABSTRACT Objective Mineral Trioxide Aggregate (MTA is a calcium silicate cement composed of Portland cement (PC and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2 and hydroxyapatite nanoparticles (HAn. Material and Methods White MTA (Angelus, Brazil; PC (70%+ZrO2 (30%; PC (60%+ZrO2 (30%+HAn (10%; PC (50%+ZrO2 (30%+HAn (20% were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1 in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10% and PC+ZrO2+HAn (20% (p>0.05 and these cements presented higher pH levels than MTA (p<0.05. The highest solubility was observed in PC+ZrO2+HAn (10% and PC+ZrO2+HAn (20% (p<0.05. MTA had the shortest initial setting time (p<0.05. All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05. Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05 after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%, the final setting time and

  12. Clinical and radiographic comparison of indirect pulp treatment using light-cured calcium silicate and mineral trioxide aggregate in primary molars: A randomized clinical trial


    Navya P Menon; Balagopal R Varma; Sureshkumar Janardhanan; Parvathy Kumaran; Arun Mamachan Xavier; Bhat Sangeetha Govinda


    Aim: To clinically and radiographically evaluate the reparative dentin formation in indirect pulp treatment (IPT) using mineral trioxide aggregate (MTA) and light cured calcium silicate (TheraCal) in primary molars over a period of 6 months. Materials and Methods: A clinical trial on IPT on 43 primary molars in 21 patients between the age of 4–7 years, divided into two groups: 22 teeth in MTA group and 21 in TheraCal group. Measurement of the variation in dentin thickness was done on the digi...

  13. Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry (United States)

    Grangeon, Sylvain; Baronnet, Alain; Marty, Nicolas; Poulain, Agnieszka; Elkaïm, Erik; Roosz, Cédric; Gaboreau, Stéphane; Henocq, Pierre; Claret, Francis


    The structural evolution of nanocrystalline calcium silicate hydrate (C–S–H) as a function of its calcium to silicon (Ca/Si) ratio has been probed using qualitative and quantitative X-ray atomic pair distribution function analysis of synchrotron X-ray scattering data. Whatever the Ca/Si ratio, the C–S–H structure is similar to that of tobermorite. When the Ca/Si ratio increases from ∼0.6 to ∼1.2, Si wollastonite-like chains progressively depolymerize through preferential omission of Si bridging tetrahedra. When the Ca/Si ratio approaches ∼1.5, nanosheets of portlandite are detected in samples aged for 1 d, while microcrystalline portlandite is detected in samples aged for 1 year. High-resolution transmission electron microscopy imaging shows that the tobermorite-like structure is maintained to Ca/Si > 3.

  14. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics. (United States)

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F


    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way.

  15. Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate (United States)

    Cao, Liehu; Weng, Weizong; Chen, Xiao; Zhang, Jun; Zhou, Qirong; Cui, Jin; Zhao, Yuechao; Shin, Jung-Woog; Su, Jiacan


    Nanoporous lithium doping magnesium silicate (nl-MS) was introduced into calcium sulfate hemihydrate to prepare calcium sulfate composite (nl-MSC) bone cements. The introduction of nl-MS improved the in vitro degradability of nl-MSC cements, which could neutralize acidic degradable products of calcium sulfate and prevented the pH from dropping. The cements were implanted into the bone defects of femur bone of rabbits, and the results of histological and immunohistochemical analysis revealed that massive new bone tissue formed in the defects while the cements were degradable, indicating that the osteogenesis and degradability of the nl-MSC cements were much better than the control calcium sulfate dihydrate (CSD) cements. Furthermore, the positive expression of vascular endothelial growth factor and collagen type I for nl-MSC cements was higher than CSD, indicating that addition of nl-MS into the cements enhanced vascularization and osteogenic differentiation. The results suggested that the nl-MSC cements with good biocompatibility and degradability could promote vascularization and osteogenesis, and had great potential to treat bone defects. PMID:28260883

  16. Calcium silicate cement-induced remineralisation of totally demineralised dentine in comparison with glass ionomer cement: tetracycline labelling and two-photon fluorescence microscopy. (United States)

    Atmeh, A R; Chong, E Z; Richard, G; Boyde, A; Festy, F; Watson, T F


    Two-photon fluorescence microscopy, in combination with tetracycline labelling, was used to observe the remineralising potentials of a calcium silicate-based restorative material (Biodentine(TM) ) and a glass ionomer cement (GIC:​Fuji​IX) on totally demineralised dentine. Forty demineralised dentine discs were stored with either cement in three different solutions: phosphate buffered saline (PBS) with tetracycline, phosphate-free tetracycline, and tetracycline-free PBS. Additional samples of demineralised dentine were stored alone in the first solution. After 8-week storage at 37 °C, dentine samples were imaged using two-photon fluorescence microscopy and Raman spectroscopy. Samples were later embedded in PMMA and polished block surfaces studied by 20 kV BSE imaging in an SEM to study variations in mineral concentration. The highest fluorescence intensity was exhibited by the dentine stored with Biodentine(TM) in the PBS/tetracycline solution. These samples also showed microscopic features of matrix remineralisation including a mineralisation front and intra- and intertubular mineralisation. In the other solutions, dentine exhibited much weaker fluorescence with none of these features detectable. Raman spectra confirmed the formation of calcium phosphate mineral with Raman peaks similar to apatite, while no mineral formation was detected in the dentine stored in cement-free or PBS-free media, or with GIC. It could therefore be concluded that Biodentine(TM) induced calcium phosphate mineral formation within the dentine matrix when stored in phosphate-rich media, which was selectively detectable using the tetracycline labelling.

  17. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag (United States)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin


    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  18. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)


    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  19. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza


    ácia do silicato de Ca foi inferior à de carbonato de Ca na melhoria das condições químicas do solo.The application of silicates to soils can result in increased soil cation exchange capacity (CEC, displace anions, especially H2PO4- (diacid phosphate, neutralize the pH and Al toxicity and, in general, increase the nutrient availability to plants. However, calcium silicates may be less efficient than calcium carbonates. To evaluate the effect of calcium carbonate substitution by calcium silicate on the soil chemical properties, especially on phosphorus availability, four experiments were conducted in an entirely randomized design with four replications, in a greenhouse. The treatments consisted of five levels (0, 25, 50, 75, and 100 % of calcium carbonate substitution by calcium silicate, with a 4:1 Ca:Mg stoichiometric and the same amount of CaO, enough to reach a 60 % base saturation. The treatments were applied to 4 dm³ samples of a sandy orthic Quartzarenic Neosol (Quartzpsament, a sandy loam dystrophic Red-Yellow Latosol (Oxisol, sandy clay loam dystrophic Red-Yellow Latosol (Oxisol and a clayey dystrophic Red Latosol (Oxisol; each soil represented one experiment. The pH values in H2O, P, phosphorus in the equilibrium solution (P-rem, K, Ca, Mg, Si, Al, H + Al, organic matter (OM, Cu, Mn, Zn and B, sum of bases (S, effective (t ant total (T CEC, base saturation (V and Al saturation (m were submitted to analysis of variance and simple regression models fitted as a function of CaCO3 substitution by CaSiO3 levels. It was observed that carbonate substitution by silicate promoted significant increases in the values of Si, Al, H + Al and m and reduction in the values of P-rem, pH, S, t and V. The values of Mehlich 1 P, K, Mg, OM, T, Mn, Cu, and B were not influenced significantly. A reduction in Zn availability was verified in the dystrophic orthic Quartzarenic Neosol only. Calcium silicate was less efficient than calcium carbonate in the improvement of soil chemical

  20. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)


    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  1. Differentiation inducement of calcium phosphate / calcium silicate / bismutite cement to dental pulp cells in vitro%新型复合盖髓材料对人牙髓细胞分化的体外诱导效果

    Institute of Scientific and Technical Information of China (English)

    沈晴昳; 陈芳萍; 刘昌胜; 孙皎


    Objective The aim of this study was to investigate the effects of new calcium phosphate/calcium silicate/bismutite (CPCSBi) cement on differentiation of human dental pulp cells.Methods Dissoluble dentin matrix components (DDMCs) were extracted from powdered sound,human dentine samples by either CPCSBi saturated solution,Ca(OH)2 saturated solution,or 10% EDTA,over a 14-day period.The effects of DDMCs extracts on dentin sialophosphoprotein (DSPP),osteocalcin (OCN) and TGF-β 1 gene expression in the dental pulp cells were analysed using semi-quantitative RT-PCR following 24 h of exposure.Results All the DDMCs extracts induced DSPP,OCN and TGF-β 1 gene expression in dental pulp cells.While the DDMCs extracted from dentin powder by CPCSBi demonstrated highest inducing effect on expression of DSPP and OCN in human pulp cells.Conclusion These results suggest that CPCSBi plays an important role in the differentiation of dental pulp cells to odontoblast like cells.%目的 研究新型盖髓材料磷酸钙/硅酸钙/泡铋矿复合水门汀(Calcium phosphate-calcium silicate-bismuth compound cement,CPCSBi)诱导牙髓细胞分化的作用.方法 分别采用CPCSBi、氢氧化钙(CH)饱和溶液和10%EDTA溶液,从人牙本质粉末中提取可溶性牙本质基质(DDMCs),通过半定量RT-PCR方法,分析不同材料所提取DDMCs对人牙髓细胞的涎磷蛋白(DSPP)、骨钙素(OCN)、转化生长因子-β1(TGF-β1)基因表达的影响.结果 不同材料提取的DDMCs都能提高体外培养人牙髓细胞DSPP、OCN和TGF-β1基因的表达,其中以CPCSBi溶液提取DDMCs的促进作用最明显.结论 CPCSBi对牙髓细胞分化具有促进作用.

  2. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance (United States)

    Zhu, Dongming


    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  3. Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Raji Viola Solomon


    Full Text Available Background: Class ll sandwich restorations are routinely performed where conventional Glass ionomer cement (GIC or Resin-modified GIC (RMGIC is used as a base or dentin substitute and a light curing composite resin restorative material is used as an enamel substitute. Various authors have evaluated the microleakage of composite resin restorations where glass ionomer cement has been used as a base in class II sandwich restorations, but a literature survey reveals limited studies on the microleakage analysis of similar restorations with biodentine as a dentin substitute, as an alternative to glass ionomer cement. The aim of this study is: To evaluate the marginal sealing efficacy of a new calcium-silicate-based material (Biodentine as a dentin substitute, at the cervical margins, in posterior class II sandwich restorations.To compare and evaluate the microleakage at the biodentine/composite interface with the microleakage at the resin-modified GIC/composite interface, in posterior class II open sandwich restorations. To compare the efficacy between a water-based etch and rinse adhesive (Scotch bond multipurpose and an acetone-based etch and rinse adhesive (Prime and bond NT, when bonding biodentine to the composite. To evaluate the enamel, dentin, and interfacial microleakage at the composite and biodentine/RMGIC interfaces. Materials and Methods: Fifty class II cavities were prepared on the mesial and distal surfaces of 25 extracted human maxillary third molars, which were randomly divided into five groups of ten cavities each: (G1 Biodentine group, (G2 Fuji II LC GIC group, (G3 Biodentine as a base + prime and bond NT + Tetric N-Ceram composite, (G4 Biodentine + scotchbond multi-purpose + Tetric N-Ceram composite, (G5 Fuji II LC as a base + prime and bond NT+ Tetric-N Ceram composite. The samples were then subjected to thermocycling, 2500× (5°C to 55°C, followed by the dye penetration test. Scores are given from 0 to 3 based on the depth of

  4. Comparative evaluation of calcium silicate-based dentin substitute (Biodentine®) and calcium hydroxide (pulpdent) in the formation of reactive dentin bridge in regenerative pulpotomy of vital primary teeth: Triple blind, randomized clinical trial (United States)

    Grewal, Navneet; Salhan, Rubica; Kaur, Nirapjeet; Patel, Hemal Bipin


    Background: Considering the biological concerns of calcium hydroxide (CH) as a pulpotomy agent, an alternative silicate based dentin substitute i.e. Biodentine (Ca3SiO5) was evaluated clinically and radiographically. Aims: To evaluate the effectiveness of dentin substitute (Biodentine) in regenerative pulpotomy of vital primary teeth that would giv a biological base to its use in forming reactive dentin bridge and overcoming the drawbacks of calcium hydroxide. Material and Methods: Randomised clinical trial on 40 bilateral carious primary molars in 20 participant children (aged 5-10 years) was carried out by same operator using Ca3SiO5(group-1) and CH (group-2) as vital pulpotomy agents. Blinded clinical and radiographic outcomes were observed at 3, 6 and 12 months interval. Results: Clinical outcomes of both protocols were analysed using Pearson's chi-square test applied at P < 0.05. Descriptive statistics were expressed as mean increase in dentin bridge formation in mms from two reference points in standardized radiographs using paired ‘t’- test at baseline and 12 months and found to be statistically significant (P < 0.05) in group-1 when compared with group-2. Conclusion: Group-1 revealed statistically favourable regenerative potential along with clinical success compared to group 2 thereby sharing both indications and mode of action with CH, but without its drawbacks of physical and clinical properties. PMID:27994411

  5. Comparative evaluation of calcium silicate-based dentin substitute (Biodentine® and calcium hydroxide (pulpdent in the formation of reactive dentin bridge in regenerative pulpotomy of vital primary teeth: Triple blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Navneet Grewal


    Full Text Available Background: Considering the biological concerns of calcium hydroxide (CH as a pulpotomy agent, an alternative silicate based dentin substitute i.e. Biodentine (Ca3SiO5 was evaluated clinically and radiographically. Aims: To evaluate the effectiveness of dentin substitute (Biodentine in regenerative pulpotomy of vital primary teeth that would giv a biological base to its use in forming reactive dentin bridge and overcoming the drawbacks of calcium hydroxide. Material and Methods: Randomised clinical trial on 40 bilateral carious primary molars in 20 participant children (aged 5-10 years was carried out by same operator using Ca3SiO5(group-1 and CH (group-2 as vital pulpotomy agents. Blinded clinical and radiographic outcomes were observed at 3, 6 and 12 months interval. Results: Clinical outcomes of both protocols were analysed using Pearson's chi-square test applied at P < 0.05. Descriptive statistics were expressed as mean increase in dentin bridge formation in mms from two reference points in standardized radiographs using paired 't'- test at baseline and 12 months and found to be statistically significant (P < 0.05 in group-1 when compared with group-2. Conclusion: Group-1 revealed statistically favourable regenerative potential along with clinical success compared to group 2 thereby sharing both indications and mode of action with CH, but without its drawbacks of physical and clinical properties.

  6. Compositional Evolution of Calcium Silicate Hydrate (C-S-H) Structures by Total X-Ray Scattering

    KAUST Repository

    Soyer-Uzun, Sezen


    High-energy X-ray diffraction was employed to study the structural characteristics of a set of C-S-H samples with 0.6 ≤ C/S a;circ 1.75. It has been observed that Si is tetrahedrally coordinated to O for all samples irrespective of chemical composition and the Ca-O coordination number gradually decreases from ∼7 to ∼6 with increasing C/S ratio. This suggests that the C-S-H structure evolves from a tobermorite-like structure into a jennite-like structure as a function of increasing C/S ratio as the interlayer space decreases from ∼1.3 to ∼1 nm. Evolution of these short- and medium-range order structural characteristics in the C-S-H system is associated with the alteration of the Ca-O layers and silicate depolymerization with increasing C/S. © 2011 The American Ceramic Society.

  7. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro. (United States)

    Huang, Ming-Hsien; Kao, Chia-Tze; Chen, Yi-Wen; Hsu, Tuan-Ti; Shieh, Den-En; Huang, Tsui-Hsien; Shie, Ming-You


    This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.

  8. Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: a laser-induced luminescence spectroscopy and batch sorption study. (United States)

    Tits, Jan; Geipel, Gerhard; Macé, Nathalie; Eilzer, Manuela; Wieland, Erich


    Batch sorption experiments and time-resolved luminescence spectroscopy investigations were carried out to study the U(VI) speciation in calcium silicate hydrates for varying chemical conditions representing both fresh and altered cementitious environments. U(VI) uptake was found to be fast and sorption distribution ratios (R(d) values) were very high indicating strong uptake by the C-S-H phases. In addition a strong dependence of pH and solid composition (Ca:Si mol ratio) was observed. U(VI) luminescence spectroscopy investigations showed that the U(VI) solid speciation continuously changed over a period up to 6 months in contrast to the fast sorption kinetics observed in the batch sorption studies. Decay profile analysis combined with factor analysis of series of spectra of U(VI)-C-S-H suspensions, recorded with increasing delay times, revealed the presence of four luminescent U(VI) species in C-S-H suspensions, in agreement with the batch sorption data. Along with the aqueous UO(2)(OH)(4)(2-) species and a Ca-uranate precipitate, two different sorbed species were identified which are either bound to silanol groups on the surface or incorporated in the interlayer of the C-S-H structure.

  9. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. (United States)

    Liu, Shen; Jin, Fangchun; Lin, Kaili; Lu, Jianxi; Sun, Jiao; Chang, Jiang; Dai, Kerong; Fan, Cunyi


    Porous β-tricalcium phosphate(TCP)/calcium silicate(CS) composite bioceramics with different weight proportions were prepared to investigate the in vitro effects of CS on the physiochemical properties of TCP and the in vivo effects of CS on the degradability, osteogenesis and bioactivity of TCP. The physiochemical results showed that the addition of CS to porous TCP resulted in a looser and rougher surface and a lower solid density, compressive strength and Young's modulus and a lower pH value as compared to pure CS without any chemical interaction between the TCP and the CS. The in vivo study showed that the material degradation of porous TCP/CS composite bioceramics was slower than that of pure CS, although the osteogenesis, degradability and bioactivity were significantly increased in the long term. Thereafter, the introduction of CS into porous TCP bioceramics is an effective way to prepare bioactive bone grafting scaffolds for clinical use and to control properties such as in vivo degradability and osteoinduction of TCP.

  10. Hinokitiol-Loaded Mesoporous Calcium Silicate Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 in Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Fang Shen


    Full Text Available Hinokitiol is a tropolone-related compound found in heartwood cupressaceous plants. Hinokitiol slows the growth of a variety of cancers through inhibition of cell proliferation. The low water solubility of hinokitiol leads to less bioavailability. This has been highlighted as a major limiting factor. In this study, mesoporous calcium silicate (MCS nanoparticles, both pure and hinokitiol-loaded, were synthesized and their effects on A549 cells were analyzed. The results indicate that Hino-MCS nanoparticles induce apoptosis in higher concentration loads (>12.5 μg/mL for A549 cells. Hino-MCS nanoparticles suppress gene and protein expression levels of multiple drug resistance protein 1 (MDR1. In addition, both the activity and the expression levels of caspase-3/-9 were measured in Hino-MCS nanoparticle-treated A549 cells. The Hino-MCS nanoparticles-triggered apoptosis was blocked by inhibitors of pan-caspase, caspase-3/-9, and antioxidant agents (N-acetylcysteine; NAC. The Hino-MCS nanoparticles enhance reactive oxygen species production and the protein expression levels of caspase-3/-9. Our data suggest that Hino-MCS nanoparticles trigger an intrinsic apoptotic pathway through regulating the function of MDR1 and the production of reactive oxygen species in A549 cells. Therefore, we believe that Hino-MCS nanoparticles may be efficacious in the treatment of drug-resistant human lung cancer in the future.

  11. Clinical and radiographic comparison of indirect pulp treatment using light-cured calcium silicate and mineral trioxide aggregate in primary molars: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Navya P Menon


    Full Text Available Aim: To clinically and radiographically evaluate the reparative dentin formation in indirect pulp treatment (IPT using mineral trioxide aggregate (MTA and light cured calcium silicate (TheraCal in primary molars over a period of 6 months. Materials and Methods: A clinical trial on IPT on 43 primary molars in 21 patients between the age of 4–7 years, divided into two groups: 22 teeth in MTA group and 21 in TheraCal group. Measurement of the variation in dentin thickness was done on the digitalized radiograph at baseline, 3 months and 6 months using CorelDRAW X3 software. Results: Statistical analysis using an independent t-test for intragroup and intergroup comparison showed a significant increase in dentin thickness in both the MTA and TheraCal group (intragroup comparison [P 0.05. Conclusion: Clinically and radiographically, both MTA and TheraCal are good IPT materials. The better handling characteristics and comparable reparative dentin-forming ability of TheraCal make this material an alternative to MTA in pediatric restorative procedures.

  12. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays; Interaction des silicates de calcium hydrates, principaux constituants du ciment, avec les chlorures d'alcalins. Analogie avec les argiles

    Energy Technology Data Exchange (ETDEWEB)

    Viallis-Terrisse, H


    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  13. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)


    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  14. Interfacial Kinetics of High-Al-Containing Ultra-Lightweight Steels with Calcium Silicate-Based Molten Oxides at High Temperature (United States)

    Kim, Gi Hyun; Sohn, Il


    The kinetics of the high-temperature reaction between high-Al- and -Mn-containing steels and synthesized molten calcium silicate-based fluxes from 1623 K to 1643 K (1350 °C to 1370 °C) was studied. Cylindrical steel rods were rotated in the molten fluxes for 300 to 1200 seconds at various temperatures below the melting point of the steels. The rods were connected to a rheometer, and the initial reaction rates were estimated from the torque variations. The dissolution of the steel into the molten slag was correlated to the variation in torque. The kinetics of the reaction between the rods and the slag estimated from the torque and subsequently from the viscosity were confirmed from the mass balance and from the variation in the chemical compositions of the rods and the molten slags, respectively. The liquid-phase mass transfer coefficient of Al2O3 was calculated to be 1.14 × 10-2 cm/s at 1623 K (1350 °C) and 1.52 × 10-2 cm/s at 1633 K (1360 °C). The kinetics calculated assuming liquid-phase mass transfer control was observed to be similar to the aforementioned kinetics determined from the dynamic viscosity variations. On the basis of dimensionless analysis of the Sherwood number (Sh = 0.05·Re0.65Sc0.31), liquid-phase mass transfer from the metal/flux interface was observed to be the rate-controlling step.

  15. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.


    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO 2. This observation suggests that CO 2 reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. © 2011 Springer Science+Business Media, LLC.

  16. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. (United States)

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan


    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.

  17. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kaili; Chang Jiang; Shen Ruxiang, E-mail: [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)


    The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/Calcium silicate (beta-Ca{sub 3}(PO{sub 4}){sub 2}/CaSiO{sub 3}, beta-TCP/CS) composite bioceramics was investigated. beta-TCP/CS composite powders with a weight ratio of 50:50 were prepared by three different methods: mechanical milling method (TW-A), two-step chemical precipitation method (TW-B) and in situ chemical co-precipitation method (TW-C), and then the three composite powders were uniaxially compacted at 30 MPa, followed by cold isostatic pressing into rectangular-prism-shaped specimens under a pressure of 200 MPa for 15 min, and then sintered at 1150 deg. C for 5 h. The TW-B powders with less agglomerative morphologies and uniform nano-size particles attained 96.14% relative density (RD). A uniform microstructure with about 120 nm grains was observed. Whereas, the samples obtained from TW-A and TW-C powders only reached a RD of 63.08% and 78.86%, respectively. The bending strength of the samples fabricated from TW-B reached 125 MPa, which was more than 3.7 and 1.5 times higher as compared with that of samples obtained from TW-A and TW-C powders, respectively. Furthermore, the degradability of the samples fabricated from TW-B powders was obviously lower than that of the samples fabricated from TW-A and TW-C powders.

  18. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin

    Directory of Open Access Journals (Sweden)

    Fan W


    Full Text Available Wei Fan,1,* Daming Wu,1,* Franklin R Tay,2 Tengjiao Ma,1 Yujie Wu,1 Bing Fan1 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China; 2Department of Endodontics, Georgia Regents University, Augusta, Georgia, USA *These authors contributed equally to this work Abstract: Mesoporous calcium-silicate nanoparticles (MCSNs are advanced biomaterials for controlled drug delivery and mineralization induction. Nanosilver-incorporated MCSNs (Ag-MCSNs were prepared in the present study using both the adsorption and template methods. Both versions of Ag-MCSNs showed characteristic morphology of mesoporous materials and exhibited sustained release of ions over time. In antibacterial testing against planktonic Enterococcus faecalis, Ag-MCSNs showed significantly better antibacterial effects when compared with MCSNs (P<0.05. The Ag-MCSNs aggregated on the dentin surface of root canal walls and infiltrated into dentinal tubules after ultrasound activation, significantly inhibiting the adherence and colonization of E. faecalis on dentin (P<0.05. Despite this, Ag-MCSNs with templated nanosilver showed much lower cytotoxicity than Ag-MCSNs with adsorbed nanosilver (P<0.05. The results of the present study indicated that nanosilver could be incorporated into MCSNs using the template method. The templated nanosilver could release silver ions and inhibit the growth and colonization of E. faecalis both in the planktonic form and as biofilms on dentin surfaces as absorbed nanosilver. Templated Ag-MCSNs may be developed into a new intracanal disinfectant for root canal disinfection due to their antibacterial ability and low cytotoxicity, and as controlled release devices for other bioactive molecules to produce multifunctional biomaterials. Keywords: antibacterial effect, mesoporosity

  19. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC). (United States)

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil


    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  20. Obtaining calcium silicates by using solid residues as precursors. Influence of water in the process of mixing reagents; Obtencin de silicatos de calcio empleando como precursores residuos solidos. Influencia del mezclado de reactivos en fase seca o fase humeda

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sese, M.; Eliche-Quesada, D.; Corpas-Iglesias, F. A.


    The suitability of re-using residues marble, remaining from cutting marble, as a source of calcium-oxide, as well as the resultant ashes from the combustion of the wastes generated in the process of manufacturing boards from derivates of wood, as a source of silica, as raw material for the production of calcium silicate products has been determined. First of all, the influence of water has been studied in the initial phase of mixing residues. Marble and ashes have been mixed in molar relation CaO:SiO{sub 2} of 1:1 using two different ways: using a planetary ball mill (while in solid state) or agitating at 90 degree centigrade (2 h) using a 60 wt% of water (while in humid state). Later, both mixtures were sintered at 1100 degree centigrade (24 h). In order to use the obtained calcium-silicates as ceramic insulating thermal materials, the samples were compressed at 15 Tm obtaining bricks from which the technological properties have been studied. The ceramic materials obtained from mixing the residues in dry phase, as well as those obtained in the wet phase, can be used as thermal insulators, showing values of conductivity of 0.18 and 0.12 w/m{sup 2}K, with an elevated resistance to compressive strength. (Author) 14 refs.

  1. 硅肥对蔗地土壤性状、甘蔗叶片营养及产量的影响%Effect of calcium silicate fertilizer on soil characteristics,sugarcane nutrients and its yield parameters

    Institute of Scientific and Technical Information of China (English)

    黄海荣; 徐林; BOKHTIAR S M; MANOJ Kumar Srivastav; 李杨瑞; 杨丽涛


    [Objective]A green house experiment was conducted to elucidate the effect of calcium silicate fertilizer onsoil characteristics,growth and nutrition and yield parameters of sugarcane.[Method]A soil pot experiment was conducted using sugarcane variety ROC22.The treatments included:normal fertilization(26 g N + 1.76 g P +20 g K/pot:T0)and normal fertilization + different concentration of calcium silicate(20,40,60,80,120 and 150 g/pot in T1-T6,respectively).[Result]The results showed that application of calcium silicate affected the content of N,P,Ca,Mg and Si in TVD leaf tissues.Use of 120 g/pot calcium silicate resulted in 92% increase in Si content compared to control.It significantly influenced the physico-chemical properties of soil.Soil organic matter and available P content decreased significantly,the available S increased by 137% in soils treated with 120 g/pot calcium silicate fertilizer.The exchangeable Ca and Mg increased by 117.9 and 86.0%,respectively at 150 g/pot Si.The pH of soil was found to be higher than control.Si significantly affected the sugarcane plant height and cane yield,and showed almost increasing trend of dry matter and sugar yield with increasing of its concentration.[Conclusion]The positive effects of calcium silicate fertilizer have been observed on general sugarcane growth and development and soil' s physico-chemical properties.Its supplementation in normal fertilizer may be recommended for sustaining the sugarcane productivity.%[目的]在大棚条件下进行甘蔗硅肥施用量研究,阐明硅肥对甘蔗生长、营养以及土壤特性等的影响.[方法]以新台糖22号为试验材料,以每桶26 g N+1.76 g P+20 g K为对照,设置T1~T6(20、40、60、80、120and 150g/桶)6个不同硅肥用量,研究不同施硅水平对甘蔗的影响.[结果]硅肥处理的甘蔗+1叶N、P、Ca、Mg、Si含量较对照有一定提高,其中120g/桶处理的甘蔗+1叶含硅量比对照增加92%.不同施硅水平对甘蔗土壤理化性

  2. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Tits, Jan; Laube, Andreas; Wieland, Erich [Paul Scherrer Institute (PSI), Villigen (Switzerland). Lab. for Waste Management; Gaona, Xavier [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal


    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO{sub 2}) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO{sub 2} was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO{sub 2}R{sub d} values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R{sub d} values for the three redox states are also identical at pH = 10. While the R{sub d} values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R{sub d} values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO{sub 2} whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R{sub d} values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic

  3. The effect of fluoride and silicate ions on the coprecipitation of gadolinium with calcium in phosphoric and sulpho-phosphoric media

    Energy Technology Data Exchange (ETDEWEB)

    Bouhlassa, S.; Salhamen, F. [Univ. Mohammed V - Agdal, Rabat (Morocco). Lab. de Radiochimie


    This work was carried out with the aim to establish the effect of some impurities on the coprecipitation of gadolinium with calcium phosphate and gypsum. The tests were performed using the radioactive tracer technique to monitor the fate of gadolinium in various phosphoric and sulpho-phosphoric media containing fluoride and silicate ions as impurities. In 10{sup -2} to 10{sup -1} M NH{sub 4}H{sub 2}PO{sub 4} solution, the Gd(III) at a concentration of 10{sup -4} M is almost entirely precipitated as amorphous phosphate. However, the presence of H{sub 2}SO{sub 4} at C{sub H{sub 3SO{sub 4}}} {>=} 0.1 M, reduces the coprecipitation to less than 8 at. %, on average. The fluoride ions in solution, even at C{sub HF} {<=} 0.1 M, induce a reduction of coprecipitation of 10 to 30% according to HF concentration. In the media containing 10{sup -2} to 10{sup -1} M NH{sub 4}H{sub 2}PO{sub 4} and 10{sup -1} M H{sub 2}SO{sub 4}, the effect of HF is almost negligible in the absence of Si(IV); nevertheless, the presence of fluorosilicate in solution may contribute to the enhancement of the coprecipitation of the REE. The sulphuric acid (0.1 M) in phosphoric media (0.74 {<=} C{sub H{sub 3PO{sub 4}}} {<=} 4.44 M), leads to a significant coprecipitation of the REE (1.3 {+-} 0.2 {<=}D{sub Gd}{<=} 3.1 {+-} 0.5), whilst the addition of HF (0.1 M) to these media enhances the solubility of the REE (left angle D{sub Gd} right angle = 0.06 {+-} 0.01). XRD, IR spectroscopy and elemental analyses of the solid phases in conjunction with the variation of the distribution coefficient D indicate that the coprecipitation of the REE is likely controlled by heterovalent substitution of REE in gypsum and its precipitation as phosphate or fluorosilicate. (orig.)

  4. Study on properties of nature rubber filled by active calcium silicate%活性硅酸钙填充天然橡胶复合材料性能的研究

    Institute of Scientific and Technical Information of China (English)

    张士龙; 刘钦甫; 丁述理; 梁鹏; 李晓光


    以无定形活性水合硅酸钙、炭黑、白炭黑为填料,使用硅烷偶联剂对其改性,采用熔融共混法制备了天然橡胶复合材料,并考察了改性剂种类、改性剂添加量、硅酸钙添加量、硅酸钙与炭黑、白炭黑的配合比例对天然橡胶复合材料硫化性能、力学性能的影响.结果表明:与炭黑、白炭黑传统填料相比,硅酸钙粉体具有降低胶料扭矩、缩短硫化时间的作用;填充硅酸钙后,天然橡胶的拉伸及撕裂强度有不同程度降低,但在填充50份4%S基改性的硅酸钙后,复合材料的100%、300%定伸强度与50份炭黑填充时相当;硅酸钙与白炭黑配合填充时,复合材料的拉伸强度和撕裂强度在比例为1∶3、1∶1时各自达到最大值11.31 MPa、23.93 N/mm,优于白炭黑单独填充.%A series of nature rubber ( NR ) composites based on carbon black, silica, and active calcium silicate modified by silane agents were prepared by melt blending. The effect of modification agent types and quantity, powder supply rate, filler combination on the mechanical properties of the rubber composites were researched. The vulcanizing torque and curing time were obviously reduced compared with rubbers with silica or carbon black. The tensile strength and tear strength of rubber with active calcium silicate decreased compared with the pure rubber. But the tensile strength at 100% and 300% of NR composites filled by 50 portion active calcium silicate equivalent to composites filled by 50 portion carbon black. The tensile strength and tear strength of composites respectively reached the maximum value 11. 31 MPa and 23. 93 N/mm when the combination proportion of active calcium silicate and silica are 1:3 and 1:1, which were superior to composites filled by silica alone.


    Directory of Open Access Journals (Sweden)

    V. N. Yaglov


    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  6. Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce{sup 3+}, Tb{sup 3+}, and Mn{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mickens, Matthew A. [Energy and Environmental Systems, North Carolina A and T State University, Greensboro, NC 27411 (United States); Assefa, Zerihun, E-mail: [Department of Chemistry, North Carolina A and T State University, Greensboro, NC 27411 (United States)


    This study reports the sol–gel synthesis of sodium calcium multiphase silicate (SCMS) nanophosphors. X-ray powder diffraction indicated the crystallization of devitrite (Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}), wollastonite-2M (CaSiO{sub 3}), and cristobalite (SiO{sub 2}) phases that consistently occurred together upon repeated syntheses. The multiphase silicate system was used as a host matrix for varied concentrations of Ce{sup 3+}, Tb{sup 3+}, and Mn{sup 2+} dopant ions which resulted in tunable photoluminescence. A broad violet/UV emission band of Ce{sup 3+} (350–425 nm) combined with blue-green emissions of Tb{sup 3+} (488 and 545 nm) and a yellow-orange emission of Mn{sup 2+} (560 nm) resulted in the observance of white light (x=0.31, y=0.32, T{sub C}=6624 K) under midwave UV excitation (300–340 nm). Energy transfer from Ce{sup 3+}→Tb{sup 3+} and Ce{sup 3+}→Mn{sup 2+} was confirmed by steady state and time-resolved emission spectra, lifetime, and quantum yield measurements. The structural properties, morphology, and elemental composition of the nanophosphors were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). -- Highlights: • White light-emitting multiphase silicate nanophosphors were prepared for the first time. • Multiple crystalline silicate phases were reproduced consistently by repeated syntheses. • Energy transfer from Ce{sup 3+}→Tb{sup 3+} and Ce{sup 3+}→Mn{sup 2+} was confirmed by PL, lifetime, and QY measurements.

  7. Zinc-modified calcium silicate bioceramics coating and osteointegration%锌修饰硅酸钙陶瓷涂层与骨整合

    Institute of Scientific and Technical Information of China (English)

    徐立璋; 余将明; 叶晓健; 李恺; 郑学斌; 唐峰; 许鹏; 席焱海; 许国华; 侯春林


    BACKGROUND:Zinc-modified calcium silicate (CaSiO3) bioceramics coating on the titanium surface prepared in preliminary experiments has good chemical stability and antibacterial property. OBJECTIVE:To observe the effects of zinc-modified CaSiO3 bioceramics coating on osteointegration. METHODS:MC3T3-E1 cels were respectively cultured on the titanium with zinc-modified CaSiO3 bioceramics coating (experiment group), titanium with CaSiO3 bioceramics coating (control group) and pure titanium (blank control group). Then, cel adhesion, proliferation, calcification rate and the expression of type I colagen and osteocalcin were detected. The implant materials mentioned above were respectively inserted into the femurs of New Zealand white rabbits, and after 1.5 months, the osteoproliferation and osteointegration between the implants and the host were tested. RESULTS AND CONCLUSION:In vitro experiment: The number of adhesive cels at 12 hours after co-culture was significantly increased in the experimental group compared with the control group and blank control group (P < 0.05). At 14 days after co-culture, cel proliferation ability and ability of calcium nodule formation in the experiment group were significantly better than those in the other groups (P < 0.05). At 21 days after co-culture, there was no significant difference in the expression of type I colagen, but the expression of osteocalcin in the experiment group was higher than that in the control group and blank control group (P < 0.05).In vivo experiment: In the experiment group, a large amount of bone substances were detected, the coating materials directly contacted with the bone interface, new bone tissues and little fibrous tissues were observed at the interface. In contrast, there was a small amount of bone hyperplasia in the control group and almost no bone hyperplase in the blank control group. Moreover, a small part of the implant directly contacted with the bone interface and the most part was separated from

  8. Dealkalization of calcium silicate slag and study of using it as cement admixture%硅钙渣脱碱处理及作水泥混合材的研究

    Institute of Scientific and Technical Information of China (English)

    刘江; 张建波; 孙俊民; 王宏霞; 叶家元; 史迪


    Orthogonal experiment method is applied to research on dealkalization of calcium silicate slag, and properties of non-dealkalizated and dealkalizated calcium slag cement have been analyzed. Effects of temperature, holding time, content of lime milk and washing times were discussed, the results show that the optimum dealkalization combination of the four factors is as follows:content of lime milk is 10%,temperature 85 X. and holding time 3 hours,washing twice,then an alkali content of 0.83% will be acquired; compressive strength of non梔ealkalizated calcium slag cement is higher than dealkalizated calcium slag cement during the early hydration, the advantages of dealkalizated calcium slag cement will gradually appear as time goes and will be more significantly as calcium slag content increase; Microscopic analysis shows that non-dealkalizated calcium slag cement generates large amount of C-S-H gel during early hydration and its hydration products are more compact than dealkalizated calcium slag cement, little difference of the compactness has been found between them when the hydration time is 28 days.%采用正交试验法对硅钙渣进行脱碱处理,对脱碱前后的硅钙渣水泥性能进行了研究.通过调整温度、保温时间、石灰乳掺量和水洗次数,得出最佳脱碱组合为:石灰乳掺量10%,温度85℃,保温时间3h,水洗2次,处理后碱含量为0.83%:强度试验结果表明,水化早期未脱碱硅钙渣水泥抗压强度要高于脱碱硅钙渣水泥,但随着龄期逐渐增长,脱碱硅钙渣水泥优势逐渐显现,掺量越大优势越明显;微观形貌分析表明,未脱碱硅钙渣水泥水化早期生成大量C-S-H凝胶,水化产物较脱碱硅钙渣水泥更致密,水化28d时两者水化产物的致密性相当.

  9. Calcium and potassium silicates and the growth of Eucalyptus grandis seedlings Aplicação de silicatos de cálcio e de potássio e o crescimento de mudas de Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Itamar Antonio Bognola


    Full Text Available

    The use of silicate is a practice that has been frequently adopted in annual crops, although few studies have been conducted in order to verify its efficiency in forest tree species. The main objective of this research was to evaluate the effect of calcium and potassium silicates in the growth of seedlings of Eucalyptus grandis. The experiment was conducted in a greenhouse, in Alambari county, State of São Paulo. A completely randomized experimental design was adopted, with eight treatments, three replications and 25 plants per plot, maintained at the field capacity moisture level. Seedlings were planted in plastic tubes using local substrate, basic fertilization and silicates. Diameter, height and fresh and dry biomass of the seedlings were determined 150 days after silicates treatments were applied. The use of silicates either in the substrate or through foliar application, in the production of eucalypt seedlings has proven to be inadequate when the substrate presents a balanced basic composition in terms of nutrients and pH.

    doi: 10.4336/2011.pfb.31.66.83

    O uso de silicato é uma prática que vem sendo adotada com frequência em culturas anuais, muito embora poucos trabalhos tenham sido realizados com intuito de verificar sua eficiência em espécies florestais arbóreas. O objetivo principal desta pesquisa foi avaliar o efeito da aplicação de silicatos de cálcio e de potássio no crescimento de mudas de Eucalyptus grandis. O experimento foi conduzido em casa de vegetação, no Município de Alambari, SP. O delineamento usado foi inteiramente ao acaso, com oito tratamentos, três repetições e 25 plantas por parcela, sendo mantidas na umidade de capacidade de campo. As mudas foram plantadas em tubetes de plástico, utilizando substrato local, com adubação básica e silicatos. Diâmetro de colo, altura e biomassa verde e seca das mudas foram determinados 150 dias após a

  10. Avaliação de cultivares de alface adubadas com silicato de cálcio em casa-de-vegetação Evaluation of lettuce cultivars fertilized with calcium silicate in greenhouse

    Directory of Open Access Journals (Sweden)

    Regina Lúcia Félix Ferreira


    Full Text Available O experimento foi conduzido no Departamento de Ciência do Solo da Universidade Federal de Lavras - UFLA, no período de junho a agosto de 2002. Objetivou-se avaliar a produtividade, o estado nutricional e a qualidade (classe de tamanho de cultivares de alface cultivadas com doses de silicato de cálcio em vasos sob casa-de-vegetação. O delineamento experimental foi em blocos casualizados, com quatro repetições, com 1 planta/vaso, em esquema fatorial 3 x 4 + 3, sendo três cultivares de alface (Raider, Regina e Vera e quatro doses de silicato de cálcio (0, 410, 1,000 e 2,000 mg dm-3; os tratamentos adicionais foram compostos pela aplicação de 820 mg dm-3 de carbonato de cálcio, para as três cultivares. O estado nutricional das plantas de alface foi avaliado pelo Sistema Integrado de Diagnose e Recomendação (DRIS. A aplicação da fonte silicato de cálcio não aumentou o crescimento das plantas e não aumentou o teor dos nutrientes nas plantas de alface, mas melhorou a nutrição das plantas para Si e aumentou a porcentagem de plantas sadias. A aplicação também aumentou a concentração de Mn, devido ao alto conteúdo de Mn no fertilizante aplicado (Silifértil®. As três variedades de alface comportaram-se como plantas não acumuladoras de Si.The experiment was carried out at the Department of Soil Sciences of the Universidade Federal de Lavras - UFLA, from June to August 2002, with the objective to evaluate the productivity, the nutritional state and the quality (size class of lettuce cultivars grown with calcium silicate in greenhouse. The experimental design was disposed in blocks with four replicates, in factorial arrangement with additional treatments: 3 x 4 +3, composed by three lettuce cultivars: Raider (group crisphead lettuce; Regina (group butterhead lettuce and Vera (group looseleaf lettuce and four calcium silicate rates (0, 410, 1.000 and 2.000 mg dm-3, additional treatments were composed of the application of

  11. Characterization of silicates and calcium carbonates applied to high-dose dosimetry; Caracterizacao de silicatos e carbonatos de calcio aplicados a dosimetria de doses altas

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Gustavo Barreto


    The predominant isomorphous form in the biominerals studied in this work (oyster shell, coral, mother of pearl and shell) was aragonite. The appearance of the calcite phase occurred at 500 deg C at a heating rate of 10 deg {sup C}/s for all samples except for the coral sample, which was 400 deg C, independent of the heating rate. The most abundant element in the biominerals samples was Ca in the CaO form, and in the silicates (tremolite, diopside and rhodonite) Si in the SiO form. The most common trace element observed in the biominerals samples was Fe. The analyses of electron paramagnetic resonance showed lines of Mn{sup 2+} in the coral and mother-of-pearl samples before irradiation. In the case of the irradiated samples, the defects found were CO{sub 2}{sup -}, CO{sub 3}{sup 3-}, CO{sub 3}{sup -} and SO{sub 2}{sup -}, in the g range between 2.0010 and 2.0062. In the analyses by optical absorption of biominerals, transitions due to the presence of Mn in the samples were found. A thermoluminescent (TL) peak at approximately 140 deg C was found for the biominerals and at 180 deg C for silicates, which intensity depends directly on the dose. For samples exposed to different types of radiation, the TL peak occurred at lower temperatures. From the dose-response curves obtained for these materials, it was possible to determine a linear range for which their application in high dose dosimetry becomes possible. Taking into account the radiation type, among biominerals and silicates, the lowest detectable dose (40mGy) to gamma radiation was achieved for oyster shell samples using the measuring technique of optically stimulated luminescence (OSL). Using beta radiation, for diopside and tremolite samples the lowest detectable dose of 60mGy was obtained. For all samples, using the TL, OSL and thermally stimulated exoelectron emission (TSEE) techniques in alpha, beta and gamma radiation beans a good response reproducibility was obtained. Therefore, the samples characterized

  12. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite (United States)


    material chemistry structure are studied following a molecular dynamics (MD) computational modeling methodology. Calcium ions are replaced with... chemistry structure. Conference Name: 1st Pan-American Conference on Computational Mechanics Conference Date: April 27, 2015 1st Pan-American Congress on...MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is

  13. Alleviating negative effects of irrigation-water salinity on growth and vase life of gerbera by foliar spray of calcium chloride and potassium silicate


    A. Mohammadi Torkashvand


    The required water for greenhouses in Kishestan, Soume-e-Sara town, Guilan province, Iran, is mainly provided by underground resources that have inappropriate quality. One way to reduce the impact of salinity an plant growth is proper nutrition. This greenhouse research was conducted to evaluate the effect of water salinity and foliar spray of calcium (Ca) and silicon (Si) on growth and vase life of gerbera in a factorial experiment based on compeletly randomized design with two factors. The ...

  14. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang


    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  15. Alleviating negative effects of irrigation-water salinity on growth and vase life of gerbera by foliar spray of calcium chloride and potassium silicate

    Directory of Open Access Journals (Sweden)

    A. Mohammadi Torkashvand


    Full Text Available The required water for greenhouses in Kishestan, Soume-e-Sara town, Guilan province, Iran, is mainly provided by underground resources that have inappropriate quality. One way to reduce the impact of salinity an plant growth is proper nutrition. This greenhouse research was conducted to evaluate the effect of water salinity and foliar spray of calcium (Ca and silicon (Si on growth and vase life of gerbera in a factorial experiment based on compeletly randomized design with two factors. The first factor was salinity of irrigation water at two levels (0 and 1.5 dS/m and the second factor was foliar spray at seven levels (without spray, twice Ca spray, four times Ca spray, two times Ca spray + once Si spray, twice Ca spray + twice Si spray, four times Ca spray + once Si spray, and four times Ca spray + twice Si spray, each with three replications. Results showed that four times Ca foliar spray led to an increase in stem hight, stem and neck diameter, postharvest life and Ca concentration of shoots. In all spray treatments, number of flowers in zero salinity was more than 1.5 dS/m treatments. In general, in case of using low-quality water (electrical conductivity of 1.5 dS/m, the effects of salinity on dry and fresh weights of gerbera plant and vase life of its flowers can be reduced by foliar application of Ca and Si. Since inappropriate water quality in Rasht Greenhouse Complex, Soume-e-Sara town, is one of the main problems of the farmers, especially in growing the ornamental plants, effects of salinity on plant growth could be alleviated with foliar spray of nutrients, especially Ca and Si. In this respect, four times spray of Ca and also twice spray of Ca + twice spray of Si are recommended.

  16. Influence of silicate anions structure on desilication in silicate-bearing sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 张闻; 齐天贵; 彭志宏; 周秋生; 李小斌


    The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate (solution-SS) is much greater than that in the solution by the addition of green liquor (solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.

  17. Behavior of calcium silicate in leaching process

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 李小斌; 彭志宏; 周秋生


    Based on the thermodynamic calculation, the mole ratio of CaO to SiO2, temperature and A/S of bauxitehave a profound influence on the mole ratio of 2CaO @ SiO2 to CaO @ SiO2 in sinter. CaO @ SiO2 and β-2CaO @ SiO2appear stable in caustic solution but unstable in soda solution, and CaO @ SiO2 is more stable than β-2CaO @ SiO2 un-der the same leaching condition. Compared with the conventional sinter, the rate of alumina extraction of the newsinter is large and the secondary reaction is restricted in the leaching, which might be mainly due to the more contentof CaO @ SiO2 in sinter and better stability of CaO @ SiO2 in leaching.

  18. Preparation of calcium silicate?chitosan polymer and the adsorptive removal of heavy metals in wastewater%硅酸钙?壳聚糖聚合物制备及其对重金属废水的吸附特性

    Institute of Scientific and Technical Information of China (English)

    吴亚琪; 徐畅; 赵越; 严群


    A solution blending method was adopted to prepare calcium silicate?chitosan polymer in this study, and FT?IR and XRD were used to characterize the polymer adsorbent. In addition, a preliminary study was carried on the adsorbent abilities of chitosan, calcium silicate and calcium silicate?chitosan polymer for heavy metal ions in wastewater. The characterization indicated that crystal structure of the polymer changed and crystallinity decreased during the synthesis process. Adsorbent ability of the polymer was the highest among the three adsorbents and the maximum adsorbent ability for Ni2+, Cu2+, Pb2+, Zn2+and Cr3+reached 167.01, 192.30, 232.47, 174.71 and 162.33 mg·g-1 , respectively. Moreover, it was noteworthy that calcium silicate?chitosan polymer showed a stronger acid resistance for removal of heavy metal ions in wastewater.%使用溶液共混法制备出硅酸钙?壳聚糖聚合物,同时采用FT?IR、XRD等方法对制备的硅酸钙?壳聚糖聚合物进行表征,并分别对壳聚糖、硅酸钙、硅酸钙?壳聚糖聚合物吸附去除重金属废水的特性进行了初步研究.结果表明,硅酸钙?壳聚糖聚合物在制备过程中晶型发生变化,结晶度降低;硅酸钙?壳聚糖聚合物对各重金属离子的吸附能力最强,其对Ni2+、Cu2+、Pb2+、Zn2+、Cr3+的最大吸附量分别为167.01、192.30、232.47、174.71、162.33 mg·g-1;重要的是,硅酸钙?壳聚糖聚合物可在酸性环境下更有效吸附去除废水中重金属离子.

  19. Determination of reactivity rates of silicate particle-size fractions


    Angélica Cristina Fernandes Deus; Leonardo Theodoro Büll; Juliano Corulli Corrêa; Roberto Lyra Villas Boas


    The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicat...

  20. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich


    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  1. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity

    NARCIS (Netherlands)

    Huan, Z.; Chang, J.; Zhou, J.


    A low-temperature fabrication method for highly porous bioactive scaffolds was developed. The two-step method involved the foaming of tricalcium silicate cement paste and hydration to form calcium silicate hydrate and calcium hydroxide. Scaffolds with a combination of interconnected macro- and micro

  2. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... silicate nanocomposites and their structure-properties relationship. In the first part of the thesis, thermoplastic layered silicates were obtained by extrusion. Different modification methods were tested to observe the intercalation treatment effect on the silicate-modifier interactions. The silicate...

  3. Silicate Urolithiasis during Long-Term Treatment with Zonisamide

    Directory of Open Access Journals (Sweden)

    Satoru Taguchi


    Full Text Available Silicate urinary calculi are rare in humans, with an incidence of 0.2% of all urinary calculi. Most cases were related to excess ingestion of silicate, typically by taking magnesium trisilicate as an antacid for peptic ulcers over a long period of time; however, there also existed unrelated cases, whose mechanism of development remains unclear. On the other hand, zonisamide, a newer antiepileptic drug, is one of the important causing agents of iatrogenic urinary stones in patients with epilepsy. The supposed mechanism is that zonisamide induces urine alkalinization and then promotes crystallization of urine components such as calcium phosphate by inhibition of carbonate dehydratase in renal tubular epithelial cells. Here, we report a case of silicate urolithiasis during long-term treatment with zonisamide without magnesium trisilicate intake and discuss the etiology of the disease by examining the silicate concentration in his urine.

  4. Silicic Large Igneous Provinces

    Institute of Scientific and Technical Information of China (English)

    Scott Bryan


    @@ Large Igneous Provinces (LIPs) are the end-product of huge additions of magma to the continental crust both at the surface and at depth. Since the first categorisation of LIPs by Coffin & Eldholm (1994), it has been recognised that LIPs are more varied inform, age and character, and this includes the recognition of Silicic LIPs. Silicic LIPs are the largest accumulations of primary volcaniclastic rocks at the Earth's surface with areal extents >0.1 Mkm2 and extrusive and subvolcanic intrusive volumes >0.25 Mkm3. The Late Palaeozoic to Cenozoic Silicic LIP events are the best recognised and are similar in terms of their dimension, crustal setting, volcanic architecture and geochemistry.

  5. Effect of calcium and magnesium silicate on the growth of the castor oil plant subjected to salinity levels Efeito de silicato de cálcio e magnésio sobre o crescimento de plantas de mamoneira submetidas a níveis de salinidade

    Directory of Open Access Journals (Sweden)

    José Félix Brito Neto


    Full Text Available Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels. O estresse salino diminui o potencial osmótico da solução do solo causando estresse hídrico, provocando efeitos tóxicos nas plantas que resultam em injúrias no metabolismo e desordens nutricionais, comprometendo assim o crescimento das plantas, resultando em menor produção. O silicato de cálcio e magnésio pode desempenhar a mesma função do calcário, além de fornecer silício para as plantas, podendo ainda, contribuir para a resistência de plantas ao estresse salino. Nesse sentido, objetivou-se com esse trabalho avaliar o efeito do silicato de cálcio e magnésio no crescimento da mamoneira BRS Energia cultivada sob condições salinas. Avaliou-se a altura da planta, diâmetro do caule, número de folhas, área foliar, massa seca da parte aérea e da raiz e as características químicas do solo. Não houve interação entre os fatores níveis de salinidade e silicato sobre as variáveis analisadas. Houve rela

  6. Artrodese na coluna cervical utilizando SICAP como substituto de enxerto ósseo Artrodesis en la columna cervical utilizando SICAP como sustituto de injerto óseo Cervical spine fusion utilizing silicated calcium phosphate bone graft substitute (SICAP

    Directory of Open Access Journals (Sweden)

    Juliano Fratezi


    Tech EE.UU, Reino Unido es un injerto óseo compuesto de calcio-fosfato con una sustitución de silicato en la estructura química, con una estructura tridimensional que parece hueso natural. MÉTODOS: 19 pacientes fueron sometidos a fusión ósea cervical y analizados retrospectivamente. La evaluación radiográfica y la evaluación clínica fueron realizadas utilizandose el cuestionario Neck Disability Index y la escala análoga del dolor (VAS pre y postoperación. RESULTADOS: El período promedio de seguimiento postoperatorio fue de 14 meses ± 5 meses (7-30 meses. Once pacientes fueron sometidos a fusión vía anterior; 5 pacientes vía posterior y 3 pacientes vía anterior y posterior. La revisión radiográfica mostró 19/19 (100% de fusión ósea, ningún caso presentó subsidencia, rotura o soltura de material de implante o movimiento en los niveles fusionados. Ningún ejemplo de osificación heterotópica o de crecimiento óseo intracanal fue observado. Clínicamente, el promedio de las puntuaciones del Neck Disability disminuyeron 13,3 puntos (promedio preop. de 34,5, postop. de 21,2, mejora de 39%, el promedio de VAS para dolor cervical disminuyó 2 puntos (2,7 preop. para 0,7 postop.; mejora de 74,1%. No fueron observadas complicaciones como infección, osteólisis o edema excesivo de las partes blandas. CONCLUSIÓN: Los resultados preliminares obtenidos en esta serie feuron estimulantes con el uso de SICaP como injerto óseo, con sólida fusión ósea obtenida en todos los casos y sin formación de osificación heterotópica o crecimiento de hueso intracanal. SIcaP demuestra ser un sustituto confiable para el injerto óseo autólogo en la columna cervical.OBJECTIVE: Bone graft substitutes have been developed to obviate the need for autograft from the iliac crest and its resultant complications. SiCaP (Actifuse, ApaTech US, UK is a calcium phosphate bone graft substitute with selective controlled silicate substitution in a patented 3-dimensional structure

  7. Silicates in Alien Asteroids (United States)


    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  8. Thermochemistry of Silicates (United States)

    Costa, Gustavo; Jacobson, Nathan


    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  9. 水化硅酸钙与沸石滤柱去除水中低浓度氮磷%Removal of Low Concentration of Nitrogen and Phosphorus from Water Processes of Filter Columns Adsorption Filled with Hydrated Calcium Silicate and Natural Zeolite

    Institute of Scientific and Technical Information of China (English)

    董阳; 雷月华; 李春杰; 刘红美; 孟莎; 张伟; 吉宏坤


    Condition of inflowing river, Roshi River with the low concentration of nutrient was simulated. Study took the hydrate calcium silicate and natural zeolite as the adsorbing medium. The experiment designed the different kind of filter columns operated at the same time, filling with hydrated calcium silicate, natural zeolite and mixtures of calcium hydrate and zeolite with ratio 1:3, 1:1 respectively. Through researching the removal effect of the nutrient by 4 different kinds of fdter columns by controlling the material proportion and HRT, it was affirmed that the filter columns with only silicate hydrate had best effect on the removal of phosphate, with average removal efficiency of 90.75 %, but the absorbing ability to ammonia nitrogen was unstable. The filter columns filled with only natural zeolite possess the weaker ability to absorb the phosphate, with average removal rate at 77.30 %, and was also affected by the filter velocity easily. It is concluded when the proportion of material is 1:1 and the filter velocity is 0.696 m/d, the removal effect of the nutrient is promoted definitely. The nutrient concentration of effluent could reach the Level Ⅲ standard of surface water in China. It could be used as the theory base in the project which removing the nutrient in the constructed wetland.%模拟洱海的入湖河流——罗时江低浓度氮磷营养盐条件,采用水化硅酸钙与天然沸石作为吸附介质进行滤柱试验.试验设计4个滤柱并列运行,分别装填单一水化硅酸钙滤料、单一沸石滤料、水化硅酸钙与沸石双层滤料(1:3)和水化硅酸钙与沸石双层滤料(1:1),对比不同滤柱在不同滤速条件下的效果.单一水化硅酸钙填充滤柱对磷酸盐的去除效果最高,平均可保持在90.75%左右,但对氨氮去除不稳定;单一的沸石填充滤柱对磷酸盐吸附能力较弱,平均在77.30%,且受滤速影响较大.在水化硅酸钙与天然沸石配比为1:1,滤速为0.696 m/d时,对

  10. Silicon based substrate with calcium aluminosilicate/thermal barrier layer (United States)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)


    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.


    Directory of Open Access Journals (Sweden)



    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  12. Calcium Forms,Subcelluar Distribution and Ultrastructure of Pulp Cells as Influenced by Calcium Deficiency in Apple (Malus pumila) Fruits

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hui; ZHOU Wei


    Calcium in Red Fuji and Starkrimson apples during storage were fractionated by sequent extracting. Localization and distribution of calcium and influence of calcium nutrition on cell ultrastructure were observed by transmission electron microscopy combined with in situ precipitation of calcium with an improved method of potassium pyroantimonate technique. Results indicated that spraying calcium solution on surface of young fruits increased contents of calcium in all forms. During storage, contents of soluble calcium and pectic calcium declined and thosein calcium phosphate, calcium oxalate and calcium silicate increased. Calcium contents of Red Fuji in all forms were higher than those of Starkrimson, indicating that calcium accumulating capability of Red Fuji fruits preceded that of Starkrimson. Under transmission electron microscopy, calcium antimonite precipitates (CaAP) was mainly distributed in cell wall, tonoplast, nuclear membrane and nucleoplasm,much more CaAP deposited in vacuole. Calcium deficiency during storage leads to decrease of CaAP in locations mentioned above, disappearance of compartmentation, and entrance of CaAP to cytoplasm. Transformation from soluble calcium and pectic calcium to calcium phosphate,oxalate and damages of biomembranes structuraly and functionally resulted from calcium deficiency during storage were the crucial causation of physiological disorder.

  13. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric


    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  14. Use of propranolol-magnesium aluminium silicate intercalated complexes as drug reservoirs in polymeric matrix tablets

    Directory of Open Access Journals (Sweden)

    T Pongjanyakul


    Full Text Available The objective of the present study was to investigate the use of propranolol-magnesium aluminium silicate intercalated complexes as drug reservoirs in hydroxypropylmethylcellulose tablets. The matrix tablets containing the complexes were prepared and characterised with respect to propranolol release and were subsequently compared with those loading propranolol or a propranolol-magnesium aluminium silicate physical mixture. Additionally, the effects of varying viscosity grades of hydroxypropyl methylcellulose, compression pressures and calcium acetate incorporation on the drug release characteristics of the complex-loaded tablets were also examined. The results showed that the complex-loaded tablets have higher tablet hardness than those containing propranolol or a physical mixture. The drug release from the complex-loaded tablets followed a zero-order release kinetic, whereas an anomalous transport was found in the propranolol or physical mixture tablets. The drug release rate of the complex tablet significantly decreased with increasing hydroxypropylmethylcellulose viscosity grade. Increase in the compression pressure caused a decrease in the drug release rate of the tablets. Furthermore, the incorporation of calcium ions could accelerate propranolol release, particularly in acidic medium, because calcium ions could be exchanged with propranolol molecules intercalated in the silicate layers of magnesium aluminium silicate. These findings suggest that propranolol-magnesium aluminium silicate intercalated complexes show strong potential for use as drug reservoirs in matrix tablets intended for modifying drug release.

  15. Stardust silicates from primitive meteorites. (United States)

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi


    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula.

  16. Calcium supplements (United States)

    ... do not help. Always tell your provider and pharmacist if you are taking extra calcium. Calcium supplements ... 2012:chap 251. The National Osteoporosis Foundation (NOF). Clinician's Guide to prevention and treatment of osteoporosis . National ...

  17. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. (United States)

    Kamitakahara, Masanobu; Tatsukawa, Eri; Shibata, Yasuaki; Umemoto, Shota; Yokoi, Taishi; Ioku, Koji; Ikeda, Tohru


    In addition to calcium phosphate-based ceramics, glass-based materials have been utilized as bone substitutes, and silicate in these materials has been suggested to contribute to their ability to stimulate bone repair. In this study, a silicate-containing α-tricalcium phosphate (α-TCP) ceramic was prepared using a wet chemical process. Porous granules composed of silicate-containing α-TCP, for which the starting composition had a molar ratio of 0.05 for Si/(P + Si), and silicate-free α-TCP were prepared and evaluated in vivo. When implanted into bone defects that were created in rat femurs, α-TCP ceramics either with or without silicate were biodegraded, generating a hybrid tissue composed of residual ceramic granules and newly formed bone, which had a tissue architecture similar to physiological trabecular structures, and aided regeneration of the bone defects. Supplementation with silicate significantly promoted osteogenesis and delayed biodegradation of α-TCP. These results suggest that silicate-containing α-TCP is advantageous for initial skeletal fixation and wound regeneration in bone repair.

  18. On the Anomalous Silicate Absorption Feature of the Prototypical Seyfert 2 Galaxy NGC 1068

    CERN Document Server

    Koehler, Melanie


    The first detection of the silicate absorption feature in AGNs was made at 9.7 micrometer for the prototypical Seyfert 2 galaxy NGC 1068 over 30 years ago, indicating the presence of a large column of silicate dust in the line-of-sight to the nucleus. It is now well recognized that type 2 AGNs exhibit prominent silicate absorption bands, while the silicate bands of type 1 AGNs appear in emission. More recently, using the Mid-Infrared Interferometric Instrument on the Very Large Telescope Interferometer, Jaffe et al. (2004) by the first time spatially resolved the parsec-sized dust torus around NGC 1068 and found that the 10 micrometer silicate absorption feature of the innermost hot component exhibits an anomalous profile differing from that of the interstellar medium and that of common olivine-type silicate dust. While they ascribed the anomalous absorption profile to gehlenite (Ca_2Al_2SiO_7, a calcium aluminum silicate species), we propose a physical dust model and argue that, although the presence of gehl...

  19. Redox Equilibrium of Niobium in Calcium Silicate Base Melts (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus


    The oxidation state of niobium has been determined at 1873 K (1600 °C) in CaO-SiO2-NbO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93 and 1.10, and 5.72 to 11.44 pct Nb2O5 (initial). The slag samples were equilibrated with gas phases of controlled oxygen pressure, then quenched to room temperature and analyzed chemically. The niobium is mainly pentavalent with small amounts in the tetravalent state. It was found that the Nb5+/Nb4+ ratio increases with oxygen pressure at a constant CaO/SiO2 ratio and constant content of total niobium, closely according to the ideal law of mass action, which is proportional to {text{p}}_{{{text{O}}2 }}^{1/4} . The ratio also increases with total niobium content, and it seems to have a maximum at a basicity of about 0.93. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  20. Redox Equilibria of Chromium in Calcium Silicate Base Melts (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus


    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  1. Processing and Properties of Chemically Derived Calcium Silicate Cements (United States)


    crack techniques are applicable for the SympL). edited by S. Mindess and S. P. Shah (Materials Research measurement of crack growth resistance in...610 (1981) S. K.S.Mazdiyasni. Ceram. Inter. 8. 45-56 (1982) 6. O.M.Roy and S.C.Oyfesobi. J. Amer. Ceram. Sac.. 60. 178-180 ( 1977 ) - 7. R.Kondo and

  2. Developments in TEM Nanotomography of Calcium Silicate Hydrate

    KAUST Repository

    Taylor, Rae


    This investigation was designed to explore the possibility of using transmission electron microscope (TEM) tomography on cement-based systems gain a greater understanding of their nanostructure and pore network. The preliminary results show a clearly a well-defined pore network at the nanoscale, with pore size approximately 1.7-2.4 nm in diameter and spaced around 5-8 nm apart. A comparison of small angle X-ray scattering data with 2-D TEM images analyzed with the Fourier slice theorem documents an excellent structural correlation. © 2015 The American Ceramic Society.

  3. Utilization of industrial solid wastes able to generate calcium trisulphoaluminate and silicate hydrates in stabilization processes and for the manufacture of building materials; Utilizzazione di residui solidi industriali in grado di generare trisolfoalluminato e silicato di calcio idrati nei processi di stabilizzazione e nella produzione di materiali da costruzione

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, L. [Naples, Univ. `Federico II` (Italy). Dipt. di Chimica; Cioffi, R. [Naples, Univ. `Federico II` (Italy). Ditp. di Ingegneria dei Materiali e della Produzione


    In this work the stabilization of hazardous solid wastes containing heavy metals has been studied by means of novel matrices able to generate calcium trisulphoaluminate and silicate hydrates. The process is based on the hydration of two different mixtures containing blast furnace slag, coal ashes, chemical gypsum and Portland cement. The stabilization capacity of the two mixtures has been checked with regard to both a residue from an incinerator of municipal solid wastes and model systems obtained by adding 5 and 10% of soluble nitrates of Cd, Cr, Cu, Ni, Pb and Zn. The stabilized products have been validated from the point of view of mechanical properties by determining the unconfined compressive strength, and from the environmental point of view by means of static and dynamic leaching tests. Both matrices have proved to have great potentiality for the stabilization of hazardous solid wastes, the one based on blast furnace slag being better. Finally, evidence is given that different leaching tests are necessary to fully understand the immobilization mechanism responsible for stabilization. [Italiano] In questo lavoro e` stata studiata la atbilizzazione di residui tossici e nocivi contenenti metalli pesanti per mezzo di matrici leganti innovative capaci di generare trisolfoalluminato e silicato di calcio idrati. Il processo e` basato sull`idratazione di due diverse miscele contenenti scoria d`alto forno, ceneri di carbone, gessi chimici e cemento Portland. Le capacita` stabilizzanti delle due miscele sono state verificate sia nei confronti di un residuo solido generato a seguito dell`incenerimento di RSU, che nei confronti di sistemi modello ottenuti aggiungendo singolarmente il 5 e 10% dei nitrati solubili di Cd, Cr, Cu, Ni, Pb e Zn. I prodotti solidi stabilizzati sono stati validati dal punto di vista delle prestazioni meccaniche mediante prove di resistenza a compressione, e dal punto di vista ambientale mediante test di rilascio sia statici che dinamici

  4. 21 CFR 872.6670 - Silicate protector. (United States)


    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  5. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi


    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  6. Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer (United States)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)


    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  7. Hydrothermal Formation of Calcium Copper Tetrasilicate. (United States)

    Johnson-McDaniel, Darrah; Comer, Sara; Kolis, Joseph W; Salguero, Tina T


    We describe the first hydrothermal synthesis of CaCuSi4 O10 as micron-scale clusters of thin platelets, distinct from morphologies generated under salt-flux or solid-state conditions. The hydrothermal reaction conditions are surprisingly specific: too cold, and instead of CaCuSi4 O10 , a porous calcium copper silicate forms; too hot, and calcium silicate (CaSiO3 ) forms. The precursors also strongly impact the course of the reaction, with the most common side product being sodium copper silicate (Na2 CuSi4 O10 ). Optimized conditions for hydrothermal CaCuSi4 O10 formation from calcium chloride, copper(II) nitrate, sodium silicate, and ammonium hydroxide are 350 °C at 3000 psi for 72 h; at longer reaction times, competitive delamination and exfoliation causes crystal fragmentation. These results illustrate that CaCuSi4 O10 is an even more unique material than previously appreciated.

  8. Effects of ionization on silicate glasses. [Silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Primak, W.


    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  9. Silicate Composition of the Interstellar Medium

    CERN Document Server

    Fogerty, Shane; Watson, Dan M; Sargent, Benjamin A; Koch, Ingrid


    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. Analysis of the well-known 9.7{\\mu}m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modelled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modelling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and {\\zeta} Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as "polivene." Finally, we compare these results to models of silicate emission from the Trapez...

  10. Hydrothermal Synthesis of Metal Silicates

    Institute of Scientific and Technical Information of China (English)

    Lii Kwang-Hwa


    Organically templated metal phosphates have been extensively studied because of interesting structural chemistry and potential applications in catalysis. However, in most cases the organic templates cannot be removed without collapse of the frameworks. This is in contrast to the high thermal stability and extensive applications of zeolites in refinery and petrochemical processes.Therefore, studies have been directed to the synthesis of transition metal silicates to produce more stable frameworks. Our synthetic methods are twofold, namely mild hydrothermal reactions in Teflon-lined autoclaves at 100-200 ℃ using organic amines as templates and high-temperature,high-pressure hydrothermal reactions in gold ampoules contained in a high-pressure reaction vessel at ca. 550 ℃ and 150 Mpa using alkali metal cations as templates. In this presentation I will report the high-temperature, high-pressure hydrothermal synthesis, crystal structures, and solid-state NMR spectroscopy of a number of new silicates of indium, uranium, and transition metals.

  11. Surface characterization of silicate bioceramics. (United States)

    Cerruti, Marta


    The success of an implanted prosthetic material is determined by the early events occurring at the interface between the material and the body. These events depend on many surface properties, with the main ones including the surface's composition, porosity, roughness, topography, charge, functional groups and exposed area. This review will portray how our understanding of the surface reactivity of silicate bioceramics has emerged and evolved in the past four decades, owing to the adoption of many complementary surface characterization tools. The review is organized in sections dedicated to a specific surface property, each describing how the property influences the body's response to the material, and the tools that have been adopted to analyse it. The final section introduces the techniques that have yet to be applied extensively to silicate bioceramics, and the information that they could provide.

  12. Biogenic silicate accumulation in sediments, Jiaozhou Bay

    Institute of Scientific and Technical Information of China (English)

    LI Xuegang; SONG Jinming; DAI Jicui; YUAN Huamao; LI Ning; LI Fengye; SUN Song


    It has been widely recognized that low silicate content in seawater is a major limiting factor to phytoplankton primary production in Jiaozhou Bay. However the reason of Si-limitation remains poorly understood. In the present study we measured the biogenic silicate content and discussed the accumulation of silicate in Jiaozhou Bay sediment. The results show that the biogenic silica content in the sediment of the Jiaozhou Bay is obviously much higher than those in the Yellow Sea and the Bohai Sea. The BSi:TN ratios and BSi:16P ratios in the sediment are > 1 and the OC:BSi ratio in sediment is lower than these of Redfield ratio (106:16), indicating that the decomposition rate of OC is much higher than that for BSi in similar conditions. Therefore, the majority of the biogenic silicate was buried and thus did not participate in silicate recycling. Silicate accumulation in sediment may explain why Si limits the phytoplankton growth in the Jiaozhou Bay. Comparing the flux of biogenic silicate from sediments with primary production rate, it can be concluded that only 15.5% of biogenic silicate is hydrolyzed during the journey from surface to bottom in seawater, thus approximate 84.5% of biogenic silicate could reach the bottom. The silicate releasing rate from the sediment to seawater is considerably lower than that of sedimentation of biogenic silicate, indicating silicate accumulation in sediment too. In a word, the silicate accumulation in sediment is the key reason of silicate limiting to phytoplankton growth in Jiaozhou Bay.

  13. Sealing of cracks in cement using microencapsulated sodium silicate (United States)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.


    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  14. Cumulate Fragments in Silicic Ignimbrites (United States)

    Bachmann, O.; Ellis, B. S.; Wolff, J.


    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  15. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)


    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  16. Calcium in diet (United States)

    ... D is needed to help your body use calcium. Milk is fortified with vitamin D for this reason. ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ...

  17. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant (United States)

    Mohammadi, Hossein; Sepantafar, Mohammadmajid


    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  18. Silicate condensation in Mira variables

    CERN Document Server

    Gail, Hans-Peter; Pucci, Annemarie


    We study whether the condensation of silicate dust in Mira envelopes could be caused by cluster formation by the abundant SiO molecules. For a simplified model of the pulsational motions of matter in the the outer layers of a Mira variable which is guided by a numerical model for Mira pulsations, the equations of dust nucleation and growth are solved in the co-moving frame of a fixed mass element. It is assumed that seed particles form by clustering of SiO molecules. The calculation of the nucleation rate is based on the experimental data of Nuth and Donn (1982). The quantity of dust formed is calculated by a moment method and the calculation of radiation pressure on the dusty gas is based on a dirty silicate model. Dust nucleation occurs in the model at the upper culmination of the trajectory of a gas parcel where it stays for a considerable time at low temperatures while subsequent dust growth occurs during the descending part of the motion and continues after the next shock reversed motion. It is found tha...

  19. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;


    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  20. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner


    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  1. In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry


    Maria Giovanna Gandolfi; Francesco Siboni; Antonella Polimeni; Maurizio Bossù; Francesco Riccitiello; Sandro Rengo; Carlo Prati


    Aim: Calcium silicate-based materials are hydraulic self-setting materials with physico-chemical properties suitable for endodontic surgery and good biological/clinical outcomes. The study aim was to evaluate the bio-properties (biointeractivity and apatite-forming ability) and selected physical properties (porosity, water sorption, solubility, and setting time) of Biodentine, a tricalcium silicate material for endodontics and restorative dentistry, compared to that of ProRoot MTA (Mineral ...

  2. Interaction of dispersed polyvynil acetate with silicate in finishing materials

    Directory of Open Access Journals (Sweden)

    Runova, R. F.


    Full Text Available This article focuses on the processes of interaction between calcium silicate hydrates and dispersed polyvinyl acetate in tight films with the aim of developing compounds meant for restoration and finishing works. The basis of this development relies on the concept concerning the determining role of the crystal-chemical factor of the silicate phase in the formation of organic-mineral compounds of increased durability. The characteristics of dispersed calcium silicate hydrates are portrayed. The preparation conditions, accounting for the synthesis of the product of submicrocrystalline structure, conforming with the stoichiometry CaO∙SiO2 =0.8-2.0 have been determined. The interaction has been studied for compounds achieved by mixing ingredients in a rapid whirling mixer, and subjected to hardening at T=20+2 T. With the aid of XRD, DTA and Infra-Red Spectrometry methods the formation process of the sophisticated polymer silicate phase in the material was observed for a period of 90 days. The properties of the film were investigated and its high resistance against the influence of external factors was established. On this basis a conclusion concerning the quite high effectiveness of substituting portland cement with dispersed calcium silicate hydrate in polymer cement compounds has been made. White colour and other various special properties determine the suitability for repair and finishing works on facades of buildings.

    Este artículo está orientado a estudiar los procesos de interacción entre los silicatos cálcicos hidratados y el acetato de polivinilo disperso en capas impermeables, con el objeto de desarrollar compuestos destinados para la restauración. El fundamento de estos estudios es determinar el papel que los factores cristaloquímicos de las fases silicato tienen en la formación de compuestos órganominerales de elevada durabilidad. Se han descrito las características de los silicatos cálcicos hidratados

  3. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles


    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  4. CaCl2-Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29Si MAS NMR

    Directory of Open Access Journals (Sweden)

    Qinfei Li


    Full Text Available The effect of calcium chloride (CaCl2 on tricalcium silicate (C3S hydration was investigated by scanning transmission X-ray microscopy (STXM with Near Edge X-ray Absorption Fine Structure (NEXAFS spectra and 29Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system. The Ca L3,2-edge NEXAFS spectra obtained by examining C3S hydration in the presence of CaCl2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H, which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C3S. Based on the Ca L3,2-edge spectra and chemical component mapping, we concluded that CaCl2 prefers to coexist with unhydrated C3S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl2 increases the degree of silicate polymerization of C-S-H in agreement with the 29Si CP/MAS NMR results, which show that the presence of CaCl2 in hydrated C3S considerably accelerates the formation of middle groups (Q2 and branch sites (Q3 in the silicate chains of C-S-H gel at 1-day hydration.

  5. Calcium and bones (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  6. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva


    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  7. Calcium Test (United States)

    ... if a person has symptoms of a parathyroid disorder , malabsorption , or an overactive thyroid. A total calcium level is often measured as part of a routine health screening. It is included in the comprehensive metabolic panel (CMP) and the basic metabolic panel (BMP) , ...

  8. Calcium Carbonate (United States)

    ... doctor if you have or have ever had kidney disease or stomach conditions.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking calcium carbonate, call your doctor.

  9. Carbon Monoxide Silicate Reduction System Project (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  10. Carbon Monoxide Silicate Reduction System Project (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  11. Thermodynamics and Kinetics of Silicate Vaporization (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.


    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  12. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae


    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.


    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro


    savannah soils are highly weathered and poor in nutrients, demanding chemical correction to  become productive. For this purpose, limestone is usually applied, but silicate sources are also used because, besides correcting soil reaction, it supplies silicon to plants. This research had as objective to evaluate the effect of  silicon levels and forms in soil and sorghum plants. Two forms of silicate application were evaluated: in the planting furrow and in the whole area. For the applications in the planting furrow, the levels of 100 kg ha-1, 200 kg ha-1, and 300 kg ha-1 of silicate were used, while for the applications in the whole area 1000 kg ha-1, 2000 kg ha-1, and 3000 kg ha-1 were used. Both application forms increased sorghum grain yield and Si concentration in soil and plants, differing, statistically, from control, but with no differences among them. The Si levels also promoted yield and Si concentration in soil and plants. The silicate addition promoted pH increase in the soil, confirming its acidity neutralization effect.

    KEY-WORDS: Silicon; silicate; sorghum.

  14. In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Gandolfi


    Full Text Available Aim: Calcium silicate-based materials are hydraulic self-setting materials with physico-chemical properties suitable for endodontic surgery and good biological/clinical outcomes. The study aim was to evaluate the bio-properties (biointeractivity and apatite-forming ability and selected physical properties (porosity, water sorption, solubility, and setting time of Biodentine, a tricalcium silicate material for endodontics and restorative dentistry, compared to that of ProRoot MTA (Mineral Trioxide Aggregate as gold standard material. Methods: Biodentine and ProRoot MTA pastes were prepared and analyzed for calcium release and alkalinizing activity (3 h–28 days, setting time, water sorption, porosity, solubility, surface microstructure and composition, and apatite-forming ability in simulated body fluid. Results: Biodentine showed higher calcium release, alkalinizing activity, and solubility but higher open and apparent porosity, water sorption, and a markedly shorter setting time. Calcium phosphate (CaP deposits were noted on material surfaces after short ageing times. A CaP coating composed of spherulites was detected after 28 days. The thickness, continuity, and Ca/P ratio of the coating differed markedly between the materials. Biodentine showed a coating composed by denser but smaller spherulites, while ProRoot MTA showed large but less dense aggregates of spherulitic deposits. Conclusions: Biodentine showed a pronounced ability to release calcium and extended alkalinizing activity interlinked with its noticeable porosity, water sorption, and solubility: open porosities provide a broad wet biointeractive surface for the release of the calcium and hydroxyl ions involved in the formation of a CaP mineral. Biodentine is a biointeractive tricalcium silicate material with interesting chemical-physical properties and represents a fast-setting alternative to the conventional calcium silicate MTA-like cements.

  15. Core formation in silicate bodies (United States)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.


    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  16. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich


    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  17. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings (United States)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  18. A Silicate Inclusion in Puente del Zacate, a IIIA Iron Meteorite (United States)

    Olsen, Edward J.; Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Moore, Carleton B.; Steele, Ian M.


    The IIIA and IIIB iron meteorites are considered to have formed in the cores of asteroids. A silicate inclusion within the IIIA meteorite Puente del Zacate consisting of olivine (Fa_4), low-calcium pyroxene (Fs_6Wo_1), chromium diopside (Fs_3Wo47), plagioclase (An14Or_4), graphite, troilite, chromite, daubreelite, and iron metal resembles inclusions in IAB iron meteorites. The oxygen isotopic composition of the Puente del Zacate inclusion is like chromite and phosphate inclusions in other IIIA and IIIB irons. The Puente del Zacate inclusion may have been derived from the lower mantle of the IIIAB parent asteroid.

  19. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R


    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.




    The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings cont...

  1. The fatty acids and alkanes of Satureja adamovicii Silic and Satureja fukarekii Silic (NOTE

    Directory of Open Access Journals (Sweden)



    Full Text Available The content and composition of fatty acids and alkanes of Satureja adamovicii Silic and Satureja fukarekii Silic were analized by GC. It was found that unsaturated acids prevailed and that the major components were palmitic, oleic, linoleic and linolenic acids. The hydrocarbon fractions of pentane extracts were shown to consist of the alkane homologues (C17 to C34 with nonacosane and hentriacontane being prevailing compounds.

  2. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic). (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  3. Growth of brushite crystals in sodium silicate gel and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.R.; Wang, M. [Nanyang Technological Univ. (Singapore). School of Mechanical and Production Engineering


    Brushite (CaHPO{sub 4}.2H{sub 2}O, DCPD) single crystals were grown in sodium silicate gel at room temperature. The single diffusion technique was employed in growing crystals. Suitable reactants such as ammonium di-hydrogen phosphate and calcium nitrate tetra hydrate were used as inner and outer reactants. Growth parameters, such as concentration of reactants, gel density and period of growth, were investigated. With 1M ammonium di-hydrogen phosphate and 2M calcium nitrate tetra hydrate, Brushite needles of the size up to 40 mm in length were obtained in a period of 45 days. The crystals grown were confirmed to be Brushite by XRD and FTIR analyses. As determined by nano-indentation tests, these crystals had average modulus and hardness values of 22.5 GPa and 1.75 GPa, respectively. (orig.)

  4. Calcium and Vitamin D (United States)

    ... Cart Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is ... the-counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D ...

  5. Imaging calcium in neurons. (United States)

    Grienberger, Christine; Konnerth, Arthur


    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  6. Silicate grout curtains behaviour for the protection of coastal aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elektorowicz, M.; Chifrina, R.; Hesnawi, R. [Concordia Univ., Montreal, Quebec (Canada)


    Tests were performed to evaluate the behaviour of silicate grout with different reagents (ethylacetate - formamide SA and calcium chloride SC) in pure silica sand and natural soils from coastal areas containing organic matter, clayey soil and silica sand. The grouted specimens were tested with simulated fresh and salt water. The setting process during chemical grouting in the soil and sand was studied. The grouting of soil and sand with SA caused a transfer to the environment of some compounds: sodium formate, sodium acetate, ammonia and part of the initial ethylacetate and formamide. This process had a tendency to decrease for approximately 4 months. The stability of specimens was low. The grouting of soil and sand with SC caused no significant contamination of the environment. The increase of pH of environmental water was even less than with SA grouting. Also, the stability of specimens is higher in comparison with SA grouting. Salt water protected the specimens grouted with SA and SC from destruction and prevented contamination.

  7. Characterizing Amorphous Silicates in Extraterrestrial Materials (United States)

    Fu, X.; Wang, A.; Krawczynski, M. J.


    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  8. Human Dental Pulp Cells Responses to Apatite Precipitation from Dicalcium Silicates

    Directory of Open Access Journals (Sweden)

    Wei-Yun Lai


    Full Text Available Unraveling the mechanisms behind the processes of cell attachment and the enhanced proliferation that occurs as a response to the presence of calcium silicate-based materials needs to be better understood so as to expand the applications of silicate-based materials. Ions in the environment may influence apatite precipitation and affect silicate ion release from silicate-based materials. Thus, the involvement of apatite precipitate in the regulation of cell behavior of human dental pulp cells (hDPCs is also investigated in the present study, along with an investigation of the specific role of cell morphology and osteocalcin protein expression cultured on calcium silicate (CS with different Dulbecco’s modified Eagle’s medium (DMEM. The microstructure and component of CS cement immersion in DMEM and P-free DMEM are analyzed. In addition, when hDPCs are cultured on CS with two DMEMs, we evaluate fibronectin (FN and collagen type I (COL secretion during the cell attachment stage. The facilitation of cell adhesion on CS has been confirmed and observed both by scanning with an electron microscope and using immunofluorescence imaging. The results indicate that CS is completely covered by an apatite layer with tiny spherical shapes on the surface in the DMEM, but not in the P-free DMEM. Compared to the P-free DMEM, the lower Ca ion in the DMEM may be attributed to the formation of the apatite on the surfaces of specimens as a result of consumption of the Ca ion from the DMEM. Similarly, the lower Si ion in the CS-soaked DMEM is attributed to the shielding effect of the apatite layer. The P-free DMEM group releases more Si ion increased COL and FN secretion, which promotes cell attachment more effectively than DMEM. This study provides new and important clues regarding the major effects of Si-induced cell behavior as well as the precipitated apatite-inhibited hDPC behavior on these materials.

  9. Tracking bubble evolution inside a silicic dike (United States)

    Álvarez-Valero, Antonio M.; Okumura, Satoshi; Arzilli, Fabio; Borrajo, Javier; Recio, Clemente; Ban, Masao; Gonzalo, Juan C.; Benítez, José M.; Douglas, Madison; Sasaki, Osamu; Franco, Piedad; Gómez-Barreiro, Juan; Carnicero, Asunción


    Pressure estimates from rapidly erupted crustal xenoliths constrain the depth of intrusion of the silicic lavas hosting them. This represents an opportunity for tracking magmatic bubble's evolution and quantifying the variation in bubble volume during rapid magma ascent through a volcanic dike just prior to eruption. The petrology, stable-isotope geochemistry and X-ray micro-tomography of dacites containing crustal xenoliths, erupted from a Neogene volcano in SE Spain, showed an increase in porosity from ~ 1.7 to 6.4% from ~ 19 to 13 km depth, at nearly constant groundmass and crystal volumes. This result provides additional constraints for experimental and numerical simulations of subvolcanic magma-crust degassing processes in silicic systems, and may allow the characterization of volcanic eruptive styles based on volatile content.

  10. Recycle of silicate waste into mesoporous materials. (United States)

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung


    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  11. Cooling rate calculations for silicate glasses. (United States)

    Birnie, D. P., III; Dyar, M. D.


    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  12. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    and these are supported by several experimental studies (Annen et al., 2006). A silicic calc-alkalic magma can form by differentiation from a more mafic parent magma and by crustal anatexis. Several evidences show the origin of some rhyolitic and andesitic magma... to be related due to similar tectonic settings. Fractional crystallisation: This process produces a series of residual liquids of variable compositions as compared to their parental magmas and is best explained by the Bowen’s reaction principle (Bowen, 1922...

  13. Six White Dwarfs with Circumstellar Silicates

    CERN Document Server

    Jura, M; Zuckerman, B


    Spitzer Space Telescope spectra reveal 10 micron silicate emission from circumstellar dust orbiting six externally-polluted white dwarfs. Micron-size glasses with an olivine stoichiometry can account for the distinctively broad wings that extend to 12 microns; these particles likely are produced by tidal-disruption of asteroids. The absence of infrared PAH features is consistent with a scenario where extrasolar rocky planets are assembled from carbon-poor solids.

  14. High Pressure Response of Siliceous Materials (United States)


    BOROFLOAT (borosilicate) SCHOTT X Air & Tin X X Air & Tin Fe-containing soda lime silicate Dulles Glass and Mirror X Air & Tin X Air & Tin Opal...hydrated silica) Excalibur Mineral Corporation X X Glass Ceramic ROBAX SCHOTT X X X Single Crystal Ceramic α-Quartz Jim Coleman Crystal...examined in this study conducted by Oak Ridge National Laboratory and sponsored by the US Army TARDEC. Some were glasses (fused silica or fused

  15. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)


    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  16. Níveis de silicato de cálcio e magnésio na produção das gramídeas Marandu e Tanzânia cultivadas em um Neossolo Quartzarênico Level of calcium and magnesium silicate in the yield of Marandu grass and Tanzania grass cultivated in one Quartzsandy Neosoil

    Directory of Open Access Journals (Sweden)

    Caio Augustus Fortes


    Full Text Available O estudo foi conduzido em casa-de-vegetação do Departamento de Ciência do Solo da Universidade Federal de Lavras, Lavras-MG, com o objetivo de avaliar o efeito da correção da acidez do solo, por meio da aplicação de níveis de silicato de Ca e Mg, na produção das gramíneas Brachiaria brizantha cv. Marandu e Panicum maximum cv. Tanzânia-1 cultivadas em solo Neossolo Quartzarênico ortic. O delineamento experimental utilizado foi blocos ao acaso, em esquema fatorial 2 x 5 com quatro repetições, sendo duas forrageiras e cinco níveis de saturação por bases (V% original, 40, 60, 80 e 100%. Cada unidade experimental correspondeu a um vaso sem furos, com capacidade para 4,0 dm³ de solo, totalizando 40 vasos. Foram avaliadas as produções de MS por corte (PMS e total (PTMS, a altura e o número de perfilhos. Não houve variação entre as gramíneas em altura de perfilhos. O Tanzânia foi superior ao Marandu em PMS e número de perfilhos. Houve aumento linear na PMS, PTMS e altura de perfilhos. Conclui-se que ambas as gramíneas responderam de forma positiva à elevação dos níveis de V%, em PMS, até 54,8%. O Tanzânia produziu mais MS em relação ao Marandu.This study was conducted in a greenhouse of the Soil Science Department at Universidade Federal de Lavras, Lavras-MG, with the purpose of evaluating the effect of the soil correction acidity, by the application of Ca and Mg silicate levels, in the production of grasses Brachiaria brizantha cv. Marandu and Panicum maximum cv. Tanzânia-1 cultivated in Quartzsandy Neosoil ortic. The experimental design was a randomized complete block, in 2 x 5 factorial scheme with four replicates, being two forages and five levels of base saturation (BS%; (original BS, 40, 60, 80 and 100%. Each experimental unit corresponded to a pot with a capacity of 4.0 dm³ of soil, totalizing 40 pots. The dry matter yield (DMY for cut and total (TDMY, height and number of tillers were evaluated. There were

  17. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    Energy Technology Data Exchange (ETDEWEB)


    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  18. Effect of silicate solutions on metakaolinite based cementitious material

    Institute of Scientific and Technical Information of China (English)

    XIAO Xue-jun; LI Hua-jian; SUN Heng-hu


    High performance metakaolinite based cementitious materials were prepared with metakaolinite as main component, and the different modules of Na and Na-K silicate solutions as diagenetic agent. The results show that the mechanical properties are affected by different silicate solutions, compressive strengths of pastes hydrated for 3 d and 28 d with Na-K silicate solution (The modulus is 1) are about 43.68 and 78.52 MPa respectively. By analyzing the mechanical properties of Metakaolinite based cementitious materials, the diagenetic effect of lower module is better than higher module, and Na-K silicate solution is better than Na silicate solution. The structure of the Na and Na-K silicate solutions is studied with IR and 29Si NMR, the reason of the lower module and Na-K silicate solution improving the mechanical properties is that the low module silicate solution has lower polymeric degree of silicon dioxide, and the higher polymeric degree of silicon oxide tetrahedron(Q4) in Na-K silicate solution is less than Na silicate solution.

  19. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    L' Hostis, V. [CEA Saclay, DEN, DPC, SCCME, Lab Etud Comportement Betons and Argiles, F-91191 Gif Sur Yvette (France); Huet, B. [Schlumberger Riboud Prod Ctr, Schlumberger Carbon Serv, F-92142 Clamart (France); Tricheux, L. [CEBTP SOLEN, F-78990 Elancourt (France); Idrissi, H. [CNRS, Lab MATEIS UMR 5510, Equipe RI2S, Dept Sci and Genie Mat, F-69621 Villeurbanne (France)


    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO{sub 4}{sup 2-}) and alkali (Na{sup +}, K{sup +}) content on carbonate alkalinity of the CO{sub 2}/H{sub 2}O open system (pCO{sub 2}=0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  20. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Huet, B. [Schlumberger Carbon Services, Schlumberger Riboud Product Center, Clamart (France); L' Hostis, V. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude du Comportement des Betons et des Argiles, Gif-sur-Yvette, (France); Tricheux, L. [CEBTP-SOLEN, Elancourt, (France); Idrissi, H. [Laboratoire MATEIS UMR CNRS, Equipe RI2S, Department Science et Genie des Materiaux, Villeurbanne, (France)


    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO{sub 4}{sup 2} {sup -}) and alkali (Na{sup +}, K{sup +}) content on carbonate alkalinity of the CO{sub 2}/H{sub 2}O open system (pCO{sub 2} = 0.3 mbar). In this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Calcium and Mitosis (United States)

    Hepler, P.


    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  2. Releasing effects in flame photometry: Determination of calcium (United States)

    Dinnin, J.I.


    Strontium, lanthanum, neodymium, samarium, and yttrium completely release the flame emission of calcium from the depressive effects of sulfate, phosphate, and aluminate. Magnesium, beryllium, barium, and scandium release most of the calcium emission. These cations, when present in high concentration, preferentially form compounds with the depressing anions when the solution is evaporated rapidly in the flame. The mechanism of the interference and releasing effects is explained on the basis of the chemical equilibria in the evaporating droplets of solution and is shown to depend upon the nature of the compounds present in the aqueous phase of the solution. The need for background correction techniques is stressed. The releasing effect is used in the determination of calcium in silicate rocks without the need for separations.

  3. Calcium - Function and effects

    NARCIS (Netherlands)

    Liang, Jianfen; He, Yifan; Gao, Qian; Wang, Xuan; Nout, M.J.R.


    Rice is the primary food source for more than half of the world population. Levels of calcium contents and inhibitor - phytic acid are summarized in this chapter. Phytic acid has a very strong chelating ability and it is the main inhibit factor for calcium in rice products. Calcium contents in br

  4. Nitridosilicates - a significant extension of silicate chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, W.; Huppertz, H. [Bayreuth Univ. (Germany). Lab. fuer Anorganische Chemie


    A new dimension in silicate chemistry becomes accessible through substitution of oxygen by nitrogen. Multinary nitridosilicates, such as Ln{sub 3}Si{sub 6}N{sub 11} (Ln = La, Ce, Pr, Nd, Sm) shown on the right, are built up from SiN{sub 4} tetrahedra into network structures. Owing to the stability of the covalent Si-N bonds and the high degree of condensation, the nitridosilicates show remarkable chemical and thermal stabilities, similar to Si{sub 3}N{sub 4}. (orig.) 22 refs.

  5. Microbial dissolution of silicate materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzman, D. [Howard Univ., Washington, DC (United States). Dept. of Biology


    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  6. Determination of chlorine in silicate rocks (United States)

    Peck, L.C.


    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  7. Characterization of the Aqueous Uranyl-Silicate Complex Using X-Ray Absorption Spectroscopy and Ab Initio Modeling (United States)

    Vu, M.; Massey, M.; Huang, P.


    The speciation of aqueous uranium ions is an important factor in predicting its mobility and fate in the environment. Two major controls on speciation are pH and the presence of complexing ligands. For the case of aqueous uranyl, UO22+(aq), some common complexes include uranyl-hydroxy, uranyl-carbonato, and uranyl-calcium-carbonato complexes, all of which differ in chemical reactivity and mobility. Uranyl-silicate complexes are also known but remain poorly characterized. In this work, we studied uranyl speciation in a series of aqueous solutions of 0.1 mM uranyl and 2 mM silicate with pH ranging from 4 to 7. Extended X-Ray Absorption Fine Structure (EXAFS) spectra of these samples were recorded at the Stanford Synchrotron Radiation Lightsource (SLAC National Accelerator Laboratory). Of particular note are the uranyl and silicate concentrations employed in our experiments, which are lower than conditions in previously reported EXAFS studies and approach conditions in natural groundwater systems. Preliminary analyses of EXAFS data indicate that uranyl speciation changes across the pH range, consistent with published thermodynamic data that suggest uranyl-silicate complexes may be important for pH ~ 5 and below, while uranyl-carbonato complexes become dominant at circumneutral pH. To guide the interpretation of the EXAFS data, molecular-scale simulations were carried out using density functional theory. We considered two classes of models: (i) hydrated clusters, and (ii) ab initio molecular dynamics simulations of 3D-periodic models involving uranyl and silicate in water. These calculations reveal that at pH ~ 5, the uranyl speciation is the [UO2(H2O)4H3SiO4]+ complex formed by the substitution of an equatorial uranyl water with a monodentate silicate ligand. The evidence from experiments and simulations provide a consistent picture for the uranyl-silicate complex, which may be important in the transport of uranyl in acidic, silicate-rich waters.

  8. Sulphur dioxide removal using South African limestone/siliceous materials

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Ogenga; M.M. Mbarawa; K.T. Lee; A.R. Mohamed; I. Dahlan [Tshwane University of Technology, Pretoria (South Africa)


    This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO{sub 2} removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900{sup o}C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75{sup o}C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87{sup o}C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe{sub 2}O{sub 3} and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO{sub 2} absorption capacity in terms of mol of SO{sub 2} per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents. 19 refs., 6 figs., 3 tabs.

  9. Calcium signaling and epilepsy. (United States)

    Steinlein, Ortrud K


    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  10. Stability of foams in silicate melts (United States)

    Proussevitch, Alexander A.; Sahagian, Dork L.; Kutolin, Vladislav A.


    Bubble coalescence and the spontaneous disruption of high-porosity foams in silicate melts are the result of physical expulsion of interpore melt (syneresis) leading to bubble coalescence, and diffusive gas exchange between bubbles. Melt expulsion can be achieved either along films between pairs of bubbles, or along Plateau borders which represent the contacts between 3 or more bubbles. Theoretical evaluation of these mechanisms is confirmed by experimental results, enabling us to quantify the relevant parameters and determine stable bubble size and critical film thickness in a foam as a function of melt viscosity, surface tension, and time. Foam stability is controlled primarily by melt viscosity and time. Melt transport leading to coalescence of bubbles proceeds along inter-bubble films for smaller bubbles, and along Plateau borders for larger bubbles. Thus the average bubble size accelerates with time. In silicate melts, the diffusive gas expulsion out of a region of foam is effective only for water (and even then, only at small length scales), as the diffusion of CO 2 is negligible. The results of our analyses are applicable to studies of vesicularity of lavas, melt degassing, and eruption mechanisms.

  11. Silicate mineralogy at the surface of Mercury (United States)

    Namur, Olivier; Charlier, Bernard


    NASA's MESSENGER spacecraft has revealed geochemical diversity across Mercury's volcanic crust. Near-infrared to ultraviolet spectra and images have provided evidence for the Fe2+-poor nature of silicate minerals, magnesium sulfide minerals in hollows and a darkening component attributed to graphite, but existing spectral data is insufficient to build a mineralogical map for the planet. Here we investigate the mineralogical variability of silicates in Mercury's crust using crystallization experiments on magmas with compositions and under reducing conditions expected for Mercury. We find a common crystallization sequence consisting of olivine, plagioclase, pyroxenes and tridymite for all magmas tested. Depending on the cooling rate, we suggest that lavas on Mercury are either fully crystallized or made of a glassy matrix with phenocrysts. Combining the experimental results with geochemical mapping, we can identify several mineralogical provinces: the Northern Volcanic Plains and Smooth Plains, dominated by plagioclase, the High-Mg province, strongly dominated by forsterite, and the Intermediate Plains, comprised of forsterite, plagioclase and enstatite. This implies a temporal evolution of the mineralogy from the oldest lavas, dominated by mafic minerals, to the youngest lavas, dominated by plagioclase, consistent with progressive shallowing and decreasing degree of mantle melting over time.

  12. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten;


    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...... required days-weeks, both reactions probably being diffusion controlled. Applying the values for specific surface area and site densities for ferrihydrite used by Dzombak & Morel (1990) (600 m2 g-1, 3.4 mumole m-2) the constants pK(al)intr 6.93 +/- 0.12, pK(a2)intr = 8.72 +/- 0.17 and log K(Si) = 3.62 were...

  13. Research drilling in young silicic volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Eichelberger, J.C.


    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  14. Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    CERN Document Server

    Day, Sarah J; Parker, Julia E; Evans, Aneurin


    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable calcium carbonate phase vaterite was formed alongside calcite, at elevated CO2 pressure, at room temperature and subsequently remained stable over a large range of temperature and pressure. We report the formation of the calcium carbonate mineral vaterite whilst attempting to simulate carbonate dust grain formation in astrophysical environments. This suggests that vaterite could be a mineral component of carbonate dust and also presents a possible method of formation for vaterite and its polymorphs on planetary surfaces.

  15. The shape and composition of interstellar silicate grains

    NARCIS (Netherlands)

    Min, M.; Waters, L.B.F.M.; de Koter, A.; Hovenier, J.W.; Keller, L.P.; Markwick-Kemper, F.


    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effects of the amount of magnesium and iron in the silicate lattice are studied in detail. We fit the spectral shape of the interstellar 10 mu m extinction feature as observed towards the ga

  16. Silicate Adsorption in Paddy Soils of Guangdong Province, China

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-Yuan; LI Hua-Xing; ZHANG Xin-Ming; LU Wei-Sheng; LIU Yuan-Jin


    Silicate adsorption in eight paddy soils developed from four different parent materials in Guangdong Province, China was examined to obtain fundamental knowledge of silicate adsorption to improve the efficacy of silicate fertilizer use in these areas. A correlation analysis showed that silicate adsorption did not obey the Langmuir equation (r = -0.664-0.301) but did obey the Freundlich and Temkin equations (P ≤ 0.01, r = 0.885-0.990). When the equilibrium silicate concentration (Ci) was less than 45 mg SiO2 kg-1, the adsorption capacity was in the following decreasing order of paddy soils: basalt-derived > Pearl River Delta sediment-derived > granite-derived > sand-shale-derived. Stepwise regression and path analysis showed that for the investigated paddy soils amorphous MnO and Al2O3 were the two most important materials that affected silicate adsorption. Moreover, as Ci increased, amorphous Al2O3 tended to play a more important role in silicate adsorption, while the effects of amorphous MnO on silicate adsorption tended to decrease.

  17. Crystalline silicates in AGB and post-AGB stars

    NARCIS (Netherlands)

    Waters, LBFM; Molster, FJ; LeBertre, T; Lebre, A; Waelkens, C


    We discuss ISO spectroscopy of oxygen-rich dust shells surrounding evolved stars. The dust that condenses in the outflows of stars on the Asymptotic Giant Branch consists mainly of amorphous silicates and simple oxides. For high mass loss rates, crystalline silicates begin to appear at modest abunda

  18. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    Skeletal remains of siliceous algae form biogenic fine grained highly porous pelagic siliceous ooze sediments that were found above the reservoir of the Ormen Lange gas field which is located in the southern part of the Norwegian Sea (Figure 1a). The Palaeocene sandstone of the “Egga” Formation i...

  19. Optical Properties of Astronomical Silicates in the Far-infrared (United States)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.


    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  20. Thermal Ablation Modeling for Silicate Materials (United States)

    Chen, Yih-Kanq


    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  1. Organic modification of layered silicates. Structural and thermal characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Prado, L.A.S. de A.; Schulte, K. [Polymer Composites, Denickstrasse 15, TU Hamburg-Harburg, D-21073 Hamburg (Germany); Karthikeyan, C.S.; Nunes, S.P. [Institute of Chemistry, GKSS Research Centre, Max-Planck Strasse 1, D-21502 Geesthacht (Germany); De Torriani, Iris L. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, CEP 13083-970, Campinas-SP (Brazil)


    Organic modification of natural and synthetic layered silicates namely montmorillonite and laponite is reported in this work. The modified silicates are being subsequently used in the preparation of nano-composite membranes based on ionomers for fuel cells application. Laponite, an entirely synthetic silicate, was modified using organosiloxanes containing imidazole groups. Two different strategies were adopted for modification: (a) swelling of the silicate in 2-butanone followed by functionalization using the siloxane at room temperature, (b) direct reaction between laponite and the organosiloxane in xylene at 120{sup o}C. Montmorillonite, a natural silicate, was supplied in the alkyl-ammonium form containing -OH groups. The modification of this silicate was conducted following the procedure (b). The structures of both plain and modified silicates were investigated by XRD showing that the interlayer distance (around 17A) was not affected during the functionalization of laponite. However, a noticeable increase in the interlayer distance from 18.0A to 24.5A was observed for the modified montmorillonite. This clearly shows the presence of polysiloxane chains in between the silicate layers. Further characterization showed that the modification of these silicates was in the range between 16% and 23% (molar percentage). TGA was done between 25 and 300{sup o}C in order to study the thermal degradation pattern of the silicates. The amount of adsorbed water could be determined from the results. The functionalization reduced the adsorption of water from 13.5% to 6.8% for laponite and from 8.5% to 4% for montmorillonite.

  2. Disordered Silicates in Space: a Study of Laboratory Spectra of "Amorphous" Silicates

    CERN Document Server

    Speck, Angela K; Hofmeister, Anne M


    We present a laboratory study of silicate glasses of astrophysically relevant compositions including olivines, pyroxenes and melilites. With emphasis on the classic Si-O stretching feature near 10 microns, we compare infrared spectra of our new samples with laboratory spectra on ostensibly similar compositions, and also with synthetic silicate spectral data commonly used in dust modeling. Several different factors affect spectral features including sample chemistry (e.g., polymerization, Mg/Fe ratio, oxidation state and Al-content) and different sample preparation techniques lead to variations in porosity, density and water content. The convolution of chemical and physical effects makes it difficult to attribute changes in spectral parameters to any given variable. It is important that detailed chemical and structural characterization be provided along with laboratory spectra. In addition to composition and density, we measured the glass transition temperatures for the samples which place upper limits on the ...

  3. Calcium is important forus.

    Institute of Scientific and Technical Information of China (English)



    Calcium is important for our health.We must have it in our diet to stay well.A good place to get it is from dairy products like milk, cheese and ice cream.One pound of cheese has fifty times the calcium we should have every day.Other foods have less.For example,a pound of beans also has calcium.But it has only three times the amount we ought to have daily.

  4. Effect of Chemistry and Particle Size on the Performance of Calcium Disilicide Primers. Part 1 - Synthesis of Calcium Silicide (CaSi2) by Rotary Atomization (United States)


    refs. 8 and 9); electrolysis (refs. 10 and 11); calcium hydride (CaH2) and Si (ref. 12); SiC and CaO (ref. 13); and combustion synthesis (ref. 14...obtained using a goiniometer (Phillips Model PW 3040, Phillips, Eindhoven, the Netherlands) using copper (Cu) K„ radiation (X - 1.54183 A) with a graphite...34 Electrolysis of Molten Alkali and Alkaline Earth Silicates." Bull. Soc. Chim., 6,206, 1939. 12. Louis, V. and Franck, H. H., "Silicide of Calcium," Z. Anorq

  5. Interstellar Silicate Dust in the z=0.89 Absorber Towards PKS 1830-211: Crystalline Silicates at High Redshift?

    CERN Document Server

    Aller, Monique C; York, Donald G; Vladilo, Giovanni; Welty, Daniel E; Som, Debopam


    We present evidence of a >10-sigma detection of the 10 micron silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of tau_10=0.27+/-0.05. The fit is slightly improved upon by including small contributions from additional materials such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources wit...

  6. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie


    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.


    Energy Technology Data Exchange (ETDEWEB)

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam [Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, SC 29208 (United States); York, Donald G.; Welty, Daniel E. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Vladilo, Giovanni, E-mail: [Osservatorio Astonomico di Trieste, Via Tiepolo 11, 34143 Trieste (Italy)


    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  8. The shape and composition of interstellar silicate grains

    CERN Document Server

    Min, M; De Koter, A; Hovenier, J W; Keller, L P; Markwick-Kemper, F


    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effect of the amount of magnesium in the silicate lattice is studied. We fit the spectral shape of the interstellar 10 mu extinction feature as observed towards the galactic center. We use very irregularly shaped coated and non-coated porous Gaussian Random Field particles as well as a statistical approach to model shape effects. For the dust materials we use amorphous and crystalline silicates with various composition and SiC. The results of our analysis of the 10 mu feature are used to compute the shape of the 20 mu silicate feature and to compare this with observations. By using realistic particle shapes we are, for the first time, able to derive the magnesium fraction in interstellar silicates. We find that the interstellar silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry lies between pyroxene and olivine type silicates. This composition is not consistent with that o...

  9. Deep ocean biogeochemistry of silicic acid and nitrate (United States)

    Sarmiento, J. L.; Simeon, J.; Gnanadesikan, A.; Gruber, N.; Key, R. M.; Schlitzer, R.


    Observations of silicic acid and nitrate along the lower branch of the global conveyor belt circulation show that silicic acid accumulation by diatom opal dissolution occurs at 6.4 times the rate of nitrate addition by organic matter remineralization. The export of opal and organic matter from the surface ocean occurs at a Si:N mole ratio that is much smaller than this almost everywhere (cf. Sarmiento et al., 2004). The preferential increase of silicic acid over nitrate as the deep circulation progresses from the North Atlantic to the North Pacific is generally interpreted as requiring deep dissolution of opal together with shallow remineralization of organic matter (Broecker, 1991). However, Sarmiento et al. (2004) showed that the primary reason for the low silicic acid concentration of the upper ocean is that the waters feeding the main thermocline from the surface Southern Ocean are depleted in silicic acid relative to nitrate. By implication, the same Southern Ocean processes that deplete the silicic acid in the surface Southern Ocean must also be responsible for the enhanced silicic acid concentration of the deep ocean. We use observations and results from an updated version of the adjoint model of Schlitzer (2000) to confirm that this indeed the case.

  10. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine


    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  11. Calcium signaling in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dreses-Werringloer Ute


    Full Text Available Abstract Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.

  12. Microstructure, Porosity and Mechanical Property Relationships of Calcium-Silicate-Hydrate (United States)


    34Hydrothermal Synthesis of Clinoptilolite and Comments on the Assemblage of Phillipsite- clinoptilolite -mordenite," Pergamon Press, Oxford and New York, pp...35 Discussion................................................. 48 Part 1IH. Zeolite Synthesis ...52 Previous Glass Hydration Work ... 53 Zeolite Synthesis from Synthetic Glasses 10 and I1 I .. 55 Results............................56 S Zeolite

  13. Human tooth germ stem cell response to calcium-silicate based endodontic cements

    Directory of Open Access Journals (Sweden)

    Esra Pamukcu Guven


    Full Text Available OBJECTIVE: The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs. MTA Fillapex, a mineral trioxide aggregate (MTA-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS: To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl-5-(3-carboxy-methoxy-phenyl-2-(4-sulfo-phenyl-2H-tetrazolium. The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS: On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC group (p0.05. After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008. In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS: Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs.


    Institute of Scientific and Technical Information of China (English)




  15. Functional substitution of coordination polyhedron in crystal structure of silicates

    Institute of Scientific and Technical Information of China (English)

    叶大年; 马哲生; 赫伟; 李哲; 施倪承; D.Pushcharovsky


    On the bases of the study of comparative crystal chemistry of silicates it has been concluded that the octahedra and square pyramids of Ti-0 and Zr-O play functional role of tetrahedra of Si-O in the construction of crystal structures. Therefore, those silicates may be named titano-and zircono-silicates. Because of the functional similarity of coordination polyhedra, the structures of cristobalite and feldspar have been compared with those of perovskite and garnet, respectively. As a new concept, the functional replacement of tetrahedra by octahedra and/or pyramids is defined by the authors of this paper for favorable comparison of relative crystal structures.

  16. Fire Resistance of Wood Impregnated with Soluble Alkaline Silicates

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Giudice


    Full Text Available The aim of this paper is to determine the fire performance of wood panels (Araucaria angustifolia impregnated with soluble alkaline silicates. Commercial silicates based on sodium and potassium with 2.5/1.0 and 3.0/1.0 silica/alkali molar ratios were selected; solutions and glasses were previously characterized. Experimental panels were tested in a limiting oxygen chamber and in a two-foot tunnel. Results displayed a high fire-retardant efficiency using some soluble silicates.

  17. Journal of the Chinese Silicate Society (Selected Articles). (United States)



  18. SON68 glass dissolution driven by magnesium silicate precipitation (United States)

    Fleury, Benjamin; Godon, Nicole; Ayral, André; Gin, Stéphane


    layer at the interface with the pristine glass, the gel and the secondary phases. B is not fixed in the gel layer but retention of both B and Li retention is evidenced in one part of the hydrated layer corresponding to a narrow interdiffusion layer [40]. The (H/Li) interdiffusion coefficient decreases by several orders of magnitude when the alteration solution is silica-saturated [41]. This interdiffusion coefficient is a relevant parameter for evaluating the passivation phenomenon. It has also been shown that the nanoporosity of the hydrated glass layer plays an important role [40]. It can be deduced that the precipitation of a silicate secondary phase associated with the consumption of silica strongly affects the hydration rate of the glass and as a consequence its alteration. So the precipitation of secondary phase is a motive force which modifies the physico-chemical properties of the reactive interface situated in the gel or probably in the hydrated glass which has a role of passivation. Currently, the notion of reactive interface and its physico-chemical conditions are under investigations. In our study, solid characterizations are difficult so we use only the general notion of a protective gel. The increased calcium concentrations correspond to congruent dissolution of the gel formed before the addition of magnesium. The Ca/Si molar ratio of the gel was estimated from each experiment based on the data for day 29; in each case the ratio was near 0.1. This hypothesis was not taken into account for the experiment with regular Mg additions because no gel alteration occurred between 45 and 63 days. Glass alteration released boron and silicon in the same proportions as in the glass. No gel formation occurred within the balance period except in the experiment with 100 mg L-1 of Mg at t = 0, for which the cases of 10%, 30% and 50% gel formation (percentage of silicon from glass alteration incorporated in the gel) are indicated as examples. Based on the calcium

  19. On the spectra luminescence properties of charoite silicate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Guinea, J. [Museo Nacional Ciencias Naturales, Geology, Calle Jose Gutierrez Abascal 2 Madrid 28006 (Spain)], E-mail:; Townsend, P.D. [School of Engineering and Information Technology, University of Sussex, Brighton BN1 9QH, E Sussex (United Kingdom); Can, N. [Faculty of Arts and Sciences, Physics Department, Celal Bayar University, Manisa (Turkey); Correcher, V.; Sanchez-Munoz, L. [CIEMAT, Department of Radiation Dosimetry, Avenue Complutense 22, Madrid 28040 (Spain); Finch, A.A. [Centre for Advanced Materials, University of St Andrews, Irvine Building, St Andrews, Fife KY16 9AL (United Kingdom); Hole, D. [School of Engineering and Information Technology, University of Sussex, Brighton BN1 9QH, E Sussex (United Kingdom); Avella, M.; Jimenez, J. [Department of Fisica Materia Condensada, ETSI Industriales, University of Valladolid, Valladolid 47011 (Spain); Khanlary, M. [School of Engineering and Information Technology, University of Sussex, Brighton BN1 9QH, E Sussex (United Kingdom); Physics Department, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)


    Charoite is a hydrous alkali calcium silicate mineral [K{sub 4}NaCa{sub 7}Ba{sub 0.75}Mn{sub 0.2}Fe{sub 0.05}(Si{sub 6}O{sub 15}){sub 2}(Si{sub 2}O{sub 7})Si{sub 4}O{sub 9}(OH).3(H{sub 2}O)] exhibiting an intense lilac colour related to Mn{sup 2+} and Fe{sup 3+} colour centres. These ions also contribute to a strong luminescence at {approx}585 and 705 nm. This work studies the thermal dependence of these luminescent centres by (i) thermoluminescence (TL) of pre-heated and pre-irradiated charoite aliquots, (ii) by time-resolved cathodoluminescence (TRS-CL) at room and cryogenic temperatures (RT and CT), (iii) by spatially resolved spectra CL under scanning electron microscopy (SRS-CL-SEM) and (iv) by ion beam spectra luminescence (IBL) with H{sup +}, H{sub 2}{sup +} and {sup 4}He{sup +} ions at RT and LT. The main peak, {approx}585 nm, is linked to a transition {sup 4}T{sub 1,2} (G){yields}{sup 6}A{sub 7}(S) in Mn{sup 2+} ions in distorted six-fold coordination and the emission at {approx}705 nm with Fe{sup 2+}{yields}Fe{sup 3+} oxidation in Si{sup 4+} lattice sites. Less intense UV-blue emissions at 340 and 390 nm show multi-order kinetic TL glow curves involving continuous processes of electron trapping and de-trapping along with an irreversible phase transition of charoite by de-hydroxylation and lattice shortening of {delta}a=0.219 A, {delta}b=0.182 A; {delta}c=0.739 A. The Si-O stressed lattice of charoite has non-bridging oxygen or silicon vacancy-hole centres, and Si-O bonding defects which seem to be responsible for the 340 nm emission. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO{sub 4}/M{sup +}] centres could be linked with the 390 nm emission. Large variations in 585 and 705 nm intensities are strongly temperature dependent, modifying local Fe-O and Mn-O bond distances, short-range-order luminescence centres being very resistant under the action of the heavy ion beam of {sup 4}He{sup +}. The SRS-CL demonstrates strong spatial

  20. Nanostructure of Er3+ doped silicates. (United States)

    Yao, Nan; Hou, Kirk; Haines, Christopher D; Etessami, Nathan; Ranganathan, Varadh; Halpern, Susan B; Kear, Bernard H; Klein, Lisa C; Sigel, George H


    We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

  1. The crystalline fraction of interstellar silicates in starburst galaxies

    CERN Document Server

    Kemper, F; Woods, Paul M


    We present a model using the evolution of the stellar population in a starburst galaxy to predict the crystallinity of the silicates in the interstellar medium of this galaxy. We take into account dust production in stellar ejecta, and amorphisation and destruction in the interstellar medium and find that a detectable amount of crystalline silicates may be formed, particularly at high star formation rates, and in case supernovae are efficient dust producers. We discuss the effect of dust destruction and amorphisation by supernovae, and the effect of a low dust-production efficiency by supernovae, and find that when taking this into account, crystallinity in the interstellar medium becomes hard to detect. Levels of 6.5-13% crystallinity in the interstellar medium of starburst galaxies have been observed and thus we conclude that not all these crystalline silicates can be of stellar origin, and an additional source of crystalline silicates associated with the Active Galactic Nucleus must be present.

  2. Spinning dust emission from ultrasmall silicates: emissivity and polarization spectrum

    CERN Document Server

    Hoang, Thiem; Lan, Nguyen Quynh


    Anomalous microwave emission (AME) is an important Galactic foreground of Cosmic Microwave Background (CMB) radiation. It is believed that the AME arises from rotational emission by spinning polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM). In this paper, we assume that a population of ultrasmall silicate grains may exist in the ISM, and quantify rotational emissivity from these tiny particles and its polarization spectrum. We found that spinning silicate nanoparticles can produce strong rotational emission when those small grains follow a log-normal size distribution. The polarization fraction of spinning dust emission from tiny silicates increases with decreasing the dipole moment per atom ($\\beta$) and can reach $P\\sim 20\\%$ for $\\beta\\sim 0.1$D at grain temperature of 60 K. We identify a parameter space $(\\beta,Y_{Si})$ for silicate nanoparticles in which its rotational emission can adequately reproduce both the observed AME and the polarization of the AME, without violating the ob...

  3. Characterization of iron-phosphate-silicate chemical garden structures. (United States)

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik


    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life.

  4. Properties of sodium silicate bonded sand hardened by microwave heating

    Institute of Scientific and Technical Information of China (English)

    Wang Jina; Fan Zitian; Zan Xiaolei; Pan Di


    The sodium silicate bonded sand hardened by microwave heating has many advantages,such as low sodium silicate adding quantity,fast hardening speed,high room temperature strength,good collapsibility and certain surface stability. However,it has big moisture absorbability in the air,which would lead to the compression strength and the surface stability of the sand molds being sharply reduced. In this study,the moisture absorbability of the sodium silicate bonded sand hardened by microwave heating in different humidity conditions and the effect factors were investigated. Meanwhile,the reasons for the big moisture absorbability of the sand were analyzed.Some measures to overcome the problems of high moisture absorbability,bad surface stability and sharply reducing strength in the air were discussed. The results of this study establish the foundation of green and clean foundry technology based on the microwave heating hardening sodium silicate sand process.

  5. Compressibility of hydrated and anhydrous sodium silicate-based liquids and glasses, as analogues for natural silicate melts, by Brillouin scattering spectroscopy (United States)

    Tkachev, Sergey Nikolayevich

    A mathematical formalism was tested on compressibility studies of water, before applying it to the high pressure-temperature compressibility studies of hydrated and anhydrous sodium silicate-based liquids and glasses. The hypersonic sound velocity, refractive index and attenuation coefficient obtained using Brillouin light scattering spectroscopy technique were in agreement with literature data. From the measured sound velocities, the pressure dependence of the bulk moduli and density of liquid water were calculated, using Vinet equation of state. The formalism was extended to the Brillouin scattering studies of the elastic properties of alkaline-calcium silica hydrogels and float glass, which exhibits a dramatic increase in the pressure dependence of longitudinal velocity and a discontinuity in the compressibility at about 6 GPa. It is demonstrated that an apparent second-order transition to a new amorphous phase can form via the abrupt onset of a new compressional mechanism, which may be triggered by a shift in polymerization of the glass or an onset of a change in coordination of silicon. Brillouin scattering measurements were carried out on an aqueous solution of Na2O-2SiO2 and anhydrous Na2O-2SiO 2 glass and liquid at high P-T conditions. The "modified" platelet scattering geometry has allowed a determination of the longitudinal velocity independently from refractive index, and hence the adiabatic compressibility and density of liquids as a function of pressure and temperature. The observed increase in density of the melt and glass phases formed at high P-T conditions is likely associated with structural effects. The large values of KS' of the liquid phase illustrate that the means of compaction of the liquid differs substantially from that of the glass, and that the liquid is able to access a wider range of compaction mechanisms. The measured bulk modulus of Na2O-2SiO2 aqueous solution is closer to values of silicate melts than to that of end-member water at

  6. High Pressure/Temperature Metal Silicate Partitioning of Tungsten (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.


    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  7. Friction and Wear Behaviors of Nano-Silicates in Water

    Institute of Scientific and Technical Information of China (English)

    Chen Boshui; Lou Fang; Fang Jianhua; Wang Jiu; Li Jia


    Nano-metric magnesium silicate and zinc silicate with particle size of about 50--70nm were prepared in water by the method of chemical deposition. The antiwear and friction reducing abilities of the nano-silicates, as well as their compos-ites with oleie acid tri-ethanolamine (OATEA), were evaluated on a four-ball friction tester. The topographies and tribochemical features of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). Results show that nano-silicates alone provide poor antiwear and friction reducing abilities in water, but exhibits excellent synergism with OATEA in reducing friction and wear. The synergism in reducing friction and wear between naao-silicates and OATEA does exist almost regardless of particle sizes and species, and may be attributed, on one hand, to the formation of an adsorption film of OATEA, and, on the other hand, to the formation oftdbochemical species of silicon dioxide and iron oxides on the friction surfaces. Tribo-reactions and tribo-adsorptions of nano-silicates and OATEA would produce hereby an effective composite boondary lubrication film, which could efficiently enhance the anti-wear and friction-reducing abilities of water.

  8. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. (United States)

    Li, Haiyan; Xue, Ke; Kong, Ni; Liu, Kai; Chang, Jiang


    The facts that biomaterials affect the behavior of single type of cells have been widely accepted. However, the effects of biomaterials on cell-cell interactions have rarely been reported. Bone tissue engineering involves osteoblastic cells (OCs), endothelial cells (ECs) and the interactions between OCs and ECs. It has been reported that silicate biomaterials can stimulate osteogenic differentiation of OCs and vascularization of ECs. However, the effects of silicate biomaterials on the interactions between ECs and OCs during vascularization and osteogenesis have not been reported, which are critical for bone tissue regeneration in vivo. Therefore, this study aimed to investigate the effects of calcium silicate (CS) bioceramics on interactions between human umbilical vein endothelial cells (HUVECs) and human bone marrow stromal cells (HBMSCs) and on stimulation of vascularization and osteogenesis in vivo through combining co-cultures with CS containing scaffolds. Specifically, the effects of CS on the angiogenic growth factor VEGF, osteogenic growth factor BMP-2 and the cross-talks between VEGF and BMP-2 in the co-culture system were elucidated. Results showed that CS stimulated co-cultured HBMSCs (co-HBMSCs) to express VEGF and the VEGF activated its receptor KDR on co-cultured HUVECs (co-HUVECs), which was also up-regulated by CS. Then, BMP-2 and nitric oxide expression from the co-HUVECs were stimulated by CS and the former stimulated osteogenic differentiation of co-HBMSCs while the latter stimulated vascularization of co-HVUECs. Finally, the poly(lactic-co-glycolic acid)/CS composite scaffolds with the co-cultured HBMSCs and HUVECs significantly enhanced vascularization and osteogenic differentiation in vitro and in vivo, which indicates that it is a promising way to enhance bone regeneration by combining scaffolds containing silicate bioceramics and co-cultures of ECs and OCs.

  9. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway. (United States)

    Guan, Junjie; Zhang, Jieyuan; Guo, Shangchun; Zhu, Hongyi; Zhu, Zhenzhong; Li, Haiyan; Wang, Yang; Zhang, Changqing; Chang, Jiang


    Human urine-derived stem cells (USCs) have great application potential for cytotherapy as they can be obtained by non-invasive and simple methods. Silicate bioceramics, including calcium silicate (CS), can stimulate osteogenic differentiation of stem cells. However, the effects of silicate bioceramics on osteogenic differentiation of USCs have not been reported. In this study, at first, we investigated the effects of CS ion extracts on proliferation and osteogenic differentiation of USCs, as well as the related mechanism. CS particles were incorporated into poly (lactic-co-glycolic acid) (PLGA) to obtain PLGA/CS composite scaffolds. USCs were then seeded onto these scaffolds, which were subsequently transplanted into nude mice to analyze the osteogenic differentiation of USCs and mineralization of extracellular matrix formed by USCs in vivo. The results showed that CS ion extracts significantly enhanced cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and expression of certain osteoblast-related genes and proteins. In addition, cardamonin, a Wnt/β-catenin signaling inhibitor, reduced the stimulatory effects of CS ion extracts on osteogenic differentiation of USCs, indicating that the observed osteogenic differentiation of USCs induced by CS ion extracts involves Wnt/β-catenin signaling pathway. Furthermore, histological analysis showed that PLGA/CS composite scaffolds significantly enhanced the osteogenic differentiation of USCs in vivo. Taken together, these results suggest the therapeutic potential of combining USCs and PLGA/CS scaffolds in bone tissue regeneration.

  10. Calcium and Your Child (United States)

    ... for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce, low- ... Minerals Do I Need to Drink Milk? Lactose Intolerance Becoming a Vegetarian Soy Foods and Health Calcium ...

  11. Stoichiometry of Calcium Medicines (United States)

    Pinto, Gabriel


    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  12. Calcium and Calcium-Base Alloys (United States)


    should be satisfactory, because the electrolytic process for •(!>: A. H. Everts and G. D. Baglev’, " Physical «nrt m<„.+„4 i «_ of Calcium«, Electrochem...Rev. Metalurgie , 3j2, (1), 129 (1935). 10 ^sm^mssss^ma^^ extension between two known loads, is preferable to the value of 3,700,000 p.B.i. obtained

  13. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.


    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  14. Silicic Arc Magmas And Silicic Slab Melts: The Melt-Rock Reaction Link (United States)

    Straub, S. M.; Gomez-Tuena, A.; Bolge, L. L.; Espinasa-Perena, R.; Bindeman, I. N.; Stuart, F. M.; Zellmer, G. F.


    While a genetic link between silicic arc magmas and silicic melts from the subducted slab has long been proposed, this hypothesis is commonly refuted because most arc magmas lack a 'garnet-signature' which such slab melts must have. A comprehensive geochemical study of high-Mg# arc magmas from the Quaternary central Mexican Volcanic Belt (MVB), however, shows that this conflict can be reconciled if melt-rock reaction processes in the mantle wedge were essential to arc magma formation. In the central MVB, monogenetic and composite volcanoes erupt high-Mg# basalts to andesites with highly variable trace element patterns. These magmas contain high-Ni olivines (olivine Ni higher than permissible for olivines in partial peridotite melts) with high 3He/4He = 7-8 Ra that provide strong evidence for silicic slab components that infiltrate the subarc mantle to produce olivine-free segregations of 'reaction pyroxenite' in the sources of individual volcanoes. Melting of silica-excess and silica-deficient reaction pyroxenites can then produce high-Mg# basaltic and dacitic primary melts that mix during ascent through mantle and crust to form high-Mg# andesites. Mass balance requires that reaction pyroxenites contain at least >15-18 wt%, and likely more, of slab component. However, because the HREE of the slab component are efficiently retained in the eclogitic slab, elements Ho to Lu in partial melts from reaction pyroxenites remain controlled by the mantle and maintain MORB-normalized Ho/Lun ˜1.15 close to unity. In contrast, the MREE to LREE and fluid mobile LILE of the arc magmas are either controlled, or strongly influenced, by slab-contributions. The origin from hybrid sources also shows in the major elements that are blends of mantle-derived elements (Mg, Ca, Mn, Fe, Ti) and elements augmented by slab contributions (Si, Na, K, P, and possibly Al). Moreover, strong correlations between bulk rock SiO2, 87Sr/86Sr and δ18O (olivines) can be interpreted as mixtures of subarc

  15. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau


    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  16. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia


    Wilson, Rosamund J; Copley, J Brian


    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent...

  17. [Microbial geochemical calcium cycle]. (United States)

    Zavarzin, G A


    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  18. Silicate Dust in Evolved Protoplanetary Disks: Growth, Sedimentation, and Accretion

    CERN Document Server

    Sicilia-Aguilar, Aurora; Watson, Dan; Bohac, Chris; Henning, Thomas; Bouwman, Jeroen; 10.1086/512121


    We present the Spitzer IRS spectra for 33 young stars in Tr 37 and NGC 7160. The sample includes the high- and intermediate-mass stars with MIPS 24 microns excess, the only known active accretor in the 12 Myr-old cluster NGC 7160, and 19 low-mass stars with disks in the 4 Myr-old cluster Tr 37. We examine the 10 microns silicate feature, present in the whole sample of low-mass star and in 3 of the high- and intermediate-mass targets, and we find that PAH emission is detectable only in the Herbig Be star. We analyze the composition and size of the warm photospheric silicate grains by fitting the 10 microns silicate feature, and study the possible correlations between the silicate characteristics and the stellar and disk properties (age, SED slope, accretion rate, spectral type). We find indications of dust settling with age and of the effect of turbulent enrichment of the disk atmosphere with large grains. Crystalline grains are only small contributors to the total silicate mass in all disks, and do not seem t...

  19. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  20. Inositol trisphosphate and calcium signalling (United States)

    Berridge, Michael J.


    Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

  1. Functional substitution of coordination polyhedron in crystal structure of silicates

    Institute of Scientific and Technical Information of China (English)


    On the bases of the study of comparative crystal chemistry of silicates it has been concluded that the octahedra and square pyramids of Ti-O and Zr-O play functional role of tetrahedra of Si-O in the construction of crystal structures.Therefore,those silicates may be named titano- and zircono-silicates.Because of the functional similarity of coordination polyhedra,the structures of cristobalite and feldspar have been compared with those of perovskite and garnet,respectively.As a new concept,the functional replacement of tetrahedra by octahedra and/or pyramids is defined by the authors of this paper for favorable comparison of relative crystal structures.

  2. Calcined sodium silicate as solid base catalyst for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng; Peng, Zhen-Gang; Dai, Jian-Ying; Xiu, Zhi-Long [Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)


    This paper examined the use of calcined sodium silicate as a novel solid base catalyst in the transesterification of soybean oil with methanol. The calcined sodium silicate was characterized by DTA-TG, Hammett indicator method, XRD, SEM, BET, IR and FT-IR. It catalyzed the transesterification of soybean oil to biodiesel with a yield of almost 100% under the following conditions: sodium silicate of 3.0 wt.%, a molar ratio of methanol/oil of 7.5:1, reaction time of 60 min, reaction temperature of 60 C, and stirring rate of 250 rpm. The oil containing 4.0 wt.% water or 2.5 wt.% FFA could also be transesterified by using this catalyst. The catalyst can be reused for at least 5 cycles without loss of activity. (author)

  3. Electric field-induced softening of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)


    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  4. Effect of Minor Elements on Silicate Cement Clinker

    Institute of Scientific and Technical Information of China (English)

    HUANG Congyun; ZHANG Mingfei; ZHANG Meixiang; LONG Shizong; CHEN Yuankui; MA Baoguo


    The effect of rare-earth and HX addition agent on the burn-ability of silicate cement clinker was investigated by orthogonal experiment. The result shows, compared with blank sample, f- CaO of the samples added with rare-earth and HX agent drops by 84.95% , its 3d and 28d compressive strength enhances by 24.40%and 16.90%, respectively. It was discovered by means of X-ray diffraction and high temperature microscope analysis that sintering temperature of the sample added with rare-earth and HX addition agent is about 1320℃. At the same time, the burning temperature of tricalcium silicate desends and its crystal growth forming-rate increases.Tricalcium silicate content in burning clinker is higher and its crystal is larger.

  5. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)


    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  6. Structural chemistry of anhydrous sodium silicates - a review. (United States)

    Kahlenberg, Volker


    Sodium silicates are of considerable importance for many fields of inorganic chemistry and applied mineralogy, being either raw materials for synthesis or already finished products. In addition to their industrial relevance they have also been studied intensively because of their interesting physico-chemical properties including high ion-exchange capacity and selectivity or two-dimensional sodium diffusion and conductivity. Furthermore, the structural chemistry of crystalline sodium silicates offers the crystallographer challenging tasks such as polytypism, polymorphism, temperature and/or pressure-dependent phase transitions, pseudo-symmetry, complex twinning phenomena as well as incommensurately modulated structures. Many of these structural problems have been solved only recently, although in some cases they have been known for several decades. This article will provide an overview on the structurally characterized sodium silicates and their fascinating crystallochemical characteristics.

  7. Behaviour of Silicate Melts in Respect of Volume

    Institute of Scientific and Technical Information of China (English)

    张金民; 叶大年


    The volumes per oxygen of some silicate melts have been calculated and then compared with those of silicate glasses.It is suggested that the volume of a silicate melt can be divided into two parts.One is contri buted by the silicon-oxygen network and the other by the “oxides”.Variation patterns of VPOs suggest that the volume of the Si-O network generally remains unchanged and the expansion of the melt is caused mainly by the locat expansion of the “oxides”.It is further proposed that the radius of O2- shows little variation,in striking contrast to the radius of cations.The mechanism governing the expansion is discussed in detail.

  8. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W


    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  9. Through The Looking Glass: Laboratory Studies Of Calcium Bearing Amorphous Pyroxenes (United States)

    Wheeler, Jordan D.


    Many astrophysical environments exhibit spectral features around 10µm and 18µm that have long been attributed to amorphous (glassy) silicates. However existing laboratory spectral data for amorphous silicates do not cover a wide enough compositional range to allow astronomers to interpret their observations without large uncertainty. In particular, while magnesium-rich silicates have been studied extensively, the effect of some other likely components (e.g. calcium, aluminium) have been largely neglected, even though these elements are expected to play a major role in dust condensation. We present laboratory spectra for a series of 8 glasses, produced by quenching silicate melts of calcium-bearing pyroxene composition. The samples range from the Mg end-member (enstatite; MgSiO3) to the Ca end-member (wollastonite; CaSiO3). The halfway composition corresponds to the mineral diopside (CaMgSi2O6), which has previously been proposed to explain observed spectral features. CaMgSi2O6 glass has a much broader 10µm peak than Mg2Si2O6 glass, due to the more varied bonding environments resulting from two different network modifying cations, and its peak extends to longer wavelengths, consistent with the greater mass of Ca. The presence of other elements is likewise expected to result in broader features and subtle changes in peak position. In addition to a systematic study of the effect of Ca substitution for Mg, we present some more complex glasses that include Na, Al and Fe as minor constituents. In addition we present measurements of the viscosity of these glasses to determine the glass transition temperature (Tg), which provides an important constraint on the thermal history of observed glassy silicate.

  10. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate. (United States)

    Henrickson, Charles H.; Robinson, Paul R.


    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  11. Calcium and Calcium Supplements: Achieving the Right Balance (United States)

    ... bone mass, which is a risk factor for osteoporosis. Many Americans don't get enough calcium in their diets. Children and adolescent girls are at particular risk, but so are adults age 50 and older. How much calcium you ...

  12. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie


    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  13. Nitrogen distribution between aqueous fluids and silicate melts (United States)

    Li, Yuan; Huang, Ruifang; Wiedenbeck, Michael; Keppler, Hans


    The partitioning of nitrogen between hydrous fluids and haplogranitic, basaltic, or albitic melts was studied at 1-15 kbar, 800-1200 °C, and oxygen fugacities (fO2) ranging from the Fe-FeO buffer to 3log units above the Ni-NiO buffer. The nitrogen contents in quenched glasses were analyzed either by electron microprobe or by secondary ion mass spectrometry (SIMS), whereas the nitrogen contents in fluids were determined by mass balance. The results show that the nitrogen content in silicate melt increases with increasing nitrogen content in the coexisting fluid at given temperature, pressure, and fO2. Raman spectra of the silicate glasses suggest that nitrogen species change from molecular N2 in oxidized silicate melt to molecular ammonia (NH3) or the ammonium ion (NH4+) in reduced silicate melt, and the normalized Raman band intensities of the nitrogen species linearly correlate with the measured nitrogen content in silicate melt. Elevated nitrogen contents in silicate melts are observed at reduced conditions and are attributed to the dissolution of NH3/NH4+. Measured fluid/melt partition coefficients for nitrogen (DNfluid/ melt) range from 60 for reduced haplogranitic melts to about 10 000 for oxidized basaltic melts, with fO2 and to a lesser extent melt composition being the most important parameters controlling the partitioning of nitrogen. Pressure appears to have only a minor effect on DNfluid/ melt in the range of conditions studied. Our data imply that degassing of nitrogen from both mid-ocean ridge basalts and arc magmas is very efficient, and predicted nitrogen abundances in volcanic gases match well with observations. Our data also confirm that nitrogen degassing at present magma production rates is insufficient to accumulate the atmosphere. Most of the nitrogen in the atmosphere must have degassed very early in Earth's history and degassing was probably enhanced by the oxidation of the mantle.

  14. Digging into Augustine Volcano's Silicic Past (United States)

    Nadeau, P. A.; Webster, J. D.; Goldoff, B. A.


    Activity at Augustine Volcano, Alaska, has been marked by intermediate composition domes, flows, and tephras during the Holocene. Erosive lahars associated with the 2006 eruption exposed voluminous rhyolite pumice fall beneath glacial tills. The rhyolite is both petrologically and mineralogically different from more recent eruptions, with abundant amphibole (both calcium-amphiboles and cummingtonite) and quartz, both rare in more recent products. Three distinct lithologies are present, with textural and chemical variations between the three. Fe-Ti oxide equilibria indicate temperatures of ~765°C and oxygen fugacities of NNO +1.5. Melt inclusions indicate that the stratigraphically lowest lithology began crystallizing isobarically at ~260 MPa with the contemporary mixed H2O-CO2 fluid phase becoming progressively H2O-rich. The other lithologies were likely crystallized under more H2O-dominated conditions, as indicated by the presence of cummingtonite. Apatites and melt inclusions have generally lower chlorine contents than more recently erupted material, which is typically high in chlorine. Xenocrysts of olivine and clinopyroxene in two of the three lithologies contain mafic (basalt to basaltic andesite) melt inclusions that indicate the likelihood of mixing and/or mingling of magmas as an eruption trigger. We interpret the three lithologies as representative of a smaller pumiceous rhyolite eruption, with subsequent extrusion of a rhyodacite banded lava dome or flow. This was followed by a large-scale rhyolitic pumice eruption that entrained portions of the banded flow as lithic inclusions. The unique qualities of this pre-glacial rhyolite and the potential hazards of a similarly large eruption in modern times indicate that further study is warranted.

  15. Electrical conductivity measurements on silicate melts using the loop technique (United States)

    Waff, H. S.


    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  16. Mathematical Viscosity Models for Ternary Metallic and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    FU Yuan-kun; MENG Xian-min; GUO Han-jie


    The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou's general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO2, CaO-FeO-SiO2 and FeO-MnO-SiO2 silicate slag systems were used to verify the model.

  17. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol


    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  18. Discovery of ancient silicate stardust in a meteorite. (United States)

    Nguyen, Ann N; Zinner, Ernst


    We have discovered nine presolar silicate grains from the carbonaceous chondrite Acfer 094. Their anomalous oxygen isotopic compositions indicate formation in the atmospheres of evolved stars. Two grains are identified as pyroxene, two as olivine, one as a glass with embedded metal and sulfides (GEMS), and one as an Al-rich silicate. One grain is enriched in 26Mg, which is attributed to the radioactive decay of 26Al and provides information about mixing processes in the parent star. This discovery opens new means for studying stellar processes and conditions in various solar system environments.

  19. Mbosi: An anomalous iron with unique silicate inclusions (United States)

    Olsen, Edward J.; Clayton, Robert N.; Mayeda, Toshiko K.; Davis, Andrew M.; Clarke, Roy S., Jr.; Wasson, John T.


    The Mbosi iron meteorite contains millimeter size silicate inclusions. Mbosi is an ungrouped iron meteorite with a Ge/Ga ratio >10, which is an anomalous property shared with the five-member IIF iron group, the Eagle Station pallasites and four other ungrouped irons. Neither the IIF group nor the four other ungrouped irons are known to have silicate inclusions. Chips from three Mbosi inclusions were studied, but most of the work concentrated on a whole 3.1 mm circular inclusion. This inclusion consists of a mantle and a central core of different mineralogies. The mantle is partially devitrified quartz-normative glass, consisting of microscopic crystallites of two pyroxenes and plagioclase, which are crystalline enough to give an x-ray powder diffraction pattern but not coarse enough to permit analyses of individual minerals. The core consists of silica. The bulk composition does not match any known meteorite type, although there is a similarity in mode of occurrence to quartz-normative silicate inclusions in some HE irons. Mbosi silicate appears to be unique. The bulk rare earth element (REE) pattern of the mantle is flat at ≅ 7×C1; the core is depleted in REE but shows a small positive Eu anomaly. The O-isotope composition of bulk silicate lies on a unit slope mixing line (parallel and close to the C3 mixing line) that includes the Eagle Station pallasites and the iron Bocaiuva (related to the IIF irons); all of these share the property of having Ge/Ga ratios >10. It is concluded that Mbosi silicate represents a silica-bearing source rock that was melted and injected into metal. Melting occurred early in the history of the parent body because the metal now shows a normal Widmanstätten structure with only minor distortion that was caused when the parent body broke up and released meteorites into interplanetary space. The cause of Ge/Ga ratios being >10 in these irons is unknown. The fact that silicates in Mbosi, Bocaiuva (related to IIF irons) and the Eagle

  20. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates (United States)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.


    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  1. Calcium, vitamin D and bone


    Borg, Andrew A.


    Calcium, protein and vitamin D are the main nutrients relevant to bone health. This short article discusses the importance of vitamin D and its relation to calcium homeostasis. The various causes, clinical manifestations and treatment are outlined.

  2. Core Formation Timescale, Silicate-Metal Equilibration, and W Diffusivity (United States)

    Yin, Q.; Jacobsen, B.; Tinker, D.; Lesher, C.


    The extent to which material accreted to the proto-Earth and segregated to form the core was chemically and isotopically equilibrated with the silicate mantle is an outstanding problem in planetary science. This is particularly important when attempting to assign a meaningful age for planetary accretion and core formation based on Hf-W isotope systematics. The Earth and other terrestrial planets likely formed by accretion of previously differentiated planetesimals. For the planetesimals themselves the most important energy source for metal-silicate differentiation is the combined radioactive heating due to decay of 26Al (half-life 0.7 Ma) and 60Fe (half-life 1.5 Ma). It is expected that the fractionation of Hf and W during planetesimal core formation will lead to a divergence in the W isotopic compositions of the core and silicate portions of these bodies. This expectation is supported by the enormously radiogenic 182W signatures reported for basaltic eucrites. The observation that the W isotopic compositions of the silicate portions of Earth, Moon and Mars are similar and markedly less radiogenic than eucrites suggests that during planet accretion the pre-differentiated metallic core material containing low 182W must have equilibrated extensively with the more radiogenic (high 182W) silicate material to subdue the ingrowth of 182W in the silicate mantle of the planets. The standard theory of planet formation predicts that after runaway and oligarchic growth, the late stage of planet formation is characterized by impact and merging of Mars-sized objects. This is a tremendously energetic process estimated to raise the temperature of the proto-Earth to about 7000K (a temperature equivalent to a mass spectrometer's plasma source, which indiscriminately ionizes all incoming elements). After the giant impacts, the proto-Earth had a luminosity and surface temperature close to a low mass star for a brief period of time. Stevenson (1990) argued that emulsification caused

  3. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma


    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  4. Calcium carbonate overdose (United States)

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep all medicines in child-proof bottles and out ...

  5. High Blood Calcium (Hypercalcemia) (United States)

    ... as well as kidney function and levels of calcium in your urine. Your provider may do other tests to further assess your condition, such as checking your blood levels of phosphorus (a mineral). Imaging studies also may be helpful, such as bone ...

  6. Solar Imagery - Chromosphere - Calcium (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  7. Calcium aluminate in alumina (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  8. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk


    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...

  9. Non-conservative controls on distribution of dissolved silicate in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.; Nair, M.

    Cochin backwater system was studied with regard to dissolved silicate (DSi) to understand its seasonal distribution and behaviour during estuarine mixing. Silicate had a linear relationship with salinity during the high river discharge period...

  10. Bioceramics of calcium orthophosphates. (United States)

    Dorozhkin, Sergey V


    A strong interest in use of ceramics for biomedical applications appeared in the late 1960's. Used initially as alternatives to metals in order to increase a biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics, bioactive (or surface reactive) and bioresorbable ones. Furthermore, any type of bioceramics could be porous to provide tissue ingrowth. This review is devoted to bioceramics prepared from calcium orthophosphates, which belong to the categories of bioresorbable and bioactive compounds. During the past 30-40 years, there have been a number of major advances in this field. Namely, after the initial work on development of bioceramics that was tolerated in the physiological environment, emphasis was shifted towards the use of bioceramics that interacted with bones by forming a direct chemical bond. By the structural and compositional control, it became possible to choose whether the bioceramics of calcium orthophosphates was biologically stable once incorporated within the skeletal structure or whether it was resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics, which is able to regenerate bone tissues, has been developed. Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Potential future applications of calcium orthophosphate bioceramics will include drug-delivery systems, as well as they will become effective carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  11. Energetics of silicate melts from thermal diffusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.


    Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).

  12. Estimation of high temperature metal-silicate partition coefficients (United States)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.


    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  13. Ubiquitous high-FeO silicates in enstatite chondrites (United States)

    Lusby, David; Scott, Edward R. D.; Keil, Klaus


    SEM and EMPA were used to determine the mineral contents of four EH3 chondrites. All four showed the dominant enstatite peak, Fs 0-5, with 4-8 percent of FeO-rich pyroxene with Fs 5-20. Among the 542 objects found to contain high-FeO silicates, 18 were chondrules, 381 were rimmed or unrimmed grains, and 143 were aggregates. The high-FeO silicates in these objects are very largely pyroxene with Fs 5-23. Large grains of both FeO-rich and FeO-poor silicates were found to be present in the FeO-rich chondrules. This fact, together with the absence of clasts of FeO-rich chondritic material in the EH3 chondrites, suggests that FeO-rich grains were introduced before or during chondrule formation. It is concluded that FeO-rich and FeO-poor silicates were both present in the nebular region where E chondrites originated.

  14. On the Dissolution Behavior of Sulfur in Ternary Silicate Slags (United States)

    Kang, Youn-Bae; Park, Joo Hyun


    Sulfur dissolution behavior, in terms of sulfide capacity ( C S), in ternary silicate slags (molten oxide slags composed of MO - NO - SiO2, where M and N are Ca, Mn, Fe, and Mg), is discussed based on available experimental data. Composition dependence of the sulfur dissolution, at least in the dilute region of sulfur, may be explained by taking into account the cation-anion first-nearest-neighbor (FNN) interaction (stability of sulfide) and the cation-cation second-nearest-neighbor (SNN) interaction over O anion (oxygen proportions in silicate slags). When the Gibbs energy of a reciprocal reaction MO + NS = MS + NO is positive, the sulfide capacity of slags with virtually no SiO2 or low SiO2 concentration decreases as the concentration of MO increases. However, in some slags, as SiO2 concentration increases, replacing NO by MO at a constant SiO2 concentration may increase sulfide capacity when the basicity of NO is less than that of MO. This phenomenon is observed as rotation of iso- C S lines in ternary silicate slags, and it is explained by simultaneous consideration of the stability of sulfide and oxygen proportions in the silicate slags. It is suggested that a solution model for the prediction of sulfide capacity should be based on the actual dissolution mechanism of sulfur rather than on the simple empirical correlation.

  15. Experiments on metal-silicate plumes and core formation. (United States)

    Olson, Peter; Weeraratne, Dayanthie


    Short-lived isotope systematics, mantle siderophile abundances and the power requirements of the geodynamo favour an early and high-temperature core-formation process, in which metals concentrate and partially equilibrate with silicates in a deep magma ocean before descending to the core. We report results of laboratory experiments on liquid metal dynamics in a two-layer stratified viscous fluid, using sucrose solutions to represent the magma ocean and the crystalline, more primitive mantle and liquid gallium to represent the core-forming metals. Single gallium drop experiments and experiments on Rayleigh-Taylor instabilities with gallium layers and gallium mixtures produce metal diapirs that entrain the less viscous upper layer fluid and produce trailing plume conduits in the high-viscosity lower layer. Calculations indicate that viscous dissipation in metal-silicate plumes in the early Earth would result in a large initial core superheat. Our experiments suggest that metal-silicate mantle plumes facilitate high-pressure metal-silicate interaction and may later evolve into buoyant thermal plumes, connecting core formation to ancient hotspot activity on the Earth and possibly on other terrestrial planets.

  16. Nd3+ Doped Silicate Glass Photonic Crystal Fibres

    Institute of Scientific and Technical Information of China (English)

    YANG Lu-Yun; CHEN Dan-Ping; XIA Jin-An; WANG Chen; JIANG Xiong-Wei; ZHU Cong-Shan; QIU Jian-Rong


    @@ We report on the fabrication of two kinds of large core area Nd3+ doped silicate glass photonic crystal fibres, and demonstration of the fibre waveguiding properties. The measured minimum loss of one kind ofibres is 2.5 db/m at 660nm. The fibres sustain only a single mode at least over the wavelength range from 660nm to 980nm.

  17. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng


    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two d...

  18. Phase Diagrams of Silicate Systems: Handbook; Third Issue; Ternary Systems (United States)

    In the third issue of the handbook Phase Diagrams of Silicate Systems, information is included on the phase relationships in systems containing...radioelectronics, nuclear engineering, etc. Not only are equilibrium phase diagrams presented in the handbook, but the phases existing in the

  19. Electron stimulated hydroxylation of a metal supported silicate film. (United States)

    Yu, Xin; Emmez, Emre; Pan, Qiushi; Yang, Bing; Pomp, Sascha; Kaden, William E; Sterrer, Martin; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Goikoetxea, Itziar; Wlodarczyk, Radoslaw; Sauer, Joachim


    Water adsorption on a double-layer silicate film was studied by using infrared reflection-absorption spectroscopy, thermal desorption spectroscopy and scanning tunneling microscopy. Under vacuum conditions, small amounts of silanols (Si-OH) could only be formed upon deposition of an ice-like (amorphous solid water, ASW) film and subsequent heating to room temperature. Silanol coverage is considerably enhanced by low-energy electron irradiation of an ASW pre-covered silicate film. The degree of hydroxylation can be tuned by the irradiation parameters (beam energy, exposure) and the ASW film thickness. The results are consistent with a generally accepted picture that hydroxylation occurs through hydrolysis of siloxane (Si-O-Si) bonds in the silica network. Calculations using density functional theory show that this may happen on Si-O-Si bonds, which are either parallel (i.e., in the topmost silicate layer) or vertical to the film surface (i.e., connecting two silicate layers). In the latter case, the mechanism may additionally involve the reaction with a metal support underneath. The observed vibrational spectra are dominated by terminal silanol groups (ν(OD) band at 2763 cm(-1)) formed by hydrolysis of vertical Si-O-Si linkages. Film dehydroxylation fully occurs only upon heating to very high temperatures (∼ 1200 K) and is accompanied by substantial film restructuring, and even film dewetting upon cycling hydroxylation/dehydroxylation treatment.

  20. Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites

    KAUST Repository

    Schmidt, Daniel F.


    We report the first in-depth comparison of the mechanical properties and equilibrium solvent uptake of a range of polysiloxane nanocomposites based on treated and untreated montmorillonite and fumed silica nanofillers. We demonstrate the ability of equilibrium solvent uptake data (and, thus, overall physical and chemical cross-link density) to serve as a proxy for modulus (combining rubber elasticity and Flory-Rehner theory), hardness (via the theory of Boussinesq), and elongation at break, despite the nonideal nature of these networks. In contrast, we find that tensile and tear strength are not well-correlated with solvent uptake. Interfacial strength seems to dominate equilibrium solvent uptake and the mechanical properties it predicts. In the montmorillonite systems in particular, this results in the surprising consequence that equilibrium solvent uptake and mechanical properties are independent of dispersion state. We conclude that edge interactions play a more significant role than degree of exfoliation, a result unique in the field of polymer nanocomposites. This demonstrates that even a combination of polymer/nanofiller compatibility and thermodynamically stable nanofiller dispersion levels may not give rise to reinforcement. These findings provide an important caveat when attempting to connect structure and properties in polymer nanocomposites, and useful guidance in the design of optimized polymer/layered silicate nanocomposites in particular. © 2009 American Chemical Society.

  1. Aluminum Silicate Nanotube Modification of Cotton-Like Siloxane-poly(L-lactic acid-vaterite Composites

    Directory of Open Access Journals (Sweden)

    Daiheon Lee


    Full Text Available In our earlier work, a cotton-like biodegradable composite, consisting of poly(L-lactic acid with siloxane-containing vaterite, has been prepared by electrospinning. In the present work, the fibers skeleton of the cotton-like composites was modified successfully with imogolite, which is hydrophilic and biocompatible, via a dip process using ethanol diluted solution to improve the cellular initial attachment. Almost no change in the fiber morphology after the surface modification was observed. The surface-modified composite showed the similar calcium and silicate ions releasabilities, for activating the osteoblasts, as an unmodified one. Cell culture tests showed that the initial adhesion of murine osteoblast-like cells on the surface of the fibers was enhanced by surface modification.

  2. Petrophysical Analysis of Siliceous-Ooze Sediments, More Basin, Norwegian Sea

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Sørensen, Morten Kanne; Fabricius, Ida Lykke


    Pelagic siliceous-ooze sediments occur above the hydrocarbon reservoir of the Ormen Lange gas field in More Basin, Norwegian Sea. A possible hydrocarbon prospect of siliceous ooze was proposed, but siliceous ooze is significantly different in texture from most commonly known reservoir rocks...

  3. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates (United States)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian


    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  4. Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid-Vaterite Composite Fibermats for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shuji Yamazaki


    Full Text Available In our earlier work, a flexible fibermat consisting of a biodegradable composite with soluble silicate species, which has been reported to enhance bone formation, was prepared successfully using poly(L-lactic acid and siloxane-containing calcium carbonate particles by electrospinning. The fibermat showed enhanced bone formation in an in vivo test. In the present work, to improve the hydrophilicity of skeletal fibers in a fibermat, they were coated with nanotubular aluminum silicate crystals, which have a hydrophilic surface that has excellent affinity to body fluids and a high surface area advantageous for pronounced protein adsorption. The nanotubes were coated easily on the fiber surface using an electrophoretic method. In a conventional contact angle test, a drop of water rapidly penetrated into the nanotube-coated fibermat. The culture test using murine osteoblast-like cells (MC3T3-E1 showed that the cell attachment to the nanotube-coated fibermat at an early stage after seeding was enhanced in comparison with that to the noncoated one. This approach may provide a new method of improving the surface of polymer-based biomaterials.

  5. Calcium signaling in taste cells. (United States)

    Medler, Kathryn F


    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  6. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. (United States)

    Liu, Wenjuan; Zhai, Dong; Huan, Zhiguang; Wu, Chengtie; Chang, Jiang


    Although inorganic bone cements such as calcium phosphate cements have been widely applied in orthopaedic and dental fields because of their self-setting ability, development of high-strength bone cement with bioactivity and biodegradability remains a major challenge. Therefore, the purpose of this study is to prepare a tricalcium silicate/magnesium phosphate (C3S/MPC) composite bone cement, which is intended to combine the excellent bioactivity of C3S with remarkable self-setting properties and mechanical strength of MPC. The self-setting and mechanical properties, in vitro induction of apatite formation and degradation behaviour, and cytocompatibility of the composite cements were investigated. Our results showed that the C3S/MPC composite cement with an optimal composition had compressive strength up to 87 MPa, which was significantly higher than C3S (25 MPa) and MPC (64 MPa). The setting time could be adjusted between 3 min and 29 min with the variation of compositions. The hydraulic reaction products of the C3S/MPC composite cement were composed of calcium silicate hydrate (CSH) derived from the hydration of C3S and gel-like amorphous substance. The C3S/MPC composite cements could induce apatite mineralization on its surface in SBF solution and degraded gradually in Tris-HCl solution. Besides, the composite cements showed good cytocompatibility and stimulatory effect on the proliferation of MC3T3-E1 osteoblast cells. Our results indicated that the C3S/MPC composite bone cement might be a new promising high-strength inorganic bioactive material which may hold the potential for bone repair in load-bearing site.

  7. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings (United States)

    Ahlborg, Nadia L.; Zhu, Dongming


    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  8. Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core-mantle boundaries (United States)

    Van Roosbroek, Nadia; Hamann, Christopher; McKibbin, Seann; Greshake, Ansgar; Wirth, Richard; Pittarello, Lidia; Hecht, Lutz; Claeys, Philippe; Debaille, Vinciane


    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core-mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core-mantle boundary experiment and based on our temperature estimates, the following sequence of events takes place: (i) precipitation of olivine (1400-1360 °C), (ii) re

  9. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking


    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  10. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas


    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  11. Mid-IR water and silicate relation in protoplanetary disks (United States)

    Antonellini, S.; Bremer, J.; Kamp, I.; Riviere-Marichalar, P.; Lahuis, F.; Thi, W.-F.; Woitke, P.; Meijerink, R.; Aresu, G.; Spaans, M.


    Context. Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner radius, and disk scale height as potential explanations for the current detection rate. Aims: In this study, we aim to break degeneracies through constraints obtained from observations. We search for a connection between mid-IR water line fluxes and the strength of the 10 μm silicate feature. Methods: We analyze observed water line fluxes from three blends at 15.17, 17.22 and 29.85 μm published earlier and compute the 10 μm silicate feature strength from Spitzer spectra to search for possible trends. We use a series of published ProDiMo thermo-chemical models, to explore disk dust and gas properties, and also the effects of different central stars. In addition, we produced two standard models with different dust opacity functions, and one with a parametric prescription for the dust settling. Results: Our series of models that vary properties of the grain size distribution suggest that mid-IR water emission anticorrelates with the strength of the 10 μm silicate feature. The models also show that the increasing stellar bolometric luminosity simultaneously enhance the strength of this dust feature and the water lines fluxes. No correlation is found between the observed mid-IR water lines and the 10 μm silicate strength. Two-thirds of the targets in our sample show crystalline dust features, and the disks are mainly flaring. Our sample shows the same difference in the peak strength between amorphous and crystalline silicates that was noted in earlier studies, but our models do not support this intrinsic difference in silicate peak strength. Individual properties of our models are not able to reproduce the most extreme observations, suggesting that more complex dust properties (e.g., vertically changing) are


    Barton, J.


    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  13. Synthesis of calcium superoxide (United States)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.


    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  14. Nutrient accumulation and biomass production of alfafa after soil amendment with silicates

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus


    Full Text Available Studies on the use of silicate correctives in agriculture show that they have great potential to improve soil chemical characteristics, however, little information is available on the reactivity rates of their particle-size fractions. This study investigated whether the reactivity rates obtained experimentally could be considered in the calculation of ECC (effective calcium carbonate for soil liming, promoting adequate development of alfalfa plants. Six treatments were evaluated in the experiment, consisting of two slag types applied in two rates. The experimental ECC was used to calculate one of the rates and the ECC determined in the laboratory was used to calculate the other. Rates of limestone and wollastonite were based on the ECC determined in laboratory. The rates of each soil acidity corretive were calculated to increase the base saturation to 80%. The treatments were applied to a Rhodic Hapludox and an Alfisol Ferrudalfs. The methods for ECC determination established for lime can be applied to steel slag. The application of slag corrected soil acidity with consequent accumulation of Ca, P, and Si in alfalfa, favoring DM production.

  15. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James


    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  16. Calcium signalling and calcium channels: evolution and general principles. (United States)

    Verkhratsky, Alexei; Parpura, Vladimir


    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  17. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups. (United States)

    He, Shao-jian; Wang, Yi-qing; Feng, Yi-ping; Liu, Qing-sheng; Zhang, Li-qun


    A great variety of polymer/layered silicate (PLS) nanocomposites have been reported, however, there are few exfoliated PLS nanocomposites and their inorganic-organic interfaces are still a great problem, especially for the elastomers. In this research, a kind of exfoliated elastomer/silicate layer nanocompound was prepared and proved by XRD and TEM, in which 10 phr Na(+)-montmorillonite was dispersed in butadiene-styrene-vinyl pyridine rubber by latex compounding method with acidic flocculants. Moreover, a dynamic mechanical thermal analyzer (DMTA) suggested a strong interfacial interaction (interaction parameter B(H) = 4.91) between the silicate layers and macromolecules in addition to the weak inorganic-organic interfacial interaction, and solid state (15)N NMR indicated the formation of a strong ionic interface through the acidifying pyridine. Subsequently, a remarkable improvement of the dispersing morphology, mechanical performance and gas barrier property appeared, compared to that using calcium ion flocculants. This supports the formation of an exfoliated structure and an improved interfacial interaction.

  18. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia (United States)

    Wilson, Rosamund J; Copley, J Brian


    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  19. Removal of Cadmium Ions from Aqueous Solution by Silicate-incorporated Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    SHI Hebin; ZHONG Hong; LIU Yu; DENG Jinyang


    This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite,which were in favor of enhancing the cadmium ion sorpfion capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.


    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Shinnosuke; Kimura, Yuki [Institute of Low Temperature Science, Hokkaido University, Hokkaido Sapporo 060-0819 (Japan); Sakon, Itsuki [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)


    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicate would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.

  1. Modeling the viscosity of silicate melts containing manganese oxide

    Directory of Open Access Journals (Sweden)

    Kim Wan-Yi


    Full Text Available Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO-SiO2 and MnO-Al2O3-SiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limits.

  2. Inorganic phosphors in lead-silicate glass for white LEDs (United States)

    Nikonorov, N. V.; Kolobkova, E. V.; Aseev, V. A.; Bibik, A. Yu.; Nekrasova, Ya. A.; Tuzova, Yu. V.; Novogran, A. I.


    Luminescent composites of the "phosphor-in-glass" type, based on a highly reflective lead-silicate matrix and fine-grained powders of YAG:Ce3+ and SiAlON:Eu2+ crystals, are developed and synthesized. Phosphor and glass powders are sintered at a temperature of 550°C to obtain phosphor samples for white LEDs. The composites are analyzed by X-ray diffraction and luminescence spectroscopy. The dependence of the light quantum yield on the SiAlON:Eu2+ content in the samples is investigated. A breadboard of a white LED is designed using a phosphor-in-glass composite based on lead-silicate glass with a low glasstransition temperature. The total emission spectra of a blue LED and glass-based composites are measured. The possibility of generating warm white light by choosing an appropriate composition is demonstrated.

  3. Effective elastic moduli of polymer-layered silicate nanocomposites

    Institute of Scientific and Technical Information of China (English)


    Polymer-layered silicate (PLS) nanocomposites exhibit some mechanical properties that are much better than conventional polymer filled composites. A relatively low content of layered silicate yields a significant enhancement of material performance. After the volume fraction of clay reaches a relatively low "critical value"; however, further increasing does not show a greater stiffening effect. This phenomenon is contrary to previous micromechanical pre-dictions and is not understood well. Based on the analysis on the microstructures of PLS nanocomposites, the present note provides an insight into the physical micromechanisms of the above unexpected phenomenon. The Mori-Tanaka scheme and a numerical method are employed to estimate the effec-tive elastic moduli of such a composite.

  4. The viscosity window of the silicate glass foam production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng


    The production of silicate glass foam allows diverse resources and waste materials to be used in the production. Testing of such large palette of materials complicates and prolongs the optimisation process. Therefore, it is crucial to find a universal criterion for foaming silicate glass melts...... which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...

  5. Dry reusing and wet reclaiming of used sodium silicate sand

    Institute of Scientific and Technical Information of China (English)


    Based on the characteristics of used sodium silicate sand and the different use requirements for recycled sand, "dry reusing and wet reclaiming of used sodium silicate sand" is considered as the most suitable technique for the used sand. When the recycled sand is used as support sand, the used sand is only reused by dry process including breaking, screening, dust-removal, etc., and it is not necessary that the used sand is reclaimed with strongly rubbing and scraping method, but when the recycled sand is used as facing sand (or single sand), the used sand must be reclaimed by wet method for higher removal rate of the residual binders. The characteristics and the properties of the dry reused sand are compared with the wet reclaimed sand after combining the different use requirements of support sand and facing sand (or single sand), and above the most adaptive scheme has also been validated.

  6. Xe and Kr analyses of silicate inclusions from iron meteorites. (United States)

    Bogard, D. D.; Huneke, J. C.; Burnett, D. S.; Wasserburg, G. J.


    Measurements have been conducted of the amounts and isotopic composition of Xe and Kr in silicate inclusions of several iron meteorites. It is shown that the Xe and Kr contents are comparable to chondritic values. The isotopic compositions show trapped gas of both chondritic and atmospheric composition. Large spallation effects occur in some of the meteorites; the spallation spectra in some instances differ from those reported for stone meteorites. In several meteorites, very large neutron capture effects on Br and I occur. All samples have pronounced Xe129 excesses which apparently indicate differences in the formation times from chondrites of less than about 100 million years; however, the presence of trapped Xe132 in silicates which were enclosed in molten Fe-Ni and cooled slowly proves that they were not entirely outgassed, so that some of the Xe129 excess may also be trapped.

  7. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings (United States)

    Costa, Gustavo; Jacobson, Nathan


    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  8. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.


    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  9. Chemical Fractionation in the Silicate Vapor Atmosphere of the Earth

    CERN Document Server

    Pahlevan, Kaveh; Eiler, John; 10.1016/j.epsl.2010.10.03


    Despite its importance to questions of lunar origin, the chemical composition of the Moon is not precisely known. In recent years, however, the isotopic composition of lunar samples has been determined to high precision and found to be indistinguishable from the terrestrial mantle despite widespread isotopic heterogeneity in the Solar System. In the context of the giant-impact hypothesis, this level of isotopic homogeneity can evolve if the proto-lunar disk and post-impact Earth undergo turbulent mixing into a single uniform reservoir while the system is extensively molten and partially vaporized. In the absence of liquid-vapor separation, such a model leads to the lunar inheritance of the chemical composition of the terrestrial magma ocean. Hence, the turbulent mixing model raises the question of how chemical differences arose between the silicate Earth and Moon. Here we explore the consequences of liquid-vapor separation in one of the settings relevant to the lunar composition: the silicate vapor atmosphere...

  10. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)


    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  11. Hydrothermal and mechanochemical reactions of rice husk ash with calcium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, S.; Isojima, Y. [Hachinohe Institute of Technology, Aomori (Japan); Yu, Q. [Wuhan University of Technology, (Taiwan, Province of China)


    It is well known that a calcium silicate hydrate, commonly referred to as C-S-H gel, is important for cement to exhibit strength. Silica is present in rice husk ash to around 90%. When sufficiently sintered and crushed, rice husk ash mostly comprises amorphous silica having a large surface area. It is reactive, and is considered to contribute to improvement of concrete strength and durability. In this study, rice husk ash is reacted with calcium hydroxide under hydrothermal conditions or mechanochemical conditions at normal temperature, to synthesize Ca(1.5)SiO(3.5){center_dot}xH2O as one of the calcium silicate hydrates. It has an average particle size of 10{mu}m or smaller, which varies depending on synthesis method and condition. The compound synthesized at 40degC is composed of flocs having a porous structure and large specific surface area, as is the case with a C-S-H gel present in Portland cement paste. It loses the above structure and moisture in the fine pores gradually, when heated, but remains amorphous at up to 750degC. It is transformed into wollastonite, when heated to 780degC. 7 refs., 8 figs., 3 tabs.

  12. Diapiric ascent of silicic magma beneath the Bolivian Altiplano


    Del Potro, R.; M. Díez; Blundy, J.; Camacho, Antonio G.; Gottsmann, Joachim


    The vertical transport of large volumes of silicic magma, which drives volcanic eruptions and the long-term compositional evolution of the continental crust, is a highly debated problem. In recent years, dyking has been favored as the main ascent mechanism, but the structural connection between a distributed configuration of melt-filled pores in the source region and shallow magma reservoirs remains unsolved. In the Central Andes, inversion of a new high-resolution Bouguer anomaly data over t...

  13. Scenario of Growing Crops on Silicates in Lunar Gargens (United States)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  14. Sulfur Solubility In Silicate Melts: A Thermochemical Model (United States)

    Moretti, R.; Ottonello, G.

    A termochemical model for calculating sulfur solubility of simple and complex silicate melts has been developed in the framework of the Toop-Samis polymeric approach combined with a Flood - Grjotheim theoretical treatment of silicate slags [1,2]. The model allows one to compute sulfide and sulfate content of silicate melts whenever fugacity of gaseous sulphur is provided. "Electrically equivalent ion fractions" are needed to weigh the contribution of the various disproportion reactions of the type: MOmelt + 1/2S2 ,gas MSmelt+1/2O2 ,gas (1) MOmelt + 1/2S2 ,gas + 3/2O2 ,gas MSO4 ,melt (2) Eqs. 1 and 2 account for the oxide-sulfide and the oxide-sulfate disproportiona- tion in silicate melt. Electrically equivalent ion fractions are computed, in a fused salt Temkin notation, over the appropriate matrixes (anionic and cationic). The extension of such matrixes is calculated in the framework of a polymeric model previously developed [1,2,3] and based on a parameterization of acid-base properties of melts. No adjustable parameters are used and model activities follow the raoultian behavior implicit in the ion matrix solution of the Temkin notation. The model is based on a huge amount of data available in literature and displays a high heuristic capability with virtually no compositional limits, as long as the structural role assigned to each oxide holds. REFERENCES: [1] Ottonello G., Moretti R., Marini L. and Vetuschi Zuccolini M. (2001), Chem. Geol., 174, 157-179. [2] Moretti R. (2002) PhD Thesis, University of Pisa. [3] Ottonello G. (2001) J. Non-Cryst. Solids, 282, 72-85.


    Directory of Open Access Journals (Sweden)

    V. A. Aseev


    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  16. Structure and dynamics of iron doped and undoped silicate glasses (United States)

    Santos, Cristiane N.; Meneses, Domingos D. S.; Echegut, Patrick; Lecomte, Emmanuel


    The optical properties of common silicate glass compositions are well known at room temperature. However, their radiative properties and structural evolution of these glasses with temperature are still largely unexplored. In this work we have measured the emissivity of a set of iron doped and undoped silicate and borosilicate glasses over an unprecedented temperature (up to 1700 K) and spectral range (40 -- 20000 cm-1). This was achieved by means of a home-made apparatus composed of a CO2 laser as the heat source, a black-body reference and two spectrometers. The optical functions were assessed using a dielectric function model [1], and the structure and dynamics of the glassy network, as well the absorption of iron species in different redox states were evidenced. We believe that these new data will help to understand the heat transfer in molten silicates. [4pt] [1] D. D. S. Meneses, G. Gruener, M. Malki, and P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

  17. The Partitioning of Tungsten bwtween Aqueous Fluids and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    许永胜; 张本仁; 等


    An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800℃ and 1.5kb with natural granite as the starting material,The effects of the solution on the partition coefficients of tungsten show a wequence of P>co32->B>H2O.The effects are limited(generally KD<0.3)and the tungsten shows a preferential trend toward the melt over the aqueous fiuid.The value of KD increases with increasing concentration of phosphorus;the KD increases first and then reduces with the concentration of CO32-;when temperature decreases,the KD between the solution of CO32- and the silicate melt increases,and that between the solution of B4O72- and the silicate melt decreases.The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts.The KD value for phosphorus is 0.38 and that for sodium is 0.56.Evidence shows that the elements tend to become richer and richer in the melts.

  18. Electrical properties of iron doped apatite-type lanthanum silicates

    Institute of Scientific and Technical Information of China (English)

    SHI Qingle; ZHANG Hua


    The effect of Fe doping on the electrical properties of lanthanum silicates was investigated.The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2,0.4,0.6,0.8,1.0) were synthesized via sol-gel process.The unit cell volume increased with Fe doping because the ionic radius of Fe3+ ion is larger than that of Si4+ ion.The conductivities of La10Si6-xFexO27 x/2 first increased and then decreased with the increasing of Fe content.The increase of the conductivity might be attributed to the distortion of the cell lattice,which assisted the migration of the interstitial oxygen ions.The decrease of the conductivity might be caused by the lower concentration of interstitial oxygen ions.The optimum Fe doping content in lanthanum silicates was 0.6.La10Si5.4Fe0.6O26.7 exhibited the highest ionic conductivity of 2.712× 10-2 S/cm at 800 ℃.The dependence of conductivity on oxygen partial pressure p(O2) suggested that the conductivity of La10Si6-xFexO27-x/2 was mainly contributed by ionic conductivity.

  19. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis (United States)

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  20. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal


    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  1. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)


    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  2. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi


    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  3. Investigation of synthesized Be-bearing silicate glass as laboratory reference sample at X-ray electron probe microanalysis of silicates (United States)

    Belozerova, Olga Yu.; Mikhailov, Mikhail A.; Demina, Tamara V.


    The article discusses estimates of the stability and homogeneity in Be-Mg-Al-silicate glass produced by the authors and its applicability as a laboratory reference sample for X-ray electron probe microanalysis (EPMA) of Be-bearing silicate matters: crystals and quenching melt (glasses), silicates and oxides. The results were obtained using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices. The sample homogeneity was studied on macro (10-100 μm) and micro (1-10 μm) levels and was evaluated by the scheme of dispersion analysis. The applicability of Be-bearing silicate glass as a reference sample for Mg, Al, Si determinations was tested on the international certified reference glasses and laboratory reference samples of minerals with a known composition. The obtained experimental metrological characteristics correspond to the "applied geochemistry" type of analysis (second category) and suggest that Be-bearing silicate glass is appropriate as a laboratory reference sample for EPMA of Be-bearing silicate matters, silicates and oxides. Using Be-Mg-Al-silicate glass as a reference sample we obtained satisfactory data on the composition of both some minerals including cordierite and beryllium cordierite, beryllium indialite, beryl and metastable phases (chrysoberyl, compounds with structure of β-quartz and petalite).

  4. Mg-perovskite/silicate melt and magnesiowuestite/silicate melt partition coefficients for KLB-1 at 250 Kbars (United States)

    Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.


    The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).

  5. Extracellular calcium sensing and extracellular calcium signaling (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)


    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  6. The Role of Gas-Silicate Chemisorption Reactions in Modifying Planetary Crusts and Surfaces (United States)

    King, P. L.; Henley, R. W.; Wykes, J. L.; Renggli, C.; Troitzsch, U.; Clark, D.; O'Neill, H. S.


    Evidence for gas-solid reactions is found throughout the solar system: for example, sulfidation reactions in some meteorites and secondary phases coating lunar pyroclastic glasses. On Earth, the products of gas-solid reactions are documented in volcanic systems, metalliferous mineral deposits, impact craters, and on dust or meteorites after passage through the atmosphere - such reactions are also likely on the surfaces of Mars and Venus. To understand the chemical dynamics of such gas-solid reactions, we are undertaking systematic experiments and thermochemical modelling. Experiments were conducted in a vertical gas-mixing furnace at 600 - 800 °C and 1 bar, using SO2and a range of Ca-bearing materials: labradorite, feldspar glass and anorthosite (rock). In each case, anhydrite formed rapidly. In shorter experiments with labradorite, isolated anhydrite is observed surrounded by 'moats' of Ca-depleted silicate. In longer experiments, anhydrite is found as clusters of crystals that, in some cases, extend from the substrate forming precarious 'towers' (Figure). Anhydrite fills cracks in porous samples. We propose that the nucleation and rapid growth of anhydrite on the surface of these Ca-rich phases occurs by chemisorption of SO2(g) molecules with slightly negatively charged oxygen onto available near-surface calcium with slight positive charge. Anhydrite growth is sustained by SO2(g) chemisorption and Ca migration through the reacting silicate lattice, accelerated by increased bond lengths at high temperature. Significantly, the chemisorption reaction indicates that SO2 disproportionates to form both oxidized sulfur (as anhydrite) and a reduced sulfur species (e.g., an S* radical ion). On Earth, in the presence of H2O, the predominant reduced sulfur species is H2S, through an overall reaction: 3CaAl2Si2O8 + 4 SO2(g)+ H2O(g) → 3CaSO4 + 3Al2SiO5 + 3SiO2 + H2S(g)The reduced sulfur may react with gas phase Fe, Ni, Zn and Cu cluster compounds to form metal sulfides

  7. Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material. (United States)

    Mozayeni, Mohammad A; Milani, Amin S; Marvasti, Laleh A; Asgary, Saeed


    Calcium enriched mixture (CEM) cement has been recently invented by the last author. It is composed of calcium oxide, calcium phosphate, calcium silicate and calcium sulphate; however, it has a different chemical composition to mineral trioxide aggregate (MTA). The purpose of this ex vivo study was to investigate the cytotoxicity of CEM cement, and compare it with intermediate restorative material (IRM) and MTA. The materials were tested in fresh and set states on L929 fibroblasts to assess their cytotoxicity. The cell viability responses were evaluated with methyl-tetrazolium bromide assay and Elisa reader at 1, 24 and 168 h (7 days). The tested materials were eluted with L929 culture medium according to international standard organisation 109935 standard. Distilled water and culture medium served as positive and negative controls, respectively. Differences in cytotoxicity were evaluated by one-way anova and t-tests. The cytotoxicity of the materials was statistically different at the three time intervals (P IRM subgroups were the most cytotoxic root-end/dental material (P IRM because of lower cytotoxicity. CEM cement also has good biocompatibility as well as lower estimated cost to MTA and seems to be a promising dental material.

  8. Vitamin D, Calcium, and Bone Health (United States)

    ... in Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  9. Calcium, vitamin D, and your bones (United States)

    ... page: // Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D do I Need? Amounts of calcium are ...

  10. Vitamin D and Intestinal Calcium Absorption


    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J.; Seth, Tanya


    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D3 (1,25(OH)2D3) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium throu...

  11. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual


    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward; Wysolmerski, John


    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate ...

  12. The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    CERN Document Server

    Roche, P F; Gonzalez-Martin, O


    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to...

  13. 21 CFR 184.1191 - Calcium carbonate. (United States)


    ... HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of... soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the...

  14. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite (United States)

    Wooden, Diane


    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8


    Energy Technology Data Exchange (ETDEWEB)

    Young, Cindy L.; Wray, James J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Clark, Roger N. [Planetary Science Institute, Tucson, AZ (United States); Spencer, John R. [Southwest Research Institute, Boulder, CO (United States); Jennings, Donald E. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Hand, Kevin P.; Carlson, Robert W. [Jet Propulsion Laboratory, Pasadena, CA (United States); Poston, Michael J. [Caltech, Pasadena, CA (United States)


    We present the first spectral features obtained from Cassini’s Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ∼855 cm{sup −1} and a possible doublet at 660 and 690 cm{sup −1} that do not correspond to any known instrument artifacts. We attribute the 855 cm{sup −1} feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm{sup −1}. However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm{sup −1} and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material.

  16. Geoengineering potential of artificially enhanced silicate weathering of olivine. (United States)

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A


    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

  17. Low-(18)O Silicic Magmas: Why Are They So Rare?

    Energy Technology Data Exchange (ETDEWEB)

    Balsley, S.D.; Gregory, R.T.


    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  18. Conduction mechanism in bismuth silicate glasses containing titanium (United States)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.


    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  19. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin


    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  20. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    Xiaoming Liao; Hongyang Zhu; Guangfu Yin; Zhongbing Huang; Yadong Yao; Xianchun Chen


    The in vitro bioactivity of tricalcium silicate (Ca3SiO5) ceramics was investigated by the bone-like apatite-formation ability in simulated body fluid (SBF), and the cytocompatibility was evaluated through osteoblast adhesion and proliferation assay. The results show that the Ca3SiO5 ceramics possess bone-like apatite formation ability in SBF. In vitro cytocompatible evaluation reveals that osteoblasts adhere and spread well on the Ca3SiO5 ceramics, indicating good bioactivity and cytocompatibility.

  1. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Rajat Banerjee


    Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack length decreases and the crack deviates from its original path with increasing angle. The deviation of the crack was correlated with the component of the crack driving force and the theoretical strength of the aligned crystals at different angles.

  2. Concentration Quenching in Erbium Doped Bismuth Silicate Glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; XU Tie-Feng; NIE Qiu-Hua; SHEN Xiang; WANG Xun-Si


    @@ Er2 O3-doped bismuth silicate glasses are prepared by the conventional melt-quenching method, and the Er3+ : 4 I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. Infrared spectra are measured to estimate the exact content of OH- groups in the samples. Based on the electric dipole-dipole interaction theory,the interaction parameter CEr,Er for the migration rate of Er3+ :4 I13/2 → 4 I13/2 in proposed glasses is calculated.

  3. Kinetics of Cyclohexanone Ammoximation over Titanium Silicate Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    李永祥; 吴巍; 闵恩泽


    An intrinsic kinetics of cyclohexanone ammoximation in the liquid phase over titanium silicate molecular sieves is investigated in an isothermal slurry reactor at different initial reactant concentrations, catalyst loading,and reaction temperature. The rate equations are developed by analyzing data of kinetic measurements. More than 10 side reactions were found. H202 decomposition reaction Inust be considered and other side reactions can be neglected in the kinetic modeling. The predicted values of reaction rates based on the kinetic models are almost consistent with experimental ones. The models have guidance to the selection of reactor types and they are useful to the design and operation of reactor used.

  4. Transparent silicate glass-ceramics embedding Ni-doped nanocrystals



    Recent progress in the development of transparent silicate glass-ceramics embedding Ni-doped nanocrystals as broadband gain media is reviewed. At first, optical properties such as the peak positions, wavelengths lifetimes and quantum efficiencies of the near-infrared emission of nickel-doped oxide crystals are overviewed. The quantum efficiencies of the near-infrared emission of nickel-doped LiGa5O8 and MgGa2O4 were as high as ~1 even at room temperature. Thus these materials are promising ca...

  5. U.S. Geological Survey silicate rock standards (United States)

    Flanagan, F.J.


    The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.

  6. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward


    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  7. Ultra flat supercontinuum generation in silicate dual core microstructured fiber (United States)

    Buczynski, R.; Pysz, D.; Martynkien, T.; Lorenc, D.; Kujawa, I.; Nasilowski, T.; Berghmans, F.; Thienpont, H.; Stepien, R.


    In this paper we report on ultra flat supercontinuum generation in dual core photonic crystal fiber pumped in the normal dispersion regime. The fiber cladding is fabricated from custom NC21 borosilicate glass while the fiber cores is made of commercially available F2 high index lead-silicate glass from Schott Corp. We investigated the supercontinuum characteristics for single and double core excitation by a Ti:Sapphire oscillator delivering 100 fs pulses centered at 800 nm with an energy of 4.2 nJ. Dual core pumping resulted in appreciable flattening of the supercontinuum spectra in the range 875 - 950 nm.

  8. High-temperature silicate volcanism on Jupiter's moon Io. (United States)

    McEwen, A S; Keszthelyi, L; Spencer, J R; Schubert, G; Matson, D L; Lopes-Gautier, R; Klaasen, K P; Johnson, T V; Head, J W; Geissler, P; Fagents, S; Davies, A G; Carr, M H; Breneman, H H; Belton, M J


    Infrared wavelength observations of Io by the Galileo spacecraft show that at least 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patera, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with these high-temperature hot spots.

  9. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail:; Scrivener, Karen L.


    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  10. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash (United States)

    Rochelle, Gary T.; Chang, John C. S.


    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  11. Ladinian radiolarian fauna, siliceous rock from the Xianshuihe Belt, West Sichuan and their tectonic significance

    Institute of Scientific and Technical Information of China (English)

    LIANG Bin; FENG Qinglai; WANG Quanwei; GUO Jianqiu; ZHONG Changhong; LI Zhenjiang


    Ladinian radiolarian fauna, including Muelleritortis, Baumgartneria, Oertlispongus,Paroertlispongus, Pseudoertlispongus, etc., was discovered from the siliceous rock of the Runiange Formation in the Xianshuihe belt, West Sichuan Province. Geochemical test on five samples from the siliceous rock indicates that SiO2 content varies in 71.16%-90.06% and Si/Al ratio, in 49-71, which shows that the siliceous rock contains more terrigenous mud sediments.The siliceous rock is characterized by the large ratios of Al203/(Al203+Fe203) (0.63-0.81) and TiN (>26), the low ratio of V/Y (<2.8), and low vanadium content (<23 μg/g), which are similar to the geochemical characteristics of continental margin siliceous rock. The Ce/Ce* ratios of the four samples vary in 1.02-1.47 and the LaN/CeN ratio, in 0.75-1.07, which imply that the siliceous rock was deposited in the continental margin basin. But only one sample is similar to the oceanic siliceous rock in REE. Turbidite-siliceous rock bearing radiolarian-basalt assemblage and the geochemical characteristics of the siliceous rock indicate that the Xianshuihe belt is in the strong rift stage in the Ladinian age.

  12. Studying regimes of convective heat transfer in the production of high-temperature silicate melts (United States)

    Volokitin, O. G.; Sheremet, M. A.; Shekhovtsov, V. V.; Bondareva, N. S.; Kuzmin, V. I.


    The article presents the results of theoretical and experimental studies of the production of high-temperature silicate melts using the energy of low-temperature plasma in a conceptually new setup. A mathematical model of unsteady regimes of convective heat and mass transfer is developed and numerically implemented under the assumption of non-Newtonian nature of flow in the melting furnace with plasma-chemical synthesis of high-temperature silicate melts. Experiments on melting silicate containing materials were carried out using the energy of low-temperature plasma. The dependence of dynamic viscosity of various silicate materials (basalt, ash, waste of oil shale) was found experimentally.

  13. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang


    Full Text Available Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA. Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

  14. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG


    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  15. 26Al- 26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? (United States)

    Baker, Joel A.; Schiller, Martin; Bizzarro, Martin


    =+0.0015±0.0020‰, which is identical to terrestrial olivine. Model ages from these deficits can be calculated by assuming that 26Al was homogeneously distributed in the planetesimal-forming regions of the proto-planetary disc at the same level as calcium-aluminium-rich inclusions (CAIs). The absence of 26Mg deficits in aubrites, means these can only be constrained to have formed relatively late >2.9 Myr after CAI formation. Model ages calculated from pallasite olivine deficits would suggest that pallasite olivine crystallised and was diffusively isolated on its parent body 1.24-0.28+0.40 Myr after formation of CAIs. Similarly, ureilites would have experienced silicate partial melting and lowering of their bulk Al/Mg ratios 1.9-0.7+2.2 Myr after CAI formation. The model ages for silicate differentiation on the main group pallasite parent body are intermediate between those for metal-silicate fractionation for core formation obtained from magmatic iron meteorites and those for asteroidal silicate magmatism obtained from basaltic meteorites.

  16. Calcium signals in olfactory neurons. (United States)

    Tareilus, E; Noé, J; Breer, H


    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  17. Identification and Practical Application of Silicate-dissolving Bacteria

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; RAO Zheng-hua; SUN Yan-xing; YAO Jun; XING Li-jun


    Slime-forming bacteria were isolated from soils, rock surface and earthworm intestine, and their effects on dissolving silicate minerals and tomato growth were examined. One of the bacteria, Bacillus mucilaginosus RGBc13, had particularly strong ability to form slime and dissolve silicates. RGBc13 could also colonize and develop in both non-rhizosphere and rhizosphere soil. Total number of slime-forming bacteria increased from 2.9 × 103 cfu·g- 1and 8.4 × 103 cfu·g-1 to 9.6 × 106 cfu·g-1 and 6.0 × 107 cfu·g-1 in the non-rhizosphere and rhizosphere soils respectively. Potassium and phosphorus nutritional conditions in the rhizosphere were markedly improved through inoculation of this bacterium. Available K and P respectively increased from 25.86 and 3.63mg· kg-1 in the non-rhizosphere soil to 91.23 and 5.74mg· kg-1 in the rhizosphere soil. Tomato biomass increased by 125%, K and P uptakes were more than 150%, greater than the non- inoculation. Thus, there is a potential in applying RGBc13 for improving plant K and P nutrition.

  18. Ion-specific effects influencing the dissolution of tricalcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Nicoleau, L. [BASF Research Construction Materials and Systems, BASF Construction Chemicals GmbH, 83308 Trostberg (Germany); Schreiner, E., E-mail: [BASF Materials and Systems, BASF SE, 67056 Ludwigshafen (Germany); Nonat, A., E-mail: [Institut Carnot de Bourgogne, UMR6303 CNRS, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)


    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  19. Authigenic Mineralization of Silicates at the Organic-water Interface (United States)

    McEvoy, B.; Wallace, A. F.


    It is relatively common for some fraction of organic material to be preserved in the sedimentary rock record as disseminated molecular fragments. The survival of wholly coherent tissues from primarily soft-bodied organisms is far more unusual. However, the literature is now well- populated with spectacular examples of soft-tissue preservation ranging from a 2,600 year old human brain to the tissues of the Ediacaran biota that have survived ~600 million years. Some of the most exceptional examples of soft tissue preservation are from the Proterozoic-Cambrian transition, however, nearly all modes of fossil preservation during this time are debated. Clay mineral templates have been implicated as playing a role in several types of soft tissue preservation, including Burgess Shale and Beecher's Trilobite-type preservation, and more recently, Bitter Springs-type silicification. Yet, there is still much debate over whether these clay mineral coatings form during early stage burial and diagenesis, or later stage metamorphism. This research addresses this question by using in situ fluid cell Atomic Force Microscopy (AFM) to investigate the nucleation and growth of silicate minerals on model biological surfaces. Herein we present preliminary results on the deposition of hydrous magnesium silicates on self-assembled monolayers (-OH, -COOH, -CH3, and -H2PO3 terminated surfaces) at ambient conditions.

  20. Silicates on Iapetus from Cassini's Composite Infrared Spectrometer

    CERN Document Server

    Young, Cindy L; Clark, Roger N; Spencer, John R; Jennings, Donald E; Hand, Kevin P; Poston, Michael J; Carlson, Robert W


    We present the first spectral features obtained from Cassini's Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal to noise ratios (S/Rs) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/R and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ~855 cm-1 and a possible doublet at 660 and 690 cm-1 that do not correspond to any known instrument artifacts. We attribute the 855 cm-1 feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn's icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure hav...

  1. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries (United States)

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen


    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g-1 at 100 mA g-1), a cycling durability (specific capacity of 791.4 mAh g-1 after 100 cycles at 100 mA g-1), and a good rate capability (specific capacity of 349.4 mAh g-1 at 10 A g-1). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  2. Polymer-Layered Silicate Nanocomposites for Cryotank Applications (United States)

    Miller, Sandi G.; Meador, Michael A.


    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  3. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers. (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R


    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ.

  4. A silicate disk in the heart of the Ant

    CERN Document Server

    Chesneau, Olivier; Balick, Bruce; Lagadec, Eric; Matsuura, Mikako; Smith, Nathan; Spang, Alain; Wolf, Sebastian; Zijlstra, Albert A


    We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-...

  5. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.


    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  6. Relaxation phenomena in rubber/layered silicate nanocomposites

    Directory of Open Access Journals (Sweden)


    Full Text Available Broadband Dielectric Spectroscopy (BDS is employed in order to investigate relaxation phenomena occurring in natural rubber (NR, polyurethane rubber (PUR and PUR/NR blend based nanocomposites, reinforced by 10 parts per hundred (phr Layered Silicates (LS. Nanocomposites and matrices were examined under identical conditions in a wide frequency (10–1 to 106 Hz and temperature (–100 to 50°C range. Experimental data are analyzed in terms of electric modulus formalism. The recorded relaxation phenomena include contributions from both the polymer matrices and the nanofiller. Natural rubber is a non-polar material and its performance is only slightly affected by the presence of layered silicates. Polyurethane rubber exhibits four distinct relaxation processes attributed, with ascending relaxation rate, to Interfacial Polarization (IP, glass/rubber transition (α-mode, local motions of polar side groups and small segments of the polymer chain (β, γ-mode. The same processes have been detected in all systems containing PUR. IP is present in all nanocomposites being the slowest recorded process. Finally, pronounced interfacial relaxation phenomena, occurring in the PUR+10 phr LS spectra, are attributed to nanoscale effects of intercalation and exfoliation.

  7. Flared Disks and Silicate Emission in Young Brown Dwarfs

    CERN Document Server

    Mohanty, S; Natta, A; Fujiyoshi, T; Tamura, M; Barrado y Navascués, D; Mohanty, Subhanjoy; Jayawardhana, Ray; Natta, Antonella; Fujiyoshi, Takuya; Tamura, Motohide; Navascues, David Barrado y


    We present mid-infrared photometry of three very young brown dwarfs located in the $\\rho$ Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained with the Subaru 8-meter telescope. All three sources were detected at 8.6 and 11.7$\\mu$m, confirming the presence of significant mid-infrared excess arising from optically thick dusty disks. The spectral energy distributions of both GY310 and GY11 exhibit strong evidence of flared disks; flat disks can be ruled out for these two brown dwarfs. The data for GY5 show large scatter, and are marginally consistent with both flared and flat configurations. Inner holes a few substellar radii in size are indicated in all three cases (and especially in GY11), in agreement with magnetospheric accretion models. Finally, our 9.7$\\mu$m flux for GY310 implies silicate emission from small grains on the disk surface (though the data do not completely preclude larger grains with no silicate feature). Our results demonstrate that disks around young substellar objects are analog...

  8. 21 CFR 184.1187 - Calcium alginate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005.... Calcium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  9. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V


    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  10. Influence of silicate on the transport of bacteria in quartz sand and iron mineral-coated sand. (United States)

    Dong, Zhe; Yang, Haiyan; Wu, Dan; Ni, Jinren; Kim, Hyunjung; Tong, Meiping


    The influence of silicate on the transport and deposition of bacteria (Escherichia coli) in packed porous media were examined at a constant 20 mM ionic strength with different silicate concentrations (from 0 to 1 mM) at pH 7. Transport experiments were performed in two types of representative porous media, both bare quartz sand and iron mineral-coated quartz sand. In bare quartz sand, the breakthrough plateaus in the presence of silicate in suspensions were lower and the corresponding retained profiles were higher than those without silicate ions, indicating that the presence of silicate in suspensions decreased cell transport in bare quartz sand. Moreover, the decrease of bacteria transport in quartz sand induced by silicate was more pronounced with increasing silicate concentrations from 0 to 1 mM. However, when EPS was removed from cell surfaces, the presence of silicate in cell suspensions (with different concentrations) did not affect the transport behavior of bacteria in quartz sand. The interaction of silicate with EPS on cell surfaces negatively decreased the zeta potentials of bacteria, resulting in the decreased cell transport in bare quartz sand when silicate was copresent in bacteria suspensions. In contrast, the presence of silicate in suspensions increased cell transport in iron mineral-coated sand. Silicate ions competed with bacteria for the adsorption sites on mineral-coated sand, contributing to the increased cell transport in mineral-coated sand with silicate present in cell suspensions.

  11. Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route. (United States)

    Schumacher, Thomas C; Volkmann, Eike; Yilmaz, Rumeysa; Wolf, Artur; Treccani, Laura; Rezwan, Kurosch


    Ca3ZrSi2O9 (baghdadite) has become a major research focus within the biomaterial community due to its remarkable in-vitro and in-vivo bioactivity. Although baghdadite seems to exhibit interesting biological properties, as yet there has been no data published concerning its mechanical properties. This lack of knowledge hinders targeting this novel bioactive material towards potential applications. In this study we prepare dense Ca3ZrSi2O9 bulk ceramics for the first time, allowing the evaluation of its mechanical properties including hardness, bending strength, Young׳s modulus, and fracture toughness. The preparation of baghdadite has been accomplished by a direct solid-state synthesis in combination with conventional sintering at 1350-1450°C for 3h. Our results show that samples sintered at 1400°C exhibit the best mechanical properties, resulting in a bending strength, fracture toughness, and hardness of 98±16MPa, 1.3±0.1MPam(0.5), and 7.9±0.2GPa. With a comparable mechanical strength to hydroxyapatite, but with an increased fracture toughness by 30% and hardness by 13% baghdadite is highly suitable for potential applications in non-load bearing areas (e.g. coatings or filler materials).

  12. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature (United States)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki


    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.


    Institute of Scientific and Technical Information of China (English)

    杨东方; 张经; 吕吉斌; 高振会; 陈豫


    Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou B ay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO-3-N, NO-2-N, NH+4-N, SiO2-3-Si, PO3-4-P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temp erature; that the main factor controlling the primary production is Si; that water temper ature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecologica l niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature's effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay , the biogeochemical sediment process of the silicon, the phytoplankton predominan t species and the phytoplankton structure. The authors considered silicate a limit ing factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and up take by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrins ic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant


    Institute of Scientific and Technical Information of China (English)

    杨东方; 张经; 吕吉斌; 高振会; 陈豫


    Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO3--N, NO2--N, NH4+-N, SIO32--Si, PO43--P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq. ( 1 ) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature's effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant

  15. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin


    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  16. Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites

    Institute of Scientific and Technical Information of China (English)


    The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqueous solutions (of 0.5%, 1%, 2%, 5% and 10% concentrations). The mechanical properties of sodium silicate treated moso bamboo particles reinforced PVC composites (BPPC) were calculated and compared with raw bamboo particles filled samples. The thermal characteristics of the BPPC were studied to investigate the feasibility of sodium silicate treatment on moso bamboo particles. The particle morphology and BPPC microstructure were investigated by scanning electron microscopy. Results showed that the tensile strength and modulus of elasticity of the BPPC increased before the concentration of sodium silicate solution reached 5% and got their maximum values of 15.72 MPa and 2956.80 MPa, respectively at 5% concentration. The modulus of rupture obtained the maximum value of 27.73 MPa at 2% concentration. The mechanical curve decreased as the concentration of solution went higher. Differential scanning calorimetric analysis illustrated that the sodium silicate solution treated BPPC possesses a better compatibility. More uniform dispersion of moso bamboo particles in PVC matrix was obtained after the sodium silicate treatment. Hence, the sodium silicate was a feasible and competitive agent of creating moso bamboo particles reinforced PVC composites.

  17. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. (United States)

    Han, Jing; Michel, Andrew R; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W


    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX)-silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt % of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80-150 nm in size with a loading level of 47-74 wt % (wt %) of a PTX-silicate, which corresponds to 36-59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy.

  18. Synthesis of magnesium silicate from wheat husk ash: Effects of parameters on structural and surface properties

    Directory of Open Access Journals (Sweden)

    Pinar Terzioglu


    Full Text Available In the present study, magnesium silicate was produced by using wheat husk ash. Wheat husk was burned at 600 °C to obtain an amorphous ash structure, and the ash was processed with sodium hydroxide solution with heat to extract silica. Sodium silicate solution and magnesium salts were used to synthesize magnesium silicate. The present study investigates effects of the feeding rate on magnesium silicate production (0.6 mL/min, 35 mL/min, 70 mL/min, the type of magnesium salt (MgSO4 • 7H2O or MgCl2 • 6H2O, temperature (25 °C or 50 °C, and the washing agent (water and acetone on the chemical composition and surface characteristics of magnesium silicate. The results demonstrated that all of the variables affected the surface characteristics of magnesium silicate, such as surface area, particle size, and pore volume. However, it was also observed that the studied parameters did not affect the chemical composition of magnesium silicate. The wheat husk ash-based magnesium silicates obtained in the experimental study had a BET surface area ranging from 79 to 91 m2/g and a particle size varying from 42 to 63 µm.

  19. Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) (United States)

    Rinehart, Stephen


    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate materials.

  20. Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel

    Institute of Scientific and Technical Information of China (English)


    Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time.Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O52- and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min.

  1. A hidden reservoir of Fe/FeS in interstellar silicates?

    CERN Document Server

    Köhler, M; Ysard, N


    The depletion of iron and sulphur into dust in the interstellar medium and the exact nature of interstellar amorphous silicate grains is still an open question. We study the incorporation of iron and sulphur into amorphous silicates of olivine- and pyroxene-type and their effects on the dust spectroscopy and thermal emission. We used the Maxwell-Garnett effective-medium theory to construct the optical constants for a mixture of silicates, metallic iron, and iron sulphide. We also studied the effects of iron and iron sulphide in aggregate grains. Iron sulphide inclusions within amorphous silicates that contain iron metal inclusions shows no strong differences in the optical properties of the grains. A mix of amorphous olivine- and pyroxene-type silicate broadens the silicate features. An amorphous carbon mantle with a thickness of 10 nm on the silicate grains leads to an increase in absorption on the short-wavelength side of the 10 $\\mu$m silicate band. The assumption of amorphous olivine-type and pyroxene-typ...

  2. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne;


    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates), su...

  3. Facile synthesis of magnetic hierarchical copper silicate hollow nanotubes for efficient adsorption and removal of hemoglobin. (United States)

    Zhang, Min; Wang, Baoyu; Zhang, Yanwei; Li, Weizhen; Gan, Wenjun; Xu, Jingli


    This study reports the fabrication of magnetic copper silicate hierarchical hollow nanotubes, which are featured by a tailored complex wall structure and high surface area. Moreover, they exhibit excellent performance as an easily recycled adsorbent for protein separation. Particularly, this strategy can be extended as a general method to prepare other magnetic metal silicate hollow nanotubes.

  4. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite (United States)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.


    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  5. FT-IR and 29 Si-NMR for evaluating aluminium silicate precursors for geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.; Verkuijlen, M.H.W.; Eck, E.R.H.


    Geopolymers are systems of inorganic binders that can be used for sustainable, cementless concrete and are formed by alkali activation of an aluminium–silicate precursor (often secondary resources like fly ash or slag). The type of aluminium– silicate precursor and its potential variations within on

  6. Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    Directory of Open Access Journals (Sweden)

    Hossein A. Akhlaghi Amiri


    Full Text Available This paper addresses alkaline sodium silicate (Na-silicate behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content, which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.

  7. Factors affecting calcium balance in Chinese adolescents. (United States)

    Yin, Jing; Zhang, Qian; Liu, Ailing; Du, Weijing; Wang, Xiaoyan; Hu, Xiaoqi; Ma, Guansheng


    Chinese dietary reference intakes (DRIs) for calcium were developed mainly from studies conducted amongst Caucasians, yet a recent review showed that reference calcium intakes for Asians are likely to be different from those of Caucasians (Lee and Jiang, 2008). In order to develop calcium DRIs for Chinese adolescents, it is necessary to explore the characteristics and potential influencing factors of calcium metabolic balance in Chinese adolescents. A total of 80 students (15.1+/-0.8 years) were recruited stratified by gender from a 1-year calcium supplementation study. Subjects were randomly designed to four groups and supplemented with calcium carbonate tablets providing elemental calcium at 63, 354, 660, and 966 mg/day, respectively. Subjects consumed food from a 3-day cycle menu prepared by staff for 10 days. Elemental calcium in samples of foods, feces, and urine was determined in duplicates by inductively coupled plasma atomic emission spectrometry. The total calcium intake ranged from 352 to 1323 mg/day. The calcium apparent absorption efficiency and retention in boys were significantly higher than that in girls (68.7% vs. 46.4%, 480 mg/day vs. 204 mg/day, PCalcium retention increased with calcium intakes, but did not reach a plateau. Calcium absorption efficiency in boys increased with calcium intake up to 665 mg/day, and decreased after that. In girls, calcium absorption efficiency decreased with calcium intake. Calcium absorption efficiency increased within 1 year after first spermatorrhea in boys, but decreased with pubertal development in girls. Sex, calcium intake, age, and pubertal development were the most important determinants of calcium absorption (R(2)=0.508, Pcalcium intake, age, and pubertal development are important factors for calcium retention and absorption during growth, which should be considered for the development of calcium DRIs for Chinese adolescents.

  8. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks (United States)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.


    It is generally accepted that dynamic-weakening is essential for earthquake instability, and many experimental works have documented this weakening. Recent observations revealed also opposite trends of dynamic-strengthening in experiments (Reches & Lockner, 2010). We present here our experimental results of this dynamic-strengthening and discuss possible implications to earthquake behavior. We ran hundreds of experiments on experimental faults made of siliceous rock including granite, syenite, diorite, and quartzite. The experimental fault is comprised of two solid cylindrical blocks with a raised-ring contact of 7 cm diameter and 1 cm width. We recognized general, three regimes of strength-velocity relations: (I) Dynamic weakening (drop of 20-60% of static strength) as slip velocity increased from ~0.0003 m/s (lowest experimental velocity) to a critical velocity, Vc=0.008-0.16 m/s; (II) Abrupt transition to dynamic strengthening regime during which the fault strength almost regains its static strength; and (III) Quasi-constant strength with further possible drops as velocity approaches ~1 m/s. The critical velocity depends on the sample lithology: Vc is ~0.06 m/s for granite, ~0.008 m/s for syenite, ~0.01 m/s for diorite, and ~0.16 m/s for quartzite. The strengthening stage is associated with temperature increase, wear-rate increase, and the occurrence of intense, high frequency stick-slip events (Reches & Lockner, 2010). Sammis et al., (this meeting) attributed this strengthening to dehydration of the thin water layer that covers the gouge particles as the temperature increases. On the other hand, we note that tens of experiments with dolomite samples (non-siliceous), which were deformed under similar conditions, did not exhibit the velocity strengthening (unpublished). Based on the analyses by Andrews (2004, 2005), we speculate that velocity strengthening may bound the slip velocity. The numerical models of Andrews show that the slip velocity along a slip


    Directory of Open Access Journals (Sweden)

    A. M. Klykova


    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  10. Newly Identified Silicate Carbon Stars from IRAS Low-Resolution Spectra

    Institute of Scientific and Technical Information of China (English)

    Pei-Sheng Chen; Pin Zhang


    The discovery of silicate carbon star poses a challenge to the theory of stellar evolution in the late stage, hence it is important to look for more silicate carbon stars. To this end we have carried out cross-identifications between the new IRAS Low-Resolution Spectrum (LRS) database and the new carbon star catalog, CGCS3. We have found nine new silicate carbon stars with silicate features around 10μm and/or 18 μm. These newly identified stars are located in the Regions Ⅲa and Ⅶ in the IRAS two-color diagram, which means they indeed have typical far infrared colors of silicate carbon stars. The infrared properties of each of these sources are discussed.

  11. Soft X-ray Irradiation of Silicates: Implications on Dust Evolution in Protoplanetary Disks

    CERN Document Server

    Ciaravella, A; Chen, Y -J; Caro, G M Muñoz; Huang, C -H; Jiménez-Escobar, A; Venezia, A M


    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate ?lms submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted solgel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray irradiated protoplanetary disks.

  12. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094 (United States)

    Nguyen, A. N.; Messenger, S.


    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  13. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks (United States)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.


    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  14. The Reaction of Carbonates in Contact with Superheated Silicate Melts: New Insights from MEMIN Laser Melting Experiments (United States)

    Hamann, C.; Hecht, L.; Schäffer, S.; Deutsch, A.; Lexow, B.


    The reaction of carbonates in contact with silicate impact melts is discussed quite controversially in the impact community. Here, we discuss four MEMIN laser melting experiments involving carbonates in contact with superheated silicate melts.

  15. Mitochondrial calcium uptake. (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J


    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  16. Shrinking core models applied to the sodium silicate production process

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.


    Full Text Available The sodium silicate production process, with the molar ratio SiO2/Na2O = 2, for detergent zeolite 4A production, is based on quartz sand dissolving in NaOH aqueous solution, with a specific molality. It is a complex process performed at high temperature and pressure. It is of vital importance to develop adequate mathematical models, which are able to predict the dynamical response of the process parameters. A few kinetic models were developed within this study, which were adjusted and later compared to experimental results. It was assumed that SiO2 particles are smooth spheres, with uniform diameter. This diameter decreases during dissolving. The influence of particle diameter, working temperature and hydroxide ion molality on the dissolution kinetics was investigated. It was concluded that the developed models are sufficiently correct, in the engineering sense, and can be used for the dynamical prediction of process parameters.

  17. Photoluminescence in amorphous MgSiO_3 silicate

    CERN Document Server

    Thompson, S P; Day, S J; Connor, L D; Evans, A


    Samples of amorphous MgSiO_3 annealed at temperature steps leading up to their crystallisation temperature show a rise in photoluminescence activity, peaking at ~450C. The photoluminescence band has a main peak at 595nm and a weaker peak at 624nm. We present laboratory data to show that the maximum in photoluminescence activity is related to substantial structural reordering that occurs within a relatively narrow temperature range. We attribute the origin of the photoluminescence to non-bridging oxygen hole centre defects, which form around ordered nano-sized domain structures as a result of the breakup of tetrahedral connectivity in the disordered inter-domain network, aided by the loss of bonded OH. These defects are removed as crystallisation progresses, resulting in the decrease and eventual loss of photoluminescence. Thermally processed hydrogenated amorphous silicate grains could therefore represent a potential carrier of extended red emission.

  18. Reactivity, swelling and aggregation of mixed-size silicate nanoplatelets (United States)

    Segad, M.; Cabane, B.; Jönsson, Bo


    Montmorillonite is a key ingredient in a number of technical applications. However, little is known regarding the microstructure and the forces between silicate platelets. The size of montmorillonite platelets from different natural sources can vary significantly. This has an influence on their swelling behavior in water as well as in salt solutions, particularly when tactoid formation occurs, that is when divalent counterions are present in the system. A tactoid consists of a limited number of platelets aggregated in a parallel arrangement with a constant separation. The tactoid size increases with platelet size and with very small nanoplatelets, ~30 nm, no tactoids are observed irrespectively of the platelet origin and concentration of divalent ions. The formation and dissociation of tactoids seem to be reversible processes. A large proportion of small nanoplatelets in a mixed-size system affects the tactoid formation, reduces the aggregation number and increases the extra-lamellar swelling in the system.

  19. S-Isotope Fractionation between Fluid and Silicate Melts (United States)

    Fiege, A.; Holtz, F.; Shimizu, N.; Behrens, H.; Mandeville, C. W.; Simon, A. C.


    Large amounts of sulfur (S) can be released from silicate melts during volcanic eruption. Degassing of magma can lead to S-isotope fractionation between fluid and melt. However, experimental data on fluid-melt S-isotope fractionation are scarce and no data exist for silicate melts at temperatures (T) > 1000°C. Recent advances in in situ S-isotope analyses using secondary ion mass spectroscopy (SIMS) enable determinations of the isotopic composition in silicate glasses with low S content [1] and allow us to investigate experimentally fluid-melt S-isotope fractionation effects in magmatic systems. Isothermal decompression experiments were conducted in internally heated pressure vessels (IHPV). Volatile-bearing (~3 to ~8 wt% H2O, 140 to 2700 ppm S, 0 to 1000 ppm Cl) andesitic and basaltic glasses were synthesized at ~1040°C, ~500 MPa and log(fO2) = QFM to QFM+4 (QFM: quartz-magnetite-fayalite buffer). The decompression experiments were carried out at T = 1030 to 1200°C and similar fO2. Pressure (P) was released continuously from ~400 MPa to 150, 100 or 70 MPa with rates (r) ranging from 0.001 to 0.2 MPa/s. The samples were either rapidly quenched after decompression or annealed for various times (tA) at final conditions (1 to 72 h) before quenching. The volatile-bearing starting glasses and the partially degassed experimental glasses were analyzed by electron microprobe (e.g. Cl-, S-content), IR-spectroscopy (H2O content) and SIMS (δ34S). The gas-melt isotope fractionation factors (αg-m) were estimated following Holloway and Blank [2] and utilizing mass balance calculations. The results show that αg-m remains constant within error over the investigated range of r and tA, reflecting fluid-melt equilibrium fractionation of S isotopes for given T and fO2. Data obtained for oxidizing conditions (~QFM+4) are in agreement with observations in arc magmas [3] and close to what is predicted by previous theoretical and experimental data [4; 5; 6]; e.g. a α(SO2 gas - SO42

  20. High-dose dosimetry using natural silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Lucas S. do; Mendes, Leticia, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina, E-mail: [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica. Departamento de Fisica Nuclear; Barbosa, Renata F., E-mail: [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil). Departamento de Ciencias do Mar


    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  1. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging. (United States)

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D


    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  2. Formation of calcium complexes by borogluconate in vitro and during calcium borogluconate infusion in sheep. (United States)

    Farningham, D A


    The effect of borogluconate on plasma calcium fractions was studied in vitro and in vivo in sheep. In vitro calcium chloride was more effective in raising ionised plasma calcium than calcium borogluconate. Sodium borate or gluconate added to blood caused only small decreases in blood ionised calcium. However, together, a synergistic reduction in ionised calcium was observed. Following calcium borogluconate infusions into sheep, total plasma calcium rose primarily because of an increase in the unionised ultrafiltrable fraction. Other changes observed following the infusion were hypercalciuria, decreased glomerular filtration rate and acidosis. Sodium borogluconate administered subcutaneously lowered total plasma calcium. This probably resulted from enhanced calcium excretion. It is suggested that since the anionic component of calcium solutions alters the availability and retention of calcium, it is likely to affect clinical efficacy significantly.

  3. A-thermal elastic behavior of silicate glasses. (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique


    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  4. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL


    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  5. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)


    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  6. [Calcium metabolism characteristics in microgravity]. (United States)

    Grigor'ev, A I; Larina, I M; Morukov, B V


    The results of research of calcium exchange parameters at cosmonauts taken part in long space flights (SF) onboard of orbital stations "SALUT" and "MIR" within 1978-1998 were generalized. The analysis of data received during observation of 44 cosmonauts (18 of them have taken part in long SF twice) was done. The observation was carried out before and after SF by duration 30-438 days. The content of a total calcium in blood serum was increased basically by the increase of its ionized fraction after flights of moderate (3-6 months) and large duration (6-14 months) along with the significant increase of PTH and decrease of calcitonin levels. The content of osteocalcin after SF was increased. Three cosmonauts participated in research of calcium kinetics using stable isotopes before, in time and after a 115-day SF. Reduction of intestinal absorption, excretion through a gastrointestinal tract, and increase of calcium excretion with urine were marked in time of SF. In early postflight period a level of intestinal absorption, on the average, was much lower than in SF, and the calcium removal through intestine was increased. Both renal and intestinal excretion of calcium were not normalized in 3.5-4.5 months after end of SF. Increase of resorbtive processes in bone tissues which induced negative bone balance during flight was observed in all test subjects, proceeding from estimations of speed of the basic calcium flows made on the basis of mathematical modeling. The conclusion about decrease in speed of bone tissue remodeling and strengthening of its resorption proves to be true by data of research of biochemical and endocrine markers.

  7. Calcium wave of tubuloglomerular feedback. (United States)

    Peti-Peterdi, János


    ATP release from macula densa (MD) cells into the interstitium of the juxtaglomerular (JG) apparatus (JGA) is an integral component of the tubuloglomerular feedback (TGF) mechanism that controls the glomerular filtration rate. Because the cells of the JGA express a number of calcium-coupled purinergic receptors, these studies tested the hypothesis that TGF activation triggers a calcium wave that spreads from the MD toward distant cells of the JGA and glomerulus. Ratiometric calcium imaging of in vitro microperfused isolated JGA-glomerulus complex dissected from rabbits was performed with fluo-4/fura red and confocal fluorescence microscopy. Activation of TGF by increasing tubular flow rate at the MD rapidly produced a significant elevation in intracellular Ca(2+) concentration ([Ca(2+)](i)) in extraglomerular mesangial cells (by 187.6 +/- 45.1 nM) and JG renin granular cells (by 281.4 +/- 66.6 nM). Subsequently, cell-to-cell propagation of the calcium signal at a rate of 12.6 +/- 1.1 microm/s was observed upstream toward proximal segments of the afferent arteriole and adjacent glomeruli, as well as toward intraglomerular elements including the most distant podocytes (5.9 +/- 0.4 microm/s). The same calcium wave was observed in nonperfusing glomeruli, causing vasoconstriction and contractions of the glomerular tuft. Gap junction uncoupling, an ATP scavenger enzyme cocktail, and pharmacological inhibition of P(2) purinergic receptors, but not adenosine A(1) receptor blockade, abolished the changes in [Ca(2+)](i) and propagation of the calcium wave. These studies provided evidence that both gap junctional communication and extracellular ATP are integral components of the TGF calcium wave.

  8. 煅烧磷石膏对蒸压硅酸盐制品水化过程的影响%Effect of calcined phosphogypsum on hydration process of autoclaved silicate products

    Institute of Scientific and Technical Information of China (English)

    陆金驰; 李东南; 陈凯; 黄金林


    磷石膏经高温煅烧改性后与粉煤灰、砂粉、石灰及水泥熟料等制备蒸压硅酸盐制品,研究了不同温度煅烧的磷石膏对蒸压硅酸盐制品水化过程的影响,用蒸压制品中未反应的Ca(OH)2量及结合水量分析它们的反应速率,用XRD测定蒸压硅酸盐制品的水化产物,并结合SEM分析,结果表明,经煅烧的磷石膏对蒸压硅酸盐制品的水化有明显的促进作用,托勃莫来石与C-S-H (1)等水化产物的迅速生长而形成密实的水化产物结构是其增强蒸压硅酸盐制品的根本原因.%The effects of calcined phosphogypsum on the hydration process of the autoclaved silicate products were investigated in this paper. The influence of adding phosphogypsum calcined at different temperatures on the hydration rate of autoclaved silicate products was analyzed for un-reacted Ca(OH)2 content and combined water. The hydrates were determined with XRD and SEM. It was found that the hydration of autoclaved silicate products with added phosphogypsum calcined over 500℃ was greatly improved. The hydrates of the autoclaved silicate products with added phosphogypsum calcined over 500℃ had more un-reacted Ca(OH)2 content and combined water in the same curing time, and the research indicated that adding phosphogypsum calcined over 500℃ could also reinforce the compressive strength of autoclaved silicate products. It was pointed out that the aluminate phase present in the raw materials cannot hydrate to form more ettringite during autoclaved curing, and rapid formation of such hydrates as calcium silicate hydrate (1) and tobermorite with a more compact structure is the main reason for strengthening autoclaved silicate products.

  9. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages. (United States)

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe


    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages.

  10. Calcium supplement: humanity's double-edged sword. (United States)

    Bunyaratavej, Narong; Buranasinsup, Shutipen


    The principle aim of the present study is to investigate the dark side of calcium, pollutions in calcium preparation especially lead (Pb), mercury (Hg) and cadmium (Cd). The collected samples were the different calcium salts in the market and 18 preparations which were classified into 3 groups: Calcium carbonate salts, Chelated calcium and natural-raw calcium. All samples were analyzed for lead, cadmium and mercury by inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique, in house method based on AOAC (2005) 999.10 by ICP-MS. The calcium carbonate and the natural-raw calcium in every sample contained lead at 0.023-0.407 mg/kg of calcium powder. Meanwhile, the natural-raw calcium such as oyster, coral and animal bone showed amount of lead at 0.106-0.384 mg/kg with small amounts of mercury and cadmium. The chelated calcium such as calcium gluconate, calcium lactate and calcium citrate are free of lead.

  11. A Study of Siliceous Pneumoconiosis in a Desert Area of Sunan County,Gansu Province,China

    Institute of Scientific and Technical Information of China (English)


    Three hundred and ninety five residents in a desert area were examined with chest radiographs and 28 cases with siliceous pneumoconiosis were found.The prevalence of siliceous pneumoconiosis was 7.09%,and that over 40 years of age was 21%.The histological findings of lungs from a camel living in that area for 20 years also confirmed to have siliceous pneumoconiosis.

  12. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oligomeric silicic acid ester compound... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with a... chemical substance identified generically as oligomeric silicic acid ester compound with...

  13. Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement

    Directory of Open Access Journals (Sweden)

    Loreley Morejón-Alonso


    Full Text Available The addition of tricalcium silicate (C3S to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability.

  14. Structure and aqueous reactivity of silicate glasses high-resolution nuclear magnetic resonance contribution; Structure et reactivite aqueuse des verres silicates apport de la resonance magnetique nucleaire haute-resolution

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, F


    This research aims at getting a better understanding of the relations which may exist between the chemical composition of the oxide silicate glasses, the structure and the aqueous reactivity. We study the cations present in most glasses, more particularly the radioactive waste glasses, and those which are more liable to bring information both about structure and reactivity. Among the experimental methods used, the nuclear magnetic resonance of multi-quantum magic-angle spinning (NMR MQ-MAS) has been carried out for the structural characterization of the pristine and altered glasses. In the first part, we discuss the possibility of deducting a type of information from a quantitative approach of the {sup 23}Na, {sup 27}Al and {sup 17}O NMR MQ-MAS. In the second part, we apply this method to glasses containing between two and six oxides. The vitreous compositions studied permit to focus our attention on the influence of sodium, aluminum and calcium on their local structural environment. We point out an evolution of the distributions of bond distances and angles in relation to the glass chemical composition. We show the strong potentiality of the {sup 17}O used to probe the pristine and altered glasses. The influence of the different cations studied on the rate of glass dissolution is debated from the alterations made on short periods. On the basis of all these data, we discuss the importance of the structural effect which may influence the kinetic phenomena of alteration. (author)

  15. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts (United States)

    Thomson, A. R.; Kohn, S. C.; Bulanova, G. P.; Smith, C. B.; Araujo, D.; Walter, M. J.


    The trace element compositions of inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite, Brazil, are presented. Literature data for mineral/melt partition coefficients were collated, refitted and employed to interpret inclusion compositions. As part of this process an updated empirical model for predicting the partitioning behaviour of trivalent cations for garnet-melt equilibrium calibrated using data from 73 garnet-melt pairs is presented. High levels of trace element enrichment in inclusions interpreted as former calcium silicate perovskite and majoritic garnet preclude their origin as fragments of an ambient deep mantle assemblage. Inclusions believed to represent former bridgmanite minerals also display a modest degree of enrichment relative to mantle phases. The trace element compositions of 'NAL' and 'CF phase' minerals are also reported. Negative Eu, Ce, and Y/Ho anomalies alongside depletions of Sr, Hf and Zr in many inclusions are suggestive of formation from a low-degree carbonatitic melt of subducted oceanic crust. Observed enrichments in garnet and 'calcium perovskite' inclusions limit depths of melting to less than 600 km, prior to calcium perovskite saturation in subducting assemblages. Less enriched inclusions in sub-lithospheric diamonds from other global localities may represent deeper diamond formation. Modelled source rock compositions that are capable of producing melts in equilibrium with Juina-5 'calcium perovskite' and majorite inclusions are consistent with subducted MORB. Global majorite inclusion compositions suggest a common process is responsible for the formation of many superdeep diamonds, irrespective of geographic locality. Global transition zone inclusion compositions are reproduced by fractional crystallisation from a single parent melt, suggesting that they record the crystallisation sequence and melt evolution during this interaction of slab melts with ambient mantle. All observations are consistent with the

  16. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill L Part 1

    Institute of Scientific and Technical Information of China (English)

    M. Kermani; F.P. Hassani; E. Aflaki; M. Benzaazoua; M. Nokken


    In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investi-gated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF). The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The me-chanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength) and physical (water retention) properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP) revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  17. Nonmare volcanism on the Moon: Photometric evidence for the presence of evolved silicic materials (United States)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Watkins, M. J.; Coman, E.; Giguere, T. A.; Stopar, J. D.; Lawrence, S. J.


    Images and photometric data from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) are used to investigate regions of the Moon inferred from previous remote sensing compositional studies to be associated with nonmare, silicic volcanics. Specifically, LROC NAC imagery, with photometry normalized to account for local slopes using NAC Digital Terrain Models (DTMs), was used to investigate the exposed areas associated with the Compton-Belkovich Volcanic Complex (CBVC), Hansteen Alpha Volcanic Complex (HAVC), Lassell Massif (LM), Gruithuisen Domes (GD), and ejecta of Aristarchus Crater (AC). Photometric studies of spacecraft landing sites, for which ground-truth compositional data exist, allow us to study the relationship between photometric properties of soils and their mineralogical and chemical compositions. The silicic regions have high reflectance and single scattering albedos that are consistent with different proportions of highly reflective minerals including alkali feldspar and quartz, and low concentrations of mafic minerals. Of the silicic sites studied, the CBVC has the highest reflectance values and single scattering albedos. Silicic pyroclastic deposits may also occur at the CBVC, and we present evidence from laboratory spectra that an addition of up to ∼20 wt% glassy silicic materials to a highlands-type regolith simulant can account for the increased reflectance of these volcanic regions. Reflectance variations across and within the sites can be explained by mixing of felsic mineral components, evolved-to-intermediate silicic compositions, and/or silicic pyroclastic deposits.

  18. Probing Interstellar Silicate Dust Grain Properties in Quasar Absorption Systems at Redshifts z<1.4

    CERN Document Server

    Aller, Monique C; York, Donald G; Welty, Daniel E; Vladilo, Giovanni; Som, Debopam


    Absorption lines in the spectra of distant quasars whose sightlines pass through foreground galaxies provide a valuable tool to probe the dust and gas compositions of the interstellar medium (ISM) in galaxies. The first evidence of silicate dust in a quasar absorption system (QAS) was provided through our detection of the 10 micron silicate feature in the z=0.52 absorber toward the quasar AO 0235+164. We present results from 2 follow-up programs using archival Spitzer Space Telescope infrared spectra to study the interstellar silicate dust grain properties in a total of 13 QASs at 0.1silicate feature in the QASs studied. We also detect the 18 micron silicate feature in the sources with adequate spectral coverage. We find variations in the breadth, peak wavelength, and substructure of the 10 micron interstellar silicate absorption features among the absorbers. This suggests that the silicate dust grain properties in these distant galaxies may differ relat...

  19. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy (United States)

    Kravtsova, Antonina N.; Guda, Alexander A.; Goettlicher, Joerg; Soldatov, Alexander V.; Taroev, Vladimir K.; Kashaev, Anvar A.; Suvorova, Lyudmila F.; Tauson, Vladimir L.


    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K3Eu[Si6O15] 2H2O, HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] 0.375H2O, K4Yb2[Si8O21], K4Ce2[Al2Si8O24]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3- edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si12O32 layers) to +4 (starting CeO2 or oxidized Ce2O3).

  20. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani


    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  1. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers. (United States)

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio


    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  2. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. (United States)

    Ma, Rui; Tang, Songchao; Tan, Honglue; Qian, Jun; Lin, Wentao; Wang, Yugang; Liu, Changsheng; Wei, Jie; Tang, Tingting


    In this study, a nanocalcium silicate (n-CS)/polyetheretherketone (PEEK) bioactive composite was prepared using a process of compounding and injection-molding. The mechanical properties, hydrophilicity, and in vitro bioactivity of the composite, as well as the cellular responses of MC3T3-E1 cells (attachment, proliferation, spreading, and differentiation) to the composite, were investigated. The results showed that the mechanical properties and hydrophilicity of the composites were significantly improved by the addition of n-CS to PEEK. In addition, an apatite-layer formed on the composite surface after immersion in simulated body fluid (SBF) for 7 days. In cell culture tests, the results revealed that the n-CS/PEEK composite significantly promoted cell attachment, proliferation, and spreading compared with PEEK or ultrahigh molecular weight polyethylene (UHMWPE). Moreover, cells grown on the composite exhibited higher alkaline phosphatase (ALP) activity, more calcium nodule-formation, and higher expression levels of osteogenic differentiation-related genes than cells grown on PEEK or UHMWPE. These results indicated that the incorporation of n-CS to PEEK could greatly improve the bioactivity and biocompatibility of the composite. Thus, the n-CS/PEEK composite may be a promising bone repair material for use in orthopedic clinics.

  3. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report (United States)

    Chu, J.


    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  4. Preparation and Characterization of Lithium Zirconium Silicate for CO2 Capture

    Directory of Open Access Journals (Sweden)

    T.S. Bhosale


    Full Text Available The samples of lithium zirconium silicate were prepared by precipitation, template and sol-gel meth-ods. The samples were prepared with several mol ratios of Li:Zr:Si. The preparation of lithium zirco-nium silicate samples by precipitation method were carried out by using the lithium nitrate, zirconyl nitrate, zirconium(IV oxypropoxide and tetramethylorthosilicate (TEOS as precursors. The samples of lithium zirconium silicate were prepared by using cetyltrimethyl-ammonium bromide (C-TAB and tetramethyl ammonium hydroxide (TMAOH by template method. The samples of lithium zirconium silicate were characterized by XRD, TEM, SEM, 29Si-MAS NMR and FTIR. The surface area, alkalinity / acidity of the samples of lithium zirconium silicate were measured. The TGA analysis of lithium zirco-nium silicate samples was done. The CO2 captured by the samples of lithium zirconium silicate was es-timated. The captured CO2 by the samples of lithium zirconium silicate was found to be in the range 3.3 to 8.6 wt%. © 2014 BCREC UNDIP. All rights reservedReceived: 27th March 2014; Revised: 31st July 2014; Accepted: 2nd August 2014How to Cite: Bhosale, T.S. , Gaikwad, A.G. (2014. Preparation and Characterization of Lithium Zirconium Silicate for CO2 Capture. Bulletin of Chemical Reaction Engineering & Catalysis, 9(3: 249-262. (doi:10.9767/bcrec.9.3.6646.249-262Permalink/DOI:

  5. Vitamin D and intestinal calcium absorption. (United States)

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J; Seth, Tanya


    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed.

  6. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille;


    electroporation and electrochemotherapy. METHODS: The effects of calcium electroporation and bleomycin electroporation (alone or in combination) were compared in three different cell lines (DC-3F, transformed Chinese hamster lung fibroblast; K-562, human leukemia; and murine Lewis Lung Carcinoma). Furthermore...... survival at similar applied voltage parameters. The effect of calcium electroporation is independent of calcium compound. GENERAL SIGNIFICANCE: This study strongly supports the use of calcium electroporation as a potential cancer therapy and the results may aid in future clinical trials....

  7. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure (United States)

    Barnes, S. J.


    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  8. Oligo-lysine Induced Formation of Silica Particles in Neutral Silicate Solution

    Institute of Scientific and Technical Information of China (English)


    Oligo-(lysine)n (n = 1-4) containing different numbers of lysine residues was used to induce the condensation of silicic acid to form silica particles in neutral silicate solution. It was found that the condensation rate and the formation of silica particles are dependent on the number of lysine residues in an oligo-lysine. Oligo-lysine with more lysine residues can link more silicic acid together to form a matrix that promotes the effective aggregation of the condensed silica pieces to form large silica particles.

  9. Carbonate Formation in Non-Aqueous Environments by Solid-Gas Carbonation of Silicates

    CERN Document Server

    Day, S J; Evans, A; Parker, J E


    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  10. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.


    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  11. Sorption properties of finely dispersed metal-containing polymer-silicate materials

    Directory of Open Access Journals (Sweden)

    Андрій Сергійович Масюк


    Full Text Available Sorption properties of metal-containing polymer-silicate materials on regarding to different acid-base indicators have been investigated. The effect of the nature of metal and polymer modifier (polyvinyl alcohol and polyvinylpyrrolidone on the amount of active centers and specific active surface area of such material was determined. Moisture absorption of modified and not modified silicate fillers was founded. The effect of Ni-containing polymer-silicate fillers on the speed of curing of polyester compositions was determined

  12. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)


    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  13. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats. (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M


    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  14. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin


    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  15. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta


    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  16. The ins and outs of mitochondrial calcium. (United States)

    Finkel, Toren; Menazza, Sara; Holmström, Kira M; Parks, Randi J; Liu, Julia; Sun, Junhui; Liu, Jie; Pan, Xin; Murphy, Elizabeth


    Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

  17. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim


    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  18. Decalcification of calcium polycarbophil in rats. (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A


    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]calcium lactate. These results indicate that the greater part of orally administered calcium polycarbophil released calcium ions to produce polycarbophil in vivo.

  19. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.


    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  20. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration (United States)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.


    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of